// Copyright (c) Sandeep Mistry. All rights reserved. // Licensed under the MIT license. // Modifications and additions copyright 2024 by Mark Qvist // Obviously still under the MIT license. #include "sx128x.h" #include "Boards.h" #define MCU_1284P 0x91 #define MCU_2560 0x92 #define MCU_ESP32 0x81 #define MCU_NRF52 0x71 #if defined(__AVR_ATmega1284P__) #define PLATFORM PLATFORM_AVR #define MCU_VARIANT MCU_1284P #elif defined(__AVR_ATmega2560__) #define PLATFORM PLATFORM_AVR #define MCU_VARIANT MCU_2560 #elif defined(ESP32) #define PLATFORM PLATFORM_ESP32 #define MCU_VARIANT MCU_ESP32 #elif defined(NRF52840_XXAA) #define PLATFORM PLATFORM_NRF52 #define MCU_VARIANT MCU_NRF52 #endif #ifndef MCU_VARIANT #error No MCU variant defined, cannot compile #endif #if MCU_VARIANT == MCU_ESP32 #if MCU_VARIANT == MCU_ESP32 and !defined(CONFIG_IDF_TARGET_ESP32S3) #include "hal/wdt_hal.h" #endif #define ISR_VECT IRAM_ATTR #else #define ISR_VECT #endif #define OP_RF_FREQ_8X 0x86 #define OP_SLEEP_8X 0x84 #define OP_STANDBY_8X 0x80 #define OP_TX_8X 0x83 #define OP_RX_8X 0x82 #define OP_SET_IRQ_FLAGS_8X 0x8D // also provides info such as // preamble detection, etc for // knowing when it's safe to switch // antenna modes #define OP_CLEAR_IRQ_STATUS_8X 0x97 #define OP_GET_IRQ_STATUS_8X 0x15 #define OP_RX_BUFFER_STATUS_8X 0x17 #define OP_PACKET_STATUS_8X 0x1D // get snr & rssi of last packet #define OP_CURRENT_RSSI_8X 0x1F #define OP_MODULATION_PARAMS_8X 0x8B // bw, sf, cr, etc. #define OP_PACKET_PARAMS_8X 0x8C // crc, preamble, payload length, etc. #define OP_STATUS_8X 0xC0 #define OP_TX_PARAMS_8X 0x8E // set dbm, etc #define OP_PACKET_TYPE_8X 0x8A #define OP_BUFFER_BASE_ADDR_8X 0x8F #define OP_READ_REGISTER_8X 0x19 #define OP_WRITE_REGISTER_8X 0x18 #define IRQ_TX_DONE_MASK_8X 0x01 #define IRQ_RX_DONE_MASK_8X 0x02 #define IRQ_HEADER_DET_MASK_8X 0x10 #define IRQ_HEADER_ERROR_MASK_8X 0x20 #define IRQ_PAYLOAD_CRC_ERROR_MASK_8X 0x40 #define MODE_LONG_RANGE_MODE_8X 0x01 #define OP_FIFO_WRITE_8X 0x1A #define OP_FIFO_READ_8X 0x1B #define IRQ_PREAMBLE_DET_MASK_8X 0x80 #define REG_PACKET_SIZE 0x901 #define REG_FIRM_VER_MSB 0x154 #define REG_FIRM_VER_LSB 0x153 #define XTAL_FREQ_8X (double)52000000 #define FREQ_DIV_8X (double)pow(2.0, 18.0) #define FREQ_STEP_8X (double)(XTAL_FREQ_8X / FREQ_DIV_8X) #if defined(NRF52840_XXAA) extern SPIClass spiModem; #define SPI spiModem #endif extern SPIClass SPI; #define MAX_PKT_LENGTH 255 sx128x::sx128x() : _spiSettings(8E6, MSBFIRST, SPI_MODE0), _ss(LORA_DEFAULT_SS_PIN), _reset(LORA_DEFAULT_RESET_PIN), _dio0(LORA_DEFAULT_DIO0_PIN), _rxen(pin_rxen), _busy(LORA_DEFAULT_BUSY_PIN), _txen(pin_txen), _frequency(0), _txp(0), _sf(0x05), _bw(0x34), _cr(0x01), _packetIndex(0), _implicitHeaderMode(0), _payloadLength(255), _crcMode(0), _fifo_tx_addr_ptr(0), _fifo_rx_addr_ptr(0), _rxPacketLength(0), _preinit_done(false), _tcxo(false) { // overide Stream timeout value setTimeout(0); } void ISR_VECT sx128x::onDio0Rise() { sx128x_modem.handleDio0Rise(); } void sx128x::handleDio0Rise() { uint8_t buf[2]; buf[0] = 0x00; buf[1] = 0x00; executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2); executeOpcode(OP_CLEAR_IRQ_STATUS_8X, buf, 2); if ((buf[1] & IRQ_PAYLOAD_CRC_ERROR_MASK_8X) == 0) { // received a packet _packetIndex = 0; uint8_t rxbuf[2] = {0}; executeOpcodeRead(OP_RX_BUFFER_STATUS_8X, rxbuf, 2); _rxPacketLength = rxbuf[0]; _fifo_rx_addr_ptr = rxbuf[1]; readBuffer(_packet, _rxPacketLength); // On the SX1280, there is a bug which can cause the busy line // to remain high if a high amount of packets are received when // in continuous RX mode. This is documented as Errata 16.1 in // the SX1280 datasheet v3.2 (page 149) // Therefore, the modem is set into receive mode each time a packet is received. receive(0); if (_onReceive) { _onReceive(_rxPacketLength); } } } bool sx128x::preInit() { // setup pins pinMode(_ss, OUTPUT); // set SS high digitalWrite(_ss, HIGH); // todo: check if this change causes issues on any platforms #if MCU_VARIANT == MCU_ESP32 if (pin_sclk != -1 && pin_miso != -1 && pin_mosi != -1 && pin_cs != -1) { SPI.begin(pin_sclk, pin_miso, pin_mosi, pin_cs); } else { SPI.begin(); } #else SPI.begin(); #endif // check version (retry for up to 2 seconds) long start = millis(); uint8_t version_msb; uint8_t version_lsb; while (((millis() - start) < 2000) && (millis() >= start)) { version_msb = readRegister(REG_FIRM_VER_MSB); version_lsb = readRegister(REG_FIRM_VER_LSB); if ((version_msb == 0xB7 && version_lsb == 0xA9) || (version_msb == 0xB5 && version_lsb == 0xA9)) { break; } delay(100); } if ((version_msb != 0xB7 || version_lsb != 0xA9) && (version_msb != 0xB5 || version_lsb != 0xA9)) { return false; } _preinit_done = true; return true; } uint8_t ISR_VECT sx128x::readRegister(uint16_t address) { return singleTransfer(OP_READ_REGISTER_8X, address, 0x00); } void sx128x::writeRegister(uint16_t address, uint8_t value) { singleTransfer(OP_WRITE_REGISTER_8X, address, value); } uint8_t ISR_VECT sx128x::singleTransfer(uint8_t opcode, uint16_t address, uint8_t value) { waitOnBusy(); uint8_t response; digitalWrite(_ss, LOW); SPI.beginTransaction(_spiSettings); SPI.transfer(opcode); SPI.transfer((address & 0xFF00) >> 8); SPI.transfer(address & 0x00FF); if (opcode == OP_READ_REGISTER_8X) { SPI.transfer(0x00); } response = SPI.transfer(value); SPI.endTransaction(); digitalWrite(_ss, HIGH); return response; } void sx128x::rxAntEnable() { if (_txen != -1) { digitalWrite(_txen, LOW); } if (_rxen != -1) { digitalWrite(_rxen, HIGH); } } void sx128x::txAntEnable() { if (_txen != -1) { digitalWrite(_txen, HIGH); } if (_rxen != -1) { digitalWrite(_rxen, LOW); } } void sx128x::loraMode() { // enable lora mode on the SX1262 chip uint8_t mode = MODE_LONG_RANGE_MODE_8X; executeOpcode(OP_PACKET_TYPE_8X, &mode, 1); } void sx128x::waitOnBusy() { unsigned long time = millis(); while (digitalRead(_busy) == HIGH) { if (millis() >= (time + 100)) { break; } // do nothing } } void sx128x::executeOpcode(uint8_t opcode, uint8_t *buffer, uint8_t size) { waitOnBusy(); digitalWrite(_ss, LOW); SPI.beginTransaction(_spiSettings); SPI.transfer(opcode); for (int i = 0; i < size; i++) { SPI.transfer(buffer[i]); } SPI.endTransaction(); digitalWrite(_ss, HIGH); } void sx128x::executeOpcodeRead(uint8_t opcode, uint8_t *buffer, uint8_t size) { waitOnBusy(); digitalWrite(_ss, LOW); SPI.beginTransaction(_spiSettings); SPI.transfer(opcode); SPI.transfer(0x00); for (int i = 0; i < size; i++) { buffer[i] = SPI.transfer(0x00); } SPI.endTransaction(); digitalWrite(_ss, HIGH); } void sx128x::writeBuffer(const uint8_t* buffer, size_t size) { waitOnBusy(); digitalWrite(_ss, LOW); SPI.beginTransaction(_spiSettings); SPI.transfer(OP_FIFO_WRITE_8X); SPI.transfer(_fifo_tx_addr_ptr); for (int i = 0; i < size; i++) { SPI.transfer(buffer[i]); _fifo_tx_addr_ptr++; } SPI.endTransaction(); digitalWrite(_ss, HIGH); } void sx128x::readBuffer(uint8_t* buffer, size_t size) { waitOnBusy(); digitalWrite(_ss, LOW); SPI.beginTransaction(_spiSettings); SPI.transfer(OP_FIFO_READ_8X); SPI.transfer(_fifo_rx_addr_ptr); SPI.transfer(0x00); for (int i = 0; i < size; i++) { buffer[i] = SPI.transfer(0x00); } SPI.endTransaction(); digitalWrite(_ss, HIGH); } void sx128x::setModulationParams(uint8_t sf, uint8_t bw, uint8_t cr) { // because there is no access to these registers on the sx1280, we have // to set all these parameters at once or not at all. uint8_t buf[3]; buf[0] = sf << 4; buf[1] = bw; buf[2] = cr; executeOpcode(OP_MODULATION_PARAMS_8X, buf, 3); if (sf <= 6) { writeRegister(0x925, 0x1E); } else if (sf <= 8) { writeRegister(0x925, 0x37); } else if (sf >= 9) { writeRegister(0x925, 0x32); } writeRegister(0x093C, 0x1); } void sx128x::setPacketParams(uint32_t preamble, uint8_t headermode, uint8_t length, uint8_t crc) { // because there is no access to these registers on the sx1280, we have // to set all these parameters at once or not at all. uint8_t buf[7]; // calculate exponent and mantissa values for modem // uint8_t e = 1; // uint8_t m = 1; // uint32_t preamblelen; // while (e <= 15) { // while (m <= 15) { // preamblelen = m * (pow(2,e)); // if (preamblelen >= preamble) break; // m++; // } // if (preamblelen >= preamble) break; // m = 0; // e++; // } // Serial.printf("Calculated preamble: %d\r\n", preamblelen); // Serial.printf("Reg value: %d\r\n", (e << 4) | m); // TODO: Remove / clean //buf[0] = (e << 4) | m; buf[0] = 0x1C; buf[1] = headermode; buf[2] = length; buf[3] = crc; // standard IQ setting (no inversion) buf[4] = 0x40; // unused params buf[5] = 0x00; buf[6] = 0x00; executeOpcode(OP_PACKET_PARAMS_8X, buf, 7); } int sx128x::begin(unsigned long frequency) { if (_reset != -1) { pinMode(_reset, OUTPUT); // perform reset digitalWrite(_reset, LOW); delay(10); digitalWrite(_reset, HIGH); delay(10); } if (_rxen != -1) { pinMode(_rxen, OUTPUT); } if (_txen != -1) { pinMode(_txen, OUTPUT); } if (_busy != -1) { pinMode(_busy, INPUT); } if (!_preinit_done) { if (!preInit()) { return false; } } standby(); loraMode(); rxAntEnable(); setFrequency(_frequency); // set LNA boost // todo: implement this //writeRegister(REG_LNA, 0x96); setModulationParams(_sf, _bw, _cr); setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); setTxPower(_txp); // set base addresses uint8_t basebuf[2] = {0}; executeOpcode(OP_BUFFER_BASE_ADDR_8X, basebuf, 2); _radio_online = true; return 1; } void sx128x::end() { // put in sleep mode sleep(); // stop SPI SPI.end(); _bitrate = 0; _radio_online = false; _preinit_done = false; } int sx128x::beginPacket(int implicitHeader) { // put in standby mode standby(); if (implicitHeader) { implicitHeaderMode(); } else { explicitHeaderMode(); } _payloadLength = 0; _fifo_tx_addr_ptr = 0; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); return 1; } int sx128x::endPacket() { setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); txAntEnable(); // put in single TX mode uint8_t timeout[3] = {0}; executeOpcode(OP_TX_8X, timeout, 3); uint8_t buf[2]; buf[0] = 0x00; buf[1] = 0x00; executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2); bool timed_out = false; uint32_t w_timeout = millis()+LORA_MODEM_TIMEOUT_MS; // wait for TX done while ((millis() < w_timeout) && ((buf[1] & IRQ_TX_DONE_MASK_8X) == 0)) { buf[0] = 0x00; buf[1] = 0x00; executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2); yield(); } if (!(millis() < w_timeout)) { timed_out = true; } // clear IRQ's uint8_t mask[2]; mask[0] = 0x00; mask[1] = IRQ_TX_DONE_MASK_8X; executeOpcode(OP_CLEAR_IRQ_STATUS_8X, mask, 2); if (timed_out) { return 0; } else { return 1; } } uint8_t sx128x::modemStatus() { // imitate the register status from the sx1276 / 78 uint8_t buf[2] = {0}; executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2); uint8_t clearbuf[2] = {0}; uint8_t byte = 0x00; if ((buf[0] & IRQ_PREAMBLE_DET_MASK_8X) != 0) { byte = byte | 0x01 | 0x04; // clear register after reading clearbuf[0] = IRQ_PREAMBLE_DET_MASK_8X; } if ((buf[1] & IRQ_HEADER_DET_MASK_8X) != 0) { byte = byte | 0x02 | 0x04; } executeOpcode(OP_CLEAR_IRQ_STATUS_8X, clearbuf, 2); return byte; } uint8_t sx128x::currentRssiRaw() { uint8_t byte = 0; executeOpcodeRead(OP_CURRENT_RSSI_8X, &byte, 1); return byte; } int ISR_VECT sx128x::currentRssi() { uint8_t byte = 0; executeOpcodeRead(OP_CURRENT_RSSI_8X, &byte, 1); int rssi = -byte / 2; return rssi; } uint8_t sx128x::packetRssiRaw() { uint8_t buf[5] = {0}; executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 5); return buf[0]; } int ISR_VECT sx128x::packetRssi() { // may need more calculations here uint8_t buf[5] = {0}; executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 5); int pkt_rssi = -buf[0] / 2; return pkt_rssi; } int ISR_VECT sx128x::packetRssi(uint8_t pkt_snr_raw) { // may need more calculations here uint8_t buf[5] = {0}; executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 5); int pkt_rssi = -buf[0] / 2; return pkt_rssi; } uint8_t ISR_VECT sx128x::packetSnrRaw() { uint8_t buf[5] = {0}; executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 5); return buf[1]; } float ISR_VECT sx128x::packetSnr() { uint8_t buf[5] = {0}; executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 3); return float(buf[1]) * 0.25; } long sx128x::packetFrequencyError() { int32_t freqError = 0; // todo: implement this, page 120 of sx1280 datasheet const float fError = 0.0; return static_cast(fError); } size_t sx128x::write(uint8_t byte) { return write(&byte, sizeof(byte)); } size_t sx128x::write(const uint8_t *buffer, size_t size) { if ((_payloadLength + size) > MAX_PKT_LENGTH) { size = MAX_PKT_LENGTH - _payloadLength; } // write data writeBuffer(buffer, size); _payloadLength = _payloadLength + size; return size; } int ISR_VECT sx128x::available() { return _rxPacketLength - _packetIndex; } int ISR_VECT sx128x::read() { if (!available()) { return -1; } uint8_t byte = _packet[_packetIndex]; _packetIndex++; return byte; } int sx128x::peek() { if (!available()) { return -1; } uint8_t b = _packet[_packetIndex]; return b; } void sx128x::flush() { } void sx128x::onReceive(void(*callback)(int)) { _onReceive = callback; if (callback) { pinMode(_dio0, INPUT); // set preamble and header detection irqs, plus dio0 mask uint8_t buf[8]; // set irq masks, enable all buf[0] = 0xFF; buf[1] = 0xFF; // On the SX1280, no RxDone IRQ is generated if a packet is received with // an invalid header, but the modem will be taken out of single RX mode. // This can cause the modem to not receive packets until it is reset // again. This is documented as Errata 16.2 in the SX1280 datasheet v3.2 // (page 150) Below, the header error IRQ is mapped to dio0 so that the // modem can be set into RX mode again on reception of a corrupted // header. // set dio0 masks buf[2] = 0x00; buf[3] = IRQ_RX_DONE_MASK_8X | IRQ_HEADER_ERROR_MASK_8X; // set dio1 masks buf[4] = 0x00; buf[5] = 0x00; // set dio2 masks buf[6] = 0x00; buf[7] = 0x00; executeOpcode(OP_SET_IRQ_FLAGS_8X, buf, 8); #ifdef SPI_HAS_NOTUSINGINTERRUPT _spiModem->usingInterrupt(digitalPinToInterrupt(_dio0)); #endif // extern void onDio0Rise(); attachInterrupt(digitalPinToInterrupt(_dio0), onDio0Rise, RISING); } else { detachInterrupt(digitalPinToInterrupt(_dio0)); #ifdef SPI_HAS_NOTUSINGINTERRUPT _spiModem->notUsingInterrupt(digitalPinToInterrupt(_dio0)); #endif } } void sx128x::receive(int size) { if (size > 0) { implicitHeaderMode(); // tell radio payload length //_rxPacketLength = size; //_payloadLength = size; //setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); } else { explicitHeaderMode(); } rxAntEnable(); // On the SX1280, there is a bug which can cause the busy line // to remain high if a high amount of packets are received when // in continuous RX mode. This is documented as Errata 16.1 in // the SX1280 datasheet v3.2 (page 149) // Therefore, the modem is set to single RX mode below instead. uint8_t mode[3] = {0}; // single RX mode executeOpcode(OP_RX_8X, mode, 3); } void sx128x::standby() { uint8_t byte; if (_tcxo) { // STDBY_XOSC byte = 0x01; } else { // STDBY_RC byte = 0x00; } executeOpcode(OP_STANDBY_8X, &byte, 1); } void sx128x::sleep() { uint8_t byte = 0x00; executeOpcode(OP_SLEEP_8X, &byte, 1); } void sx128x::enableTCXO() { // todo: need to check how to implement on sx1280 } void sx128x::disableTCXO() { // todo: need to check how to implement on sx1280 } void sx128x::setPins(int ss, int reset, int dio0, int busy, int rxen, int txen) { _ss = ss; _reset = reset; _dio0 = dio0; _busy = busy; _rxen = rxen; _txen = txen; } void sx128x::setTxPower(int level, int outputPin) { uint8_t tx_buf[2]; #if BOARD_VARIANT == MODEL_13 // RAK4631 with WisBlock SX1280 module (LIBSYS002) if (level > 27) { level = 27; } else if (level < 0) { level = 0; } _txp = level; int reg_value; switch (level) { case 0: reg_value = -18; break; case 1: reg_value = -17; break; case 2: reg_value = -16; break; case 3: reg_value = -15; break; case 4: reg_value = -14; break; case 5: reg_value = -13; break; case 6: reg_value = -12; break; case 7: reg_value = -10; break; case 8: reg_value = -9; break; case 9: reg_value = -8; break; case 10: reg_value = -7; break; case 11: reg_value = -6; break; case 12: reg_value = -5; break; case 13: reg_value = -4; break; case 14: reg_value = -3; break; case 15: reg_value = -2; break; case 16: reg_value = -1; break; case 17: reg_value = 0; break; case 18: reg_value = 1; break; case 19: reg_value = 2; break; case 20: reg_value = 3; break; case 21: reg_value = 4; break; case 22: reg_value = 5; break; case 23: reg_value = 6; break; case 24: reg_value = 8; break; case 25: reg_value = 9; break; case 26: reg_value = 12; break; case 27: reg_value = 13; break; default: reg_value = 0; break; } tx_buf[0] = reg_value; tx_buf[1] = 0xE0; // ramping time - 20 microseconds executeOpcode(OP_TX_PARAMS_8X, tx_buf, 2); // T3S3 SX1280 PA #elif BOARD_VARIANT == MODEL_AB if (level > 20) { level = 20; } else if (level < 0) { level = 0; } _txp = level; int reg_value; switch (level) { /*case 0: reg_value = -18; break; case 1: reg_value = -17; break; case 2: reg_value = -16; break; case 3: reg_value = -15; break; case 4: reg_value = -14; break; case 5: reg_value = -13; break; case 6: reg_value = -12; break; case 7: reg_value = -10; break; case 8: reg_value = -9; break; case 9: reg_value = -8; break; case 10: reg_value = -7; break; case 11: reg_value = -6; break; case 12: reg_value = -5; break; case 13: reg_value = -4; break; case 14: reg_value = -3; break; case 15: reg_value = -2; break; case 16: reg_value = -1; break; case 17: reg_value = 0; break; case 18: reg_value = 1; break; case 19: reg_value = 2; break;*/ case 20: reg_value = 3; break; default: reg_value = 0; break; } tx_buf[0] = reg_value; tx_buf[1] = 0xE0; // ramping time - 20 microseconds // For SX1280 boards with no specific PA requirements #else if (level > 13) { level = 13; } else if (level < -18) { level = -18; } _txp = level; tx_buf[0] = level; tx_buf[1] = 0xE0; // ramping time - 20 microseconds #endif executeOpcode(OP_TX_PARAMS_8X, tx_buf, 2); } uint8_t sx128x::getTxPower() { return _txp; } void sx128x::setFrequency(uint32_t frequency) { _frequency = frequency; uint8_t buf[3]; uint32_t freq = (uint32_t)((double)frequency / (double)FREQ_STEP_8X); buf[0] = ((freq >> 16) & 0xFF); buf[1] = ((freq >> 8) & 0xFF); buf[2] = (freq & 0xFF); executeOpcode(OP_RF_FREQ_8X, buf, 3); } uint32_t sx128x::getFrequency() { // we can't read the frequency on the sx1280 uint32_t frequency = _frequency; return frequency; } void sx128x::setSpreadingFactor(int sf) { if (sf < 5) { sf = 5; } else if (sf > 12) { sf = 12; } _sf = sf; setModulationParams(sf, _bw, _cr); handleLowDataRate(); } uint8_t sx128x::getSpreadingFactor() { return _sf; } uint32_t sx128x::getSignalBandwidth() { int bw = _bw; switch (bw) { case 0x34: return 203.125E3; case 0x26: return 406.25E3; case 0x18: return 812.5E3; case 0x0A: return 1625E3; } return 0; } // todo: do i need this?? void sx128x::handleLowDataRate() { } // todo: check if there's anything the sx1280 can do here void sx128x::optimizeModemSensitivity() { } void sx128x::setSignalBandwidth(uint32_t sbw) { if (sbw <= 203.125E3) { _bw = 0x34; } else if (sbw <= 406.25E3) { _bw = 0x26; } else if (sbw <= 812.5E3) { _bw = 0x18; } else { _bw = 0x0A; } setModulationParams(_sf, _bw, _cr); handleLowDataRate(); optimizeModemSensitivity(); } void sx128x::setCodingRate4(int denominator) { if (denominator < 5) { denominator = 5; } else if (denominator > 8) { denominator = 8; } _cr = denominator - 4; // todo: add support for new interleaving scheme, see page 117 of sx1280 // datasheet // update cr values for sx1280's use setModulationParams(_sf, _bw, _cr); } uint8_t sx128x::getCodingRate4() { return _cr + 4; } void sx128x::setPreambleLength(long length) { _preambleLength = length; setPacketParams(length, _implicitHeaderMode, _payloadLength, _crcMode); } void sx128x::setSyncWord(int sw) { // not implemented } void sx128x::enableCrc() { _crcMode = 0x20; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); } void sx128x::disableCrc() { _crcMode = 0; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); } byte sx128x::random() { // todo: implement } void sx128x::setSPIFrequency(uint32_t frequency) { _spiSettings = SPISettings(frequency, MSBFIRST, SPI_MODE0); } void sx128x::dumpRegisters(Stream& out) { for (int i = 0; i < 128; i++) { out.print("0x"); out.print(i, HEX); out.print(": 0x"); out.println(readRegister(i), HEX); } } void sx128x::explicitHeaderMode() { _implicitHeaderMode = 0; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); } void sx128x::implicitHeaderMode() { _implicitHeaderMode = 0x80; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); } void sx128x::clearIRQStatus() { uint8_t buf[2]; buf[0] = 0x00; buf[1] = 0x00; executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2); executeOpcode(OP_CLEAR_IRQ_STATUS_8X, buf, 2); } sx128x sx128x_modem;