mirror of
https://github.com/markqvist/RNode_Firmware.git
synced 2024-10-01 03:15:39 -04:00
1122 lines
26 KiB
C++
1122 lines
26 KiB
C++
#if LIBRARY_TYPE == LIBRARY_ARDUINO
|
|
#include <EEPROM.h>
|
|
#endif
|
|
#include <stddef.h>
|
|
#include "Config.h"
|
|
#include "LoRa.h"
|
|
#include "ROM.h"
|
|
#include "Framing.h"
|
|
#include "MD5.h"
|
|
|
|
#if LIBRARY_TYPE == LIBRARY_C
|
|
#include <time.h>
|
|
#include <poll.h>
|
|
#include <unistd.h>
|
|
#include <pty.h>
|
|
// We need a delay()
|
|
void delay(int ms) {
|
|
struct timespec interval;
|
|
interval.tv_sec = ms / 1000;
|
|
interval.tv_nsec = (ms % 1000) * 1000 * 1000;
|
|
// TODO: handle signals interrupting sleep
|
|
nanosleep(&interval, NULL);
|
|
}
|
|
|
|
// And millis()
|
|
struct timespec millis_base;
|
|
uint32_t millis() {
|
|
// Time since first call is close enough.
|
|
static bool base_set(false);
|
|
if (!base_set) {
|
|
if (clock_gettime(CLOCK_MONOTONIC, &millis_base)) {
|
|
exit(1);
|
|
}
|
|
base_set = true;
|
|
}
|
|
struct timespec now;
|
|
if (clock_gettime(CLOCK_MONOTONIC, &now)) {
|
|
exit(1);
|
|
}
|
|
return (now.tv_sec - millis_base.tv_sec) * 1000 + (now.tv_nsec - millis_base.tv_nsec)/(1000*1000);
|
|
}
|
|
|
|
// We also need a Serial
|
|
class SerialClass {
|
|
public:
|
|
void begin(int baud) {
|
|
int other_end = 0;
|
|
int status = openpty(&_fd, &other_end, NULL, NULL, NULL);
|
|
if (status) {
|
|
perror("could not open PTY");
|
|
exit(1);
|
|
}
|
|
|
|
std::cout << "Listening on " << ttyname(other_end) << std::endl;
|
|
}
|
|
|
|
operator bool() {
|
|
return _fd > 0;
|
|
}
|
|
void write(int b) {
|
|
uint8_t to_write = b;
|
|
ssize_t written = ::write(_fd, &to_write, 1);
|
|
while (written != 1) {
|
|
if (written < 0) {
|
|
perror("could not write to PTY");
|
|
exit(1);
|
|
}
|
|
written = ::write(_fd, &to_write, 1);
|
|
}
|
|
}
|
|
void write(const char* data) {
|
|
while(*data) {
|
|
write(*data);
|
|
++data;
|
|
}
|
|
}
|
|
bool available() {
|
|
struct pollfd request;
|
|
request.fd = _fd;
|
|
request.events = POLLIN;
|
|
request.revents = 0;
|
|
|
|
int result = poll(&request, 1, 0);
|
|
|
|
if (result == -1) {
|
|
perror("could not poll");
|
|
exit(1);
|
|
}
|
|
|
|
return result > 0;
|
|
}
|
|
uint8_t read() {
|
|
uint8_t buffer;
|
|
ssize_t count = ::read(_fd, &buffer, 1);
|
|
while (count != 1) {
|
|
if (count < 0) {
|
|
perror("could not read from PTY");
|
|
exit(1);
|
|
}
|
|
count = ::read(_fd, &buffer, 1);
|
|
}
|
|
return buffer;
|
|
}
|
|
protected:
|
|
int _fd;
|
|
};
|
|
|
|
|
|
SerialClass Serial;
|
|
|
|
// And random(below);
|
|
int random(int below) {
|
|
return rand() % below;
|
|
}
|
|
|
|
|
|
#endif
|
|
|
|
#if MCU_VARIANT == MCU_ESP32
|
|
#include "soc/rtc_wdt.h"
|
|
#define ISR_VECT IRAM_ATTR
|
|
#else
|
|
#define ISR_VECT
|
|
#endif
|
|
|
|
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
|
|
#include <avr/wdt.h>
|
|
#include <util/atomic.h>
|
|
#endif
|
|
|
|
uint8_t boot_vector = 0x00;
|
|
|
|
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
|
|
uint8_t OPTIBOOT_MCUSR __attribute__ ((section(".noinit")));
|
|
void resetFlagsInit(void) __attribute__ ((naked)) __attribute__ ((used)) __attribute__ ((section (".init0")));
|
|
void resetFlagsInit(void) {
|
|
__asm__ __volatile__ ("sts %0, r2\n" : "=m" (OPTIBOOT_MCUSR) :);
|
|
}
|
|
#elif MCU_VARIANT == MCU_ESP32
|
|
// TODO: Get ESP32 boot flags
|
|
#endif
|
|
|
|
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
|
|
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
|
|
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
|
|
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
|
|
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
|
|
#elif MCU_VARIANT == MCU_ESP32
|
|
#if BOARD_MODEL == BOARD_TBEAM
|
|
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
|
|
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
|
|
void led_tx_on() { digitalWrite(pin_led_tx, LOW); }
|
|
void led_tx_off() { digitalWrite(pin_led_tx, HIGH); }
|
|
#elif BOARD_MODEL == BOARD_LORA32_V2_0
|
|
#if defined(EXTERNAL_LEDS)
|
|
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
|
|
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
|
|
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
|
|
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
|
|
#else
|
|
void led_rx_on() { digitalWrite(pin_led_rx, LOW); }
|
|
void led_rx_off() { digitalWrite(pin_led_rx, HIGH); }
|
|
void led_tx_on() { digitalWrite(pin_led_tx, LOW); }
|
|
void led_tx_off() { digitalWrite(pin_led_tx, HIGH); }
|
|
#endif
|
|
#elif BOARD_MODEL == BOARD_LORA32_V2_1
|
|
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
|
|
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
|
|
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
|
|
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
|
|
#elif BOARD_MODEL == BOARD_HUZZAH32
|
|
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
|
|
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
|
|
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
|
|
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
|
|
#elif BOARD_MODEL == BOARD_GENERIC_ESP32
|
|
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
|
|
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
|
|
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
|
|
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
|
|
#endif
|
|
#elif MCU_VARIANT == MCU_LINUX
|
|
#if BOARD_MODEL == BOARD_SPIDEV
|
|
// No LEDs on this board. SPI only.
|
|
void led_rx_on() { }
|
|
void led_rx_off() { }
|
|
void led_tx_on() { }
|
|
void led_tx_off() { }
|
|
#endif
|
|
#endif
|
|
|
|
void hard_reset(void) {
|
|
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
|
|
wdt_enable(WDTO_15MS);
|
|
while(true) {
|
|
led_tx_on(); led_rx_off();
|
|
}
|
|
#elif MCU_VARIANT == MCU_ESP32
|
|
ESP.restart();
|
|
#elif MCU_VARIANT == MCU_LINUX
|
|
// TODO: re-exec ourselves?
|
|
// For now just quit.
|
|
exit(0);
|
|
#endif
|
|
}
|
|
|
|
void led_indicate_error(int cycles) {
|
|
bool forever = (cycles == 0) ? true : false;
|
|
cycles = forever ? 1 : cycles;
|
|
while(cycles > 0) {
|
|
led_rx_on();
|
|
led_tx_off();
|
|
delay(100);
|
|
led_rx_off();
|
|
led_tx_on();
|
|
delay(100);
|
|
if (!forever) cycles--;
|
|
}
|
|
led_rx_off();
|
|
led_tx_off();
|
|
}
|
|
|
|
void led_indicate_boot_error() {
|
|
while (true) {
|
|
led_tx_on();
|
|
led_rx_off();
|
|
delay(10);
|
|
led_rx_on();
|
|
led_tx_off();
|
|
delay(5);
|
|
}
|
|
}
|
|
|
|
void led_indicate_warning(int cycles) {
|
|
bool forever = (cycles == 0) ? true : false;
|
|
cycles = forever ? 1 : cycles;
|
|
led_tx_on();
|
|
while(cycles > 0) {
|
|
led_tx_off();
|
|
delay(100);
|
|
led_tx_on();
|
|
delay(100);
|
|
if (!forever) cycles--;
|
|
}
|
|
led_tx_off();
|
|
}
|
|
|
|
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 || MCU_VARIANT == MCU_LINUX
|
|
void led_indicate_info(int cycles) {
|
|
bool forever = (cycles == 0) ? true : false;
|
|
cycles = forever ? 1 : cycles;
|
|
while(cycles > 0) {
|
|
led_rx_off();
|
|
delay(100);
|
|
led_rx_on();
|
|
delay(100);
|
|
if (!forever) cycles--;
|
|
}
|
|
led_rx_off();
|
|
}
|
|
#elif MCU_VARIANT == MCU_ESP32
|
|
#if BOARD_MODEL == BOARD_LORA32_V2_1
|
|
void led_indicate_info(int cycles) {
|
|
bool forever = (cycles == 0) ? true : false;
|
|
cycles = forever ? 1 : cycles;
|
|
while(cycles > 0) {
|
|
led_rx_off();
|
|
delay(100);
|
|
led_rx_on();
|
|
delay(100);
|
|
if (!forever) cycles--;
|
|
}
|
|
led_rx_off();
|
|
}
|
|
#elif BOARD_MODEL == BOARD_LORA32_V2_0
|
|
void led_indicate_info(int cycles) {
|
|
bool forever = (cycles == 0) ? true : false;
|
|
cycles = forever ? 1 : cycles;
|
|
while(cycles > 0) {
|
|
led_rx_off();
|
|
delay(100);
|
|
led_rx_on();
|
|
delay(100);
|
|
if (!forever) cycles--;
|
|
}
|
|
led_rx_off();
|
|
}
|
|
#else
|
|
void led_indicate_info(int cycles) {
|
|
bool forever = (cycles == 0) ? true : false;
|
|
cycles = forever ? 1 : cycles;
|
|
while(cycles > 0) {
|
|
led_tx_off();
|
|
delay(100);
|
|
led_tx_on();
|
|
delay(100);
|
|
if (!forever) cycles--;
|
|
}
|
|
led_tx_off();
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 || MCU_VARIANT == MCU_ESP32
|
|
unsigned long led_standby_ticks = 0;
|
|
#endif
|
|
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
|
|
uint8_t led_standby_min = 1;
|
|
uint8_t led_standby_max = 40;
|
|
unsigned long led_standby_wait = 11000;
|
|
#elif MCU_VARIANT == MCU_ESP32
|
|
uint8_t led_standby_min = 200;
|
|
uint8_t led_standby_max = 255;
|
|
uint8_t led_notready_min = 0;
|
|
uint8_t led_notready_max = 255;
|
|
uint8_t led_notready_value = led_notready_min;
|
|
int8_t led_notready_direction = 0;
|
|
unsigned long led_notready_ticks = 0;
|
|
unsigned long led_standby_wait = 1768;
|
|
unsigned long led_notready_wait = 150;
|
|
#endif
|
|
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 || MCU_VARIANT == MCU_ESP32
|
|
uint8_t led_standby_value = led_standby_min;
|
|
int8_t led_standby_direction = 0;
|
|
#endif
|
|
|
|
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
|
|
void led_indicate_standby() {
|
|
led_standby_ticks++;
|
|
if (led_standby_ticks > led_standby_wait) {
|
|
led_standby_ticks = 0;
|
|
if (led_standby_value <= led_standby_min) {
|
|
led_standby_direction = 1;
|
|
} else if (led_standby_value >= led_standby_max) {
|
|
led_standby_direction = -1;
|
|
}
|
|
led_standby_value += led_standby_direction;
|
|
analogWrite(pin_led_rx, led_standby_value);
|
|
led_tx_off();
|
|
}
|
|
}
|
|
#elif MCU_VARIANT == MCU_ESP32
|
|
void led_indicate_standby() {
|
|
led_standby_ticks++;
|
|
if (led_standby_ticks > led_standby_wait) {
|
|
led_standby_ticks = 0;
|
|
if (led_standby_value <= led_standby_min) {
|
|
led_standby_direction = 1;
|
|
} else if (led_standby_value >= led_standby_max) {
|
|
led_standby_direction = -1;
|
|
}
|
|
led_standby_value += led_standby_direction;
|
|
if (led_standby_value > 253) {
|
|
led_tx_on();
|
|
} else {
|
|
led_tx_off();
|
|
}
|
|
#if BOARD_MODEL == BOARD_LORA32_V2_1
|
|
#if defined(EXTERNAL_LEDS)
|
|
led_rx_off();
|
|
#endif
|
|
#elif BOARD_MODEL == BOARD_LORA32_V2_0
|
|
#if defined(EXTERNAL_LEDS)
|
|
led_rx_off();
|
|
#endif
|
|
#else
|
|
led_rx_off();
|
|
#endif
|
|
}
|
|
}
|
|
#elif MCU_VARIANT == MCU_LINUX
|
|
// No LEDs available.
|
|
void led_indicate_standby() {}
|
|
#endif
|
|
|
|
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
|
|
void led_indicate_not_ready() {
|
|
led_standby_ticks++;
|
|
if (led_standby_ticks > led_standby_wait) {
|
|
led_standby_ticks = 0;
|
|
if (led_standby_value <= led_standby_min) {
|
|
led_standby_direction = 1;
|
|
} else if (led_standby_value >= led_standby_max) {
|
|
led_standby_direction = -1;
|
|
}
|
|
led_standby_value += led_standby_direction;
|
|
analogWrite(pin_led_tx, led_standby_value);
|
|
led_rx_off();
|
|
}
|
|
}
|
|
#elif MCU_VARIANT == MCU_ESP32
|
|
void led_indicate_not_ready() {
|
|
led_notready_ticks++;
|
|
if (led_notready_ticks > led_notready_wait) {
|
|
led_notready_ticks = 0;
|
|
if (led_notready_value <= led_notready_min) {
|
|
led_notready_direction = 1;
|
|
} else if (led_notready_value >= led_notready_max) {
|
|
led_notready_direction = -1;
|
|
}
|
|
led_notready_value += led_notready_direction;
|
|
if (led_notready_value > 128) {
|
|
led_tx_on();
|
|
} else {
|
|
led_tx_off();
|
|
}
|
|
#if BOARD_MODEL == BOARD_LORA32_V2_1
|
|
#if defined(EXTERNAL_LEDS)
|
|
led_rx_off();
|
|
#endif
|
|
#elif BOARD_MODEL == BOARD_LORA32_V2_0
|
|
#if defined(EXTERNAL_LEDS)
|
|
led_rx_off();
|
|
#endif
|
|
#else
|
|
led_rx_off();
|
|
#endif
|
|
}
|
|
}
|
|
#elif MCU_VARIANT == MCU_LINUX
|
|
// No LEDs available.
|
|
void led_indicate_not_ready() {}
|
|
#endif
|
|
|
|
void escapedSerialWrite(uint8_t byte) {
|
|
if (byte == FEND) { Serial.write(FESC); byte = TFEND; }
|
|
if (byte == FESC) { Serial.write(FESC); byte = TFESC; }
|
|
Serial.write(byte);
|
|
}
|
|
|
|
void kiss_indicate_reset() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_RESET);
|
|
Serial.write(CMD_RESET_BYTE);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_error(uint8_t error_code) {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_ERROR);
|
|
Serial.write(error_code);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_radiostate() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_RADIO_STATE);
|
|
Serial.write(radio_online);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_stat_rx() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_STAT_RX);
|
|
escapedSerialWrite(stat_rx>>24);
|
|
escapedSerialWrite(stat_rx>>16);
|
|
escapedSerialWrite(stat_rx>>8);
|
|
escapedSerialWrite(stat_rx);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_stat_tx() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_STAT_TX);
|
|
escapedSerialWrite(stat_tx>>24);
|
|
escapedSerialWrite(stat_tx>>16);
|
|
escapedSerialWrite(stat_tx>>8);
|
|
escapedSerialWrite(stat_tx);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_stat_rssi() {
|
|
uint8_t packet_rssi_val = (uint8_t)(last_rssi+rssi_offset);
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_STAT_RSSI);
|
|
escapedSerialWrite(packet_rssi_val);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_stat_snr() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_STAT_SNR);
|
|
escapedSerialWrite(last_snr_raw);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_radio_lock() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_RADIO_LOCK);
|
|
Serial.write(radio_locked);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_spreadingfactor() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_SF);
|
|
Serial.write((uint8_t)lora_sf);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_codingrate() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_CR);
|
|
Serial.write((uint8_t)lora_cr);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_implicit_length() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_IMPLICIT);
|
|
Serial.write(implicit_l);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_txpower() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_TXPOWER);
|
|
Serial.write((uint8_t)lora_txp);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_bandwidth() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_BANDWIDTH);
|
|
escapedSerialWrite(lora_bw>>24);
|
|
escapedSerialWrite(lora_bw>>16);
|
|
escapedSerialWrite(lora_bw>>8);
|
|
escapedSerialWrite(lora_bw);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_frequency() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_FREQUENCY);
|
|
escapedSerialWrite(lora_freq>>24);
|
|
escapedSerialWrite(lora_freq>>16);
|
|
escapedSerialWrite(lora_freq>>8);
|
|
escapedSerialWrite(lora_freq);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_random(uint8_t byte) {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_RANDOM);
|
|
Serial.write(byte);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_ready() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_READY);
|
|
Serial.write(0x01);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_not_ready() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_READY);
|
|
Serial.write(0x00);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_promisc() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_PROMISC);
|
|
if (promisc) {
|
|
Serial.write(0x01);
|
|
} else {
|
|
Serial.write(0x00);
|
|
}
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_detect() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_DETECT);
|
|
Serial.write(DETECT_RESP);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_version() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_FW_VERSION);
|
|
Serial.write(MAJ_VERS);
|
|
Serial.write(MIN_VERS);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_platform() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_PLATFORM);
|
|
Serial.write(PLATFORM);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_board() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_BOARD);
|
|
Serial.write(BOARD_MODEL);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_mcu() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_MCU);
|
|
Serial.write(MCU_VARIANT);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
inline bool isSplitPacket(uint8_t header) {
|
|
return (header & FLAG_SPLIT);
|
|
}
|
|
|
|
inline uint8_t packetSequence(uint8_t header) {
|
|
return header >> 4;
|
|
}
|
|
|
|
void setSpreadingFactor() {
|
|
if (radio_online) LoRa.setSpreadingFactor(lora_sf);
|
|
}
|
|
|
|
void setCodingRate() {
|
|
if (radio_online) LoRa.setCodingRate4(lora_cr);
|
|
}
|
|
|
|
void set_implicit_length(uint8_t len) {
|
|
implicit_l = len;
|
|
if (implicit_l != 0) {
|
|
implicit = true;
|
|
} else {
|
|
implicit = false;
|
|
}
|
|
}
|
|
|
|
void setTXPower() {
|
|
if (radio_online) {
|
|
if (model == MODEL_A4) LoRa.setTxPower(lora_txp, PA_OUTPUT_RFO_PIN);
|
|
if (model == MODEL_A9) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
|
|
}
|
|
}
|
|
|
|
|
|
void getBandwidth() {
|
|
if (radio_online) {
|
|
lora_bw = LoRa.getSignalBandwidth();
|
|
}
|
|
}
|
|
|
|
void setBandwidth() {
|
|
if (radio_online) {
|
|
LoRa.setSignalBandwidth(lora_bw);
|
|
getBandwidth();
|
|
}
|
|
}
|
|
|
|
void getFrequency() {
|
|
if (radio_online) {
|
|
lora_freq = LoRa.getFrequency();
|
|
}
|
|
}
|
|
|
|
void setFrequency() {
|
|
if (radio_online) {
|
|
LoRa.setFrequency(lora_freq);
|
|
getFrequency();
|
|
}
|
|
}
|
|
|
|
uint8_t getRandom() {
|
|
if (radio_online) {
|
|
return LoRa.random();
|
|
} else {
|
|
return 0x00;
|
|
}
|
|
}
|
|
|
|
void promisc_enable() {
|
|
promisc = true;
|
|
}
|
|
|
|
void promisc_disable() {
|
|
promisc = false;
|
|
}
|
|
|
|
uint8_t eeprom_read(uint8_t addr) {
|
|
#if MCU_VARIANT == MCU_LINUX
|
|
return 0;
|
|
#else
|
|
return EEPROM.read(eeprom_addr(addr));
|
|
#endif
|
|
}
|
|
|
|
bool eeprom_info_locked() {
|
|
uint8_t lock_byte = eeprom_read(ADDR_INFO_LOCK);
|
|
if (lock_byte == INFO_LOCK_BYTE) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void eeprom_update(int mapped_addr, uint8_t byte) {
|
|
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
|
|
EEPROM.update(mapped_addr, byte);
|
|
#elif MCU_VARIANT == MCU_ESP32
|
|
if (EEPROM.read(mapped_addr) != byte) {
|
|
EEPROM.write(mapped_addr, byte);
|
|
EEPROM.commit();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void eeprom_write(uint8_t addr, uint8_t byte) {
|
|
if (!eeprom_info_locked() && addr >= 0 && addr < EEPROM_RESERVED) {
|
|
eeprom_update(eeprom_addr(addr), byte);
|
|
} else {
|
|
kiss_indicate_error(ERROR_EEPROM_LOCKED);
|
|
}
|
|
}
|
|
|
|
void eeprom_erase() {
|
|
for (int addr = 0; addr < EEPROM_RESERVED; addr++) {
|
|
eeprom_update(eeprom_addr(addr), 0xFF);
|
|
}
|
|
hard_reset();
|
|
}
|
|
|
|
void eeprom_dump_info() {
|
|
for (int addr = ADDR_PRODUCT; addr <= ADDR_INFO_LOCK; addr++) {
|
|
uint8_t byte = eeprom_read(addr);
|
|
escapedSerialWrite(byte);
|
|
}
|
|
}
|
|
|
|
void eeprom_dump_config() {
|
|
for (int addr = ADDR_CONF_SF; addr <= ADDR_CONF_OK; addr++) {
|
|
uint8_t byte = eeprom_read(addr);
|
|
escapedSerialWrite(byte);
|
|
}
|
|
}
|
|
|
|
void eeprom_dump_all() {
|
|
for (int addr = 0; addr < EEPROM_RESERVED; addr++) {
|
|
uint8_t byte = eeprom_read(addr);
|
|
escapedSerialWrite(byte);
|
|
}
|
|
}
|
|
|
|
void kiss_dump_eeprom() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_ROM_READ);
|
|
eeprom_dump_all();
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
bool eeprom_product_valid() {
|
|
uint8_t rval = eeprom_read(ADDR_PRODUCT);
|
|
|
|
#if PLATFORM == PLATFORM_AVR
|
|
if (rval == PRODUCT_RNODE || rval == PRODUCT_HMBRW) {
|
|
#elif PLATFORM == PLATFORM_ESP32
|
|
if (rval == PRODUCT_RNODE || rval == PRODUCT_HMBRW || rval == PRODUCT_TBEAM || rval == PRODUCT_T32_20 || rval == PRODUCT_T32_21) {
|
|
#else
|
|
if (false) {
|
|
#endif
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool eeprom_model_valid() {
|
|
model = eeprom_read(ADDR_MODEL);
|
|
#if BOARD_MODEL == BOARD_RNODE
|
|
if (model == MODEL_A4 || model == MODEL_A9) {
|
|
#elif BOARD_MODEL == BOARD_HMBRW
|
|
if (model == MODEL_FF) {
|
|
#elif BOARD_MODEL == BOARD_TBEAM
|
|
if (model == MODEL_E4 || model == MODEL_E9) {
|
|
#elif BOARD_MODEL == BOARD_LORA32_V2_0
|
|
if (model == MODEL_B3 || model == MODEL_B8) {
|
|
#elif BOARD_MODEL == BOARD_LORA32_V2_1
|
|
if (model == MODEL_B4 || model == MODEL_B9) {
|
|
#elif BOARD_MODEL == BOARD_HUZZAH32
|
|
if (model == MODEL_FF) {
|
|
#elif BOARD_MODEL == BOARD_GENERIC_ESP32
|
|
if (model == MODEL_FF) {
|
|
#else
|
|
if (false) {
|
|
#endif
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool eeprom_hwrev_valid() {
|
|
hwrev = eeprom_read(ADDR_HW_REV);
|
|
if (hwrev != 0x00 && hwrev != 0xFF) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool eeprom_checksum_valid() {
|
|
char *data = (char*)malloc(CHECKSUMMED_SIZE);
|
|
for (uint8_t i = 0; i < CHECKSUMMED_SIZE; i++) {
|
|
char byte = eeprom_read(i);
|
|
data[i] = byte;
|
|
}
|
|
|
|
unsigned char *hash = MD5::make_hash(data, CHECKSUMMED_SIZE);
|
|
bool checksum_valid = true;
|
|
for (uint8_t i = 0; i < 16; i++) {
|
|
uint8_t stored_chk_byte = eeprom_read(ADDR_CHKSUM+i);
|
|
uint8_t calced_chk_byte = (uint8_t)hash[i];
|
|
if (stored_chk_byte != calced_chk_byte) {
|
|
checksum_valid = false;
|
|
}
|
|
}
|
|
|
|
free(hash);
|
|
free(data);
|
|
return checksum_valid;
|
|
}
|
|
|
|
bool eeprom_have_conf() {
|
|
if (eeprom_read(ADDR_CONF_OK) == CONF_OK_BYTE) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void eeprom_conf_load() {
|
|
if (eeprom_have_conf()) {
|
|
lora_sf = eeprom_read(ADDR_CONF_SF);
|
|
lora_cr = eeprom_read(ADDR_CONF_CR);
|
|
lora_txp = eeprom_read(ADDR_CONF_TXP);
|
|
lora_freq = (uint32_t)eeprom_read(ADDR_CONF_FREQ+0x00) << 24 | (uint32_t)eeprom_read(ADDR_CONF_FREQ+0x01) << 16 | (uint32_t)eeprom_read(ADDR_CONF_FREQ+0x02) << 8 | (uint32_t)eeprom_read(ADDR_CONF_FREQ+0x03);
|
|
lora_bw = (uint32_t)eeprom_read(ADDR_CONF_BW+0x00) << 24 | (uint32_t)eeprom_read(ADDR_CONF_BW+0x01) << 16 | (uint32_t)eeprom_read(ADDR_CONF_BW+0x02) << 8 | (uint32_t)eeprom_read(ADDR_CONF_BW+0x03);
|
|
}
|
|
}
|
|
|
|
void eeprom_conf_save() {
|
|
if (hw_ready && radio_online) {
|
|
eeprom_update(eeprom_addr(ADDR_CONF_SF), lora_sf);
|
|
eeprom_update(eeprom_addr(ADDR_CONF_CR), lora_cr);
|
|
eeprom_update(eeprom_addr(ADDR_CONF_TXP), lora_txp);
|
|
|
|
eeprom_update(eeprom_addr(ADDR_CONF_BW)+0x00, lora_bw>>24);
|
|
eeprom_update(eeprom_addr(ADDR_CONF_BW)+0x01, lora_bw>>16);
|
|
eeprom_update(eeprom_addr(ADDR_CONF_BW)+0x02, lora_bw>>8);
|
|
eeprom_update(eeprom_addr(ADDR_CONF_BW)+0x03, lora_bw);
|
|
|
|
eeprom_update(eeprom_addr(ADDR_CONF_FREQ)+0x00, lora_freq>>24);
|
|
eeprom_update(eeprom_addr(ADDR_CONF_FREQ)+0x01, lora_freq>>16);
|
|
eeprom_update(eeprom_addr(ADDR_CONF_FREQ)+0x02, lora_freq>>8);
|
|
eeprom_update(eeprom_addr(ADDR_CONF_FREQ)+0x03, lora_freq);
|
|
|
|
eeprom_update(eeprom_addr(ADDR_CONF_OK), CONF_OK_BYTE);
|
|
led_indicate_info(10);
|
|
} else {
|
|
led_indicate_warning(10);
|
|
}
|
|
}
|
|
|
|
void eeprom_conf_delete() {
|
|
eeprom_update(eeprom_addr(ADDR_CONF_OK), 0x00);
|
|
}
|
|
|
|
void unlock_rom() {
|
|
led_indicate_error(50);
|
|
eeprom_erase();
|
|
}
|
|
|
|
typedef struct FIFOBuffer
|
|
{
|
|
unsigned char *begin;
|
|
unsigned char *end;
|
|
unsigned char * volatile head;
|
|
unsigned char * volatile tail;
|
|
} FIFOBuffer;
|
|
|
|
inline bool fifo_isempty(const FIFOBuffer *f) {
|
|
return f->head == f->tail;
|
|
}
|
|
|
|
inline bool fifo_isfull(const FIFOBuffer *f) {
|
|
return ((f->head == f->begin) && (f->tail == f->end)) || (f->tail == f->head - 1);
|
|
}
|
|
|
|
inline void fifo_push(FIFOBuffer *f, unsigned char c) {
|
|
*(f->tail) = c;
|
|
|
|
if (f->tail == f->end) {
|
|
f->tail = f->begin;
|
|
} else {
|
|
f->tail++;
|
|
}
|
|
}
|
|
|
|
inline unsigned char fifo_pop(FIFOBuffer *f) {
|
|
if(f->head == f->end) {
|
|
f->head = f->begin;
|
|
return *(f->end);
|
|
} else {
|
|
return *(f->head++);
|
|
}
|
|
}
|
|
|
|
inline void fifo_flush(FIFOBuffer *f) {
|
|
f->head = f->tail;
|
|
}
|
|
|
|
#if SERIAL_EVENTS == SERIAL_INTERRUPT
|
|
static inline bool fifo_isempty_locked(const FIFOBuffer *f) {
|
|
bool result;
|
|
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
result = fifo_isempty(f);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static inline bool fifo_isfull_locked(const FIFOBuffer *f) {
|
|
bool result;
|
|
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
result = fifo_isfull(f);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static inline void fifo_push_locked(FIFOBuffer *f, unsigned char c) {
|
|
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
fifo_push(f, c);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
static inline unsigned char fifo_pop_locked(FIFOBuffer *f) {
|
|
unsigned char c;
|
|
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
c = fifo_pop(f);
|
|
}
|
|
return c;
|
|
}
|
|
*/
|
|
|
|
inline void fifo_init(FIFOBuffer *f, unsigned char *buffer, size_t size) {
|
|
f->head = f->tail = f->begin = buffer;
|
|
f->end = buffer + size;
|
|
}
|
|
|
|
inline size_t fifo_len(FIFOBuffer *f) {
|
|
return f->end - f->begin;
|
|
}
|
|
|
|
typedef struct FIFOBuffer16
|
|
{
|
|
uint16_t *begin;
|
|
uint16_t *end;
|
|
uint16_t * volatile head;
|
|
uint16_t * volatile tail;
|
|
} FIFOBuffer16;
|
|
|
|
inline bool fifo16_isempty(const FIFOBuffer16 *f) {
|
|
return f->head == f->tail;
|
|
}
|
|
|
|
inline bool fifo16_isfull(const FIFOBuffer16 *f) {
|
|
return ((f->head == f->begin) && (f->tail == f->end)) || (f->tail == f->head - 1);
|
|
}
|
|
|
|
inline void fifo16_push(FIFOBuffer16 *f, uint16_t c) {
|
|
*(f->tail) = c;
|
|
|
|
if (f->tail == f->end) {
|
|
f->tail = f->begin;
|
|
} else {
|
|
f->tail++;
|
|
}
|
|
}
|
|
|
|
inline uint16_t fifo16_pop(FIFOBuffer16 *f) {
|
|
if(f->head == f->end) {
|
|
f->head = f->begin;
|
|
return *(f->end);
|
|
} else {
|
|
return *(f->head++);
|
|
}
|
|
}
|
|
|
|
inline void fifo16_flush(FIFOBuffer16 *f) {
|
|
f->head = f->tail;
|
|
}
|
|
|
|
#if SERIAL_EVENTS == SERIAL_INTERRUPT
|
|
static inline bool fifo16_isempty_locked(const FIFOBuffer16 *f) {
|
|
bool result;
|
|
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
result = fifo16_isempty(f);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
static inline bool fifo16_isfull_locked(const FIFOBuffer16 *f) {
|
|
bool result;
|
|
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
result = fifo16_isfull(f);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
static inline void fifo16_push_locked(FIFOBuffer16 *f, uint16_t c) {
|
|
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
fifo16_push(f, c);
|
|
}
|
|
}
|
|
|
|
static inline size_t fifo16_pop_locked(FIFOBuffer16 *f) {
|
|
size_t c;
|
|
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
c = fifo16_pop(f);
|
|
}
|
|
return c;
|
|
}
|
|
*/
|
|
|
|
inline void fifo16_init(FIFOBuffer16 *f, uint16_t *buffer, uint16_t size) {
|
|
f->head = f->tail = f->begin = buffer;
|
|
f->end = buffer + size;
|
|
}
|
|
|
|
inline uint16_t fifo16_len(FIFOBuffer16 *f) {
|
|
return (f->end - f->begin);
|
|
}
|
|
|
|
#if BOARD_MODEL == BOARD_TBEAM
|
|
#include <axp20x.h>
|
|
AXP20X_Class PMU;
|
|
|
|
bool initPMU()
|
|
{
|
|
if (PMU.begin(Wire, AXP192_SLAVE_ADDRESS) == AXP_FAIL) {
|
|
return false;
|
|
}
|
|
/*
|
|
* The charging indicator can be turned on or off
|
|
* * * */
|
|
PMU.setChgLEDMode(AXP20X_LED_OFF);
|
|
|
|
/*
|
|
* The default ESP32 power supply has been turned on,
|
|
* no need to set, please do not set it, if it is turned off,
|
|
* it will not be able to program
|
|
*
|
|
* PMU.setDCDC3Voltage(3300);
|
|
* PMU.setPowerOutPut(AXP192_DCDC3, AXP202_ON);
|
|
*
|
|
* * * */
|
|
|
|
/*
|
|
* Turn off unused power sources to save power
|
|
* **/
|
|
|
|
PMU.setPowerOutPut(AXP192_DCDC1, AXP202_OFF);
|
|
PMU.setPowerOutPut(AXP192_DCDC2, AXP202_OFF);
|
|
PMU.setPowerOutPut(AXP192_LDO2, AXP202_OFF);
|
|
PMU.setPowerOutPut(AXP192_LDO3, AXP202_OFF);
|
|
PMU.setPowerOutPut(AXP192_EXTEN, AXP202_OFF);
|
|
|
|
/*
|
|
* Set the power of LoRa and GPS module to 3.3V
|
|
**/
|
|
PMU.setLDO2Voltage(3300); //LoRa VDD
|
|
PMU.setLDO3Voltage(3300); //GPS VDD
|
|
PMU.setDCDC1Voltage(3300); //3.3V Pin next to 21 and 22 is controlled by DCDC1
|
|
|
|
PMU.setPowerOutPut(AXP192_DCDC1, AXP202_ON);
|
|
|
|
// Turn on SX1276
|
|
PMU.setPowerOutPut(AXP192_LDO2, AXP202_ON);
|
|
|
|
// Turn off GPS
|
|
PMU.setPowerOutPut(AXP192_LDO3, AXP202_OFF);
|
|
|
|
pinMode(PMU_IRQ, INPUT_PULLUP);
|
|
attachInterrupt(PMU_IRQ, [] {
|
|
// pmu_irq = true;
|
|
}, FALLING);
|
|
|
|
PMU.adc1Enable(AXP202_VBUS_VOL_ADC1 |
|
|
AXP202_VBUS_CUR_ADC1 |
|
|
AXP202_BATT_CUR_ADC1 |
|
|
AXP202_BATT_VOL_ADC1,
|
|
AXP202_ON);
|
|
|
|
PMU.enableIRQ(AXP202_VBUS_REMOVED_IRQ |
|
|
AXP202_VBUS_CONNECT_IRQ |
|
|
AXP202_BATT_REMOVED_IRQ |
|
|
AXP202_BATT_CONNECT_IRQ,
|
|
AXP202_ON);
|
|
PMU.clearIRQ();
|
|
|
|
return true;
|
|
}
|
|
|
|
void disablePeripherals()
|
|
{
|
|
PMU.setPowerOutPut(AXP192_DCDC1, AXP202_OFF);
|
|
PMU.setPowerOutPut(AXP192_LDO2, AXP202_OFF);
|
|
PMU.setPowerOutPut(AXP192_LDO3, AXP202_OFF);
|
|
}
|
|
|
|
#endif
|