Don't talk to modem when not begun

Indirect debug prints

Implement Linux EEPROM from file

Make EEPROM-flashable

Explain how to flash on startup
This commit is contained in:
Adam Novak 2022-02-16 09:53:56 -05:00
parent 04c8523619
commit 910b8b0821
6 changed files with 196 additions and 40 deletions

View File

@ -15,7 +15,6 @@
#define BOARD_GENERIC_ESP32 0x35 #define BOARD_GENERIC_ESP32 0x35
#define BOARD_LORA32_V2_0 0x36 #define BOARD_LORA32_V2_0 0x36
#define BOARD_LORA32_V2_1 0x37 #define BOARD_LORA32_V2_1 0x37
#define BOARD_SPIDEV 0x38
#define SERIAL_INTERRUPT 0x1 #define SERIAL_INTERRUPT 0x1
#define SERIAL_POLLING 0x2 #define SERIAL_POLLING 0x2
@ -138,7 +137,7 @@
const int pin_led_rx = -1; const int pin_led_rx = -1;
const int pin_led_tx = -1; const int pin_led_tx = -1;
#define BOARD_MODEL BOARD_SPIDEV #define BOARD_MODEL BOARD_HMBRW
#define SERIAL_EVENTS SERIAL_POLLING #define SERIAL_EVENTS SERIAL_POLLING
#define CONFIG_UART_BUFFER_SIZE 6144 #define CONFIG_UART_BUFFER_SIZE 6144

View File

@ -88,7 +88,8 @@ LoRaClass::LoRaClass() :
_frequency(0), _frequency(0),
_packetIndex(0), _packetIndex(0),
_implicitHeaderMode(0), _implicitHeaderMode(0),
_onReceive(NULL) _onReceive(NULL),
_spiBegun(false)
{ {
#if LIBRARY_TYPE == LIBRARY_ARDUINO #if LIBRARY_TYPE == LIBRARY_ARDUINO
// overide Stream timeout value // overide Stream timeout value
@ -118,7 +119,7 @@ int LoRaClass::begin(long frequency)
digitalWrite(_reset, HIGH); digitalWrite(_reset, HIGH);
delay(10); delay(10);
#endif #endif
// TODO: No reset pin hooked up on BOARD_SPIDEV // TODO: No reset pin hooked up on Linux
} }
#if LIBRARY_TYPE == LIBRARY_ARDUINO #if LIBRARY_TYPE == LIBRARY_ARDUINO
@ -126,13 +127,19 @@ int LoRaClass::begin(long frequency)
SPI.begin(); SPI.begin();
#elif LIBRARY_TYPE == LIBRARY_C #elif LIBRARY_TYPE == LIBRARY_C
const char* spi_filename = "/dev/spidev0.0"; const char* spi_filename = "/dev/spidev0.0";
// We need to be re-entrant for restart
if (_fd <= 0) {
std::cerr << "Opening SPI device " << spi_filename << std::endl; std::cerr << "Opening SPI device " << spi_filename << std::endl;
_fd = open(spi_filename, O_RDWR); _fd = open(spi_filename, O_RDWR);
if (_fd <= 0) { if (_fd <= 0) {
perror("could not open SPI device"); perror("could not open SPI device");
exit(1); exit(1);
} }
} else {
std::cerr << "Skipping LoRa SPI reinitialization" << std::endl;
}
#endif #endif
_spiBegun = true;
// check version // check version
uint8_t version = readRegister(REG_VERSION); uint8_t version = readRegister(REG_VERSION);
@ -167,8 +174,13 @@ int LoRaClass::begin(long frequency)
void LoRaClass::end() void LoRaClass::end()
{ {
// We need to be safe to call when the main loop is shutting down because
// it's in a bad state, even if we ourselves haven't been begun yet. We can't
// safely talk to the modem if the SPI link isn't begun, though.
if (_spiBegun) {
// put in sleep mode // put in sleep mode
this->sleep(); this->sleep();
}
#if LIBRARY_TYPE == LIBRARY_ARDUINO #if LIBRARY_TYPE == LIBRARY_ARDUINO
// stop SPI // stop SPI
@ -179,6 +191,7 @@ void LoRaClass::end()
_fd = -1; _fd = -1;
} }
#endif #endif
_spiBegun = false;
} }
int LoRaClass::beginPacket(int implicitHeader) int LoRaClass::beginPacket(int implicitHeader)
@ -706,6 +719,9 @@ uint8_t ISR_VECT LoRaClass::singleTransfer(uint8_t address, uint8_t value)
int status; int status;
std::cerr << "Access SPI at " << _fd << std::endl; std::cerr << "Access SPI at " << _fd << std::endl;
if (_fd <= 0) {
throw std::runtime_error("Accessing SPI device without begin()!");
}
// Configure SPI speed and mode to match settings // Configure SPI speed and mode to match settings
status = ioctl(_fd, SPI_IOC_WR_MODE, &_spiSettings.mode); status = ioctl(_fd, SPI_IOC_WR_MODE, &_spiSettings.mode);

1
LoRa.h
View File

@ -133,6 +133,7 @@ private:
int _packetIndex; int _packetIndex;
int _implicitHeaderMode; int _implicitHeaderMode;
void (*_onReceive)(int); void (*_onReceive)(int);
bool _spiBegun;
#if LIBRARY_TYPE == LIBRARY_C #if LIBRARY_TYPE == LIBRARY_C
int _fd; int _fd;
#endif #endif

View File

@ -138,18 +138,20 @@ clean:
rm -Rf bin rm -Rf bin
rm -Rf obj rm -Rf obj
CFLAGS += -g
obj/MD5.o: MD5.cpp MD5.h Platform.h obj/MD5.o: MD5.cpp MD5.h Platform.h
mkdir -p obj mkdir -p obj
$(CC) -c -o $@ $< $(CC) $(CFLAGS) -c -o $@ $<
obj/LoRa.o: LoRa.cpp LoRa.h Platform.h obj/LoRa.o: LoRa.cpp LoRa.h Platform.h
mkdir -p obj mkdir -p obj
$(CC) -c -o $@ $< $(CC) $(CFLAGS) -c -o $@ $<
obj/RNode_Firmware.o: RNode_Firmware.ino Utilities.h Config.h LoRa.h ROM.h Framing.h MD5.h Platform.h obj/RNode_Firmware.o: RNode_Firmware.ino Utilities.h Config.h LoRa.h ROM.h Framing.h MD5.h Platform.h
mkdir -p obj mkdir -p obj
$(CC) -c -o $@ -x c++ $< $(CC) $(CFLAGS) -c -o $@ -x c++ $<
bin/rnode: obj/RNode_Firmware.o obj/LoRa.o obj/MD5.o bin/rnode: obj/RNode_Firmware.o obj/LoRa.o obj/MD5.o
mkdir -p bin mkdir -p bin
$(CC) -o $@ $^ -lstdc++ -lutil $(CC) $(CFLAGS) -o $@ $^ -lstdc++ -lutil

View File

@ -64,9 +64,8 @@ void serial_poll();
void setup() { void setup() {
#if MCU_VARIANT == MCU_ESP32 #if MCU_VARIANT == MCU_ESP32
delay(500); delay(500);
EEPROM.begin(EEPROM_SIZE);
Serial.setRxBufferSize(CONFIG_UART_BUFFER_SIZE);
#endif #endif
eeprom_open(EEPROM_SIZE);
#if LIBRARY_TYPE == LIBRARY_ARDUINO #if LIBRARY_TYPE == LIBRARY_ARDUINO
// Seed the PRNG // Seed the PRNG
@ -80,6 +79,10 @@ void setup() {
Serial.begin(serial_baudrate); Serial.begin(serial_baudrate);
while (!Serial); while (!Serial);
#if MCU_VARIANT == MCU_ESP32
Serial.setRxBufferSize(CONFIG_UART_BUFFER_SIZE);
#endif
serial_interrupt_init(); serial_interrupt_init();
#if LIBRARY_TYPE == LIBRARY_ARDUINO #if LIBRARY_TYPE == LIBRARY_ARDUINO
@ -726,7 +729,7 @@ void validateStatus() {
} else if (boot_flags & (1<<F_WDR)) { } else if (boot_flags & (1<<F_WDR)) {
boot_vector = START_FROM_BOOTLOADER; boot_vector = START_FROM_BOOTLOADER;
} else { } else {
Serial.write("Error, indeterminate boot vector\r\n"); debug("Error, indeterminate boot vector\r\n");
led_indicate_boot_error(); led_indicate_boot_error();
} }
@ -741,16 +744,21 @@ void validateStatus() {
op_mode = MODE_TNC; op_mode = MODE_TNC;
startRadio(); startRadio();
} }
} else {
hw_ready = false;
debug("Error, EEPROM checksum incorrect\r\n");
} }
} else { } else {
hw_ready = false; hw_ready = false;
debug("Error, EEPROM product, model, or revision not valid\r\n");
} }
} else { } else {
hw_ready = false; hw_ready = false;
debug("Error, EEPROM info not locked\r\n");
} }
} else { } else {
hw_ready = false; hw_ready = false;
Serial.write("Error, incorrect boot vector\r\n"); debug("Error, incorrect boot vector\r\n");
led_indicate_boot_error(); led_indicate_boot_error();
} }
} }

View File

@ -13,6 +13,9 @@
#include <poll.h> #include <poll.h>
#include <unistd.h> #include <unistd.h>
#include <pty.h> #include <pty.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <fcntl.h>
// We need a delay() // We need a delay()
void delay(int ms) { void delay(int ms) {
struct timespec interval; struct timespec interval;
@ -29,21 +32,28 @@
static bool base_set(false); static bool base_set(false);
if (!base_set) { if (!base_set) {
if (clock_gettime(CLOCK_MONOTONIC, &millis_base)) { if (clock_gettime(CLOCK_MONOTONIC, &millis_base)) {
perror("Could not get time");
exit(1); exit(1);
} }
base_set = true; base_set = true;
} }
struct timespec now; struct timespec now;
if (clock_gettime(CLOCK_MONOTONIC, &now)) { if (clock_gettime(CLOCK_MONOTONIC, &now)) {
perror("Could not get time");
exit(1); exit(1);
} }
return (now.tv_sec - millis_base.tv_sec) * 1000 + (now.tv_nsec - millis_base.tv_nsec)/(1000*1000); return (now.tv_sec - millis_base.tv_sec) * 1000 + (now.tv_nsec - millis_base.tv_nsec)/(1000*1000);
} }
// Serial will want to poll the EEPROM a bit for help text
bool eeprom_info_locked();
// We also need a Serial // We also need a Serial
class SerialClass { class SerialClass {
public: public:
void begin(int baud) { void begin(int baud) {
// Need to be rrentrant for restart
if (_fd <= 0) {
int other_end = 0; int other_end = 0;
int status = openpty(&_fd, &other_end, NULL, NULL, NULL); int status = openpty(&_fd, &other_end, NULL, NULL, NULL);
if (status) { if (status) {
@ -51,7 +61,15 @@
exit(1); exit(1);
} }
std::cout << "Listening on " << ttyname(other_end) << std::endl; std::cerr << "Listening on " << ttyname(other_end) << std::endl;
if (!eeprom_info_locked()) {
std::cerr << "EEPROM configuration is not initialized. You will want to flash it with something like:" << std::endl;
std::cerr << "\trnodeconf --key" << std::endl;
std::cerr << "\trnodeconf --rom --platform " << std::hex << PLATFORM << " --product " << PRODUCT_HMBRW << " --model " << MODEL_FF << std::dec << " --hwrev 1 " << ttyname(other_end) << std::endl;
}
} else {
std::cerr << "Skipping Serial reinitialization" << std::endl;
}
} }
operator bool() { operator bool() {
@ -116,6 +134,17 @@
#endif #endif
// Log a debug message. Message should have a \r to return the cursor, if
// needed.
void debug(const char* message) {
#if LIBRARY_TYPE == LIBRARY_C
std::cerr << message << std::endl;
#endif
if (Serial) {
Serial.write(message);
}
}
#if MCU_VARIANT == MCU_ESP32 #if MCU_VARIANT == MCU_ESP32
#include "soc/rtc_wdt.h" #include "soc/rtc_wdt.h"
#define ISR_VECT IRAM_ATTR #define ISR_VECT IRAM_ATTR
@ -180,13 +209,16 @@ uint8_t boot_vector = 0x00;
void led_tx_off() { digitalWrite(pin_led_tx, LOW); } void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
#endif #endif
#elif MCU_VARIANT == MCU_LINUX #elif MCU_VARIANT == MCU_LINUX
#if BOARD_MODEL == BOARD_SPIDEV // No LEDs on Linux, probably. SPI only.
// No LEDs on this board. SPI only.
void led_rx_on() { } void led_rx_on() { }
void led_rx_off() { } void led_rx_off() { }
void led_tx_on() { } void led_tx_on() { }
void led_tx_off() { } void led_tx_off() { }
#endif #endif
#if LIBRARY_TYPE == LIBRARY_C
// hard_reset needs a declaration for main
int main(int argc, char** argv);
#endif #endif
void hard_reset(void) { void hard_reset(void) {
@ -199,12 +231,17 @@ void hard_reset(void) {
ESP.restart(); ESP.restart();
#elif MCU_VARIANT == MCU_LINUX #elif MCU_VARIANT == MCU_LINUX
// TODO: re-exec ourselves? // TODO: re-exec ourselves?
// For now just quit. #if LIBRARY_TYPE == LIBRARY_C
exit(0); std::cerr << "Restarting" << std::endl;
exit(main(0, NULL));
#endif
#endif #endif
} }
void led_indicate_error(int cycles) { void led_indicate_error(int cycles) {
#if LIBRARY_TYPE == LIBRARY_C
std::cerr << "Indicating error" << std::endl;
#endif
bool forever = (cycles == 0) ? true : false; bool forever = (cycles == 0) ? true : false;
cycles = forever ? 1 : cycles; cycles = forever ? 1 : cycles;
while(cycles > 0) { while(cycles > 0) {
@ -221,6 +258,9 @@ void led_indicate_error(int cycles) {
} }
void led_indicate_boot_error() { void led_indicate_boot_error() {
#if LIBRARY_TYPE == LIBRARY_C
std::cerr << "Indicating boot error" << std::endl;
#endif
while (true) { while (true) {
led_tx_on(); led_tx_on();
led_rx_off(); led_rx_off();
@ -232,6 +272,9 @@ void led_indicate_boot_error() {
} }
void led_indicate_warning(int cycles) { void led_indicate_warning(int cycles) {
#if LIBRARY_TYPE == LIBRARY_C
std::cerr << "Indicating warning" << std::endl;
#endif
bool forever = (cycles == 0) ? true : false; bool forever = (cycles == 0) ? true : false;
cycles = forever ? 1 : cycles; cycles = forever ? 1 : cycles;
led_tx_on(); led_tx_on();
@ -287,6 +330,9 @@ void led_indicate_warning(int cycles) {
} }
#else #else
void led_indicate_info(int cycles) { void led_indicate_info(int cycles) {
#if LIBRARY_TYPE == LIBRARY_C
std::cerr << "Indicating info" << std::endl;
#endif
bool forever = (cycles == 0) ? true : false; bool forever = (cycles == 0) ? true : false;
cycles = forever ? 1 : cycles; cycles = forever ? 1 : cycles;
while(cycles > 0) { while(cycles > 0) {
@ -370,7 +416,15 @@ void led_indicate_warning(int cycles) {
} }
#elif MCU_VARIANT == MCU_LINUX #elif MCU_VARIANT == MCU_LINUX
// No LEDs available. // No LEDs available.
void led_indicate_standby() {} void led_indicate_standby() {
#if LIBRARY_TYPE == LIBRARY_C
static bool printed = false;
if (!printed) {
std::cerr << "Indicating standby" << std::endl;
printed = true;
}
#endif
}
#endif #endif
#if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560 #if MCU_VARIANT == MCU_1284P || MCU_VARIANT == MCU_2560
@ -419,7 +473,15 @@ void led_indicate_warning(int cycles) {
} }
#elif MCU_VARIANT == MCU_LINUX #elif MCU_VARIANT == MCU_LINUX
// No LEDs available. // No LEDs available.
void led_indicate_not_ready() {} void led_indicate_not_ready() {
#if LIBRARY_TYPE == LIBRARY_C
static bool printed = false;
if (!printed) {
std::cerr << "Indicating not ready" << std::endl;
printed = true;
}
#endif
}
#endif #endif
void escapedSerialWrite(uint8_t byte) { void escapedSerialWrite(uint8_t byte) {
@ -682,15 +744,67 @@ void promisc_disable() {
promisc = false; promisc = false;
} }
#if MCU_VARIANT == MCU_LINUX
// On Linux we always use memory-mapped EEPROM
uint8_t* eeprom_mapping = NULL;
#endif
#if LIBRARY_TYPE == LIBRARY_C
// And when using the C library we set it up from a file descriptor.
int eeprom_fd = 0;
#endif
void eeprom_open(int size) {
#if MCU_VARIANT == MCU_ESP32
// This MCU needs EEPROIM to be begun
EEPROM.begin(size);
#elif MCU_VARIANT == MCU_LINUX
// We need to use file-backed EEPROM emulation
#if LIBRARY_TYPE == LIBRARY_C
const char* eeprom_filename = "eeprom.dat";
// We need to be reentrant for restarts
if (eeprom_fd <= 0) {
eeprom_fd = open(eeprom_filename, O_RDWR | O_CREAT, 0644);
if (eeprom_fd <= 0) {
perror("Could not open EEPROM file");
exit(1);
}
int status = ftruncate(eeprom_fd, size);
if (status != 0) {
perror("Could not set size of EEPROM file");
exit(1);
}
// Map EEPROM into RAM
eeprom_mapping = (uint8_t*) mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, eeprom_fd, 0);
if (eeprom_mapping == NULL) {
perror("Could not map EEPROM file");
exit(1);
}
std::cerr << "Mapped " << eeprom_filename << " as FD " << eeprom_fd << " to address " << (void*)eeprom_mapping << " size " << size << std::endl;
} else {
std::cerr << "Skipping EEPROM reinitialization" << std::endl;
}
#endif
#endif
}
uint8_t eeprom_read(uint8_t addr) { uint8_t eeprom_read(uint8_t addr) {
#if MCU_VARIANT == MCU_LINUX #if MCU_VARIANT == MCU_LINUX
return 0; if (!eeprom_mapping) {
throw std::runtime_error("Tried to read EEPROM before opening it!");
}
int mapped_address = eeprom_addr(addr);
return eeprom_mapping[mapped_address];
#else #else
return EEPROM.read(eeprom_addr(addr)); return EEPROM.read(eeprom_addr(addr));
#endif #endif
} }
bool eeprom_info_locked() { bool eeprom_info_locked() {
#if MCU_VARIANT == MCU_LINUX
if (!eeprom_mapping) {
return false;
}
#endif
uint8_t lock_byte = eeprom_read(ADDR_INFO_LOCK); uint8_t lock_byte = eeprom_read(ADDR_INFO_LOCK);
if (lock_byte == INFO_LOCK_BYTE) { if (lock_byte == INFO_LOCK_BYTE) {
return true; return true;
@ -707,6 +821,11 @@ void eeprom_update(int mapped_addr, uint8_t byte) {
EEPROM.write(mapped_addr, byte); EEPROM.write(mapped_addr, byte);
EEPROM.commit(); EEPROM.commit();
} }
#elif MCU_VARIANT == MCU_LINUX
if (!eeprom_mapping) {
throw std::runtime_error("Tried to write EEPROM before opening it!");
}
eeprom_mapping[mapped_addr] = byte;
#endif #endif
} }
@ -760,11 +879,16 @@ bool eeprom_product_valid() {
if (rval == PRODUCT_RNODE || rval == PRODUCT_HMBRW) { if (rval == PRODUCT_RNODE || rval == PRODUCT_HMBRW) {
#elif PLATFORM == PLATFORM_ESP32 #elif PLATFORM == PLATFORM_ESP32
if (rval == PRODUCT_RNODE || rval == PRODUCT_HMBRW || rval == PRODUCT_TBEAM || rval == PRODUCT_T32_20 || rval == PRODUCT_T32_21) { if (rval == PRODUCT_RNODE || rval == PRODUCT_HMBRW || rval == PRODUCT_TBEAM || rval == PRODUCT_T32_20 || rval == PRODUCT_T32_21) {
#elif PLATFORM == PLATFORM_LINUX
if (rval == PRODUCT_HMBRW) {
#else #else
if (false) { if (false) {
#endif #endif
return true; return true;
} else { } else {
#if LIBRARY_TYPE == LIBRARY_C
std::cerr << "Unacceptable platform: " << std::hex << "0x" << (int)rval << std::dec << std::endl;
#endif
return false; return false;
} }
} }
@ -790,6 +914,9 @@ bool eeprom_model_valid() {
#endif #endif
return true; return true;
} else { } else {
#if LIBRARY_TYPE == LIBRARY_C
std::cerr << "Unacceptable model: " << std::hex << "0x" << (int)model << std::dec << std::endl;
#endif
return false; return false;
} }
} }
@ -799,6 +926,9 @@ bool eeprom_hwrev_valid() {
if (hwrev != 0x00 && hwrev != 0xFF) { if (hwrev != 0x00 && hwrev != 0xFF) {
return true; return true;
} else { } else {
#if LIBRARY_TYPE == LIBRARY_C
std::cerr << "Unacceptable revision: " << std::hex << "0x" << (int)hwrev << std::dec << std::endl;
#endif
return false; return false;
} }
} }