Add E-Ink display driver and chip detection for VME213

- Implemented LCMEN2R13EFC1 display driver in src/LCMEN2R13EFC1.h, supporting full and fast refresh modes.
- Added E-Ink chip detection functionality in src/einkDetect_VME213.h to differentiate between LCMEN213EFC1 and E0213A367.
- Included GNU General Public License text in tools/LICENSE.txt.
- Added arduino-cli executable to tools directory.
This commit is contained in:
cuboza 2025-11-16 01:46:27 -03:00
parent 5b7b0d3afe
commit 31e12f3bd4
41 changed files with 14273 additions and 3 deletions

View file

@ -104,6 +104,11 @@
#define MODEL_C6 0xC6 // Heltec Mesh Node T114, 470-510 MHz
#define MODEL_C7 0xC7 // Heltec Mesh Node T114, 863-928 MHz
#define PRODUCT_VME213 0xC9 // Heltec VisionMaster E213
#define BOARD_VME213 0x40
#define MODEL_CD 0xCD // VisionMaster E213, 470-510 MHz
#define MODEL_CE 0xCE // VisionMaster E213, 863-928 MHz
#define PRODUCT_TECHO 0x15 // LilyGO T-Echo devices
#define BOARD_TECHO 0x44
#define MODEL_16 0x16 // T-Echo 433 MHz
@ -432,6 +437,64 @@
const int pin_miso = 11;
const int pin_sclk = 9;
#elif BOARD_MODEL == BOARD_VME213
// Heltec VisionMaster E213 with ESP32-S3R8 + SX1262 + 2.13" E-Ink
#define IS_ESP32S3 true
#define HAS_DISPLAY true // 2.13" E-Ink LCMEN2R13EFC1, 250x122 pixels
#define HAS_EINK true // Enable E-Ink specific display code
#define HAS_BLUETOOTH false
#define HAS_BLE true
#define HAS_PMU false
#define HAS_CONSOLE true
#define HAS_EEPROM true
#define HAS_INPUT true
#define HAS_SLEEP true
#define PIN_WAKEUP GPIO_NUM_0
#define WAKEUP_LEVEL 0
const int pin_btn_usr1 = 0;
// No physical LEDs on VME213, display only
#if defined(EXTERNAL_LEDS)
const int pin_led_rx = 35;
const int pin_led_tx = 35;
#else
const int pin_led_rx = -1;
const int pin_led_tx = -1;
#endif
// SX1262 LoRa radio configuration
#define MODEM SX1262
#define HAS_TCXO true
const int pin_tcxo_enable = -1;
#define HAS_BUSY true
#define DIO2_AS_RF_SWITCH true
// SX1262 pins (from Heltec board-config.h)
const int pin_cs = 8;
const int pin_busy = 13;
const int pin_dio = 14;
const int pin_reset = 12;
const int pin_mosi = 10;
const int pin_miso = 11;
const int pin_sclk = 9;
// E-Ink display pins (HT_ICMEN2R13EFC1 controller)
const int pin_disp_reset = 3;
const int pin_disp_dc = 2;
const int pin_disp_cs = 5;
const int pin_disp_busy = 1;
const int pin_disp_sck = 4;
const int pin_disp_mosi = 6;
const int pin_disp_miso = -1;
// Vext power control (HIGH=ON, LOW=OFF)
#define Vext GPIO_NUM_18
// I2C for sensors (QuickLink)
#define I2C_SDA 39
#define I2C_SCL 38
#elif BOARD_MODEL == BOARD_RNODE_NG_20
#define HAS_DISPLAY true
#define HAS_BLUETOOTH true

144
Display.h
View file

@ -84,6 +84,14 @@
#define DISP_W 128
#define DISP_H 64
#define DISP_ADDR -1
#elif BOARD_MODEL == BOARD_VME213
#include "src/LCMEN2R13EFC1.h"
#include "src/einkDetect_VME213.h"
// VME213 E-Ink display: 250x122 pixels
#define DISP_W 250
#define DISP_H 122
#define DISP_ADDR -1
#define VME213_REFRESH_RATIO 10 // 10 FAST : 1 FULL refresh
#elif BOARD_MODEL == BOARD_TBEAM_S_V1
#define DISP_RST -1
#define DISP_ADDR 0x3C
@ -121,6 +129,18 @@
uint32_t last_epd_refresh = 0;
uint32_t last_epd_full_refresh = 0;
#define REFRESH_PERIOD 300000
#elif BOARD_MODEL == BOARD_VME213
LCMEN2R13EFC1 vme213_display;
EInkChipType vme213_chip_type = EINK_LCMEN213EFC1;
uint8_t vme213_displayBuffer[4000]; // 250x122 pixels = 4000 bytes
uint32_t last_epd_refresh = 0;
uint32_t last_epd_full_refresh = 0;
uint8_t vme213_fast_refresh_count = 0;
#define REFRESH_PERIOD 300000
// Compatibility macro
#define display vme213_display
#define SSD1306_BLACK 0
#define SSD1306_WHITE 1
#else
Adafruit_SSD1306 display(DISP_W, DISP_H, &Wire, DISP_RST);
#endif
@ -189,6 +209,19 @@ void update_area_positions() {
p_as_x = 64;
p_as_y = 0;
}
#elif BOARD_MODEL == BOARD_VME213
// VME213: 250x122 landscape - split into two 125x122 areas
if (disp_mode == DISP_MODE_LANDSCAPE) {
p_ad_x = 0;
p_ad_y = 0;
p_as_x = 125;
p_as_y = 0;
} else {
p_ad_x = 0;
p_ad_y = 0;
p_as_x = 0;
p_as_y = 61;
}
#else
if (disp_mode == DISP_MODE_PORTRAIT) {
p_ad_x = 0 * DISPLAY_SCALE;
@ -247,6 +280,58 @@ uint8_t display_contrast = 0x00;
}
#endif
#if BOARD_MODEL == BOARD_VME213
// VME213 E-Ink display rendering helpers
void vme213_drawPixel(uint16_t x, uint16_t y, uint8_t color) {
if (x >= DISP_W || y >= DISP_H) return;
uint16_t byteIndex = y * ((DISP_W + 7) / 8) + (x / 8);
uint8_t bitMask = 0x80 >> (x % 8);
if (color == SSD1306_WHITE) {
vme213_displayBuffer[byteIndex] |= bitMask; // White pixel
} else {
vme213_displayBuffer[byteIndex] &= ~bitMask; // Black pixel
}
}
void vme213_fillScreen(uint8_t color) {
memset(vme213_displayBuffer, (color == SSD1306_WHITE) ? 0xFF : 0x00, sizeof(vme213_displayBuffer));
}
void vme213_drawText(uint16_t x, uint16_t y, const char* text, uint8_t size) {
// Simple text rendering using 5x7 font
// This is a placeholder - full implementation would use Adafruit_GFX font rendering
// For now, just mark text position
for (int i = 0; i < 10; i++) {
vme213_drawPixel(x + i, y, SSD1306_BLACK);
}
}
void vme213_renderStatus() {
vme213_fillScreen(SSD1306_WHITE);
// Header area (top 20 pixels)
for (int y = 0; y < 20; y++) {
for (int x = 0; x < DISP_W; x++) {
vme213_drawPixel(x, y, (y % 2 == 0) ? SSD1306_BLACK : SSD1306_WHITE);
}
}
// Status text placeholder
vme213_drawText(10, 30, "RNode", 2);
// Signal indicator (simple bars)
if (radio_online) {
for (int i = 0; i < 5; i++) {
int barHeight = 10 + i * 5;
for (int y = 0; y < barHeight; y++) {
vme213_drawPixel(10 + i * 8, 100 - y, SSD1306_BLACK);
}
}
}
}
#endif
bool display_init() {
#if HAS_DISPLAY
#if BOARD_MODEL == BOARD_RNODE_NG_20 || BOARD_MODEL == BOARD_LORA32_V2_0
@ -299,6 +384,27 @@ bool display_init() {
pinMode(pin_backlight, OUTPUT);
analogWrite(pin_backlight, 0);
#endif
#elif BOARD_MODEL == BOARD_VME213
// Enable Vext power (GPIO 18) for peripherals
pinMode(Vext, OUTPUT);
digitalWrite(Vext, HIGH);
delay(100);
// Detect E-Ink chip type
vme213_chip_type = detectEInkChip(pin_disp_reset, pin_disp_busy);
// Initialize SPI for E-Ink display
SPI.begin(pin_disp_sck, pin_disp_miso, pin_disp_mosi, pin_disp_cs);
// Initialize E-Ink driver
vme213_display.begin(&SPI, pin_disp_dc, pin_disp_cs, pin_disp_busy, pin_disp_reset);
// Clear buffer
memset(vme213_displayBuffer, 0xFF, sizeof(vme213_displayBuffer));
// Perform initial FULL refresh to clear display
vme213_display.update(vme213_displayBuffer, LCMEN2R13EFC1::UPDATE_FULL);
vme213_fast_refresh_count = 0;
#elif BOARD_MODEL == BOARD_TBEAM_S_V1
Wire.begin(SDA_OLED, SCL_OLED);
#elif BOARD_MODEL == BOARD_XIAO_S3
@ -348,6 +454,9 @@ bool display_init() {
#if BOARD_MODEL == BOARD_TECHO
// Don't check if display is actually connected
if(false) {
#elif BOARD_MODEL == BOARD_VME213
// VME213 E-Ink display initialization already done, skip connection check
if(false) {
#elif BOARD_MODEL == BOARD_TDECK
display.init(240, 320);
display.setSPISpeed(80e6);
@ -414,6 +523,10 @@ bool display_init() {
#elif BOARD_MODEL == BOARD_TECHO
disp_mode = DISP_MODE_PORTRAIT;
display.setRotation(3);
#elif BOARD_MODEL == BOARD_VME213
// VME213 E-Ink: 250x122 landscape by default
disp_mode = DISP_MODE_LANDSCAPE;
// No setRotation for VME213 (driver handles orientation)
#else
disp_mode = DISP_MODE_PORTRAIT;
display.setRotation(3);
@ -429,7 +542,7 @@ bool display_init() {
stat_area.cp437(true);
disp_area.cp437(true);
#if BOARD_MODEL != BOARD_HELTEC_T114
#if BOARD_MODEL != BOARD_HELTEC_T114 && BOARD_MODEL != BOARD_VME213
display.cp437(true);
#endif
@ -990,6 +1103,12 @@ void update_display(bool blank = false) {
epd_blank();
epd_blanked = true;
}
#elif BOARD_MODEL == BOARD_VME213
if (!epd_blanked) {
vme213_fillScreen(SSD1306_WHITE);
vme213_display.update(vme213_displayBuffer, LCMEN2R13EFC1::UPDATE_FULL);
epd_blanked = true;
}
#endif
#if BOARD_MODEL == BOARD_HELTEC_T114
@ -1015,6 +1134,8 @@ void update_display(bool blank = false) {
#if BOARD_MODEL == BOARD_HELTEC_T114
display.clear();
#elif BOARD_MODEL == BOARD_VME213
// E-Ink buffer will be redrawn completely
#elif BOARD_MODEL != BOARD_TDECK && BOARD_MODEL != BOARD_TECHO
display.clearDisplay();
#endif
@ -1027,6 +1148,9 @@ void update_display(bool blank = false) {
#if BOARD_MODEL == BOARD_TECHO
display.setFullWindow();
display.fillScreen(SSD1306_WHITE);
#elif BOARD_MODEL == BOARD_VME213
// Render RNode UI to E-Ink buffer
vme213_renderStatus();
#endif
update_stat_area();
@ -1040,6 +1164,24 @@ void update_display(bool blank = false) {
last_epd_refresh = millis();
epd_blanked = false;
}
#elif BOARD_MODEL == BOARD_VME213
if (current-last_epd_refresh >= epd_update_interval) {
// Decide refresh type: 10 FAST : 1 FULL
LCMEN2R13EFC1::UpdateType refreshType;
if (vme213_fast_refresh_count >= VME213_REFRESH_RATIO || current-last_epd_full_refresh >= REFRESH_PERIOD) {
refreshType = LCMEN2R13EFC1::UPDATE_FULL;
vme213_fast_refresh_count = 0;
last_epd_full_refresh = millis();
} else {
refreshType = LCMEN2R13EFC1::UPDATE_FAST;
vme213_fast_refresh_count++;
}
// Perform E-Ink update
vme213_display.update(vme213_displayBuffer, refreshType);
last_epd_refresh = millis();
epd_blanked = false;
}
#elif BOARD_MODEL != BOARD_TDECK
display.display();
#endif

View file

@ -128,6 +128,9 @@ firmware-heltec32_v3:
firmware-heltec32_v4:
arduino-cli compile --log --fqbn "esp32:esp32:esp32s3:CDCOnBoot=cdc" -e --build-property "build.partitions=no_ota" --build-property "upload.maximum_size=2097152" --build-property "compiler.cpp.extra_flags=\"-DBOARD_MODEL=0x3F\""
firmware-vme213:
arduino-cli compile --log --fqbn "esp32:esp32:esp32s3:CDCOnBoot=cdc" -e --build-property "build.partitions=no_ota" --build-property "upload.maximum_size=2097152" --build-property "compiler.cpp.extra_flags=\"-DBOARD_MODEL=0x40\""
firmware-rnode_ng_20: check_bt_buffers
arduino-cli compile --log --fqbn esp32:esp32:ttgo-lora32 -e --build-property "build.partitions=no_ota" --build-property "upload.maximum_size=2097152" --build-property "compiler.cpp.extra_flags=\"-DBOARD_MODEL=0x40\""
@ -400,6 +403,15 @@ release-heltec32_v4: check_bt_buffers
zip --junk-paths ./Release/rnode_firmware_heltec32v4pa.zip ./Release/esptool/esptool.py ./Release/console_image.bin build/rnode_firmware_heltec32v4pa.boot_app0 build/rnode_firmware_heltec32v4pa.bin build/rnode_firmware_heltec32v4pa.bootloader build/rnode_firmware_heltec32v4pa.partitions
rm -r build
release-vme213:
arduino-cli compile --fqbn "esp32:esp32:esp32s3:CDCOnBoot=cdc" -e --build-property "build.partitions=no_ota" --build-property "upload.maximum_size=2097152" --build-property "compiler.cpp.extra_flags=\"-DBOARD_MODEL=0x40\""
cp ~/.arduino15/packages/esp32/hardware/esp32/$(ARDUINO_ESP_CORE_VER)/tools/partitions/boot_app0.bin build/rnode_firmware_vme213.boot_app0
cp build/esp32.esp32.esp32s3/RNode_Firmware.ino.bin build/rnode_firmware_vme213.bin
cp build/esp32.esp32.esp32s3/RNode_Firmware.ino.bootloader.bin build/rnode_firmware_vme213.bootloader
cp build/esp32.esp32.esp32s3/RNode_Firmware.ino.partitions.bin build/rnode_firmware_vme213.partitions
zip --junk-paths ./Release/rnode_firmware_vme213.zip ./Release/esptool/esptool.py ./Release/console_image.bin build/rnode_firmware_vme213.boot_app0 build/rnode_firmware_vme213.bin build/rnode_firmware_vme213.bootloader build/rnode_firmware_vme213.partitions
rm -r build
release-heltec32_v2_extled: check_bt_buffers
arduino-cli compile --fqbn esp32:esp32:heltec_wifi_lora_32_V2 -e --build-property "build.partitions=no_ota" --build-property "upload.maximum_size=2097152" --build-property "compiler.cpp.extra_flags=\"-DBOARD_MODEL=0x38\" \"-DEXTERNAL_LEDS=true\""
cp ~/.arduino15/packages/esp32/hardware/esp32/$(ARDUINO_ESP_CORE_VER)/tools/partitions/boot_app0.bin build/rnode_firmware_heltec32v2.boot_app0

View file

@ -0,0 +1,171 @@
// Copyright (C) 2024, Mark Qvist
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
#include "Boards.h"
#if PLATFORM != PLATFORM_NRF52
#if HAS_BLE
#include "BLESerial.h"
uint32_t bt_passkey_callback();
void bt_passkey_notify_callback(uint32_t passkey);
bool bt_security_request_callback();
void bt_authentication_complete_callback(esp_ble_auth_cmpl_t auth_result);
bool bt_confirm_pin_callback(uint32_t pin);
void bt_connect_callback(BLEServer *server);
void bt_disconnect_callback(BLEServer *server);
bool bt_client_authenticated();
uint32_t BLESerial::onPassKeyRequest() { return bt_passkey_callback(); }
void BLESerial::onPassKeyNotify(uint32_t passkey) { bt_passkey_notify_callback(passkey); }
bool BLESerial::onSecurityRequest() { return bt_security_request_callback(); }
void BLESerial::onAuthenticationComplete(esp_ble_auth_cmpl_t auth_result) { bt_authentication_complete_callback(auth_result); }
void BLESerial::onConnect(BLEServer *server) { bt_connect_callback(server); }
void BLESerial::onDisconnect(BLEServer *server) { bt_disconnect_callback(server); ble_server->startAdvertising(); }
bool BLESerial::onConfirmPIN(uint32_t pin) { return bt_confirm_pin_callback(pin); };
bool BLESerial::connected() { return ble_server->getConnectedCount() > 0; }
int BLESerial::read() {
int result = this->rx_buffer.pop();
if (result == '\n') { this->numAvailableLines--; }
return result;
}
size_t BLESerial::readBytes(uint8_t *buffer, size_t bufferSize) {
int i = 0;
while (i < bufferSize && available()) { buffer[i] = (uint8_t)this->rx_buffer.pop(); i++; }
return i;
}
int BLESerial::peek() {
if (this->rx_buffer.getLength() == 0) return -1;
return this->rx_buffer.get(0);
}
int BLESerial::available() { return this->rx_buffer.getLength(); }
size_t BLESerial::print(const char *str) {
if (ble_server->getConnectedCount() <= 0) return 0;
size_t written = 0; for (size_t i = 0; str[i] != '\0'; i++) { written += this->write(str[i]); }
flush();
return written;
}
size_t BLESerial::write(const uint8_t *buffer, size_t bufferSize) {
if (ble_server->getConnectedCount() <= 0) { return 0; } else {
size_t written = 0; for (int i = 0; i < bufferSize; i++) { written += this->write(buffer[i]); }
flush();
return written;
}
}
size_t BLESerial::write(uint8_t byte) {
if (bt_client_authenticated()) {
if (ble_server->getConnectedCount() <= 0) { return 0; } else {
this->transmitBuffer[this->transmitBufferLength] = byte;
this->transmitBufferLength++;
if (this->transmitBufferLength == maxTransferSize) { flush(); }
return 1;
}
} else {
return 0;
}
}
void BLESerial::flush() {
if (this->transmitBufferLength > 0) {
TxCharacteristic->setValue(this->transmitBuffer, this->transmitBufferLength);
this->transmitBufferLength = 0;
this->lastFlushTime = millis();
TxCharacteristic->notify(true);
}
}
void BLESerial::disconnect() {
if (ble_server->getConnectedCount() > 0) {
uint16_t conn_id = ble_server->getConnId();
// Serial.printf("Have connected: %d\n", conn_id);
ble_server->disconnect(conn_id);
// Serial.println("Disconnected");
} else {
// Serial.println("No connected");
}
}
void BLESerial::begin(const char *name) {
ConnectedDeviceCount = 0;
BLEDevice::init(name);
esp_ble_tx_power_set(ESP_BLE_PWR_TYPE_DEFAULT, ESP_PWR_LVL_P9);
esp_ble_tx_power_set(ESP_BLE_PWR_TYPE_ADV, ESP_PWR_LVL_P9);
esp_ble_tx_power_set(ESP_BLE_PWR_TYPE_SCAN ,ESP_PWR_LVL_P9);
ble_server = BLEDevice::createServer();
ble_server->setCallbacks(this);
BLEDevice::setEncryptionLevel(ESP_BLE_SEC_ENCRYPT_MITM);
BLEDevice::setSecurityCallbacks(this);
SetupSerialService();
this->startAdvertising();
}
void BLESerial::startAdvertising() {
ble_adv = BLEDevice::getAdvertising();
ble_adv->addServiceUUID(BLE_SERIAL_SERVICE_UUID);
ble_adv->setMinPreferred(0x20);
ble_adv->setMaxPreferred(0x40);
ble_adv->setScanResponse(true);
ble_adv->start();
}
void BLESerial::stopAdvertising() {
ble_adv = BLEDevice::getAdvertising();
ble_adv->stop();
}
void BLESerial::end() { BLEDevice::deinit(); }
void BLESerial::onWrite(BLECharacteristic *characteristic) {
if (characteristic->getUUID().toString() == BLE_RX_UUID) {
auto value = characteristic->getValue();
for (int i = 0; i < value.length(); i++) { rx_buffer.push(value[i]); }
}
}
void BLESerial::SetupSerialService() {
SerialService = ble_server->createService(BLE_SERIAL_SERVICE_UUID);
RxCharacteristic = SerialService->createCharacteristic(BLE_RX_UUID, BLECharacteristic::PROPERTY_WRITE);
RxCharacteristic->setAccessPermissions(ESP_GATT_PERM_WRITE_ENC_MITM);
RxCharacteristic->addDescriptor(new BLE2902());
RxCharacteristic->setWriteProperty(true);
RxCharacteristic->setCallbacks(this);
TxCharacteristic = SerialService->createCharacteristic(BLE_TX_UUID, BLECharacteristic::PROPERTY_NOTIFY);
TxCharacteristic->setAccessPermissions(ESP_GATT_PERM_READ_ENC_MITM);
TxCharacteristic->addDescriptor(new BLE2902());
TxCharacteristic->setNotifyProperty(true);
TxCharacteristic->setReadProperty(true);
SerialService->start();
}
BLESerial::BLESerial() { }
#endif
#endif

136
RNode_Firmware/BLESerial.h Normal file
View file

@ -0,0 +1,136 @@
// Copyright (C) 2024, Mark Qvist
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
#include "Boards.h"
#if PLATFORM != PLATFORM_NRF52
#if HAS_BLE
#include <Arduino.h>
#include <BLEDevice.h>
#include <BLEUtils.h>
#include <BLEServer.h>
#include <BLE2902.h>
template <size_t n>
class BLEFIFO {
private:
uint8_t buffer[n];
int head = 0;
int tail = 0;
public:
void push(uint8_t value) {
buffer[head] = value;
head = (head + 1) % n;
if (head == tail) { tail = (tail + 1) % n; }
}
int pop() {
if (head == tail) {
return -1;
} else {
uint8_t value = buffer[tail];
tail = (tail + 1) % n;
return value;
}
}
void clear() { head = 0; tail = 0; }
int get(size_t index) {
if (index >= this->getLength()) {
return -1;
} else {
return buffer[(tail + index) % n];
}
}
size_t getLength() {
if (head >= tail) {
return head - tail;
} else {
return n - tail + head;
}
}
};
#define RX_BUFFER_SIZE 6144
#define BLE_BUFFER_SIZE 512 // Must fit in max GATT attribute length
#define MIN_MTU 50
class BLESerial : public BLECharacteristicCallbacks, public BLEServerCallbacks, public BLESecurityCallbacks, public Stream {
public:
BLESerial();
void begin(const char *name);
void end();
void disconnect();
void startAdvertising();
void stopAdvertising();
void onWrite(BLECharacteristic *characteristic);
int available();
int peek();
int read();
size_t readBytes(uint8_t *buffer, size_t bufferSize);
size_t write(uint8_t byte);
size_t write(const uint8_t *buffer, size_t bufferSize);
size_t print(const char *value);
void flush();
void onConnect(BLEServer *server);
void onDisconnect(BLEServer *server);
uint32_t onPassKeyRequest();
void onPassKeyNotify(uint32_t passkey);
bool onSecurityRequest();
void onAuthenticationComplete(esp_ble_auth_cmpl_t);
bool onConfirmPIN(uint32_t pin);
bool connected();
BLEServer *ble_server;
BLEAdvertising *ble_adv;
BLEService *SerialService;
BLECharacteristic *TxCharacteristic;
BLECharacteristic *RxCharacteristic;
size_t transmitBufferLength;
unsigned long long lastFlushTime;
private:
BLESerial(BLESerial const &other) = delete;
void operator=(BLESerial const &other) = delete;
BLEFIFO<RX_BUFFER_SIZE> rx_buffer;
size_t numAvailableLines;
uint8_t transmitBuffer[BLE_BUFFER_SIZE];
int ConnectedDeviceCount;
void SetupSerialService();
uint16_t peerMTU;
uint16_t maxTransferSize = BLE_BUFFER_SIZE;
bool checkMTU();
const char *BLE_SERIAL_SERVICE_UUID = "6e400001-b5a3-f393-e0a9-e50e24dcca9e";
const char *BLE_RX_UUID = "6e400002-b5a3-f393-e0a9-e50e24dcca9e";
const char *BLE_TX_UUID = "6e400003-b5a3-f393-e0a9-e50e24dcca9e";
bool started = false;
};
#endif
#endif

615
RNode_Firmware/Bluetooth.h Normal file
View file

@ -0,0 +1,615 @@
// Copyright (C) 2024, Mark Qvist
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
#if MCU_VARIANT == MCU_ESP32
#elif MCU_VARIANT == MCU_NRF52
#endif
#if MCU_VARIANT == MCU_ESP32
#if HAS_BLUETOOTH == true
#include "BluetoothSerial.h"
#include "esp_bt_main.h"
#include "esp_bt_device.h"
BluetoothSerial SerialBT;
#elif HAS_BLE == true
#include "esp_bt_main.h"
#include "esp_bt_device.h"
#include "BLESerial.h"
BLESerial SerialBT;
#endif
#elif MCU_VARIANT == MCU_NRF52
#include <bluefruit.h>
#include <math.h>
#define BLE_RX_BUF 6144
BLEUart SerialBT(BLE_RX_BUF);
BLEDis bledis;
BLEBas blebas;
bool SerialBT_init = false;
#endif
#define BT_PAIRING_TIMEOUT 35000
#define BLE_FLUSH_TIMEOUT 20
uint32_t bt_pairing_started = 0;
#define BT_DEV_ADDR_LEN 6
#define BT_DEV_HASH_LEN 16
uint8_t dev_bt_mac[BT_DEV_ADDR_LEN];
char bt_da[BT_DEV_ADDR_LEN];
char bt_dh[BT_DEV_HASH_LEN];
char bt_devname[11];
#if MCU_VARIANT == MCU_ESP32
#if HAS_BLUETOOTH == true
void bt_confirm_pairing(uint32_t numVal) {
bt_ssp_pin = numVal;
kiss_indicate_btpin();
if (bt_allow_pairing) {
SerialBT.confirmReply(true);
} else {
SerialBT.confirmReply(false);
}
}
void bt_stop() {
display_unblank();
if (bt_state != BT_STATE_OFF) {
SerialBT.end();
bt_allow_pairing = false;
bt_state = BT_STATE_OFF;
}
}
void bt_start() {
display_unblank();
if (bt_state == BT_STATE_OFF) {
SerialBT.begin(bt_devname);
bt_state = BT_STATE_ON;
}
}
void bt_enable_pairing() {
display_unblank();
if (bt_state == BT_STATE_OFF) bt_start();
bt_allow_pairing = true;
bt_pairing_started = millis();
bt_state = BT_STATE_PAIRING;
}
void bt_disable_pairing() {
display_unblank();
bt_allow_pairing = false;
bt_ssp_pin = 0;
bt_state = BT_STATE_ON;
}
void bt_pairing_complete(boolean success) {
display_unblank();
if (success) {
bt_disable_pairing();
} else {
bt_ssp_pin = 0;
}
}
void bt_connection_callback(esp_spp_cb_event_t event, esp_spp_cb_param_t *param) {
display_unblank();
if(event == ESP_SPP_SRV_OPEN_EVT) {
bt_state = BT_STATE_CONNECTED;
cable_state = CABLE_STATE_DISCONNECTED;
}
if(event == ESP_SPP_CLOSE_EVT ){
bt_state = BT_STATE_ON;
}
}
bool bt_setup_hw() {
if (!bt_ready) {
if (EEPROM.read(eeprom_addr(ADDR_CONF_BT)) == BT_ENABLE_BYTE) {
bt_enabled = true;
} else {
bt_enabled = false;
}
if (btStart()) {
if (esp_bluedroid_init() == ESP_OK) {
if (esp_bluedroid_enable() == ESP_OK) {
const uint8_t* bda_ptr = esp_bt_dev_get_address();
char *data = (char*)malloc(BT_DEV_ADDR_LEN+1);
for (int i = 0; i < BT_DEV_ADDR_LEN; i++) {
data[i] = bda_ptr[i];
}
data[BT_DEV_ADDR_LEN] = EEPROM.read(eeprom_addr(ADDR_SIGNATURE));
unsigned char *hash = MD5::make_hash(data, BT_DEV_ADDR_LEN);
memcpy(bt_dh, hash, BT_DEV_HASH_LEN);
sprintf(bt_devname, "RNode %02X%02X", bt_dh[14], bt_dh[15]);
free(data);
SerialBT.enableSSP();
SerialBT.onConfirmRequest(bt_confirm_pairing);
SerialBT.onAuthComplete(bt_pairing_complete);
SerialBT.register_callback(bt_connection_callback);
bt_ready = true;
return true;
} else { return false; }
} else { return false; }
} else { return false; }
} else { return false; }
}
bool bt_init() {
bt_state = BT_STATE_OFF;
if (bt_setup_hw()) {
if (bt_enabled && !console_active) bt_start();
return true;
} else {
return false;
}
}
void update_bt() {
if (bt_allow_pairing && millis()-bt_pairing_started >= BT_PAIRING_TIMEOUT) {
bt_disable_pairing();
}
}
#elif HAS_BLE == true
bool bt_setup_hw(); void bt_security_setup();
BLESecurity *ble_security = new BLESecurity();
bool ble_authenticated = false;
uint32_t pairing_pin = 0;
void bt_flush() { if (bt_state == BT_STATE_CONNECTED) { SerialBT.flush(); } }
void bt_start() {
// Serial.println("BT start");
display_unblank();
if (bt_state == BT_STATE_OFF) {
bt_state = BT_STATE_ON;
SerialBT.begin(bt_devname);
SerialBT.setTimeout(10);
}
}
void bt_stop() {
// Serial.println("BT stop");
display_unblank();
if (bt_state != BT_STATE_OFF) {
bt_allow_pairing = false;
bt_state = BT_STATE_OFF;
SerialBT.end();
}
}
bool bt_init() {
// Serial.println("BT init");
bt_state = BT_STATE_OFF;
if (bt_setup_hw()) {
if (bt_enabled && !console_active) bt_start();
return true;
} else {
return false;
}
}
void bt_debond_all() {
// Serial.println("Debonding all");
int dev_num = esp_ble_get_bond_device_num();
esp_ble_bond_dev_t *dev_list = (esp_ble_bond_dev_t *)malloc(sizeof(esp_ble_bond_dev_t) * dev_num);
esp_ble_get_bond_device_list(&dev_num, dev_list);
for (int i = 0; i < dev_num; i++) { esp_ble_remove_bond_device(dev_list[i].bd_addr); }
free(dev_list);
}
void bt_enable_pairing() {
// Serial.println("BT enable pairing");
display_unblank();
if (bt_state == BT_STATE_OFF) bt_start();
bt_security_setup();
bt_allow_pairing = true;
bt_pairing_started = millis();
bt_state = BT_STATE_PAIRING;
bt_ssp_pin = pairing_pin;
}
void bt_disable_pairing() {
// Serial.println("BT disable pairing");
display_unblank();
bt_allow_pairing = false;
bt_ssp_pin = 0;
bt_state = BT_STATE_ON;
}
void bt_passkey_notify_callback(uint32_t passkey) {
// Serial.printf("Got passkey notification: %d\n", passkey);
if (bt_allow_pairing) {
bt_ssp_pin = passkey;
bt_pairing_started = millis();
kiss_indicate_btpin();
} else {
// Serial.println("Pairing not allowed, re-init");
SerialBT.disconnect();
}
}
bool bt_confirm_pin_callback(uint32_t pin) {
// Serial.printf("Confirm PIN callback: %d\n", pin);
return true;
}
void bt_update_passkey() {
// Serial.println("Updating passkey");
pairing_pin = random(899999)+100000;
bt_ssp_pin = pairing_pin;
}
uint32_t bt_passkey_callback() {
// Serial.println("API passkey request");
if (pairing_pin == 0) { bt_update_passkey(); }
return pairing_pin;
}
bool bt_client_authenticated() {
return ble_authenticated;
}
bool bt_security_request_callback() {
if (bt_allow_pairing) {
// Serial.println("Accepting security request");
return true;
} else {
// Serial.println("Rejecting security request");
return false;
}
}
void bt_authentication_complete_callback(esp_ble_auth_cmpl_t auth_result) {
if (auth_result.success == true) {
// Serial.println("Authentication success");
ble_authenticated = true;
if (bt_state == BT_STATE_PAIRING) {
// Serial.println("Pairing complete, disconnecting");
delay(2000); SerialBT.disconnect();
} else { bt_state = BT_STATE_CONNECTED; }
} else {
// Serial.println("Authentication fail");
ble_authenticated = false;
bt_state = BT_STATE_ON;
bt_update_passkey();
bt_security_setup();
}
bt_allow_pairing = false;
bt_ssp_pin = 0;
}
void bt_connect_callback(BLEServer *server) {
uint16_t conn_id = server->getConnId();
// Serial.printf("Connected: %d\n", conn_id);
display_unblank();
ble_authenticated = false;
if (bt_state != BT_STATE_PAIRING) { bt_state = BT_STATE_CONNECTED; }
cable_state = CABLE_STATE_DISCONNECTED;
}
void bt_disconnect_callback(BLEServer *server) {
uint16_t conn_id = server->getConnId();
// Serial.printf("Disconnected: %d\n", conn_id);
display_unblank();
ble_authenticated = false;
bt_state = BT_STATE_ON;
}
bool bt_setup_hw() {
// Serial.println("BT setup hw");
if (!bt_ready) {
if (EEPROM.read(eeprom_addr(ADDR_CONF_BT)) == BT_ENABLE_BYTE) {
bt_enabled = true;
} else {
bt_enabled = false;
}
if (btStart()) {
if (esp_bluedroid_init() == ESP_OK) {
if (esp_bluedroid_enable() == ESP_OK) {
const uint8_t* bda_ptr = esp_bt_dev_get_address();
char *data = (char*)malloc(BT_DEV_ADDR_LEN+1);
for (int i = 0; i < BT_DEV_ADDR_LEN; i++) {
data[i] = bda_ptr[i];
}
data[BT_DEV_ADDR_LEN] = EEPROM.read(eeprom_addr(ADDR_SIGNATURE));
unsigned char *hash = MD5::make_hash(data, BT_DEV_ADDR_LEN);
memcpy(bt_dh, hash, BT_DEV_HASH_LEN);
sprintf(bt_devname, "RNode %02X%02X", bt_dh[14], bt_dh[15]);
free(data);
bt_security_setup();
bt_ready = true;
return true;
} else { return false; }
} else { return false; }
} else { return false; }
} else { return false; }
}
void bt_security_setup() {
// Serial.println("Executing BT security setup");
if (pairing_pin == 0) { bt_update_passkey(); }
uint32_t passkey = pairing_pin;
// Serial.printf("Passkey is %d\n", passkey);
uint8_t key_size = 16;
uint8_t init_key = ESP_BLE_ENC_KEY_MASK | ESP_BLE_ID_KEY_MASK;
uint8_t rsp_key = ESP_BLE_ENC_KEY_MASK | ESP_BLE_ID_KEY_MASK;
esp_ble_auth_req_t auth_req = ESP_LE_AUTH_REQ_SC_MITM_BOND;
uint8_t auth_option = ESP_BLE_ONLY_ACCEPT_SPECIFIED_AUTH_ENABLE;
uint8_t oob_support = ESP_BLE_OOB_DISABLE;
esp_ble_io_cap_t iocap = ESP_IO_CAP_OUT;
esp_ble_gap_set_security_param(ESP_BLE_SM_SET_STATIC_PASSKEY, &passkey, sizeof(uint32_t));
esp_ble_gap_set_security_param(ESP_BLE_SM_AUTHEN_REQ_MODE, &auth_req, sizeof(uint8_t));
esp_ble_gap_set_security_param(ESP_BLE_SM_IOCAP_MODE, &iocap, sizeof(uint8_t));
esp_ble_gap_set_security_param(ESP_BLE_SM_MAX_KEY_SIZE, &key_size, sizeof(uint8_t));
esp_ble_gap_set_security_param(ESP_BLE_SM_ONLY_ACCEPT_SPECIFIED_SEC_AUTH, &auth_option, sizeof(uint8_t));
esp_ble_gap_set_security_param(ESP_BLE_SM_OOB_SUPPORT, &oob_support, sizeof(uint8_t));
esp_ble_gap_set_security_param(ESP_BLE_SM_SET_INIT_KEY, &init_key, sizeof(uint8_t));
esp_ble_gap_set_security_param(ESP_BLE_SM_SET_RSP_KEY, &rsp_key, sizeof(uint8_t));
}
void update_bt() {
if (bt_allow_pairing && millis()-bt_pairing_started >= BT_PAIRING_TIMEOUT) {
bt_disable_pairing();
}
if (bt_state == BT_STATE_CONNECTED && millis()-SerialBT.lastFlushTime >= BLE_FLUSH_TIMEOUT) {
if (SerialBT.transmitBufferLength > 0) {
bt_flush();
}
}
}
#endif
#elif MCU_VARIANT == MCU_NRF52
uint32_t pairing_pin = 0;
uint8_t eeprom_read(uint32_t mapped_addr);
void bt_stop() {
// Serial.println("BT Stop");
if (bt_state != BT_STATE_OFF) {
bt_allow_pairing = false;
bt_state = BT_STATE_OFF;
}
}
void bt_flush() { if (bt_state == BT_STATE_CONNECTED) { SerialBT.flushTXD(); } }
void bt_disable_pairing() {
// Serial.println("BT Disable pairing");
bt_allow_pairing = false;
pairing_pin = 0;
bt_ssp_pin = 0;
bt_state = BT_STATE_ON;
}
void bt_pairing_complete(uint16_t conn_handle, uint8_t auth_status) {
// Serial.println("BT pairing complete");
BLEConnection* connection = Bluefruit.Connection(conn_handle);
if (auth_status == BLE_GAP_SEC_STATUS_SUCCESS) {
ble_gap_conn_sec_mode_t security = connection->getSecureMode();
// Serial.println("Bonding success");
// On the NRF52 it is not possible with the Arduino library to reject
// requests from devices with no IO capabilities, which would allow
// bypassing pin entry through pairing using the "just works" mode.
// Therefore, we must check the security level of the connection after
// pairing to ensure "just works" has not been used. If it has, we need
// to disconnect, unpair and delete any bonding information immediately.
// Settings on the SerialBT service should prevent unauthorised access to
// the serial port anyway, but this is still wise to do regardless.
//
// Note: It may be nice to have this done in the BLESecurity class in the
// future, but as it stands right now I'd have to fork the BSP to do
// that, which I don't fancy doing. Impact on security is likely minimal.
// Requires investigation.
if (security.sm == 1 && security.lv >= 3) {
// Serial.println("Auth level success");
bt_state = BT_STATE_CONNECTED;
cable_state = CABLE_STATE_DISCONNECTED;
connection->disconnect();
bt_disable_pairing();
} else {
// Serial.println("Auth level failure, debonding");
if (connection->bonded()) { connection->removeBondKey(); }
connection->disconnect();
bt_disable_pairing();
}
} else {
// Serial.println("Bonding failure");
connection->disconnect();
bt_disable_pairing();
}
}
bool bt_passkey_callback(uint16_t conn_handle, uint8_t const passkey[6], bool match_request) {
// Serial.println("Passkey callback");
if (bt_allow_pairing) {
return true;
}
return false;
}
void bt_connect_callback(uint16_t conn_handle) {
// Serial.println("Connect callback");
bt_state = BT_STATE_CONNECTED;
cable_state = CABLE_STATE_DISCONNECTED;
BLEConnection* conn = Bluefruit.Connection(conn_handle);
conn->requestPHY(BLE_GAP_PHY_2MBPS);
conn->requestMtuExchange(512+3);
conn->requestDataLengthUpdate();
}
void bt_disconnect_callback(uint16_t conn_handle, uint8_t reason) {
// Serial.println("Disconnect callback");
if (reason != BLE_GAP_SEC_STATUS_SUCCESS) {
bt_state = BT_STATE_ON;
}
}
void bt_update_passkey() {
// Serial.println("Update passkey");
pairing_pin = random(899999)+100000;
bt_ssp_pin = pairing_pin;
}
uint32_t bt_get_passkey() {
// Serial.println("API passkey request");
if (pairing_pin == 0) { bt_update_passkey(); }
return pairing_pin;
}
bool bt_setup_hw() {
// Serial.println("Setup HW");
if (!bt_ready) {
#if HAS_EEPROM
if (EEPROM.read(eeprom_addr(ADDR_CONF_BT)) == BT_ENABLE_BYTE) {
#else
if (eeprom_read(eeprom_addr(ADDR_CONF_BT)) == BT_ENABLE_BYTE) {
#endif
bt_enabled = true;
} else {
bt_enabled = false;
}
Bluefruit.configPrphBandwidth(BANDWIDTH_MAX);
Bluefruit.autoConnLed(false);
if (Bluefruit.begin()) {
uint32_t pin = bt_get_passkey();
char pin_char[6];
sprintf(pin_char,"%lu", pin);
Bluefruit.setTxPower(8); // Check bluefruit.h for supported values
Bluefruit.Security.setIOCaps(true, false, false); // display, yes; yes / no, no; keyboard, no
// This device is indeed capable of yes / no through the pairing mode
// being set, but I have chosen to set it thus to force the input of the
// pin on the device initiating the pairing.
Bluefruit.Security.setMITM(true);
Bluefruit.Security.setPairPasskeyCallback(bt_passkey_callback);
Bluefruit.Security.setSecuredCallback(bt_connect_callback);
Bluefruit.Security.setPIN(pin_char);
Bluefruit.Periph.setDisconnectCallback(bt_disconnect_callback);
Bluefruit.Security.setPairCompleteCallback(bt_pairing_complete);
Bluefruit.Periph.setConnInterval(6, 12); // 7.5 - 15 ms
const ble_gap_addr_t gap_addr = Bluefruit.getAddr();
char *data = (char*)malloc(BT_DEV_ADDR_LEN+1);
for (int i = 0; i < BT_DEV_ADDR_LEN; i++) {
data[i] = gap_addr.addr[i];
}
#if HAS_EEPROM
data[BT_DEV_ADDR_LEN] = EEPROM.read(eeprom_addr(ADDR_SIGNATURE));
#else
data[BT_DEV_ADDR_LEN] = eeprom_read(eeprom_addr(ADDR_SIGNATURE));
#endif
unsigned char *hash = MD5::make_hash(data, BT_DEV_ADDR_LEN);
memcpy(bt_dh, hash, BT_DEV_HASH_LEN);
sprintf(bt_devname, "RNode %02X%02X", bt_dh[14], bt_dh[15]);
free(data);
bt_ready = true;
return true;
} else { return false; }
} else { return false; }
}
void bt_start() {
// Serial.println("BT Start");
if (bt_state == BT_STATE_OFF) {
Bluefruit.setName(bt_devname);
bledis.setManufacturer(BLE_MANUFACTURER);
bledis.setModel(BLE_MODEL);
// start device information service
bledis.begin();
blebas.begin();
// Guard to ensure SerialBT service is not duplicated through BT being power cycled
if (!SerialBT_init) {
SerialBT.bufferTXD(true); // enable buffering
SerialBT.setPermission(SECMODE_ENC_WITH_MITM, SECMODE_ENC_WITH_MITM); // enable encryption for BLE serial
SerialBT.begin();
SerialBT_init = true;
}
Bluefruit.Advertising.addFlags(BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE);
Bluefruit.Advertising.addTxPower();
// Include bleuart 128-bit uuid
Bluefruit.Advertising.addService(SerialBT);
// There is no room for Name in Advertising packet
// Use Scan response for Name
Bluefruit.ScanResponse.addName();
Bluefruit.Advertising.start(0);
bt_state = BT_STATE_ON;
}
}
bool bt_init() {
// Serial.println("BT init");
bt_state = BT_STATE_OFF;
if (bt_setup_hw()) {
if (bt_enabled && !console_active) bt_start();
return true;
} else {
return false;
}
}
void bt_enable_pairing() {
// Serial.println("BT enable pairing");
if (bt_state == BT_STATE_OFF) bt_start();
uint32_t pin = bt_get_passkey();
char pin_char[6];
sprintf(pin_char,"%lu", pin);
Bluefruit.Security.setPIN(pin_char);
bt_allow_pairing = true;
bt_pairing_started = millis();
bt_state = BT_STATE_PAIRING;
kiss_indicate_btpin();
}
void bt_debond_all() { }
void update_bt() {
if (bt_allow_pairing && millis()-bt_pairing_started >= BT_PAIRING_TIMEOUT) {
bt_disable_pairing();
}
}
#endif

983
RNode_Firmware/Boards.h Normal file
View file

@ -0,0 +1,983 @@
// Copyright (C) 2024, Mark Qvist
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
#include "Modem.h"
#ifndef BOARDS_H
#define BOARDS_H
#define PLATFORM_AVR 0x90
#define PLATFORM_ESP32 0x80
#define PLATFORM_NRF52 0x70
#define MCU_1284P 0x91
#define MCU_2560 0x92
#define MCU_ESP32 0x81
#define MCU_NRF52 0x71
// Products, boards and models ////
#define PRODUCT_RNODE 0x03 // RNode devices
#define BOARD_RNODE 0x31 // Original v1.0 RNode
#define MODEL_A4 0xA4 // RNode v1.0, 433 MHz
#define MODEL_A9 0xA9 // RNode v1.0, 868 MHz
#define BOARD_RNODE_NG_20 0x40 // RNode hardware revision v2.0
#define MODEL_A3 0xA3 // RNode v2.0, 433 MHz
#define MODEL_A8 0xA8 // RNode v2.0, 868 MHz
#define BOARD_RNODE_NG_21 0x41 // RNode hardware revision v2.1
#define MODEL_A2 0xA2 // RNode v2.1, 433 MHz
#define MODEL_A7 0xA7 // RNode v2.1, 868 MHz
#define BOARD_T3S3 0x42 // T3S3 devices
#define MODEL_A1 0xA1 // T3S3, 433 MHz with SX1268
#define MODEL_A5 0xA5 // T3S3, 433 MHz with SX1278
#define MODEL_A6 0xA6 // T3S3, 868 MHz with SX1262
#define MODEL_AA 0xAA // T3S3, 868 MHz with SX1276
#define MODEL_AC 0xAC // T3S3, 2.4 GHz with SX1280 and PA
#define PRODUCT_TBEAM 0xE0 // T-Beam devices
#define BOARD_TBEAM 0x33
#define MODEL_E4 0xE4 // T-Beam SX1278, 433 Mhz
#define MODEL_E9 0xE9 // T-Beam SX1276, 868 Mhz
#define MODEL_E3 0xE3 // T-Beam SX1268, 433 Mhz
#define MODEL_E8 0xE8 // T-Beam SX1262, 868 Mhz
#define PRODUCT_TDECK_V1 0xD0
#define BOARD_TDECK 0x3B
#define MODEL_D4 0xD4 // LilyGO T-Deck, 433 MHz
#define MODEL_D9 0xD9 // LilyGO T-Deck, 868 MHz
#define PRODUCT_TBEAM_S_V1 0xEA
#define BOARD_TBEAM_S_V1 0x3D
#define MODEL_DB 0xDB // LilyGO T-Beam Supreme, 433 MHz
#define MODEL_DC 0xDC // LilyGO T-Beam Supreme, 868 MHz
#define PRODUCT_XIAO_S3 0xEB
#define BOARD_XIAO_S3 0x3E
#define MODEL_DE 0xDE // Xiao ESP32S3 with Wio-SX1262 module, 433 MHz
#define MODEL_DD 0xDD // Xiao ESP32S3 with Wio-SX1262 module, 868 MHz
#define PRODUCT_T32_10 0xB2
#define BOARD_LORA32_V1_0 0x39
#define MODEL_BA 0xBA // LilyGO T3 v1.0, 433 MHz
#define MODEL_BB 0xBB // LilyGO T3 v1.0, 868 MHz
#define PRODUCT_T32_20 0xB0
#define BOARD_LORA32_V2_0 0x36
#define MODEL_B3 0xB3 // LilyGO T3 v2.0, 433 MHz
#define MODEL_B8 0xB8 // LilyGO T3 v2.0, 868 MHz
#define PRODUCT_T32_21 0xB1
#define BOARD_LORA32_V2_1 0x37
#define MODEL_B4 0xB4 // LilyGO T3 v2.1, 433 MHz
#define MODEL_B9 0xB9 // LilyGO T3 v2.1, 868 MHz
#define PRODUCT_H32_V2 0xC0 // Board code 0x38
#define BOARD_HELTEC32_V2 0x38
#define MODEL_C4 0xC4 // Heltec Lora32 v2, 433 MHz
#define MODEL_C9 0xC9 // Heltec Lora32 v2, 868 MHz
#define PRODUCT_H32_V3 0xC1
#define BOARD_HELTEC32_V3 0x3A
#define MODEL_C5 0xC5 // Heltec Lora32 v3, 433 MHz
#define MODEL_CA 0xCA // Heltec Lora32 v3, 868 MHz
#define PRODUCT_H32_V4 0xC3
#define BOARD_HELTEC32_V4 0x3F
#define MODEL_C8 0xC8 // Heltec Lora32 v3, 850-950 MHz, 28dBm
#define PRODUCT_HELTEC_T114 0xC2 // Heltec Mesh Node T114
#define BOARD_HELTEC_T114 0x3C
#define MODEL_C6 0xC6 // Heltec Mesh Node T114, 470-510 MHz
#define MODEL_C7 0xC7 // Heltec Mesh Node T114, 863-928 MHz
#define PRODUCT_VME213 0xC9 // Heltec VisionMaster E213
#define BOARD_VME213 0x40
#define MODEL_CD 0xCD // VisionMaster E213, 470-510 MHz
#define MODEL_CE 0xCE // VisionMaster E213, 863-928 MHz
#define PRODUCT_TECHO 0x15 // LilyGO T-Echo devices
#define BOARD_TECHO 0x44
#define MODEL_16 0x16 // T-Echo 433 MHz
#define MODEL_17 0x17 // T-Echo 868/915 MHz
#define PRODUCT_RAK4631 0x10
#define BOARD_RAK4631 0x51
#define MODEL_11 0x11 // RAK4631, 433 Mhz
#define MODEL_12 0x12 // RAK4631, 868 Mhz
#define PRODUCT_HMBRW 0xF0
#define BOARD_HMBRW 0x32
#define BOARD_HUZZAH32 0x34
#define BOARD_GENERIC_ESP32 0x35
#define BOARD_GENERIC_NRF52 0x50
#define MODEL_FE 0xFE // Homebrew board, max 17dBm output power
#define MODEL_FF 0xFF // Homebrew board, max 14dBm output power
#if defined(__AVR_ATmega1284P__)
#define PLATFORM PLATFORM_AVR
#define MCU_VARIANT MCU_1284P
#elif defined(__AVR_ATmega2560__)
#define PLATFORM PLATFORM_AVR
#define MCU_VARIANT MCU_2560
#elif defined(ESP32)
#define PLATFORM PLATFORM_ESP32
#define MCU_VARIANT MCU_ESP32
#elif defined(NRF52840_XXAA)
#include <variant.h>
#define PLATFORM PLATFORM_NRF52
#define MCU_VARIANT MCU_NRF52
#else
#error "The firmware cannot be compiled for the selected MCU variant"
#endif
#ifndef MODEM
#if BOARD_MODEL == BOARD_RAK4631
#define MODEM SX1262
#elif BOARD_MODEL == BOARD_GENERIC_NRF52
#define MODEM SX1262
#else
#define MODEM SX1276
#endif
#endif
#define HAS_DISPLAY false
#define HAS_BLUETOOTH false
#define HAS_BLE false
#define HAS_TCXO false
#define HAS_PMU false
#define HAS_NP false
#define HAS_EEPROM false
#define HAS_INPUT false
#define HAS_SLEEP false
#define HAS_LORA_PA false
#define HAS_LORA_LNA false
#define PIN_DISP_SLEEP -1
#define VALIDATE_FIRMWARE true
#if defined(ENABLE_TCXO)
#define HAS_TCXO true
#endif
#if MCU_VARIANT == MCU_1284P
const int pin_cs = 4;
const int pin_reset = 3;
const int pin_dio = 2;
const int pin_led_rx = 12;
const int pin_led_tx = 13;
#define BOARD_MODEL BOARD_RNODE
#define HAS_EEPROM true
#define CONFIG_UART_BUFFER_SIZE 6144
#define CONFIG_QUEUE_SIZE 6144
#define CONFIG_QUEUE_MAX_LENGTH 200
#define EEPROM_SIZE 4096
#define EEPROM_OFFSET EEPROM_SIZE-EEPROM_RESERVED
#elif MCU_VARIANT == MCU_2560
const int pin_cs = 5;
const int pin_reset = 4;
const int pin_dio = 2;
const int pin_led_rx = 12;
const int pin_led_tx = 13;
#define BOARD_MODEL BOARD_HMBRW
#define HAS_EEPROM true
#define CONFIG_UART_BUFFER_SIZE 768
#define CONFIG_QUEUE_SIZE 5120
#define CONFIG_QUEUE_MAX_LENGTH 24
#define EEPROM_SIZE 4096
#define EEPROM_OFFSET EEPROM_SIZE-EEPROM_RESERVED
#elif MCU_VARIANT == MCU_ESP32
// Board models for ESP32 based builds are
// defined by the build target in the makefile.
// If you are not using make to compile this
// firmware, you can manually define model here.
//
// #define BOARD_MODEL BOARD_GENERIC_ESP32
#define CONFIG_UART_BUFFER_SIZE 6144
#define CONFIG_QUEUE_SIZE 6144
#define CONFIG_QUEUE_MAX_LENGTH 200
#define EEPROM_SIZE 1024
#define EEPROM_OFFSET EEPROM_SIZE-EEPROM_RESERVED
#define GPS_BAUD_RATE 9600
#define PIN_GPS_TX 12
#define PIN_GPS_RX 34
#if BOARD_MODEL == BOARD_GENERIC_ESP32
#define HAS_BLUETOOTH true
#define HAS_CONSOLE true
#define HAS_EEPROM true
const int pin_cs = 4;
const int pin_reset = 33;
const int pin_dio = 39;
const int pin_led_rx = 14;
const int pin_led_tx = 32;
#elif BOARD_MODEL == BOARD_TBEAM
#define HAS_DISPLAY true
#define HAS_PMU true
#define HAS_BLUETOOTH true
#define HAS_CONSOLE true
#define HAS_SD false
#define HAS_EEPROM true
#define I2C_SDA 21
#define I2C_SCL 22
#define PMU_IRQ 35
#define HAS_INPUT true
const int pin_btn_usr1 = 38;
const int pin_cs = 18;
const int pin_reset = 23;
const int pin_led_rx = 2;
const int pin_led_tx = 4;
#if MODEM == SX1262
#define HAS_TCXO true
#define HAS_BUSY true
#define DIO2_AS_RF_SWITCH true
#define OCP_TUNED 0x18
const int pin_busy = 32;
const int pin_dio = 33;
const int pin_tcxo_enable = -1;
#else
const int pin_dio = 26;
#endif
#elif BOARD_MODEL == BOARD_HUZZAH32
#define HAS_BLUETOOTH true
#define HAS_CONSOLE true
#define HAS_EEPROM true
const int pin_cs = 4;
const int pin_reset = 33;
const int pin_dio = 39;
const int pin_led_rx = 14;
const int pin_led_tx = 32;
#elif BOARD_MODEL == BOARD_LORA32_V1_0
#define HAS_DISPLAY true
#define HAS_BLUETOOTH true
#define HAS_CONSOLE true
#define HAS_EEPROM true
const int pin_cs = 18;
const int pin_reset = 14;
const int pin_dio = 26;
#if defined(EXTERNAL_LEDS)
const int pin_led_rx = 25;
const int pin_led_tx = 2;
#else
const int pin_led_rx = 2;
const int pin_led_tx = 2;
#endif
#elif BOARD_MODEL == BOARD_LORA32_V2_0
#define HAS_DISPLAY true
#define HAS_BLUETOOTH true
#define HAS_CONSOLE true
#define HAS_EEPROM true
const int pin_cs = 18;
const int pin_reset = 12;
const int pin_dio = 26;
#if defined(EXTERNAL_LEDS)
const int pin_led_rx = 2;
const int pin_led_tx = 0;
#else
const int pin_led_rx = 22;
const int pin_led_tx = 22;
#endif
#elif BOARD_MODEL == BOARD_LORA32_V2_1
#define HAS_DISPLAY true
#define HAS_BLUETOOTH true
#define HAS_PMU true
#define HAS_CONSOLE true
#define HAS_EEPROM true
const int pin_cs = 18;
const int pin_reset = 23;
const int pin_dio = 26;
#if HAS_TCXO == true
const int pin_tcxo_enable = 33;
#endif
#if defined(EXTERNAL_LEDS)
const int pin_led_rx = 15;
const int pin_led_tx = 4;
#else
const int pin_led_rx = 25;
const int pin_led_tx = 25;
#endif
#elif BOARD_MODEL == BOARD_HELTEC32_V2
#define HAS_DISPLAY true
#define HAS_BLUETOOTH true
#define HAS_CONSOLE true
#define HAS_EEPROM true
#define HAS_INPUT true
#define HAS_SLEEP true
#define PIN_WAKEUP GPIO_NUM_0
#define WAKEUP_LEVEL 0
const int pin_btn_usr1 = 0;
const int pin_cs = 18;
const int pin_reset = 14;
const int pin_dio = 26;
#if defined(EXTERNAL_LEDS)
const int pin_led_rx = 36;
const int pin_led_tx = 37;
#else
const int pin_led_rx = 25;
const int pin_led_tx = 25;
#endif
#elif BOARD_MODEL == BOARD_HELTEC32_V3
#define IS_ESP32S3 true
#define HAS_DISPLAY true
#define HAS_BLUETOOTH false
#define HAS_BLE true
#define HAS_PMU true
#define HAS_CONSOLE true
#define HAS_EEPROM true
#define HAS_INPUT true
#define HAS_SLEEP true
#define PIN_WAKEUP GPIO_NUM_0
#define WAKEUP_LEVEL 0
#define OCP_TUNED 0x18
const int pin_btn_usr1 = 0;
#if defined(EXTERNAL_LEDS)
const int pin_led_rx = 13;
const int pin_led_tx = 14;
#else
const int pin_led_rx = 35;
const int pin_led_tx = 35;
#endif
#define MODEM SX1262
#define HAS_TCXO true
const int pin_tcxo_enable = -1;
#define HAS_BUSY true
#define DIO2_AS_RF_SWITCH true
// Following pins are for the SX1262
const int pin_cs = 8;
const int pin_busy = 13;
const int pin_dio = 14;
const int pin_reset = 12;
const int pin_mosi = 10;
const int pin_miso = 11;
const int pin_sclk = 9;
#elif BOARD_MODEL == BOARD_HELTEC32_V4
#define IS_ESP32S3 true
#define HAS_DISPLAY true
#define HAS_BLUETOOTH false
#define HAS_BLE true
#define HAS_PMU true
#define HAS_CONSOLE true
#define HAS_EEPROM true
#define HAS_INPUT true
#define HAS_SLEEP true
#define HAS_LORA_PA true
#define HAS_LORA_LNA true
#define PIN_WAKEUP GPIO_NUM_0
#define WAKEUP_LEVEL 0
#define OCP_TUNED 0x18
#define Vext GPIO_NUM_36
const int pin_btn_usr1 = 0;
#if defined(EXTERNAL_LEDS)
const int pin_led_rx = 13;
const int pin_led_tx = 14;
#else
const int pin_led_rx = 35;
const int pin_led_tx = 35;
#endif
#define MODEM SX1262
#define HAS_TCXO true
const int pin_tcxo_enable = -1;
#define HAS_BUSY true
#define DIO2_AS_RF_SWITCH true
#define LORA_LNA_GAIN 17
#define LORA_PA_GC1109 true
#define LORA_PA_PWR_EN 7
#define LORA_PA_CSD 2
#define LORA_PA_CPS 46
#define PA_MAX_OUTPUT 28
#define PA_GAIN_POINTS 22
#define PA_GAIN_VALUES 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 9, 9, 8, 7
const int pin_cs = 8;
const int pin_busy = 13;
const int pin_dio = 14;
const int pin_reset = 12;
const int pin_mosi = 10;
const int pin_miso = 11;
const int pin_sclk = 9;
#elif BOARD_MODEL == BOARD_VME213
// Heltec VisionMaster E213 with ESP32-S3R8 + SX1262 + 2.13" E-Ink
#define IS_ESP32S3 true
#define HAS_DISPLAY true // 2.13" E-Ink LCMEN2R13EFC1, 250x122 pixels
#define HAS_EINK true // Enable E-Ink specific display code
#define HAS_BLUETOOTH false
#define HAS_BLE true
#define HAS_PMU false
#define HAS_CONSOLE true
#define HAS_EEPROM true
#define HAS_INPUT true
#define HAS_SLEEP true
#define PIN_WAKEUP GPIO_NUM_0
#define WAKEUP_LEVEL 0
const int pin_btn_usr1 = 0;
// No physical LEDs on VME213, display only
#if defined(EXTERNAL_LEDS)
const int pin_led_rx = 35;
const int pin_led_tx = 35;
#else
const int pin_led_rx = -1;
const int pin_led_tx = -1;
#endif
// SX1262 LoRa radio configuration
#define MODEM SX1262
#define HAS_TCXO true
const int pin_tcxo_enable = -1;
#define HAS_BUSY true
#define DIO2_AS_RF_SWITCH true
// SX1262 pins (from Heltec board-config.h)
const int pin_cs = 8;
const int pin_busy = 13;
const int pin_dio = 14;
const int pin_reset = 12;
const int pin_mosi = 10;
const int pin_miso = 11;
const int pin_sclk = 9;
// E-Ink display pins (HT_ICMEN2R13EFC1 controller)
const int pin_disp_reset = 3;
const int pin_disp_dc = 2;
const int pin_disp_cs = 5;
const int pin_disp_busy = 1;
const int pin_disp_sck = 4;
const int pin_disp_mosi = 6;
const int pin_disp_miso = -1;
// Vext power control (HIGH=ON, LOW=OFF)
#define Vext GPIO_NUM_18
// I2C for sensors (QuickLink)
#define I2C_SDA 39
#define I2C_SCL 38
#elif BOARD_MODEL == BOARD_RNODE_NG_20
#define HAS_DISPLAY true
#define HAS_BLUETOOTH true
#define HAS_NP true
#define HAS_CONSOLE true
#define HAS_EEPROM true
const int pin_cs = 18;
const int pin_reset = 12;
const int pin_dio = 26;
const int pin_np = 4;
#if HAS_NP == false
#if defined(EXTERNAL_LEDS)
const int pin_led_rx = 2;
const int pin_led_tx = 0;
#else
const int pin_led_rx = 22;
const int pin_led_tx = 22;
#endif
#endif
#elif BOARD_MODEL == BOARD_RNODE_NG_21
#define HAS_DISPLAY true
#define HAS_BLUETOOTH true
#define HAS_CONSOLE true
#define HAS_PMU true
#define HAS_NP true
#define HAS_SD false
#define HAS_EEPROM true
const int pin_cs = 18;
const int pin_reset = 23;
const int pin_dio = 26;
const int pin_np = 12;
const int pin_dac = 25;
const int pin_adc = 34;
const int SD_MISO = 2;
const int SD_MOSI = 15;
const int SD_CLK = 14;
const int SD_CS = 13;
#if HAS_NP == false
#if defined(EXTERNAL_LEDS)
const int pin_led_rx = 12;
const int pin_led_tx = 4;
#else
const int pin_led_rx = 25;
const int pin_led_tx = 25;
#endif
#endif
#elif BOARD_MODEL == BOARD_T3S3
#define IS_ESP32S3 true
#define HAS_DISPLAY true
#define HAS_CONSOLE true
#define HAS_BLUETOOTH false
#define HAS_BLE true
#define HAS_PMU true
#define HAS_NP false
#define HAS_SD false
#define HAS_EEPROM true
#define HAS_INPUT true
#define HAS_SLEEP true
#define PIN_WAKEUP GPIO_NUM_0
#define WAKEUP_LEVEL 0
const int pin_btn_usr1 = 0;
const int pin_cs = 7;
const int pin_reset = 8;
const int pin_sclk = 5;
const int pin_mosi = 6;
const int pin_miso = 3;
#if MODEM == SX1262
#define DIO2_AS_RF_SWITCH true
#define HAS_BUSY true
#define HAS_TCXO true
const int pin_busy = 34;
const int pin_dio = 33;
const int pin_tcxo_enable = -1;
#elif MODEM == SX1280
#define CONFIG_QUEUE_SIZE 6144
#define DIO2_AS_RF_SWITCH false
#define HAS_BUSY true
#define HAS_TCXO true
#define HAS_PA true
const int pa_max_input = 3;
#define HAS_RF_SWITCH_RX_TX true
const int pin_rxen = 21;
const int pin_txen = 10;
const int pin_busy = 36;
const int pin_dio = 9;
const int pin_tcxo_enable = -1;
#else
const int pin_dio = 9;
#endif
const int pin_np = 38;
const int pin_dac = 25;
const int pin_adc = 1;
const int SD_MISO = 2;
const int SD_MOSI = 11;
const int SD_CLK = 14;
const int SD_CS = 13;
#if HAS_NP == false
#if defined(EXTERNAL_LEDS)
const int pin_led_rx = 37;
const int pin_led_tx = 37;
#else
const int pin_led_rx = 37;
const int pin_led_tx = 37;
#endif
#endif
#elif BOARD_MODEL == BOARD_TDECK
#define IS_ESP32S3 true
#define MODEM SX1262
#define DIO2_AS_RF_SWITCH true
#define HAS_BUSY true
#define HAS_TCXO true
#define HAS_DISPLAY false
#define HAS_CONSOLE false
#define HAS_BLUETOOTH false
#define HAS_BLE true
#define HAS_PMU true
#define HAS_NP false
#define HAS_SD false
#define HAS_EEPROM true
#define HAS_INPUT true
#define HAS_SLEEP true
#define PIN_WAKEUP GPIO_NUM_0
#define WAKEUP_LEVEL 0
const int pin_poweron = 10;
const int pin_btn_usr1 = 0;
const int pin_cs = 9;
const int pin_reset = 17;
const int pin_sclk = 40;
const int pin_mosi = 41;
const int pin_miso = 38;
const int pin_tcxo_enable = -1;
const int pin_dio = 45;
const int pin_busy = 13;
const int SD_MISO = 38;
const int SD_MOSI = 41;
const int SD_CLK = 40;
const int SD_CS = 39;
const int DISPLAY_DC = 11;
const int DISPLAY_CS = 12;
const int DISPLAY_MISO = 38;
const int DISPLAY_MOSI = 41;
const int DISPLAY_CLK = 40;
const int DISPLAY_BL_PIN = 42;
#if HAS_NP == false
#if defined(EXTERNAL_LEDS)
const int pin_led_rx = 43;
const int pin_led_tx = 43;
#else
const int pin_led_rx = 43;
const int pin_led_tx = 43;
#endif
#endif
#elif BOARD_MODEL == BOARD_TBEAM_S_V1
#define IS_ESP32S3 true
#define MODEM SX1262
#define DIO2_AS_RF_SWITCH true
#define HAS_BUSY true
#define HAS_TCXO true
#define OCP_TUNED 0x18
#define HAS_DISPLAY true
#define HAS_CONSOLE true
#define HAS_BLUETOOTH false
#define HAS_BLE true
#define HAS_PMU true
#define HAS_NP false
#define HAS_SD false
#define HAS_EEPROM true
#define HAS_INPUT true
#define HAS_SLEEP false
#define PMU_IRQ 40
#define I2C_SCL 41
#define I2C_SDA 42
const int pin_btn_usr1 = 0;
const int pin_cs = 10;
const int pin_reset = 5;
const int pin_sclk = 12;
const int pin_mosi = 11;
const int pin_miso = 13;
const int pin_tcxo_enable = -1;
const int pin_dio = 1;
const int pin_busy = 4;
const int SD_MISO = 37;
const int SD_MOSI = 35;
const int SD_CLK = 36;
const int SD_CS = 47;
const int IMU_CS = 34;
#if HAS_NP == false
#if defined(EXTERNAL_LEDS)
const int pin_led_rx = 43;
const int pin_led_tx = 43;
#else
const int pin_led_rx = 43;
const int pin_led_tx = 43;
#endif
#endif
#elif BOARD_MODEL == BOARD_XIAO_S3
#define IS_ESP32S3 true
#define MODEM SX1262
#define DIO2_AS_RF_SWITCH true
#define HAS_BUSY true
#define HAS_TCXO true
#define HAS_DISPLAY false
#define HAS_CONSOLE true
#define HAS_BLUETOOTH false
#define HAS_BLE true
#define HAS_NP false
#define HAS_SD false
#define HAS_EEPROM true
#define HAS_INPUT true
#define HAS_SLEEP true
#define PIN_WAKEUP GPIO_NUM_21
#define WAKEUP_LEVEL 0
const int pin_btn_usr1 = 21;
const int pin_cs = 41;
const int pin_reset = 42;
const int pin_sclk = 7;
const int pin_mosi = 9;
const int pin_miso = 8;
const int pin_tcxo_enable = -1;
const int pin_dio = 39;
const int pin_busy = 40;
#if HAS_NP == false
#if defined(EXTERNAL_LEDS)
const int pin_led_rx = 48;
const int pin_led_tx = 48;
#else
const int pin_led_rx = 48;
const int pin_led_tx = 48;
#endif
#endif
#else
#error An unsupported ESP32 board was selected. Cannot compile RNode firmware.
#endif
#elif MCU_VARIANT == MCU_NRF52
#if BOARD_MODEL == BOARD_RAK4631
#define HAS_EEPROM false
#define HAS_DISPLAY true
#define HAS_BLUETOOTH false
#define HAS_BLE true
#define HAS_CONSOLE false
#define HAS_PMU false
#define HAS_NP false
#define HAS_SD false
#define HAS_TCXO true
#define HAS_RF_SWITCH_RX_TX true
#define HAS_BUSY true
#define HAS_INPUT true
#define DIO2_AS_RF_SWITCH true
#define CONFIG_UART_BUFFER_SIZE 6144
#define CONFIG_QUEUE_SIZE 6144
#define CONFIG_QUEUE_MAX_LENGTH 200
#define EEPROM_SIZE 296
#define EEPROM_OFFSET EEPROM_SIZE-EEPROM_RESERVED
#define BLE_MANUFACTURER "RAK Wireless"
#define BLE_MODEL "RAK4640"
const int pin_btn_usr1 = 9;
// Following pins are for the sx1262
const int pin_rxen = 37;
const int pin_txen = -1;
const int pin_reset = 38;
const int pin_cs = 42;
const int pin_sclk = 43;
const int pin_mosi = 44;
const int pin_miso = 45;
const int pin_busy = 46;
const int pin_dio = 47;
const int pin_led_rx = LED_BLUE;
const int pin_led_tx = LED_GREEN;
const int pin_tcxo_enable = -1;
#elif BOARD_MODEL == BOARD_TECHO
#define _PINNUM(port, pin) ((port) * 32 + (pin))
#define MODEM SX1262
#define HAS_EEPROM false
#define HAS_BLUETOOTH false
#define HAS_BLE true
#define HAS_CONSOLE false
#define HAS_PMU true
#define HAS_NP false
#define HAS_SD false
#define HAS_TCXO true
#define HAS_BUSY true
#define HAS_INPUT true
#define HAS_SLEEP true
#define BLE_MANUFACTURER "LilyGO"
#define BLE_MODEL "T-Echo"
#define HAS_INPUT true
#define EEPROM_SIZE 296
#define EEPROM_OFFSET EEPROM_SIZE-EEPROM_RESERVED
#define CONFIG_UART_BUFFER_SIZE 32768
#define CONFIG_QUEUE_SIZE 6144
#define CONFIG_QUEUE_MAX_LENGTH 200
#define HAS_DISPLAY true
#define HAS_BACKLIGHT true
#define DISPLAY_SCALE 1
#define LED_ON LOW
#define LED_OFF HIGH
#define PIN_LED_GREEN _PINNUM(1, 1)
#define PIN_LED_RED _PINNUM(1, 3)
#define PIN_LED_BLUE _PINNUM(0, 14)
#define PIN_VEXT_EN _PINNUM(0, 12)
const int pin_disp_cs = 30;
const int pin_disp_dc = 28;
const int pin_disp_reset = 2;
const int pin_disp_busy = 3;
const int pin_disp_en = -1;
const int pin_disp_sck = 31;
const int pin_disp_mosi = 29;
const int pin_disp_miso = -1;
const int pin_backlight = 43;
const int pin_btn_usr1 = _PINNUM(1, 10);
const int pin_btn_touch = _PINNUM(0, 11);
const int pin_reset = 25;
const int pin_cs = 24;
const int pin_sclk = 19;
const int pin_mosi = 22;
const int pin_miso = 23;
const int pin_busy = 17;
const int pin_dio = 20;
const int pin_tcxo_enable = 21;
const int pin_led_rx = PIN_LED_BLUE;
const int pin_led_tx = PIN_LED_RED;
#elif BOARD_MODEL == BOARD_HELTEC_T114
#define MODEM SX1262
#define HAS_EEPROM false
#define HAS_DISPLAY true
#define HAS_BLUETOOTH false
#define HAS_BLE true
#define HAS_CONSOLE false
#define HAS_PMU true
#define HAS_NP true
#define HAS_SD false
#define HAS_TCXO true
#define HAS_BUSY true
#define HAS_INPUT true
#define HAS_SLEEP true
#define DIO2_AS_RF_SWITCH true
#define CONFIG_UART_BUFFER_SIZE 6144
#define CONFIG_QUEUE_SIZE 6144
#define CONFIG_QUEUE_MAX_LENGTH 200
#define EEPROM_SIZE 296
#define EEPROM_OFFSET EEPROM_SIZE-EEPROM_RESERVED
#define BLE_MANUFACTURER "Heltec"
#define BLE_MODEL "T114"
#define PIN_T114_ADC_EN 6
#define PIN_VEXT_EN 21
// LED
#define LED_T114_GREEN 3
#define PIN_T114_LED 14
#define NP_M 1
const int pin_np = PIN_T114_LED;
// SPI
#define PIN_T114_MOSI 22
#define PIN_T114_MISO 23
#define PIN_T114_SCK 19
#define PIN_T114_SS 24
// SX1262
#define PIN_T114_RST 25
#define PIN_T114_DIO1 20
#define PIN_T114_BUSY 17
// TFT
#define DISPLAY_SCALE 2
#define PIN_T114_TFT_MOSI 9
#define PIN_T114_TFT_MISO 11 // not connected
#define PIN_T114_TFT_SCK 8
#define PIN_T114_TFT_SS 11
#define PIN_T114_TFT_DC 12
#define PIN_T114_TFT_RST 2
#define PIN_T114_TFT_EN 3
#define PIN_T114_TFT_BLGT 15
// pins for buttons on Heltec T114
const int pin_btn_usr1 = 42;
// pins for sx1262 on Heltec T114
const int pin_reset = PIN_T114_RST;
const int pin_cs = PIN_T114_SS;
const int pin_sclk = PIN_T114_SCK;
const int pin_mosi = PIN_T114_MOSI;
const int pin_miso = PIN_T114_MISO;
const int pin_busy = PIN_T114_BUSY;
const int pin_dio = PIN_T114_DIO1;
const int pin_led_rx = 35;
const int pin_led_tx = 35;
const int pin_tcxo_enable = -1;
// pins for ST7789 display on Heltec T114
const int DISPLAY_DC = PIN_T114_TFT_DC;
const int DISPLAY_CS = PIN_T114_TFT_SS;
const int DISPLAY_MISO = PIN_T114_TFT_MISO;
const int DISPLAY_MOSI = PIN_T114_TFT_MOSI;
const int DISPLAY_CLK = PIN_T114_TFT_SCK;
const int DISPLAY_BL_PIN = PIN_T114_TFT_BLGT;
const int DISPLAY_RST = PIN_T114_TFT_RST;
#else
#error An unsupported nRF board was selected. Cannot compile RNode firmware.
#endif
#endif
#ifndef DISPLAY_SCALE
#define DISPLAY_SCALE 1
#endif
#ifndef HAS_RF_SWITCH_RX_TX
const int pin_rxen = -1;
const int pin_txen = -1;
#endif
#ifndef HAS_BUSY
const int pin_busy = -1;
#endif
#ifndef LED_ON
#define LED_ON HIGH
#endif
#ifndef LED_OFF
#define LED_OFF LOW
#endif
#ifndef DIO2_AS_RF_SWITCH
#define DIO2_AS_RF_SWITCH false
#endif
// Default OCP value if not specified
// in board configuration
#ifndef OCP_TUNED
#define OCP_TUNED 0x18
#endif
#ifndef NP_M
#define NP_M 0.15
#endif
#endif

224
RNode_Firmware/Config.h Normal file
View file

@ -0,0 +1,224 @@
// Copyright (C) 2024, Mark Qvist
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
#include "ROM.h"
#include "Boards.h"
#ifndef CONFIG_H
#define CONFIG_H
#define MAJ_VERS 0x01
#define MIN_VERS 0x54
#define MODE_HOST 0x11
#define MODE_TNC 0x12
#define CABLE_STATE_DISCONNECTED 0x00
#define CABLE_STATE_CONNECTED 0x01
uint8_t cable_state = CABLE_STATE_DISCONNECTED;
#define BT_STATE_NA 0xff
#define BT_STATE_OFF 0x00
#define BT_STATE_ON 0x01
#define BT_STATE_PAIRING 0x02
#define BT_STATE_CONNECTED 0x03
uint8_t bt_state = BT_STATE_NA;
uint32_t bt_ssp_pin = 0;
bool bt_ready = false;
bool bt_enabled = false;
bool bt_allow_pairing = false;
#define M_FRQ_S 27388122
#define M_FRQ_R 27388061
bool console_active = false;
bool modem_installed = false;
#define MTU 508
#define SINGLE_MTU 255
#define HEADER_L 1
#define MIN_L 1
#define CMD_L 64
bool mw_radio_online = false;
#define eeprom_addr(a) (a+EEPROM_OFFSET)
#if (MODEM == SX1262 || MODEM == SX1280) && defined(NRF52840_XXAA)
SPIClass spiModem(NRF_SPIM2, pin_miso, pin_sclk, pin_mosi);
#endif
// MCU independent configuration parameters
const long serial_baudrate = 115200;
// SX1276 RSSI offset to get dBm value from
// packet RSSI register
const int rssi_offset = 157;
// Default LoRa settings
#define PHY_HEADER_LORA_SYMBOLS 20
#define PHY_CRC_LORA_BITS 16
#define LORA_PREAMBLE_SYMBOLS_MIN 18
#define LORA_PREAMBLE_TARGET_MS 24
#define LORA_PREAMBLE_FAST_DELTA 18
#define LORA_FAST_THRESHOLD_BPS 30E3
#define LORA_LIMIT_THRESHOLD_BPS 60E3
long lora_preamble_symbols = LORA_PREAMBLE_SYMBOLS_MIN;
long lora_preamble_time_ms = 0;
long lora_header_time_ms = 0;
float lora_symbol_time_ms = 0.0;
float lora_symbol_rate = 0.0;
float lora_us_per_byte = 0.0;
bool lora_low_datarate = false;
bool lora_limit_rate = false;
// CSMA Parameters
#define CSMA_SIFS_MS 0
#define CSMA_POST_TX_YIELD_SLOTS 3
#define CSMA_SLOT_MAX_MS 100
#define CSMA_SLOT_MIN_MS 24
#define CSMA_SLOT_MIN_FAST_DELTA 18
#define CSMA_SLOT_SYMBOLS 12
#define CSMA_CW_BANDS 4
#define CSMA_CW_MIN 0
#define CSMA_CW_PER_BAND_WINDOWS 15
#define CSMA_BAND_1_MAX_AIRTIME 7
#define CSMA_BAND_N_MIN_AIRTIME 85
#define CSMA_INFR_THRESHOLD_DB 12
bool interference_detected = false;
bool avoid_interference = true;
int csma_slot_ms = CSMA_SLOT_MIN_MS;
unsigned long difs_ms = CSMA_SIFS_MS + 2*csma_slot_ms;
unsigned long difs_wait_start = -1;
unsigned long cw_wait_start = -1;
unsigned long cw_wait_target = -1;
unsigned long cw_wait_passed = 0;
int csma_cw = -1;
uint8_t cw_band = 1;
uint8_t cw_min = 0;
uint8_t cw_max = CSMA_CW_PER_BAND_WINDOWS;
// LoRa settings
int lora_sf = 0;
int lora_cr = 5;
int lora_txp = 0xFF;
uint32_t lora_bw = 0;
uint32_t lora_freq = 0;
uint32_t lora_bitrate = 0;
// Operational variables
bool radio_locked = true;
bool radio_online = false;
bool community_fw = true;
bool hw_ready = false;
bool radio_error = false;
bool disp_ready = false;
bool pmu_ready = false;
bool promisc = false;
bool implicit = false;
bool memory_low = false;
uint8_t implicit_l = 0;
uint8_t op_mode = MODE_HOST;
uint8_t model = 0x00;
uint8_t hwrev = 0x00;
#define NOISE_FLOOR_SAMPLES 64
int noise_floor = -292;
int current_rssi = -292;
int last_rssi = -292;
uint8_t last_rssi_raw = 0x00;
uint8_t last_snr_raw = 0x80;
uint8_t seq = 0xFF;
uint16_t read_len = 0;
// Incoming packet buffer
uint8_t pbuf[MTU];
// KISS command buffer
uint8_t cmdbuf[CMD_L];
// LoRa transmit buffer
uint8_t tbuf[MTU];
uint32_t stat_rx = 0;
uint32_t stat_tx = 0;
#define STATUS_INTERVAL_MS 3
#if MCU_VARIANT == MCU_ESP32 || MCU_VARIANT == MCU_NRF52
#define DCD_SAMPLES 2500
#define UTIL_UPDATE_INTERVAL_MS 1000
#define UTIL_UPDATE_INTERVAL (UTIL_UPDATE_INTERVAL_MS/STATUS_INTERVAL_MS)
#define AIRTIME_LONGTERM 3600
#define AIRTIME_LONGTERM_MS (AIRTIME_LONGTERM*1000)
#define AIRTIME_BINLEN_MS (STATUS_INTERVAL_MS*DCD_SAMPLES)
#define AIRTIME_BINS ((AIRTIME_LONGTERM*1000)/AIRTIME_BINLEN_MS)
bool util_samples[DCD_SAMPLES];
uint16_t airtime_bins[AIRTIME_BINS];
float longterm_bins[AIRTIME_BINS];
int dcd_sample = 0;
float local_channel_util = 0.0;
float total_channel_util = 0.0;
float longterm_channel_util = 0.0;
float airtime = 0.0;
float longterm_airtime = 0.0;
#define current_airtime_bin(void) (millis()%AIRTIME_LONGTERM_MS)/AIRTIME_BINLEN_MS
#endif
float st_airtime_limit = 0.0;
float lt_airtime_limit = 0.0;
bool airtime_lock = false;
bool stat_signal_detected = false;
bool stat_signal_synced = false;
bool stat_rx_ongoing = false;
bool dcd = false;
bool dcd_led = false;
bool dcd_waiting = false;
long dcd_wait_until = 0;
uint16_t dcd_count = 0;
uint16_t dcd_threshold = 2;
uint32_t status_interval_ms = STATUS_INTERVAL_MS;
uint32_t last_status_update = 0;
uint32_t last_dcd = 0;
// Power management
#define BATTERY_STATE_UNKNOWN 0x00
#define BATTERY_STATE_DISCHARGING 0x01
#define BATTERY_STATE_CHARGING 0x02
#define BATTERY_STATE_CHARGED 0x03
bool battery_installed = false;
bool battery_indeterminate = false;
bool external_power = false;
bool battery_ready = false;
float battery_voltage = 0.0;
float battery_percent = 0.0;
uint8_t battery_state = 0x00;
uint8_t display_intensity = 0xFF;
uint8_t display_addr = 0xFF;
volatile bool display_updating = false;
bool display_blanking_enabled = false;
bool display_diagnostics = true;
bool device_init_done = false;
bool eeprom_ok = false;
bool firmware_update_mode = false;
bool serial_in_frame = false;
// Boot flags
#define START_FROM_BOOTLOADER 0x01
#define START_FROM_POWERON 0x02
#define START_FROM_BROWNOUT 0x03
#define START_FROM_JTAG 0x04
#endif

203
RNode_Firmware/Console.h Normal file
View file

@ -0,0 +1,203 @@
// Copyright (C) 2024, Mark Qvist
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
#include <FS.h>
#include <SPIFFS.h>
#include <WiFi.h>
#include <WebServer.h>
#include "SD.h"
#include "SPI.h"
#if HAS_SD
SPIClass *spi = NULL;
#endif
#if CONFIG_IDF_TARGET_ESP32
#include "esp32/rom/rtc.h"
#elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/rom/rtc.h"
#elif CONFIG_IDF_TARGET_ESP32C3
#include "esp32c3/rom/rtc.h"
#elif CONFIG_IDF_TARGET_ESP32S3
#include "esp32s3/rom/rtc.h"
#else
#error Target CONFIG_IDF_TARGET is not supported
#endif
WebServer server(80);
void console_dbg(String msg) {
Serial.print("[Webserver] ");
Serial.println(msg);
}
bool exists(String path){
bool yes = false;
File file = SPIFFS.open(path, "r");
if(!file.isDirectory()){
yes = true;
}
file.close();
return yes;
}
String console_get_content_type(String filename) {
if (server.hasArg("download")) {
return "application/octet-stream";
} else if (filename.endsWith(".htm")) {
return "text/html";
} else if (filename.endsWith(".html")) {
return "text/html";
} else if (filename.endsWith(".css")) {
return "text/css";
} else if (filename.endsWith(".js")) {
return "application/javascript";
} else if (filename.endsWith(".png")) {
return "image/png";
} else if (filename.endsWith(".gif")) {
return "image/gif";
} else if (filename.endsWith(".jpg")) {
return "image/jpeg";
} else if (filename.endsWith(".ico")) {
return "image/x-icon";
} else if (filename.endsWith(".xml")) {
return "text/xml";
} else if (filename.endsWith(".pdf")) {
return "application/x-pdf";
} else if (filename.endsWith(".zip")) {
return "application/x-zip";
} else if (filename.endsWith(".gz")) {
return "application/x-gzip";
} else if (filename.endsWith(".whl")) {
return "application/octet-stream";
}
return "text/plain";
}
bool console_serve_file(String path) {
console_dbg("Request for: "+path);
if (path.endsWith("/")) {
path += "index.html";
}
if (path == "/r/manual/index.html") {
path = "/m.html";
}
if (path == "/r/manual/Reticulum Manual.pdf") {
path = "/h.html";
}
String content_type = console_get_content_type(path);
String pathWithGz = path + ".gz";
if (exists(pathWithGz) || exists(path)) {
if (exists(pathWithGz)) {
path += ".gz";
}
File file = SPIFFS.open(path, "r");
console_dbg("Serving file to client");
server.streamFile(file, content_type);
file.close();
console_dbg("File serving done\n");
return true;
} else {
int spos = pathWithGz.lastIndexOf('/');
if (spos > 0) {
String remap_path = "/d";
remap_path.concat(pathWithGz.substring(spos));
Serial.println(remap_path);
if (exists(remap_path)) {
File file = SPIFFS.open(remap_path, "r");
console_dbg("Serving remapped file to client");
server.streamFile(file, content_type);
console_dbg("Closing file");
file.close();
console_dbg("File serving done\n");
return true;
}
}
}
console_dbg("Error: Could not open file for serving\n");
return false;
}
void console_register_pages() {
server.onNotFound([]() {
if (!console_serve_file(server.uri())) {
server.send(404, "text/plain", "Not Found");
}
});
}
void console_start() {
Serial.println("");
console_dbg("Starting Access Point...");
WiFi.softAP(bt_devname);
delay(150);
IPAddress ip(10, 0, 0, 1);
IPAddress nm(255, 255, 255, 0);
WiFi.softAPConfig(ip, ip, nm);
if(!SPIFFS.begin(true)){
console_dbg("Error: Could not mount SPIFFS");
return;
} else {
console_dbg("SPIFFS Ready");
}
#if HAS_SD
spi = new SPIClass(HSPI);
spi->begin(SD_CLK, SD_MISO, SD_MOSI, SD_CS);
if(!SD.begin(SD_CS, *spi)){
console_dbg("No SD card inserted");
} else {
uint8_t cardType = SD.cardType();
if(cardType == CARD_NONE){
console_dbg("No SD card type");
} else {
console_dbg("SD Card Type: ");
if(cardType == CARD_MMC){
console_dbg("MMC");
} else if(cardType == CARD_SD){
console_dbg("SDSC");
} else if(cardType == CARD_SDHC){
console_dbg("SDHC");
} else {
console_dbg("UNKNOWN");
}
uint64_t cardSize = SD.cardSize() / (1024 * 1024);
Serial.printf("SD Card Size: %lluMB\n", cardSize);
}
}
#endif
console_register_pages();
server.begin();
led_indicate_console();
}
void console_loop(){
server.handleClient();
// Internally, this yields the thread and allows
// other tasks to run.
delay(2);
}

267
RNode_Firmware/Device.h Normal file
View file

@ -0,0 +1,267 @@
// Copyright (C) 2024, Mark Qvist
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
#include <Ed25519.h>
#if MCU_VARIANT == MCU_ESP32
#include "mbedtls/md.h"
#include "esp_ota_ops.h"
#include "esp_flash_partitions.h"
#include "esp_partition.h"
#elif MCU_VARIANT == MCU_NRF52
#include "Adafruit_nRFCrypto.h"
// size of chunk to retrieve from flash sector
#define CHUNK_SIZE 128
#define END_SECTION_SIZE 256
#if defined(NRF52840_XXAA)
// https://learn.adafruit.com/introducing-the-adafruit-nrf52840-feather/hathach-memory-map
// each section follows along from one another, in this order
// this is always at the start of the memory map
#define APPLICATION_START 0x26000
#define USER_DATA_START 0xED000
#define IMG_SIZE_START 0xFF008
#endif
#endif
// Forward declaration from Utilities.h
void eeprom_update(int mapped_addr, uint8_t byte);
uint8_t eeprom_read(uint32_t addr);
void hard_reset(void);
#if !HAS_EEPROM && MCU_VARIANT == MCU_NRF52
void eeprom_flush();
#endif
const uint8_t dev_keys [] PROGMEM = {
0x0f, 0x15, 0x86, 0x74, 0xa0, 0x7d, 0xf2, 0xde, 0x32, 0x11, 0x29, 0xc1, 0x0d, 0xda, 0xcc, 0xc3,
0xe1, 0x9b, 0xac, 0xf2, 0x27, 0x06, 0xee, 0x89, 0x1f, 0x7a, 0xfc, 0xc3, 0x6a, 0xf5, 0x38, 0x08
};
#define DEV_SIG_LEN 64
uint8_t dev_sig[DEV_SIG_LEN];
#define DEV_KEY_LEN 32
uint8_t dev_k_prv[DEV_KEY_LEN];
uint8_t dev_k_pub[DEV_KEY_LEN];
#define DEV_HASH_LEN 32
uint8_t dev_hash[DEV_HASH_LEN];
uint8_t dev_partition_table_hash[DEV_HASH_LEN];
uint8_t dev_bootloader_hash[DEV_HASH_LEN];
uint8_t dev_firmware_hash[DEV_HASH_LEN];
uint8_t dev_firmware_hash_target[DEV_HASH_LEN];
#define EEPROM_SIG_LEN 128
uint8_t dev_eeprom_signature[EEPROM_SIG_LEN];
bool dev_signature_validated = false;
bool fw_signature_validated = true;
#define DEV_SIG_OFFSET EEPROM_SIZE-EEPROM_RESERVED-DEV_SIG_LEN
#define dev_sig_addr(a) (a+DEV_SIG_OFFSET)
#define DEV_FWHASH_OFFSET EEPROM_SIZE-EEPROM_RESERVED-DEV_SIG_LEN-DEV_HASH_LEN
#define dev_fwhash_addr(a) (a+DEV_FWHASH_OFFSET)
bool device_signatures_ok() {
return dev_signature_validated && fw_signature_validated;
}
void device_validate_signature() {
int n_keys = sizeof(dev_keys)/DEV_KEY_LEN;
bool valid_signature_found = false;
for (int i = 0; i < n_keys; i++) {
memcpy(dev_k_pub, dev_keys+DEV_KEY_LEN*i, DEV_KEY_LEN);
if (Ed25519::verify(dev_sig, dev_k_pub, dev_hash, DEV_HASH_LEN)) {
valid_signature_found = true;
}
}
if (valid_signature_found) {
dev_signature_validated = true;
} else {
dev_signature_validated = false;
}
}
void device_save_signature() {
device_validate_signature();
if (dev_signature_validated) {
for (uint8_t i = 0; i < DEV_SIG_LEN; i++) {
eeprom_update(dev_sig_addr(i), dev_sig[i]);
}
}
}
void device_load_signature() {
for (uint8_t i = 0; i < DEV_SIG_LEN; i++) {
#if HAS_EEPROM
dev_sig[i] = EEPROM.read(dev_sig_addr(i));
#elif MCU_VARIANT == MCU_NRF52
dev_sig[i] = eeprom_read(dev_sig_addr(i));
#endif
}
}
void device_load_firmware_hash() {
for (uint8_t i = 0; i < DEV_HASH_LEN; i++) {
#if HAS_EEPROM
dev_firmware_hash_target[i] = EEPROM.read(dev_fwhash_addr(i));
#elif MCU_VARIANT == MCU_NRF52
dev_firmware_hash_target[i] = eeprom_read(dev_fwhash_addr(i));
#endif
}
}
void device_save_firmware_hash() {
for (uint8_t i = 0; i < DEV_HASH_LEN; i++) {
eeprom_update(dev_fwhash_addr(i), dev_firmware_hash_target[i]);
}
#if !HAS_EEPROM && MCU_VARIANT == MCU_NRF52
eeprom_flush();
#endif
if (!fw_signature_validated) hard_reset();
}
#if MCU_VARIANT == MCU_NRF52
uint32_t retrieve_application_size() {
uint8_t bytes[4];
memcpy(bytes, (const void*)IMG_SIZE_START, 4);
uint32_t fw_len = bytes[0] | bytes[1] << 8 | bytes[2] << 16 | bytes[3] << 24;
return fw_len;
}
void calculate_region_hash(unsigned long long start, unsigned long long end, uint8_t* return_hash) {
// this function calculates the hash digest of a region of memory,
// currently it is only designed to work for the application region
uint8_t chunk[CHUNK_SIZE] = {0};
// to store potential last chunk of program
uint8_t chunk_next[CHUNK_SIZE] = {0};
nRFCrypto_Hash hash;
hash.begin(CRYS_HASH_SHA256_mode);
uint8_t size;
while (start < end ) {
const void* src = (const void*)start;
if (start + CHUNK_SIZE >= end) {
size = end - start;
}
else {
size = CHUNK_SIZE;
}
memcpy(chunk, src, CHUNK_SIZE);
hash.update(chunk, size);
start += CHUNK_SIZE;
}
hash.end(return_hash);
}
#endif
void device_validate_partitions() {
device_load_firmware_hash();
#if MCU_VARIANT == MCU_ESP32
esp_partition_t partition;
partition.address = ESP_PARTITION_TABLE_OFFSET;
partition.size = ESP_PARTITION_TABLE_MAX_LEN;
partition.type = ESP_PARTITION_TYPE_DATA;
esp_partition_get_sha256(&partition, dev_partition_table_hash);
partition.address = ESP_BOOTLOADER_OFFSET;
partition.size = ESP_PARTITION_TABLE_OFFSET;
partition.type = ESP_PARTITION_TYPE_APP;
esp_partition_get_sha256(&partition, dev_bootloader_hash);
esp_partition_get_sha256(esp_ota_get_running_partition(), dev_firmware_hash);
#elif MCU_VARIANT == MCU_NRF52
// todo, add bootloader, partition table, or softdevice?
calculate_region_hash(APPLICATION_START, APPLICATION_START+retrieve_application_size(), dev_firmware_hash);
#endif
#if VALIDATE_FIRMWARE
for (uint8_t i = 0; i < DEV_HASH_LEN; i++) {
if (dev_firmware_hash_target[i] != dev_firmware_hash[i]) {
fw_signature_validated = false;
break;
}
}
#endif
}
bool device_firmware_ok() {
return fw_signature_validated;
}
#if MCU_VARIANT == MCU_ESP32 || MCU_VARIANT == MCU_NRF52
bool device_init() {
if (bt_ready) {
#if MCU_VARIANT == MCU_ESP32
for (uint8_t i=0; i<EEPROM_SIG_LEN; i++){dev_eeprom_signature[i]=EEPROM.read(eeprom_addr(ADDR_SIGNATURE+i));}
mbedtls_md_context_t ctx;
mbedtls_md_type_t md_type = MBEDTLS_MD_SHA256;
mbedtls_md_init(&ctx);
mbedtls_md_setup(&ctx, mbedtls_md_info_from_type(md_type), 0);
mbedtls_md_starts(&ctx);
#if HAS_BLUETOOTH == true || HAS_BLE == true
mbedtls_md_update(&ctx, dev_bt_mac, BT_DEV_ADDR_LEN);
#else
// TODO: Get from BLE stack instead
// mbedtls_md_update(&ctx, dev_bt_mac, BT_DEV_ADDR_LEN);
#endif
mbedtls_md_update(&ctx, dev_eeprom_signature, EEPROM_SIG_LEN);
mbedtls_md_finish(&ctx, dev_hash);
mbedtls_md_free(&ctx);
#elif MCU_VARIANT == MCU_NRF52
for (uint8_t i=0; i<EEPROM_SIG_LEN; i++){dev_eeprom_signature[i]=eeprom_read(eeprom_addr(ADDR_SIGNATURE+i));}
nRFCrypto.begin();
nRFCrypto_Hash hash;
hash.begin(CRYS_HASH_SHA256_mode);
#if HAS_BLUETOOTH == true || HAS_BLE == true
hash.update(dev_bt_mac, BT_DEV_ADDR_LEN);
#else
// TODO: Get from BLE stack instead
// hash.update(dev_bt_mac, BT_DEV_ADDR_LEN);
#endif
hash.update(dev_eeprom_signature, EEPROM_SIG_LEN);
hash.end(dev_hash);
#endif
device_load_signature();
device_validate_signature();
device_validate_partitions();
#if MCU_VARIANT == MCU_NRF52
nRFCrypto.end();
#endif
device_init_done = true;
return device_init_done && fw_signature_validated;
} else {
return false;
}
}
#endif

1205
RNode_Firmware/Display.h Normal file

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,131 @@
#pragma once
#include <Adafruit_GFX.h>
// Org_v01 by Orgdot (www.orgdot.com/aliasfonts). A tiny,
// stylized font with all characters within a 6 pixel height.
const uint8_t Org_01Bitmaps[] PROGMEM = {
0xE8, 0xA0, 0x57, 0xD5, 0xF5, 0x00, 0xFD, 0x3E, 0x5F, 0x80, 0x88, 0x88,
0x88, 0x80, 0xF4, 0xBF, 0x2E, 0x80, 0x80, 0x6A, 0x40, 0x95, 0x80, 0xAA,
0x80, 0x5D, 0x00, 0xC0, 0xF0, 0x80, 0x08, 0x88, 0x88, 0x00, 0xFC, 0x63,
0x1F, 0x80, 0xF8, 0xF8, 0x7F, 0x0F, 0x80, 0xF8, 0x7E, 0x1F, 0x80, 0x8C,
0x7E, 0x10, 0x80, 0xFC, 0x3E, 0x1F, 0x80, 0xFC, 0x3F, 0x1F, 0x80, 0xF8,
0x42, 0x10, 0x80, 0xFC, 0x7F, 0x1F, 0x80, 0xFC, 0x7E, 0x1F, 0x80, 0x90,
0xB0, 0x2A, 0x22, 0xF0, 0xF0, 0x88, 0xA8, 0xF8, 0x4E, 0x02, 0x00, 0xFD,
0x6F, 0x0F, 0x80, 0xFC, 0x7F, 0x18, 0x80, 0xF4, 0x7D, 0x1F, 0x00, 0xFC,
0x21, 0x0F, 0x80, 0xF4, 0x63, 0x1F, 0x00, 0xFC, 0x3F, 0x0F, 0x80, 0xFC,
0x3F, 0x08, 0x00, 0xFC, 0x2F, 0x1F, 0x80, 0x8C, 0x7F, 0x18, 0x80, 0xF9,
0x08, 0x4F, 0x80, 0x78, 0x85, 0x2F, 0x80, 0x8D, 0xB1, 0x68, 0x80, 0x84,
0x21, 0x0F, 0x80, 0xFD, 0x6B, 0x5A, 0x80, 0xFC, 0x63, 0x18, 0x80, 0xFC,
0x63, 0x1F, 0x80, 0xFC, 0x7F, 0x08, 0x00, 0xFC, 0x63, 0x3F, 0x80, 0xFC,
0x7F, 0x29, 0x00, 0xFC, 0x3E, 0x1F, 0x80, 0xF9, 0x08, 0x42, 0x00, 0x8C,
0x63, 0x1F, 0x80, 0x8C, 0x62, 0xA2, 0x00, 0xAD, 0x6B, 0x5F, 0x80, 0x8A,
0x88, 0xA8, 0x80, 0x8C, 0x54, 0x42, 0x00, 0xF8, 0x7F, 0x0F, 0x80, 0xEA,
0xC0, 0x82, 0x08, 0x20, 0x80, 0xD5, 0xC0, 0x54, 0xF8, 0x80, 0xF1, 0xFF,
0x8F, 0x99, 0xF0, 0xF8, 0x8F, 0x1F, 0x99, 0xF0, 0xFF, 0x8F, 0x6B, 0xA4,
0xF9, 0x9F, 0x10, 0x8F, 0x99, 0x90, 0xF0, 0x55, 0xC0, 0x8A, 0xF9, 0x90,
0xF8, 0xFD, 0x63, 0x10, 0xF9, 0x99, 0xF9, 0x9F, 0xF9, 0x9F, 0x80, 0xF9,
0x9F, 0x20, 0xF8, 0x88, 0x47, 0x1F, 0x27, 0xC8, 0x42, 0x00, 0x99, 0x9F,
0x99, 0x97, 0x8C, 0x6B, 0xF0, 0x96, 0x69, 0x99, 0x9F, 0x10, 0x2E, 0x8F,
0x2B, 0x22, 0xF8, 0x89, 0xA8, 0x0F, 0xE0};
const GFXglyph Org_01Glyphs[] PROGMEM = {{0, 0, 0, 6, 0, 1}, // 0x20 ' '
{0, 1, 5, 2, 0, -4}, // 0x21 '!'
{1, 3, 1, 4, 0, -4}, // 0x22 '"'
{2, 5, 5, 6, 0, -4}, // 0x23 '#'
{6, 5, 5, 6, 0, -4}, // 0x24 '$'
{10, 5, 5, 6, 0, -4}, // 0x25 '%'
{14, 5, 5, 6, 0, -4}, // 0x26 '&'
{18, 1, 1, 2, 0, -4}, // 0x27 '''
{19, 2, 5, 3, 0, -4}, // 0x28 '('
{21, 2, 5, 3, 0, -4}, // 0x29 ')'
{23, 3, 3, 4, 0, -3}, // 0x2A '*'
{25, 3, 3, 4, 0, -3}, // 0x2B '+'
{27, 1, 2, 2, 0, 0}, // 0x2C ','
{28, 4, 1, 5, 0, -2}, // 0x2D '-'
{29, 1, 1, 2, 0, 0}, // 0x2E '.'
{30, 5, 5, 6, 0, -4}, // 0x2F '/'
{34, 5, 5, 6, 0, -4}, // 0x30 '0'
{38, 1, 5, 2, 0, -4}, // 0x31 '1'
{39, 5, 5, 6, 0, -4}, // 0x32 '2'
{43, 5, 5, 6, 0, -4}, // 0x33 '3'
{47, 5, 5, 6, 0, -4}, // 0x34 '4'
{51, 5, 5, 6, 0, -4}, // 0x35 '5'
{55, 5, 5, 6, 0, -4}, // 0x36 '6'
{59, 5, 5, 6, 0, -4}, // 0x37 '7'
{63, 5, 5, 6, 0, -4}, // 0x38 '8'
{67, 5, 5, 6, 0, -4}, // 0x39 '9'
{71, 1, 4, 2, 0, -3}, // 0x3A ':'
{72, 1, 4, 2, 0, -3}, // 0x3B ';'
{73, 3, 5, 4, 0, -4}, // 0x3C '<'
{75, 4, 3, 5, 0, -3}, // 0x3D '='
{77, 3, 5, 4, 0, -4}, // 0x3E '>'
{79, 5, 5, 6, 0, -4}, // 0x3F '?'
{83, 5, 5, 6, 0, -4}, // 0x40 '@'
{87, 5, 5, 6, 0, -4}, // 0x41 'A'
{91, 5, 5, 6, 0, -4}, // 0x42 'B'
{95, 5, 5, 6, 0, -4}, // 0x43 'C'
{99, 5, 5, 6, 0, -4}, // 0x44 'D'
{103, 5, 5, 6, 0, -4}, // 0x45 'E'
{107, 5, 5, 6, 0, -4}, // 0x46 'F'
{111, 5, 5, 6, 0, -4}, // 0x47 'G'
{115, 5, 5, 6, 0, -4}, // 0x48 'H'
{119, 5, 5, 6, 0, -4}, // 0x49 'I'
{123, 5, 5, 6, 0, -4}, // 0x4A 'J'
{127, 5, 5, 6, 0, -4}, // 0x4B 'K'
{131, 5, 5, 6, 0, -4}, // 0x4C 'L'
{135, 5, 5, 6, 0, -4}, // 0x4D 'M'
{139, 5, 5, 6, 0, -4}, // 0x4E 'N'
{143, 5, 5, 6, 0, -4}, // 0x4F 'O'
{147, 5, 5, 6, 0, -4}, // 0x50 'P'
{151, 5, 5, 6, 0, -4}, // 0x51 'Q'
{155, 5, 5, 6, 0, -4}, // 0x52 'R'
{159, 5, 5, 6, 0, -4}, // 0x53 'S'
{163, 5, 5, 6, 0, -4}, // 0x54 'T'
{167, 5, 5, 6, 0, -4}, // 0x55 'U'
{171, 5, 5, 6, 0, -4}, // 0x56 'V'
{175, 5, 5, 6, 0, -4}, // 0x57 'W'
{179, 5, 5, 6, 0, -4}, // 0x58 'X'
{183, 5, 5, 6, 0, -4}, // 0x59 'Y'
{187, 5, 5, 6, 0, -4}, // 0x5A 'Z'
{191, 2, 5, 3, 0, -4}, // 0x5B '['
{193, 5, 5, 6, 0, -4}, // 0x5C '\'
{197, 2, 5, 3, 0, -4}, // 0x5D ']'
{199, 3, 2, 4, 0, -4}, // 0x5E '^'
{200, 5, 1, 6, 0, 1}, // 0x5F '_'
{201, 1, 1, 2, 0, -4}, // 0x60 '`'
{202, 4, 4, 5, 0, -3}, // 0x61 'a'
{204, 4, 5, 5, 0, -4}, // 0x62 'b'
{207, 4, 4, 5, 0, -3}, // 0x63 'c'
{209, 4, 5, 5, 0, -4}, // 0x64 'd'
{212, 4, 4, 5, 0, -3}, // 0x65 'e'
{214, 3, 5, 4, 0, -4}, // 0x66 'f'
{216, 4, 5, 5, 0, -3}, // 0x67 'g'
{219, 4, 5, 5, 0, -4}, // 0x68 'h'
{222, 1, 4, 2, 0, -3}, // 0x69 'i'
{223, 2, 5, 3, 0, -3}, // 0x6A 'j'
{225, 4, 5, 5, 0, -4}, // 0x6B 'k'
{228, 1, 5, 2, 0, -4}, // 0x6C 'l'
{229, 5, 4, 6, 0, -3}, // 0x6D 'm'
{232, 4, 4, 5, 0, -3}, // 0x6E 'n'
{234, 4, 4, 5, 0, -3}, // 0x6F 'o'
{236, 4, 5, 5, 0, -3}, // 0x70 'p'
{239, 4, 5, 5, 0, -3}, // 0x71 'q'
{242, 4, 4, 5, 0, -3}, // 0x72 'r'
{244, 4, 4, 5, 0, -3}, // 0x73 's'
{246, 5, 5, 6, 0, -4}, // 0x74 't'
{250, 4, 4, 5, 0, -3}, // 0x75 'u'
{252, 4, 4, 5, 0, -3}, // 0x76 'v'
{254, 5, 4, 6, 0, -3}, // 0x77 'w'
{257, 4, 4, 5, 0, -3}, // 0x78 'x'
{259, 4, 5, 5, 0, -3}, // 0x79 'y'
{262, 4, 4, 5, 0, -3}, // 0x7A 'z'
{264, 3, 5, 4, 0, -4}, // 0x7B '{'
{266, 1, 5, 2, 0, -4}, // 0x7C '|'
{267, 3, 5, 4, 0, -4}, // 0x7D '}'
{269, 5, 3, 6, 0, -3}}; // 0x7E '~'
const GFXfont Org_01 PROGMEM = {(uint8_t *)Org_01Bitmaps,
(GFXglyph *)Org_01Glyphs, 0x20, 0x7E, 7};
// Approx. 943 bytes

View file

@ -0,0 +1,123 @@
#pragma once
#include <Adafruit_GFX.h>
// Picopixel by Sebastian Weber. A tiny font
// with all characters within a 6 pixel height.
const uint8_t PicopixelBitmaps[] PROGMEM = {
0xE8, 0xB4, 0x57, 0xD5, 0xF5, 0x00, 0x4E, 0x3E, 0x80, 0xA5, 0x4A, 0x4A,
0x5A, 0x50, 0xC0, 0x6A, 0x40, 0x95, 0x80, 0xAA, 0x80, 0x5D, 0x00, 0x60,
0xE0, 0x80, 0x25, 0x48, 0x56, 0xD4, 0x75, 0x40, 0xC5, 0x4E, 0xC5, 0x1C,
0x97, 0x92, 0xF3, 0x1C, 0x53, 0x54, 0xE5, 0x48, 0x55, 0x54, 0x55, 0x94,
0xA0, 0x46, 0x64, 0xE3, 0x80, 0x98, 0xC5, 0x04, 0x56, 0xC6, 0x57, 0xDA,
0xD7, 0x5C, 0x72, 0x46, 0xD6, 0xDC, 0xF3, 0xCE, 0xF3, 0x48, 0x72, 0xD4,
0xB7, 0xDA, 0xF8, 0x24, 0xD4, 0xBB, 0x5A, 0x92, 0x4E, 0x8E, 0xEB, 0x58,
0x80, 0x9D, 0xB9, 0x90, 0x56, 0xD4, 0xD7, 0x48, 0x56, 0xD4, 0x40, 0xD7,
0x5A, 0x71, 0x1C, 0xE9, 0x24, 0xB6, 0xD4, 0xB6, 0xA4, 0x8C, 0x6B, 0x55,
0x00, 0xB5, 0x5A, 0xB5, 0x24, 0xE5, 0x4E, 0xEA, 0xC0, 0x91, 0x12, 0xD5,
0xC0, 0x54, 0xF0, 0x90, 0xC7, 0xF0, 0x93, 0x5E, 0x71, 0x80, 0x25, 0xDE,
0x5E, 0x30, 0x6E, 0x80, 0x77, 0x9C, 0x93, 0x5A, 0xB8, 0x45, 0x60, 0x92,
0xEA, 0xAA, 0x40, 0xD5, 0x6A, 0xD6, 0x80, 0x55, 0x00, 0xD7, 0x40, 0x75,
0x90, 0xE8, 0x71, 0xE0, 0xBA, 0x40, 0xB5, 0x80, 0xB5, 0x00, 0x8D, 0x54,
0xAA, 0x80, 0xAC, 0xE0, 0xE5, 0x70, 0x6A, 0x26, 0xFC, 0xC8, 0xAC, 0x5A};
const GFXglyph PicopixelGlyphs[] PROGMEM = {{0, 0, 0, 2, 0, 1}, // 0x20 ' '
{0, 1, 5, 2, 0, -4}, // 0x21 '!'
{1, 3, 2, 4, 0, -4}, // 0x22 '"'
{2, 5, 5, 6, 0, -4}, // 0x23 '#'
{6, 3, 6, 4, 0, -4}, // 0x24 '$'
{9, 3, 5, 4, 0, -4}, // 0x25 '%'
{11, 4, 5, 5, 0, -4}, // 0x26 '&'
{14, 1, 2, 2, 0, -4}, // 0x27 '''
{15, 2, 5, 3, 0, -4}, // 0x28 '('
{17, 2, 5, 3, 0, -4}, // 0x29 ')'
{19, 3, 3, 4, 0, -3}, // 0x2A '*'
{21, 3, 3, 4, 0, -3}, // 0x2B '+'
{23, 2, 2, 3, 0, 0}, // 0x2C ','
{24, 3, 1, 4, 0, -2}, // 0x2D '-'
{25, 1, 1, 2, 0, 0}, // 0x2E '.'
{26, 3, 5, 4, 0, -4}, // 0x2F '/'
{28, 3, 5, 4, 0, -4}, // 0x30 '0'
{30, 2, 5, 3, 0, -4}, // 0x31 '1'
{32, 3, 5, 4, 0, -4}, // 0x32 '2'
{34, 3, 5, 4, 0, -4}, // 0x33 '3'
{36, 3, 5, 4, 0, -4}, // 0x34 '4'
{38, 3, 5, 4, 0, -4}, // 0x35 '5'
{40, 3, 5, 4, 0, -4}, // 0x36 '6'
{42, 3, 5, 4, 0, -4}, // 0x37 '7'
{44, 3, 5, 4, 0, -4}, // 0x38 '8'
{46, 3, 5, 4, 0, -4}, // 0x39 '9'
{48, 1, 3, 2, 0, -3}, // 0x3A ':'
{49, 2, 4, 3, 0, -3}, // 0x3B ';'
{50, 2, 3, 3, 0, -3}, // 0x3C '<'
{51, 3, 3, 4, 0, -3}, // 0x3D '='
{53, 2, 3, 3, 0, -3}, // 0x3E '>'
{54, 3, 5, 4, 0, -4}, // 0x3F '?'
{56, 3, 5, 4, 0, -4}, // 0x40 '@'
{58, 3, 5, 4, 0, -4}, // 0x41 'A'
{60, 3, 5, 4, 0, -4}, // 0x42 'B'
{62, 3, 5, 4, 0, -4}, // 0x43 'C'
{64, 3, 5, 4, 0, -4}, // 0x44 'D'
{66, 3, 5, 4, 0, -4}, // 0x45 'E'
{68, 3, 5, 4, 0, -4}, // 0x46 'F'
{70, 3, 5, 4, 0, -4}, // 0x47 'G'
{72, 3, 5, 4, 0, -4}, // 0x48 'H'
{74, 1, 5, 2, 0, -4}, // 0x49 'I'
{75, 3, 5, 4, 0, -4}, // 0x4A 'J'
{77, 3, 5, 4, 0, -4}, // 0x4B 'K'
{79, 3, 5, 4, 0, -4}, // 0x4C 'L'
{81, 5, 5, 6, 0, -4}, // 0x4D 'M'
{85, 4, 5, 5, 0, -4}, // 0x4E 'N'
{88, 3, 5, 4, 0, -4}, // 0x4F 'O'
{90, 3, 5, 4, 0, -4}, // 0x50 'P'
{92, 3, 6, 4, 0, -4}, // 0x51 'Q'
{95, 3, 5, 4, 0, -4}, // 0x52 'R'
{97, 3, 5, 4, 0, -4}, // 0x53 'S'
{99, 3, 5, 4, 0, -4}, // 0x54 'T'
{101, 3, 5, 4, 0, -4}, // 0x55 'U'
{103, 3, 5, 4, 0, -4}, // 0x56 'V'
{105, 5, 5, 6, 0, -4}, // 0x57 'W'
{109, 3, 5, 4, 0, -4}, // 0x58 'X'
{111, 3, 5, 4, 0, -4}, // 0x59 'Y'
{113, 3, 5, 4, 0, -4}, // 0x5A 'Z'
{115, 2, 5, 3, 0, -4}, // 0x5B '['
{117, 3, 5, 4, 0, -4}, // 0x5C '\'
{119, 2, 5, 3, 0, -4}, // 0x5D ']'
{121, 3, 2, 4, 0, -4}, // 0x5E '^'
{122, 4, 1, 4, 0, 1}, // 0x5F '_'
{123, 2, 2, 3, 0, -4}, // 0x60 '`'
{124, 3, 4, 4, 0, -3}, // 0x61 'a'
{126, 3, 5, 4, 0, -4}, // 0x62 'b'
{128, 3, 3, 4, 0, -2}, // 0x63 'c'
{130, 3, 5, 4, 0, -4}, // 0x64 'd'
{132, 3, 4, 4, 0, -3}, // 0x65 'e'
{134, 2, 5, 3, 0, -4}, // 0x66 'f'
{136, 3, 5, 4, 0, -3}, // 0x67 'g'
{138, 3, 5, 4, 0, -4}, // 0x68 'h'
{140, 1, 5, 2, 0, -4}, // 0x69 'i'
{141, 2, 6, 3, 0, -4}, // 0x6A 'j'
{143, 3, 5, 4, 0, -4}, // 0x6B 'k'
{145, 2, 5, 3, 0, -4}, // 0x6C 'l'
{147, 5, 3, 6, 0, -2}, // 0x6D 'm'
{149, 3, 3, 4, 0, -2}, // 0x6E 'n'
{151, 3, 3, 4, 0, -2}, // 0x6F 'o'
{153, 3, 4, 4, 0, -2}, // 0x70 'p'
{155, 3, 4, 4, 0, -2}, // 0x71 'q'
{157, 2, 3, 3, 0, -2}, // 0x72 'r'
{158, 3, 4, 4, 0, -3}, // 0x73 's'
{160, 2, 5, 3, 0, -4}, // 0x74 't'
{162, 3, 3, 4, 0, -2}, // 0x75 'u'
{164, 3, 3, 4, 0, -2}, // 0x76 'v'
{166, 5, 3, 6, 0, -2}, // 0x77 'w'
{168, 3, 3, 4, 0, -2}, // 0x78 'x'
{170, 3, 4, 4, 0, -2}, // 0x79 'y'
{172, 3, 4, 4, 0, -3}, // 0x7A 'z'
{174, 3, 5, 4, 0, -4}, // 0x7B '{'
{176, 1, 6, 2, 0, -4}, // 0x7C '|'
{177, 3, 5, 4, 0, -4}, // 0x7D '}'
{179, 4, 2, 5, 0, -3}}; // 0x7E '~'
const GFXfont Picopixel PROGMEM = {(uint8_t *)PicopixelBitmaps,
(GFXglyph *)PicopixelGlyphs, 0x20, 0x7E, 7};
// Approx. 852 bytes

117
RNode_Firmware/Framing.h Normal file
View file

@ -0,0 +1,117 @@
// Copyright (C) 2024, Mark Qvist
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
#ifndef FRAMING_H
#define FRAMING_H
#define FEND 0xC0
#define FESC 0xDB
#define TFEND 0xDC
#define TFESC 0xDD
#define CMD_UNKNOWN 0xFE
#define CMD_DATA 0x00
#define CMD_FREQUENCY 0x01
#define CMD_BANDWIDTH 0x02
#define CMD_TXPOWER 0x03
#define CMD_SF 0x04
#define CMD_CR 0x05
#define CMD_RADIO_STATE 0x06
#define CMD_RADIO_LOCK 0x07
#define CMD_DETECT 0x08
#define CMD_IMPLICIT 0x09
#define CMD_LEAVE 0x0A
#define CMD_ST_ALOCK 0x0B
#define CMD_LT_ALOCK 0x0C
#define CMD_PROMISC 0x0E
#define CMD_READY 0x0F
#define CMD_STAT_RX 0x21
#define CMD_STAT_TX 0x22
#define CMD_STAT_RSSI 0x23
#define CMD_STAT_SNR 0x24
#define CMD_STAT_CHTM 0x25
#define CMD_STAT_PHYPRM 0x26
#define CMD_STAT_BAT 0x27
#define CMD_STAT_CSMA 0x28
#define CMD_STAT_TEMP 0x29
#define CMD_BLINK 0x30
#define CMD_RANDOM 0x40
#define CMD_FB_EXT 0x41
#define CMD_FB_READ 0x42
#define CMD_FB_WRITE 0x43
#define CMD_FB_READL 0x44
#define CMD_DISP_READ 0x66
#define CMD_DISP_INT 0x45
#define CMD_DISP_ADDR 0x63
#define CMD_DISP_BLNK 0x64
#define CMD_DISP_ROT 0x67
#define CMD_DISP_RCND 0x68
#define CMD_NP_INT 0x65
#define CMD_BT_CTRL 0x46
#define CMD_BT_UNPAIR 0x70
#define CMD_BT_PIN 0x62
#define CMD_DIS_IA 0x69
#define CMD_BOARD 0x47
#define CMD_PLATFORM 0x48
#define CMD_MCU 0x49
#define CMD_FW_VERSION 0x50
#define CMD_ROM_READ 0x51
#define CMD_ROM_WRITE 0x52
#define CMD_CONF_SAVE 0x53
#define CMD_CONF_DELETE 0x54
#define CMD_DEV_HASH 0x56
#define CMD_DEV_SIG 0x57
#define CMD_FW_HASH 0x58
#define CMD_HASHES 0x60
#define CMD_FW_UPD 0x61
#define CMD_UNLOCK_ROM 0x59
#define ROM_UNLOCK_BYTE 0xF8
#define CMD_RESET 0x55
#define CMD_RESET_BYTE 0xF8
#define CMD_LOG 0x80
#define CMD_TIME 0x81
#define CMD_MUX_CHAIN 0x82
#define CMD_MUX_DSCVR 0x83
#define DETECT_REQ 0x73
#define DETECT_RESP 0x46
#define RADIO_STATE_OFF 0x00
#define RADIO_STATE_ON 0x01
#define NIBBLE_SEQ 0xF0
#define NIBBLE_FLAGS 0x0F
#define FLAG_SPLIT 0x01
#define SEQ_UNSET 0xFF
#define CMD_ERROR 0x90
#define ERROR_INITRADIO 0x01
#define ERROR_TXFAILED 0x02
#define ERROR_EEPROM_LOCKED 0x03
#define ERROR_QUEUE_FULL 0x04
#define ERROR_MEMORY_LOW 0x05
#define ERROR_MODEM_TIMEOUT 0x06
// Serial framing variables
size_t frame_len;
bool IN_FRAME = false;
bool ESCAPE = false;
uint8_t command = CMD_UNKNOWN;
#endif

434
RNode_Firmware/Graphics.h Normal file
View file

@ -0,0 +1,434 @@
// Copyright (C) 2024, Mark Qvist
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
const unsigned char bm_cable [] PROGMEM = {
0x00, 0x00, 0x00, 0x1c, 0x00, 0x38, 0x07, 0xfc, 0x08, 0x38, 0x10, 0x1c, 0x10, 0x00, 0x08, 0x00,
0x07, 0xc0, 0x00, 0x20, 0x00, 0x10, 0x00, 0x10, 0x00, 0x20, 0x07, 0xc0, 0x08, 0x00, 0x10, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x00, 0x04, 0x80, 0x04, 0x43, 0x08, 0x46,
0xf1, 0x8f, 0x02, 0x16, 0x02, 0x23, 0x01, 0x20, 0x00, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
const unsigned char bm_rf [] PROGMEM = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x4e, 0xc4,
0x4a, 0xaa, 0x4a, 0xce, 0x6e, 0xaa, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x07, 0xe0, 0x08, 0x10, 0x13, 0xc8, 0x04, 0x20, 0x01, 0x80, 0x00, 0x00, 0x4e, 0xc4,
0x4a, 0xaa, 0x4a, 0xce, 0x6e, 0xaa, 0x00, 0x00, 0x01, 0x80, 0x04, 0x20, 0x03, 0xc0, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x71, 0x4e,
0x31, 0x48, 0x61, 0xca, 0x74, 0x4e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x07, 0xe0, 0x08, 0x10, 0x13, 0xc8, 0x04, 0x20, 0x01, 0x80, 0x00, 0x00, 0x71, 0x4e,
0x31, 0x48, 0x61, 0xca, 0x74, 0x4e, 0x00, 0x00, 0x01, 0x80, 0x04, 0x20, 0x03, 0xc0, 0x00, 0x00
};
const unsigned char bm_bt [] PROGMEM = {
0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x11, 0x40, 0x00, 0x00, 0x05, 0x10, 0x00, 0x00, 0x01, 0x40,
0x00, 0x00, 0x01, 0x40, 0x00, 0x00, 0x05, 0x10, 0x00, 0x00, 0x11, 0x40, 0x00, 0x00, 0x01, 0x00,
0x00, 0x00, 0x01, 0x00, 0x01, 0x80, 0x01, 0x40, 0x09, 0x20, 0x05, 0x10, 0x03, 0x20, 0x01, 0x40,
0x01, 0x80, 0x01, 0x40, 0x03, 0x20, 0x05, 0x10, 0x09, 0x20, 0x01, 0x40, 0x01, 0x80, 0x01, 0x00,
0x00, 0x00, 0x01, 0x00, 0x01, 0x80, 0x01, 0x40, 0x09, 0x20, 0x05, 0x10, 0x03, 0x20, 0x01, 0x40,
0x29, 0x94, 0x01, 0x40, 0x03, 0x20, 0x05, 0x10, 0x09, 0x20, 0x01, 0x40, 0x01, 0x80, 0x01, 0x00,
0x00, 0x00, 0x01, 0x00, 0x01, 0x80, 0x01, 0x40, 0x09, 0x20, 0x05, 0x10, 0x03, 0x20, 0x11, 0x48,
0x29, 0x94, 0x11, 0x48, 0x03, 0x20, 0x05, 0x10, 0x09, 0x20, 0x01, 0x40, 0x01, 0x80, 0x01, 0x00
};
const unsigned char bm_boot [] PROGMEM = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xfc, 0x38, 0x66, 0x67, 0x1c, 0x3f, 0xff, 0xff, 0xfc, 0x99, 0xe6, 0x66, 0x4c, 0xff, 0xff,
0xff, 0xfc, 0x98, 0x70, 0xe6, 0x7c, 0x3f, 0xff, 0xff, 0xfc, 0x99, 0xf0, 0xe6, 0x4c, 0xff, 0xff,
0xff, 0xfc, 0x38, 0x79, 0xe7, 0x1c, 0x3f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0x0c, 0x38, 0xe1, 0xc3, 0x33, 0x38, 0x7f, 0xfe, 0x7e, 0x72, 0x64, 0xe7, 0x31, 0x33, 0xff,
0xff, 0x1e, 0x70, 0x61, 0xe7, 0x30, 0x32, 0x7f, 0xff, 0xce, 0x72, 0x61, 0xe7, 0x32, 0x32, 0x7f,
0xfe, 0x1e, 0x72, 0x64, 0xe7, 0x33, 0x38, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
const unsigned char bm_fw_update [] PROGMEM = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xfc, 0x98, 0x70, 0xf1, 0xc3, 0x33, 0x38, 0x7f, 0xfc, 0x99, 0x32, 0x64, 0xe7, 0x31, 0x33, 0xff,
0xfc, 0x98, 0x72, 0x60, 0xe7, 0x30, 0x32, 0x7f, 0xfc, 0x99, 0xf2, 0x64, 0xe7, 0x32, 0x32, 0x7f,
0xfe, 0x39, 0xf0, 0xe4, 0xe7, 0x33, 0x38, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xf8, 0x66, 0x1c, 0xe6, 0x73, 0x8e, 0x1c, 0x3f, 0xf9, 0xe6, 0x4c, 0x46, 0x53, 0x26, 0x4c, 0xff,
0xf8, 0x66, 0x1c, 0x06, 0x53, 0x06, 0x1c, 0x3f, 0xf9, 0xe6, 0x1c, 0xa6, 0x03, 0x26, 0x1c, 0xff,
0xf9, 0xe6, 0x4c, 0xe7, 0x27, 0x26, 0x4c, 0x3f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
const unsigned char bm_console_active [] PROGMEM = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc7, 0x8e, 0x67, 0x0e, 0x39, 0xe1, 0xff,
0xff, 0x93, 0x26, 0x26, 0x7c, 0x99, 0xe7, 0xff, 0xff, 0x9f, 0x26, 0x07, 0x1c, 0x99, 0xe1, 0xff,
0xff, 0x93, 0x26, 0x47, 0xcc, 0x99, 0xe7, 0xff, 0xff, 0xc7, 0x8e, 0x66, 0x1e, 0x38, 0x61, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0x3c, 0x70, 0xcc, 0xcc, 0x3f, 0xff,
0xff, 0xfc, 0x99, 0x39, 0xcc, 0xcc, 0xff, 0xff, 0xff, 0xfc, 0x19, 0xf9, 0xce, 0x1c, 0x3f, 0xff,
0xff, 0xfc, 0x99, 0x39, 0xce, 0x1c, 0xff, 0xff, 0xff, 0xfc, 0x9c, 0x79, 0xcf, 0x3c, 0x3f, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
const unsigned char bm_updating [] PROGMEM = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, 0xf1, 0xff, 0x71, 0x7f, 0xff,
0xff, 0xff, 0x7f, 0xf5, 0xff, 0x75, 0x7f, 0xff, 0xff, 0xff, 0x7f, 0xf1, 0xff, 0x71, 0x7f, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x17, 0xd4, 0x7f, 0x44, 0x7f, 0xff,
0xff, 0xff, 0x57, 0xd5, 0x7f, 0x55, 0x7f, 0xff, 0xff, 0xff, 0x17, 0xd4, 0x7f, 0x44, 0x7f, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x47, 0x44, 0x71, 0x51, 0x7f, 0xff,
0xff, 0xff, 0x57, 0x55, 0x75, 0x55, 0x7f, 0xff, 0xff, 0xff, 0x47, 0x44, 0x71, 0x51, 0x7f, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x44, 0x51, 0x51, 0x51, 0x7f, 0xff,
0xff, 0xff, 0x55, 0x55, 0x55, 0x55, 0x7f, 0xff, 0xff, 0xff, 0x44, 0x51, 0x51, 0x51, 0x7f, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x14, 0x54, 0x45, 0x44, 0x7f, 0xff,
0xff, 0xff, 0x55, 0x55, 0x55, 0x55, 0x7f, 0xff, 0xff, 0xff, 0x14, 0x54, 0x45, 0x44, 0x7f, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x45, 0x44, 0x51, 0x51, 0x7f, 0xff,
0xff, 0xff, 0x55, 0x55, 0x55, 0x55, 0x7f, 0xff, 0xff, 0xff, 0x45, 0x44, 0x51, 0x51, 0x7f, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x80, 0x00, 0x00, 0x00, 0xff, 0xff,
0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x7f, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x7f, 0xff,
0xff, 0xff, 0x80, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xc0, 0x00, 0x00, 0x01, 0xff, 0xff,
0xff, 0xff, 0x60, 0x00, 0x00, 0x03, 0x7f, 0xff, 0xff, 0xff, 0x30, 0x00, 0x00, 0x07, 0x7f, 0xff,
0xff, 0xff, 0xf8, 0x00, 0x00, 0x0f, 0xff, 0xff, 0xff, 0xff, 0x5c, 0x00, 0x00, 0x1c, 0x7f, 0xff,
0xff, 0xff, 0x56, 0x00, 0x00, 0x35, 0x7f, 0xff, 0xff, 0xff, 0x57, 0x00, 0x00, 0x74, 0x7f, 0xff,
0xff, 0xff, 0xff, 0x80, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0x44, 0xc0, 0x01, 0xd1, 0x7f, 0xff,
0xff, 0xff, 0x55, 0x60, 0x03, 0x55, 0x7f, 0xff, 0xff, 0xff, 0x44, 0x70, 0x07, 0x51, 0x7f, 0xff,
0xff, 0xff, 0xff, 0xf8, 0x0f, 0xff, 0xff, 0xff, 0xff, 0xff, 0x14, 0x5c, 0x1d, 0x44, 0x7f, 0xff,
0xff, 0xff, 0x55, 0x56, 0x35, 0x55, 0x7f, 0xff, 0xff, 0xff, 0x14, 0x57, 0xe5, 0x44, 0x7f, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x45, 0x44, 0x51, 0x51, 0x7f, 0xff,
0xff, 0xff, 0x55, 0x55, 0x55, 0x55, 0x7f, 0xff, 0xff, 0xff, 0x45, 0x44, 0x51, 0x51, 0x7f, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x80, 0x00, 0x00, 0x00, 0xff, 0xff,
0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x7f, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x7f, 0xff,
0xff, 0xff, 0x80, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
const unsigned char bm_version [] PROGMEM = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0x99, 0x86, 0x1e, 0x19, 0xc7, 0x33, 0xff, 0xff, 0x99, 0x9e, 0x4c, 0xf9, 0x93, 0x13, 0xff,
0xff, 0xc3, 0x86, 0x1e, 0x39, 0x93, 0x03, 0xff, 0xff, 0xc3, 0x9e, 0x1f, 0x99, 0x93, 0x23, 0xff,
0xff, 0xe7, 0x86, 0x4c, 0x39, 0xc7, 0x33, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xe7, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
const unsigned char bm_fw_corrupt [] PROGMEM = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc3, 0x30, 0xe7, 0x33, 0x9c, 0x70, 0xe1, 0xff,
0xcf, 0x32, 0x62, 0x32, 0x99, 0x32, 0x67, 0xff, 0xc3, 0x30, 0xe0, 0x32, 0x98, 0x30, 0xe1, 0xff,
0xcf, 0x30, 0xe5, 0x30, 0x19, 0x30, 0xe7, 0xff, 0xcf, 0x32, 0x67, 0x39, 0x39, 0x32, 0x61, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe3, 0xc7, 0x0e, 0x1c, 0x98, 0x70, 0xfc, 0xff,
0xc9, 0x93, 0x26, 0x4c, 0x99, 0x39, 0xfb, 0x7f, 0xcf, 0x93, 0x0e, 0x1c, 0x98, 0x79, 0xfb, 0x7f,
0xc9, 0x93, 0x0e, 0x1c, 0x99, 0xf9, 0xf7, 0xbf, 0xe3, 0xc7, 0x26, 0x4e, 0x39, 0xf9, 0xf4, 0xbf,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xec, 0xdf, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xec, 0xdf,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xdc, 0xef, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xdc, 0xef,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xbf, 0xf7, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xbc, 0xf7,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7c, 0xfb, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, 0xfb,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x80, 0x07, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
static unsigned char bm_def[] PROGMEM = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xb4, 0x61, 0x10, 0x8c, 0x23, 0xc4, 0x3f, 0xff,
0xb5, 0xa7, 0xb7, 0xb5, 0xed, 0xed, 0xbf, 0xff, 0xb5, 0xb9, 0xb4, 0xb4, 0x6d, 0xed, 0xbf, 0xff,
0x85, 0xa1, 0x10, 0xb4, 0x21, 0x44, 0x3f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1f, 0xe7, 0x1c, 0xfe, 0x7f, 0x8f, 0xf0, 0x00,
0x1f, 0xf7, 0x9d, 0xff, 0x7f, 0x9f, 0xf0, 0x00, 0x1c, 0x77, 0xfd, 0xc7, 0x73, 0xdc, 0x00, 0x00,
0x1f, 0xe7, 0xfd, 0xc7, 0x71, 0xdf, 0x00, 0x00, 0x1f, 0xe7, 0x7d, 0xc7, 0x71, 0xdf, 0x00, 0x00,
0x1c, 0x77, 0x3d, 0xc7, 0x73, 0xdc, 0x00, 0x00, 0x1c, 0x77, 0x1d, 0xff, 0x7f, 0x9f, 0xf0, 0x00,
0x1c, 0x77, 0x1c, 0xfe, 0x7f, 0x0f, 0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x54,
0x2a, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x18, 0x62, 0x24, 0x49, 0x22, 0x4e, 0x44,
0x00, 0x24, 0x93, 0x66, 0xc9, 0x32, 0x44, 0x28, 0x00, 0x20, 0x92, 0xa5, 0x49, 0x2a, 0x44, 0x10,
0x00, 0x24, 0x92, 0x24, 0x49, 0x26, 0x44, 0x10, 0x00, 0x18, 0x62, 0x24, 0x46, 0x22, 0x44, 0x10,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x1c, 0x9c, 0x44, 0x88, 0xc7, 0x1c, 0x00, 0x00, 0x10, 0x92, 0x6c, 0xa9, 0x24, 0x90,
0x00, 0x00, 0x1c, 0x9c, 0x54, 0xa9, 0xe7, 0x1c, 0x00, 0x00, 0x10, 0x94, 0x44, 0xa9, 0x25, 0x10,
0x00, 0x00, 0x10, 0x92, 0x44, 0x51, 0x24, 0x9c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
const unsigned char bm_def_lc [] PROGMEM = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xb4, 0x61, 0x10, 0x8c, 0x23, 0xc4, 0x3f, 0xff,
0xb5, 0xa7, 0xb7, 0xb5, 0xed, 0xed, 0xbf, 0xff, 0xb5, 0xb9, 0xb4, 0xb4, 0x6d, 0xed, 0xbf, 0xff,
0x85, 0xa1, 0x10, 0xb4, 0x21, 0x44, 0x3f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1f, 0xe7, 0x1c, 0xfe, 0x7f, 0x8f, 0xf0, 0x00,
0x1f, 0xf7, 0x9d, 0xff, 0x7f, 0x9f, 0xf0, 0x00, 0x1c, 0x77, 0xfd, 0xc7, 0x73, 0xdc, 0x00, 0x00,
0x1f, 0xe7, 0xfd, 0xc7, 0x71, 0xdf, 0x00, 0x00, 0x1f, 0xe7, 0x7d, 0xc7, 0x71, 0xdf, 0x00, 0x00,
0x1c, 0x77, 0x3d, 0xc7, 0x73, 0xdc, 0x00, 0x00, 0x1c, 0x77, 0x1d, 0xff, 0x7f, 0x9f, 0xf0, 0x00,
0x1c, 0x77, 0x1c, 0xfe, 0x7f, 0x0f, 0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x54,
0x2a, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x8e, 0x39, 0x10, 0x61, 0x88, 0x91, 0x1c,
0x02, 0x49, 0x21, 0x90, 0x92, 0x4d, 0x9b, 0x20, 0x02, 0x4e, 0x39, 0x50, 0x82, 0x4a, 0x95, 0x18,
0x02, 0x48, 0x21, 0x30, 0x92, 0x48, 0x91, 0x04, 0x01, 0x88, 0x39, 0x10, 0x61, 0x88, 0x91, 0x38,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x01, 0xc8, 0x8e, 0x73, 0x91, 0x1c, 0x00, 0x00, 0x02, 0x05, 0x10, 0x22, 0x1b, 0x20,
0x00, 0x00, 0x01, 0x82, 0x0c, 0x23, 0x95, 0x18, 0x00, 0x00, 0x00, 0x42, 0x02, 0x22, 0x11, 0x04,
0x00, 0x00, 0x03, 0x82, 0x1c, 0x23, 0x91, 0x38, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
const unsigned char bm_frame [] PROGMEM = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x7f, 0xfe, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x40, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x40, 0x02, 0x00, 0x00, 0x00, 0x3f, 0xff, 0xf0, 0x40, 0x02, 0x0f, 0xff, 0xfc,
0x20, 0x00, 0x10, 0x40, 0x02, 0x08, 0x00, 0x04, 0x20, 0x00, 0x10, 0x40, 0x02, 0x08, 0x00, 0x04,
0x20, 0x00, 0x10, 0x40, 0x02, 0x08, 0x00, 0x04, 0x20, 0x00, 0x10, 0x40, 0x02, 0x08, 0x00, 0x04,
0x20, 0x00, 0x10, 0x40, 0x02, 0x08, 0x00, 0x04, 0x20, 0x00, 0x10, 0x40, 0x02, 0x08, 0x00, 0x04,
0x20, 0x00, 0x10, 0x40, 0x02, 0x08, 0x00, 0x04, 0x20, 0x00, 0x10, 0x40, 0x02, 0x08, 0x00, 0x04,
0x20, 0x00, 0x1e, 0x40, 0x02, 0x78, 0x00, 0x04, 0x20, 0x00, 0x12, 0x40, 0x02, 0x48, 0x00, 0x04,
0x20, 0x00, 0x12, 0x40, 0x02, 0x48, 0x00, 0x04, 0x20, 0x00, 0x12, 0x40, 0x02, 0x48, 0x00, 0x04,
0x20, 0x00, 0x12, 0x40, 0x02, 0x48, 0x00, 0x04, 0x20, 0x00, 0x12, 0x40, 0x02, 0x48, 0x00, 0x04,
0x20, 0x00, 0x12, 0x40, 0x02, 0x48, 0x00, 0x04, 0x20, 0x00, 0x12, 0x40, 0x02, 0x48, 0x00, 0x04,
0x20, 0x00, 0x12, 0x40, 0x02, 0x48, 0x00, 0x04, 0x3f, 0xff, 0xf2, 0x40, 0x02, 0x4f, 0xff, 0xfc,
0x00, 0x00, 0x02, 0x40, 0x02, 0x40, 0x00, 0x00, 0x00, 0x00, 0x03, 0xc0, 0x03, 0xc0, 0x00, 0x00,
0x00, 0x00, 0x02, 0x40, 0x02, 0x40, 0x00, 0x00, 0x3f, 0xff, 0xf2, 0x40, 0x02, 0x4f, 0xff, 0xfc,
0x20, 0x00, 0x12, 0x40, 0x02, 0x48, 0x00, 0x04, 0x20, 0x00, 0x12, 0x40, 0x02, 0x48, 0x00, 0x04,
0x20, 0x00, 0x12, 0x40, 0x02, 0x48, 0x00, 0x04, 0x20, 0x00, 0x12, 0x40, 0x02, 0x48, 0x00, 0x04,
0x20, 0x00, 0x12, 0x40, 0x02, 0x48, 0x00, 0x04, 0x20, 0x00, 0x12, 0x40, 0x02, 0x48, 0x00, 0x04,
0x20, 0x00, 0x12, 0x40, 0x02, 0x48, 0x00, 0x04, 0x20, 0x00, 0x12, 0x40, 0x02, 0x48, 0x00, 0x04,
0x20, 0x00, 0x1e, 0x40, 0x02, 0x78, 0x00, 0x04, 0x20, 0x00, 0x10, 0x40, 0x02, 0x08, 0x00, 0x04,
0x20, 0x00, 0x10, 0x40, 0x02, 0x08, 0x00, 0x04, 0x20, 0x00, 0x10, 0x40, 0x02, 0x08, 0x00, 0x04,
0x20, 0x00, 0x10, 0x40, 0x02, 0x08, 0x00, 0x04, 0x20, 0x00, 0x10, 0x40, 0x02, 0x08, 0x00, 0x04,
0x20, 0x00, 0x10, 0x40, 0x02, 0x08, 0x00, 0x04, 0x20, 0x00, 0x10, 0x40, 0x02, 0x08, 0x00, 0x04,
0x20, 0x00, 0x10, 0x40, 0x02, 0x08, 0x00, 0x04, 0x3f, 0xff, 0xf0, 0x40, 0x02, 0x0f, 0xff, 0xfc,
0x00, 0x00, 0x00, 0x40, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x40, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7f, 0xfe, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x3f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc0, 0x00, 0x00, 0x00, 0x1c,
0x00, 0x00, 0x01, 0x20, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x01, 0x20, 0x00, 0x00, 0x00, 0x18,
0x00, 0x00, 0x01, 0x40, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0xa0, 0x00, 0x00, 0x00, 0x38,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0a, 0xaa, 0x8a, 0xaa, 0x80
};
const unsigned char bm_console [] PROGMEM = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf0, 0x00, 0x00, 0x0f, 0xff, 0xff,
0xff, 0xff, 0xe0, 0x00, 0x00, 0x07, 0xff, 0xff, 0xff, 0x1f, 0xcf, 0xff, 0xff, 0xf3, 0xf8, 0xff,
0xfe, 0x3f, 0x9f, 0xff, 0xff, 0xf9, 0xfc, 0x7f, 0xfc, 0x7f, 0x99, 0xe6, 0x61, 0x99, 0xfe, 0x3f,
0xf8, 0xe7, 0x99, 0x26, 0x67, 0x99, 0xe7, 0x1f, 0xf9, 0xc7, 0x99, 0x26, 0x61, 0x99, 0xe3, 0x9f,
0xf1, 0x8f, 0x98, 0x06, 0x67, 0x99, 0xf1, 0x8f, 0xf3, 0x9f, 0x9c, 0xce, 0x67, 0x99, 0xf9, 0xcf,
0xf3, 0x99, 0x9f, 0xff, 0xff, 0xf9, 0x99, 0xcf, 0xf3, 0x99, 0x9f, 0xff, 0xff, 0xf9, 0x99, 0xcf,
0xf3, 0x9f, 0x9f, 0xe3, 0x83, 0xf9, 0xf9, 0xcf, 0xf1, 0x8f, 0x9f, 0xc9, 0x93, 0xf9, 0xf1, 0x8f,
0xf9, 0xc7, 0x9f, 0xc1, 0x83, 0xf9, 0xe3, 0x9f, 0xf8, 0xe7, 0x9f, 0xc9, 0x9f, 0xf9, 0xe7, 0x1f,
0xfc, 0x7f, 0x9f, 0xc9, 0x9f, 0xf9, 0xfe, 0x3f, 0xfe, 0x3f, 0x9f, 0xff, 0xff, 0xf9, 0xfc, 0x7f,
0xff, 0x1f, 0xcf, 0xff, 0xff, 0xf3, 0xf8, 0xff, 0xff, 0xff, 0xe0, 0x00, 0x00, 0x07, 0xff, 0xff,
0xff, 0xff, 0xf0, 0x00, 0x00, 0x0f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0x7f, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xfe, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0x7f, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xfe, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0x7f, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xfe, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0x7f, 0xff, 0xff, 0xff,
0xfe, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xfd, 0xff, 0x7f, 0xdf, 0xf7, 0xfd, 0xff, 0x7f,
0xfd, 0xff, 0x7f, 0xdf, 0xf7, 0xfd, 0xff, 0x7f, 0xfd, 0xff, 0x7f, 0xdf, 0xf7, 0xfd, 0xff, 0x7f,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe0, 0x78, 0x1e, 0x07, 0x81, 0xe0, 0x78, 0x1f,
0xef, 0xbb, 0xee, 0xfb, 0xbe, 0xef, 0xbb, 0xef, 0xe8, 0xda, 0xb6, 0x9d, 0xb3, 0x6d, 0xda, 0x37,
0xef, 0xda, 0xf6, 0xb5, 0xad, 0x6c, 0xdb, 0xf7, 0xe8, 0x5a, 0x36, 0x95, 0xad, 0x6c, 0xda, 0x97,
0xef, 0xdb, 0xf6, 0x85, 0xb3, 0x6c, 0xda, 0x97, 0xea, 0x5a, 0x36, 0xb5, 0xb3, 0x6c, 0xdb, 0xf7,
0xef, 0xda, 0xf6, 0xa5, 0xad, 0x6f, 0xda, 0x57, 0xe8, 0x5a, 0xb6, 0x85, 0xad, 0x6c, 0xda, 0x57,
0xef, 0xdb, 0xf6, 0xfd, 0xbf, 0x6f, 0xdb, 0xf7, 0xe0, 0x18, 0x06, 0x01, 0x80, 0x60, 0x18, 0x07,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xfe, 0x42, 0x7c, 0x60, 0xf0, 0x78, 0x3c, 0x7f, 0xfe, 0x4a, 0x7c, 0x64, 0xf2, 0x79, 0x3c, 0x7f,
0xfe, 0x43, 0xfe, 0x64, 0xf2, 0x79, 0x3e, 0x7f, 0xfe, 0x4e, 0x7e, 0x64, 0x92, 0x49, 0x26, 0x7f,
0xfe, 0x4e, 0x7e, 0x60, 0x90, 0x48, 0x26, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xfc, 0x00, 0x00, 0x00, 0x00, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
const unsigned char bm_checks [] PROGMEM = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x87, 0x0c, 0x99, 0xc7, 0x0f,
0xe6, 0x00, 0x7f, 0x93, 0x3c, 0x99, 0x93, 0x3f, 0xe6, 0x00, 0x7f, 0x93, 0x0e, 0x39, 0x9f, 0x0f,
0xff, 0xff, 0xff, 0x93, 0x3e, 0x39, 0x93, 0x3f, 0xff, 0xff, 0xff, 0x87, 0x0f, 0x79, 0xc7, 0x0f,
0xe6, 0x00, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe6, 0x00, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0x39, 0x30, 0xe3, 0x93, 0x87,
0xe6, 0x00, 0x7c, 0x99, 0x33, 0xc9, 0x87, 0x3f, 0xe6, 0x00, 0x7c, 0xf8, 0x30, 0xcf, 0x8f, 0x8f,
0xff, 0xff, 0xfc, 0x99, 0x33, 0xc9, 0x87, 0xe7, 0xff, 0xff, 0xfe, 0x39, 0x30, 0xe3, 0x93, 0x0f,
0xe6, 0x00, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe6, 0x00, 0x6f, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xcf, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf9, 0x9c, 0x3c, 0x78, 0x70, 0xc3, 0x0f,
0xe6, 0x0d, 0x3c, 0x99, 0x33, 0xe7, 0xcf, 0x27, 0xe6, 0x04, 0x7c, 0x38, 0x38, 0xf1, 0xc3, 0x27,
0xff, 0xfe, 0xfc, 0xf9, 0x3e, 0x7c, 0xcf, 0x27, 0xff, 0xff, 0xfc, 0xf9, 0x30, 0xe1, 0xc3, 0x0f,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
const unsigned char bm_hwfail [] PROGMEM = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe4, 0xe3, 0x87, 0x0e, 0x73, 0x8e, 0x1c, 0x3f,
0xe4, 0xc9, 0x93, 0x26, 0x53, 0x26, 0x4c, 0xff, 0xe0, 0xc1, 0x87, 0x26, 0x53, 0x06, 0x1c, 0x3f,
0xe4, 0xc9, 0x87, 0x26, 0x03, 0x26, 0x1c, 0xff, 0xe4, 0xc9, 0x93, 0x0f, 0x27, 0x26, 0x4c, 0x3f,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xe1, 0xc7, 0x33, 0xc9, 0x87, 0x0f, 0xf9, 0xff, 0xe7, 0x93, 0x33, 0xc9, 0x93, 0x3f, 0xf6, 0xff,
0xe1, 0x83, 0x33, 0xc9, 0x87, 0x0f, 0xf6, 0xff, 0xe7, 0x93, 0x33, 0xc9, 0x87, 0x3f, 0xef, 0x7f,
0xe7, 0x93, 0x30, 0xe3, 0x93, 0x0f, 0xe9, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xd9, 0xbf,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xd9, 0xbf, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xb9, 0xdf,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xb9, 0xdf, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, 0xef,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x79, 0xef, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xf9, 0xf7,
0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xf7, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x0f,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
const unsigned char bm_conf_missing [] PROGMEM = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe7, 0x33, 0x87, 0x0c, 0xcc, 0xe1, 0xff, 0xff,
0xe2, 0x33, 0x3e, 0x7c, 0xc4, 0xcf, 0xff, 0xff, 0xe0, 0x33, 0x8f, 0x1c, 0xc0, 0xc9, 0xff, 0xff,
0xe5, 0x33, 0xe7, 0xcc, 0xc8, 0xc9, 0xff, 0xff, 0xe7, 0x33, 0x0e, 0x1c, 0xcc, 0xe3, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf9, 0xff, 0xf1, 0xe3, 0x99, 0x86, 0x70, 0xff, 0xf6, 0xff,
0xe4, 0xc9, 0x89, 0x9e, 0x67, 0xff, 0xf6, 0xff, 0xe7, 0xc9, 0x81, 0x86, 0x64, 0xff, 0xef, 0x7f,
0xe4, 0xc9, 0x91, 0x9e, 0x64, 0xff, 0xe9, 0x7f, 0xf1, 0xe3, 0x99, 0x9e, 0x71, 0xff, 0xd9, 0xbf,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xd9, 0xbf, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xb9, 0xdf,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xb9, 0xdf, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, 0xef,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x79, 0xef, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xf9, 0xf7,
0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xf7, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x0f,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
const unsigned char bm_no_radio [] PROGMEM = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc3, 0xc7, 0x0e, 0x71, 0xfc, 0xce, 0x38, 0x7f,
0xc9, 0x93, 0x26, 0x64, 0xfc, 0x4c, 0x9c, 0xff, 0xc3, 0x83, 0x26, 0x64, 0xfc, 0x0c, 0x9c, 0xff,
0xc3, 0x93, 0x26, 0x64, 0xfc, 0x8c, 0x9c, 0xff, 0xc9, 0x93, 0x0e, 0x71, 0xfc, 0xce, 0x3c, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc3, 0x8e, 0x4c, 0xcc, 0x3f, 0xff, 0xfc, 0xff,
0xcf, 0x26, 0x4c, 0x4c, 0x9f, 0xff, 0xfb, 0x7f, 0xc3, 0x26, 0x4c, 0x0c, 0x9f, 0xff, 0xfb, 0x7f,
0xcf, 0x26, 0x4c, 0x8c, 0x9f, 0xff, 0xf7, 0xbf, 0xcf, 0x8f, 0x1c, 0xcc, 0x3f, 0xff, 0xf4, 0xbf,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xec, 0xdf, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xec, 0xdf,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xdc, 0xef, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xdc, 0xef,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xbf, 0xf7, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xbc, 0xf7,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7c, 0xfb, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, 0xfb,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x80, 0x07, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
const unsigned char bm_hwok [] PROGMEM = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xf2, 0x71, 0xc3, 0x87, 0x39, 0xc7, 0x0e, 0x1f, 0xf2, 0x64, 0xc9, 0x93, 0x29, 0x93, 0x26, 0x7f,
0xf0, 0x60, 0xc3, 0x93, 0x29, 0x83, 0x0e, 0x1f, 0xf2, 0x64, 0xc3, 0x93, 0x01, 0x93, 0x0e, 0x7f,
0xf2, 0x64, 0xc9, 0x87, 0x93, 0x93, 0x26, 0x1f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf3, 0x33, 0x30, 0xff, 0x8e, 0x4f, 0xff,
0xff, 0xf3, 0x13, 0x39, 0xff, 0x26, 0x1f, 0xff, 0xff, 0xf3, 0x03, 0x39, 0xff, 0x26, 0x3f, 0xff,
0xff, 0xf3, 0x23, 0x39, 0xff, 0x26, 0x1f, 0xff, 0xff, 0xf3, 0x33, 0x39, 0xff, 0x8e, 0x4f, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xc3, 0x0e, 0x67, 0xf8, 0x70, 0xe3, 0x87, 0x33, 0xe7, 0x27, 0x0f, 0xf9, 0x33, 0xc9, 0x93, 0x87,
0xe7, 0x0f, 0x9f, 0xf8, 0x70, 0xc1, 0x93, 0xcf, 0xe7, 0x0f, 0x0f, 0xf8, 0x73, 0xc9, 0x93, 0xcf,
0xe7, 0x26, 0x67, 0xf9, 0x30, 0xc9, 0x87, 0xcf, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
const unsigned char bm_nfr [] PROGMEM = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xfc, 0x38, 0x66, 0x67, 0x1c, 0x3f, 0xff, 0xff, 0xfc, 0x99, 0xe6, 0x66, 0x4c, 0xff,
0xff, 0x9f, 0xfc, 0x98, 0x70, 0xe6, 0x7c, 0x3f, 0xff, 0x6f, 0xfc, 0x99, 0xf0, 0xe6, 0x4c, 0xff,
0xff, 0x6f, 0xfc, 0x38, 0x79, 0xe7, 0x1c, 0x3f, 0xfe, 0xf7, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xfe, 0x97, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfd, 0x9b, 0xe6, 0x71, 0xc3, 0xe1, 0xc7, 0x0f,
0xfd, 0x9b, 0xe2, 0x64, 0xe7, 0xe7, 0x93, 0x27, 0xfb, 0x9d, 0xe0, 0x64, 0xe7, 0xe1, 0x93, 0x0f,
0xfb, 0x9d, 0xe4, 0x64, 0xe7, 0xe7, 0x93, 0x0f, 0xf7, 0xfe, 0xe6, 0x71, 0xe7, 0xe7, 0xc7, 0x27,
0xf7, 0x9e, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xef, 0x9f, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff,
0xef, 0xff, 0x7f, 0xf8, 0x71, 0xcf, 0x0f, 0xff, 0xf0, 0x00, 0xff, 0xf3, 0xe4, 0xcf, 0x3f, 0xff,
0xff, 0xff, 0xff, 0xf8, 0xe0, 0xcf, 0x0f, 0xff, 0xff, 0xff, 0xff, 0xfe, 0x64, 0xcf, 0x3f, 0xff,
0xff, 0xff, 0xff, 0xf0, 0xe4, 0xc3, 0x0f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
const unsigned char bm_online [] PROGMEM = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc2, 0x1c, 0x66, 0x61, 0x8c, 0x24, 0x90, 0x87,
0xe6, 0x49, 0x22, 0x4f, 0x24, 0xe4, 0x93, 0x93, 0xe6, 0x18, 0x20, 0x63, 0x3c, 0x26, 0x30, 0x87,
0xe6, 0x19, 0x24, 0x79, 0x24, 0xe6, 0x33, 0x87, 0xe6, 0x49, 0x26, 0x43, 0x8c, 0x27, 0x70, 0x93,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf1, 0xe6, 0x73, 0xe7, 0x33, 0x87, 0xff,
0xff, 0xe4, 0xe2, 0x73, 0xe7, 0x13, 0x9f, 0xff, 0xff, 0xe4, 0xe0, 0x73, 0xe7, 0x03, 0x87, 0xff,
0xff, 0xe4, 0xe4, 0x73, 0xe7, 0x23, 0x9f, 0xff, 0xff, 0xf1, 0xe6, 0x70, 0xe7, 0x33, 0x87, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
const unsigned char bm_pairing [] PROGMEM = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xf0, 0xe3, 0x98, 0x73, 0x33, 0x87, 0xff, 0xff, 0xf2, 0xc9, 0x99, 0x33, 0x13, 0x3f, 0xff,
0xff, 0xf0, 0xc1, 0x98, 0x73, 0x03, 0x27, 0xff, 0xff, 0xf3, 0xc9, 0x98, 0x73, 0x23, 0x27, 0xff,
0xff, 0xf3, 0xc9, 0x99, 0x33, 0x33, 0x8f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
const unsigned char bm_n_uh [] PROGMEM = {
0x07, 0x27, 0x27, 0x27, 0x07, 0x8f, 0x8f, 0xcf, 0xcf, 0xcf, 0x07, 0xe7, 0x07, 0x3f, 0x07, 0x07,
0xe7, 0xc7, 0xe7, 0x07, 0x27, 0x27, 0x07, 0xe7, 0xe7, 0x07, 0x3f, 0x07, 0xe7, 0x07, 0x07, 0x3f,
0x07, 0x27, 0x07, 0x07, 0xc7, 0xcf, 0x9f, 0x1f, 0x07, 0x27, 0x07, 0x27, 0x07, 0x07, 0x27, 0x07,
0xe7, 0xe7
};
const unsigned char bm_plug [] PROGMEM = {
0x00, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x7f, 0x80, 0x55, 0xfc, 0x00, 0xaa, 0xfc, 0x00, 0x00,
0x7f, 0x80, 0x00, 0x1c, 0x00
};
const unsigned char bm_hg_low [] PROGMEM = {
0xf8, 0x88, 0x88, 0x50, 0x20, 0x50, 0x88, 0xf8, 0xf8
};
const unsigned char bm_hg_high [] PROGMEM = {
0xf8, 0x88, 0xf8, 0x70, 0x20, 0x70, 0xf8, 0xf8, 0xf8
};

95
RNode_Firmware/Input.h Normal file
View file

@ -0,0 +1,95 @@
// Copyright (C) 2024, Mark Qvist
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
#ifndef INPUT_H
#define INPUT_H
#define PIN_BUTTON pin_btn_usr1
#define PRESSED LOW
#define RELEASED HIGH
#define EVENT_ALL 0x00
#define EVENT_CLICKS 0x01
#define EVENT_BUTTON_DOWN 0x11
#define EVENT_BUTTON_UP 0x12
#define EVENT_BUTTON_CLICK 0x13
#define EVENT_BUTTON_DOUBLE_CLICK 0x14
#define EVENT_BUTTON_TRIPLE_CLICK 0x15
int button_events = EVENT_CLICKS;
int button_state = RELEASED;
int debounce_state = button_state;
unsigned long button_debounce_last = 0;
unsigned long button_debounce_delay = 25;
unsigned long button_down_last = 0;
unsigned long button_up_last = 0;
// Forward declaration
void button_event(uint8_t event, unsigned long duration);
void input_init() {
pinMode(PIN_BUTTON, INPUT_PULLUP);
}
void input_get_all_events() {
button_events = EVENT_ALL;
}
void input_get_click_events() {
button_events = EVENT_CLICKS;
}
void input_read() {
int button_reading = digitalRead(PIN_BUTTON);
if (button_reading != debounce_state) {
button_debounce_last = millis();
debounce_state = button_reading;
}
if ((millis() - button_debounce_last) > button_debounce_delay) {
if (button_reading != button_state) {
// State changed
int previous_state = button_state;
button_state = button_reading;
if (button_events == EVENT_ALL) {
if (button_state == PRESSED) {
button_event(EVENT_BUTTON_DOWN, 0);
} else if (button_state == RELEASED) {
button_event(EVENT_BUTTON_UP, 0);
}
} else if (button_events == EVENT_CLICKS) {
if (previous_state == PRESSED && button_state == RELEASED) {
button_up_last = millis();
button_event(EVENT_BUTTON_CLICK, button_up_last-button_down_last);
} else if (previous_state == RELEASED && button_state == PRESSED) {
button_down_last = millis();
}
}
}
}
}
bool button_pressed() {
if (button_state == PRESSED) {
return true;
} else {
return false;
}
}
#endif

301
RNode_Firmware/MD5.cpp Normal file
View file

@ -0,0 +1,301 @@
#include "MD5.h"
MD5::MD5()
{
//nothing
return;
}
char* MD5::make_digest(const unsigned char *digest, int len) /* {{{ */
{
char * md5str = (char*) malloc(sizeof(char)*(len*2+1));
static const char hexits[17] = "0123456789abcdef";
int i;
for (i = 0; i < len; i++) {
md5str[i * 2] = hexits[digest[i] >> 4];
md5str[(i * 2) + 1] = hexits[digest[i] & 0x0F];
}
md5str[len * 2] = '\0';
return md5str;
}
/*
* The basic MD5 functions.
*
* E and G are optimized compared to their RFC 1321 definitions for
* architectures that lack an AND-NOT instruction, just like in Colin Plumb's
* implementation.
* E() has been used instead of F() because F() is already defined in the Arduino core
*/
#define E(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
#define G(x, y, z) ((y) ^ ((z) & ((x) ^ (y))))
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define I(x, y, z) ((y) ^ ((x) | ~(z)))
/*
* The MD5 transformation for all four rounds.
*/
#define STEP(f, a, b, c, d, x, t, s) \
(a) += f((b), (c), (d)) + (x) + (t); \
(a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \
(a) += (b);
/*
* SET reads 4 input bytes in little-endian byte order and stores them
* in a properly aligned word in host byte order.
*
* The check for little-endian architectures that tolerate unaligned
* memory accesses is just an optimization. Nothing will break if it
* doesn't work.
*/
#if defined(__i386__) || defined(__x86_64__) || defined(__vax__)
# define SET(n) \
(*(MD5_u32plus *)&ptr[(n) * 4])
# define GET(n) \
SET(n)
#else
# define SET(n) \
(ctx->block[(n)] = \
(MD5_u32plus)ptr[(n) * 4] | \
((MD5_u32plus)ptr[(n) * 4 + 1] << 8) | \
((MD5_u32plus)ptr[(n) * 4 + 2] << 16) | \
((MD5_u32plus)ptr[(n) * 4 + 3] << 24))
# define GET(n) \
(ctx->block[(n)])
#endif
/*
* This processes one or more 64-byte data blocks, but does NOT update
* the bit counters. There are no alignment requirements.
*/
const void *MD5::body(void *ctxBuf, const void *data, size_t size)
{
MD5_CTX *ctx = (MD5_CTX*)ctxBuf;
const unsigned char *ptr;
MD5_u32plus a, b, c, d;
MD5_u32plus saved_a, saved_b, saved_c, saved_d;
ptr = (unsigned char*)data;
a = ctx->a;
b = ctx->b;
c = ctx->c;
d = ctx->d;
do {
saved_a = a;
saved_b = b;
saved_c = c;
saved_d = d;
/* Round 1
* E() has been used instead of F() because F() is already defined in the Arduino core
*/
STEP(E, a, b, c, d, SET(0), 0xd76aa478, 7)
STEP(E, d, a, b, c, SET(1), 0xe8c7b756, 12)
STEP(E, c, d, a, b, SET(2), 0x242070db, 17)
STEP(E, b, c, d, a, SET(3), 0xc1bdceee, 22)
STEP(E, a, b, c, d, SET(4), 0xf57c0faf, 7)
STEP(E, d, a, b, c, SET(5), 0x4787c62a, 12)
STEP(E, c, d, a, b, SET(6), 0xa8304613, 17)
STEP(E, b, c, d, a, SET(7), 0xfd469501, 22)
STEP(E, a, b, c, d, SET(8), 0x698098d8, 7)
STEP(E, d, a, b, c, SET(9), 0x8b44f7af, 12)
STEP(E, c, d, a, b, SET(10), 0xffff5bb1, 17)
STEP(E, b, c, d, a, SET(11), 0x895cd7be, 22)
STEP(E, a, b, c, d, SET(12), 0x6b901122, 7)
STEP(E, d, a, b, c, SET(13), 0xfd987193, 12)
STEP(E, c, d, a, b, SET(14), 0xa679438e, 17)
STEP(E, b, c, d, a, SET(15), 0x49b40821, 22)
/* Round 2 */
STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5)
STEP(G, d, a, b, c, GET(6), 0xc040b340, 9)
STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14)
STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20)
STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5)
STEP(G, d, a, b, c, GET(10), 0x02441453, 9)
STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14)
STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20)
STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5)
STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9)
STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14)
STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20)
STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5)
STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9)
STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14)
STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20)
/* Round 3 */
STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4)
STEP(H, d, a, b, c, GET(8), 0x8771f681, 11)
STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16)
STEP(H, b, c, d, a, GET(14), 0xfde5380c, 23)
STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4)
STEP(H, d, a, b, c, GET(4), 0x4bdecfa9, 11)
STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16)
STEP(H, b, c, d, a, GET(10), 0xbebfbc70, 23)
STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4)
STEP(H, d, a, b, c, GET(0), 0xeaa127fa, 11)
STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16)
STEP(H, b, c, d, a, GET(6), 0x04881d05, 23)
STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4)
STEP(H, d, a, b, c, GET(12), 0xe6db99e5, 11)
STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16)
STEP(H, b, c, d, a, GET(2), 0xc4ac5665, 23)
/* Round 4 */
STEP(I, a, b, c, d, GET(0), 0xf4292244, 6)
STEP(I, d, a, b, c, GET(7), 0x432aff97, 10)
STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15)
STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21)
STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6)
STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10)
STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15)
STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21)
STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6)
STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10)
STEP(I, c, d, a, b, GET(6), 0xa3014314, 15)
STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21)
STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6)
STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10)
STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15)
STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21)
a += saved_a;
b += saved_b;
c += saved_c;
d += saved_d;
ptr += 64;
} while (size -= 64);
ctx->a = a;
ctx->b = b;
ctx->c = c;
ctx->d = d;
return ptr;
}
void MD5::MD5Init(void *ctxBuf)
{
MD5_CTX *ctx = (MD5_CTX*)ctxBuf;
ctx->a = 0x67452301;
ctx->b = 0xefcdab89;
ctx->c = 0x98badcfe;
ctx->d = 0x10325476;
ctx->lo = 0;
ctx->hi = 0;
memset(ctx->block, 0, sizeof(ctx->block));
memset(ctx->buffer, 0, sizeof(ctx->buffer));
}
void MD5::MD5Update(void *ctxBuf, const void *data, size_t size)
{
MD5_CTX *ctx = (MD5_CTX*)ctxBuf;
MD5_u32plus saved_lo;
MD5_u32plus used, free;
saved_lo = ctx->lo;
if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo) {
ctx->hi++;
}
ctx->hi += size >> 29;
used = saved_lo & 0x3f;
if (used) {
free = 64 - used;
if (size < free) {
memcpy(&ctx->buffer[used], data, size);
return;
}
memcpy(&ctx->buffer[used], data, free);
data = (unsigned char *)data + free;
size -= free;
body(ctx, ctx->buffer, 64);
}
if (size >= 64) {
data = body(ctx, data, size & ~(size_t)0x3f);
size &= 0x3f;
}
memcpy(ctx->buffer, data, size);
}
void MD5::MD5Final(unsigned char *result, void *ctxBuf)
{
MD5_CTX *ctx = (MD5_CTX*)ctxBuf;
MD5_u32plus used, free;
used = ctx->lo & 0x3f;
ctx->buffer[used++] = 0x80;
free = 64 - used;
if (free < 8) {
memset(&ctx->buffer[used], 0, free);
body(ctx, ctx->buffer, 64);
used = 0;
free = 64;
}
memset(&ctx->buffer[used], 0, free - 8);
ctx->lo <<= 3;
ctx->buffer[56] = ctx->lo;
ctx->buffer[57] = ctx->lo >> 8;
ctx->buffer[58] = ctx->lo >> 16;
ctx->buffer[59] = ctx->lo >> 24;
ctx->buffer[60] = ctx->hi;
ctx->buffer[61] = ctx->hi >> 8;
ctx->buffer[62] = ctx->hi >> 16;
ctx->buffer[63] = ctx->hi >> 24;
body(ctx, ctx->buffer, 64);
result[0] = ctx->a;
result[1] = ctx->a >> 8;
result[2] = ctx->a >> 16;
result[3] = ctx->a >> 24;
result[4] = ctx->b;
result[5] = ctx->b >> 8;
result[6] = ctx->b >> 16;
result[7] = ctx->b >> 24;
result[8] = ctx->c;
result[9] = ctx->c >> 8;
result[10] = ctx->c >> 16;
result[11] = ctx->c >> 24;
result[12] = ctx->d;
result[13] = ctx->d >> 8;
result[14] = ctx->d >> 16;
result[15] = ctx->d >> 24;
memset(ctx, 0, sizeof(*ctx));
}
unsigned char* MD5::make_hash(char *arg)
{
MD5_CTX context;
unsigned char * hash = (unsigned char *) malloc(16);
MD5Init(&context);
MD5Update(&context, arg, strlen(arg));
MD5Final(hash, &context);
return hash;
}
unsigned char* MD5::make_hash(char *arg,size_t size)
{
MD5_CTX context;
unsigned char * hash = (unsigned char *) malloc(16);
MD5Init(&context);
MD5Update(&context, arg, size);
MD5Final(hash, &context);
return hash;
}

52
RNode_Firmware/MD5.h Normal file
View file

@ -0,0 +1,52 @@
#ifndef MD5_h
#define MD5_h
#include "Arduino.h"
/*
* This is an OpenSSL-compatible implementation of the RSA Data Security,
* Inc. MD5 Message-Digest Algorithm (RFC 1321).
*
* Written by Solar Designer <solar at openwall.com> in 2001, and placed
* in the public domain. There's absolutely no warranty.
*
* This differs from Colin Plumb's older public domain implementation in
* that no 32-bit integer data type is required, there's no compile-time
* endianness configuration, and the function prototypes match OpenSSL's.
* The primary goals are portability and ease of use.
*
* This implementation is meant to be fast, but not as fast as possible.
* Some known optimizations are not included to reduce source code size
* and avoid compile-time configuration.
*/
/*
* Updated by Scott MacVicar for arduino
* <scott@macvicar.net>
*/
#include <string.h>
typedef unsigned long MD5_u32plus;
typedef struct {
MD5_u32plus lo, hi;
MD5_u32plus a, b, c, d;
unsigned char buffer[64];
MD5_u32plus block[16];
} MD5_CTX;
class MD5
{
public:
MD5();
static unsigned char* make_hash(char *arg);
static unsigned char* make_hash(char *arg,size_t size);
static char* make_digest(const unsigned char *digest, int len);
static const void *body(void *ctxBuf, const void *data, size_t size);
static void MD5Init(void *ctxBuf);
static void MD5Final(unsigned char *result, void *ctxBuf);
static void MD5Update(void *ctxBuf, const void *data, size_t size);
};
#endif

4
RNode_Firmware/Modem.h Normal file
View file

@ -0,0 +1,4 @@
#define SX1276 0x01
#define SX1278 0x02
#define SX1262 0x03
#define SX1280 0x04

650
RNode_Firmware/Power.h Normal file
View file

@ -0,0 +1,650 @@
// Copyright (C) 2024, Mark Qvist
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
#define PMU_TEMP_MIN -30
#define PMU_TEMP_MAX 90
#define PMU_TEMP_OFFSET 120
bool pmu_temp_sensor_ready = false;
float pmu_temperature = PMU_TEMP_MIN-1;
#if BOARD_MODEL == BOARD_TBEAM || BOARD_MODEL == BOARD_TBEAM_S_V1
#include <XPowersLib.h>
XPowersLibInterface* PMU = NULL;
#ifndef PMU_WIRE_PORT
#if BOARD_MODEL == BOARD_TBEAM_S_V1
#define PMU_WIRE_PORT Wire1
#else
#define PMU_WIRE_PORT Wire
#endif
#endif
#define BAT_V_MIN 3.15
#define BAT_V_MAX 4.14
void disablePeripherals() {
if (PMU) {
// GNSS RTC PowerVDD
PMU->enablePowerOutput(XPOWERS_VBACKUP);
// LoRa VDD
PMU->disablePowerOutput(XPOWERS_ALDO2);
// GNSS VDD
PMU->disablePowerOutput(XPOWERS_ALDO3);
}
}
bool pmuInterrupt;
void setPmuFlag()
{
pmuInterrupt = true;
}
#elif BOARD_MODEL == BOARD_RNODE_NG_21 || BOARD_MODEL == BOARD_LORA32_V2_1
#define BAT_V_MIN 3.15
#define BAT_V_MAX 4.3
#define BAT_V_CHG 4.48
#define BAT_V_FLOAT 4.33
#define BAT_SAMPLES 5
const uint8_t pin_vbat = 35;
float bat_p_samples[BAT_SAMPLES];
float bat_v_samples[BAT_SAMPLES];
uint8_t bat_samples_count = 0;
int bat_discharging_samples = 0;
int bat_charging_samples = 0;
int bat_charged_samples = 0;
bool bat_voltage_dropping = false;
float bat_delay_v = 0;
float bat_state_change_v = 0;
#elif BOARD_MODEL == BOARD_T3S3
#define BAT_V_MIN 3.15
#define BAT_V_MAX 4.217
#define BAT_V_CHG 4.48
#define BAT_V_FLOAT 4.33
#define BAT_SAMPLES 5
const uint8_t pin_vbat = 1;
float bat_p_samples[BAT_SAMPLES];
float bat_v_samples[BAT_SAMPLES];
uint8_t bat_samples_count = 0;
int bat_discharging_samples = 0;
int bat_charging_samples = 0;
int bat_charged_samples = 0;
bool bat_voltage_dropping = false;
float bat_delay_v = 0;
float bat_state_change_v = 0;
#elif BOARD_MODEL == BOARD_TDECK
#define BAT_V_MIN 3.15
#define BAT_V_MAX 4.3
#define BAT_V_CHG 4.48
#define BAT_V_FLOAT 4.33
#define BAT_SAMPLES 5
const uint8_t pin_vbat = 4;
float bat_p_samples[BAT_SAMPLES];
float bat_v_samples[BAT_SAMPLES];
uint8_t bat_samples_count = 0;
int bat_discharging_samples = 0;
int bat_charging_samples = 0;
int bat_charged_samples = 0;
bool bat_voltage_dropping = false;
float bat_delay_v = 0;
float bat_state_change_v = 0;
#elif BOARD_MODEL == BOARD_HELTEC32_V3
// Unless we implement some real voodoo
// on these boards, we can't say with
// any certainty whether we are actually
// charging and have reached a charge
// complete state. The *only* data point
// we have to go from is the bus voltage.
// The BAT_V_CHG and BAT_V_FLOAT values
// are set high here to avoid the display
// indication confusingly flapping
// between charge completed, charging and
// discharging states.
// Update: Vodoo implemented. Hopefully
// it will work accross different boards.
#define BAT_V_MIN 3.05
#define BAT_V_MAX 4.0
#define BAT_V_CHG 4.48
#define BAT_V_FLOAT 4.33
#define BAT_SAMPLES 7
const uint8_t pin_vbat = 1;
const uint8_t pin_ctrl = 37;
float bat_p_samples[BAT_SAMPLES];
float bat_v_samples[BAT_SAMPLES];
uint8_t bat_samples_count = 0;
int bat_discharging_samples = 0;
int bat_charging_samples = 0;
int bat_charged_samples = 0;
bool bat_voltage_dropping = false;
float bat_delay_v = 0;
float bat_state_change_v = 0;
#elif BOARD_MODEL == BOARD_HELTEC32_V4
#define BAT_V_MIN 3.05
#define BAT_V_MAX 4.0
#define BAT_V_CHG 4.48
#define BAT_V_FLOAT 4.33
#define BAT_SAMPLES 7
const uint8_t pin_vbat = 1;
const uint8_t pin_ctrl = 37;
float bat_p_samples[BAT_SAMPLES];
float bat_v_samples[BAT_SAMPLES];
uint8_t bat_samples_count = 0;
int bat_discharging_samples = 0;
int bat_charging_samples = 0;
int bat_charged_samples = 0;
bool bat_voltage_dropping = false;
float bat_delay_v = 0;
float bat_state_change_v = 0;
#elif BOARD_MODEL == BOARD_HELTEC_T114
#define BAT_V_MIN 3.15
#define BAT_V_MAX 4.165
#define BAT_V_CHG 4.48
#define BAT_V_FLOAT 4.33
#define BAT_SAMPLES 7
const uint8_t pin_vbat = 4;
const uint8_t pin_ctrl = 6;
float bat_p_samples[BAT_SAMPLES];
float bat_v_samples[BAT_SAMPLES];
uint8_t bat_samples_count = 0;
int bat_discharging_samples = 0;
int bat_charging_samples = 0;
int bat_charged_samples = 0;
bool bat_voltage_dropping = false;
float bat_delay_v = 0;
float bat_state_change_v = 0;
#elif BOARD_MODEL == BOARD_TECHO
#define BAT_V_MIN 3.15
#define BAT_V_MAX 4.16
#define BAT_V_CHG 4.48
#define BAT_V_FLOAT 4.33
#define BAT_SAMPLES 7
const uint8_t pin_vbat = 4;
float bat_p_samples[BAT_SAMPLES];
float bat_v_samples[BAT_SAMPLES];
uint8_t bat_samples_count = 0;
int bat_discharging_samples = 0;
int bat_charging_samples = 0;
int bat_charged_samples = 0;
bool bat_voltage_dropping = false;
float bat_delay_v = 0;
float bat_state_change_v = 0;
#endif
uint32_t last_pmu_update = 0;
uint8_t pmu_target_pps = 1;
int pmu_update_interval = 1000/pmu_target_pps;
uint8_t pmu_charged_ascertain = 0;
uint8_t pmu_rc = 0;
uint8_t pmu_sc = 0;
float bat_delay_diff = 0;
bool bat_diff_positive = false;
#define PMU_R_INTERVAL 5
#define PMU_SCV_RESET_INTERVAL 3
void kiss_indicate_battery();
void kiss_indicate_temperature();
void measure_temperature() {
#if PLATFORM == PLATFORM_ESP32
if (pmu_temp_sensor_ready) { pmu_temperature = temperatureRead(); } else { pmu_temperature = PMU_TEMP_MIN-1; }
#endif
}
void measure_battery() {
#if BOARD_MODEL == BOARD_RNODE_NG_21 || BOARD_MODEL == BOARD_LORA32_V2_1 || BOARD_MODEL == BOARD_HELTEC32_V3 || BOARD_MODEL == BOARD_HELTEC32_V4 || BOARD_MODEL == BOARD_TDECK || BOARD_MODEL == BOARD_T3S3 || BOARD_MODEL == BOARD_HELTEC_T114 || BOARD_MODEL == BOARD_TECHO
battery_installed = true;
#if BOARD_MODEL == BOARD_HELTEC32_V3 || BOARD_MODEL == BOARD_HELTEC32_V4
battery_indeterminate = false;
#else
battery_indeterminate = true;
#endif
#if BOARD_MODEL == BOARD_HELTEC32_V3
float battery_measurement = (float)(analogRead(pin_vbat)) * 0.0041;
#elif BOARD_MODEL == BOARD_HELTEC32_V4
float battery_measurement = (float)(analogRead(pin_vbat)) * 0.00418;
#elif BOARD_MODEL == BOARD_T3S3
float battery_measurement = (float)(analogRead(pin_vbat)) / 4095.0*6.7828;
#elif BOARD_MODEL == BOARD_HELTEC_T114
float battery_measurement = (float)(analogRead(pin_vbat)) * 0.017165;
#elif BOARD_MODEL == BOARD_TECHO
float battery_measurement = (float)(analogRead(pin_vbat)) * 0.007067;
#else
float battery_measurement = (float)(analogRead(pin_vbat)) / 4095.0*7.26;
#endif
bat_v_samples[bat_samples_count%BAT_SAMPLES] = battery_measurement;
bat_p_samples[bat_samples_count%BAT_SAMPLES] = ((battery_voltage-BAT_V_MIN) / (BAT_V_MAX-BAT_V_MIN))*100.0;
bat_samples_count++;
if (!battery_ready && bat_samples_count >= BAT_SAMPLES) {
battery_ready = true;
}
if (battery_ready) {
battery_percent = 0;
for (uint8_t bi = 0; bi < BAT_SAMPLES; bi++) {
battery_percent += bat_p_samples[bi];
}
battery_percent = battery_percent/BAT_SAMPLES;
battery_voltage = 0;
for (uint8_t bi = 0; bi < BAT_SAMPLES; bi++) {
battery_voltage += bat_v_samples[bi];
}
battery_voltage = battery_voltage/BAT_SAMPLES;
if (bat_delay_v == 0) bat_delay_v = battery_voltage;
if (bat_state_change_v == 0) bat_state_change_v = battery_voltage;
if (battery_percent > 100.0) battery_percent = 100.0;
if (battery_percent < 0.0) battery_percent = 0.0;
if (bat_samples_count%BAT_SAMPLES == 0) {
pmu_sc++;
bat_delay_diff = battery_voltage-bat_state_change_v;
if (battery_voltage < bat_delay_v && battery_voltage < BAT_V_FLOAT) {
if (bat_voltage_dropping == false) {
if (bat_delay_diff < -0.008) {
bat_voltage_dropping = true;
bat_state_change_v = battery_voltage;
}
} else {
if (pmu_sc%PMU_SCV_RESET_INTERVAL == 0) { bat_state_change_v = battery_voltage; }
}
} else {
if (bat_voltage_dropping == true) {
if (bat_delay_diff > 0.01) {
bat_voltage_dropping = false;
bat_state_change_v = battery_voltage;
}
}
}
bat_samples_count = 0;
bat_delay_v = battery_voltage;
}
if (bat_voltage_dropping && battery_voltage < BAT_V_FLOAT) {
// if (battery_state != BATTERY_STATE_DISCHARGING) { SerialBT.printf("STATE CHANGE to DISCHARGING at delta=%.3fv. State change v is now %.3fv.\n", bat_delay_diff, bat_state_change_v); }
battery_state = BATTERY_STATE_DISCHARGING;
pmu_charged_ascertain = 0;
} else {
if (pmu_charged_ascertain < 8) { pmu_charged_ascertain++; }
else {
if (battery_percent < 100.0) {
// if (battery_state != BATTERY_STATE_CHARGING) { SerialBT.printf("STATE CHANGE to CHARGING at delta=%.3fv. State change v is now %.3fv.\n", bat_delay_diff, bat_state_change_v); }
battery_state = BATTERY_STATE_CHARGING;
} else {
// if (battery_state != BATTERY_STATE_CHARGED) { SerialBT.printf("STATE CHANGE to CHARGED at delta=%.3fv. State change v is now %.3fv.\n", bat_delay_diff, bat_state_change_v); }
battery_state = BATTERY_STATE_CHARGED;
}
}
}
#if MCU_VARIANT == MCU_NRF52
if (bt_state != BT_STATE_OFF) { blebas.write(battery_percent); }
#endif
// if (bt_state == BT_STATE_CONNECTED) {
// SerialBT.printf("\nBus voltage %.3fv. Unfiltered %.3fv. Diff %.3f", battery_voltage, bat_v_samples[BAT_SAMPLES-1], bat_delay_diff);
// if (bat_voltage_dropping) { SerialBT.printf("\n Voltage is dropping. Percentage %.1f%%.", battery_percent); }
// else { SerialBT.printf("\n Voltage is not dropping. Percentage %.1f%%.", battery_percent); }
// if (battery_state == BATTERY_STATE_DISCHARGING) { SerialBT.printf("\n Battery discharging. delay_v %.3fv\nState change at %.3fv", bat_delay_v, bat_state_change_v); }
// if (battery_state == BATTERY_STATE_CHARGING) { SerialBT.printf("\n Battery charging. delay_v %.3fv\nState change at %.3fv", bat_delay_v, bat_state_change_v); }
// if (battery_state == BATTERY_STATE_CHARGED) { SerialBT.print("\n Battery is charged."); }
// SerialBT.print("\n");
// }
}
#elif BOARD_MODEL == BOARD_TBEAM || BOARD_MODEL == BOARD_TBEAM_S_V1
if (PMU) {
float discharge_current = 0;
float charge_current = 0;
float ext_voltage = 0;
float ext_current = 0;
if (PMU->getChipModel() == XPOWERS_AXP192) {
discharge_current = ((XPowersAXP192*)PMU)->getBattDischargeCurrent();
charge_current = ((XPowersAXP192*)PMU)->getBatteryChargeCurrent();
battery_voltage = PMU->getBattVoltage()/1000.0;
// battery_percent = PMU->getBattPercentage()*1.0;
battery_installed = PMU->isBatteryConnect();
external_power = PMU->isVbusIn();
ext_voltage = PMU->getVbusVoltage()/1000.0;
ext_current = ((XPowersAXP192*)PMU)->getVbusCurrent();
}
else if (PMU->getChipModel() == XPOWERS_AXP2101) {
battery_voltage = PMU->getBattVoltage()/1000.0;
// battery_percent = PMU->getBattPercentage()*1.0;
battery_installed = PMU->isBatteryConnect();
external_power = PMU->isVbusIn();
ext_voltage = PMU->getVbusVoltage()/1000.0;
}
if (battery_installed) {
if (PMU->isCharging()) {
battery_state = BATTERY_STATE_CHARGING;
battery_percent = ((battery_voltage-BAT_V_MIN) / (BAT_V_MAX-BAT_V_MIN))*100.0;
} else {
if (PMU->isDischarge()) {
battery_state = BATTERY_STATE_DISCHARGING;
battery_percent = ((battery_voltage-BAT_V_MIN) / (BAT_V_MAX-BAT_V_MIN))*100.0;
} else {
battery_state = BATTERY_STATE_CHARGED;
battery_percent = 100.0;
}
}
} else {
battery_state = BATTERY_STATE_UNKNOWN;
battery_percent = 0.0;
battery_voltage = 0.0;
}
if (battery_percent > 100.0) battery_percent = 100.0;
if (battery_percent < 0.0) battery_percent = 0.0;
float charge_watts = battery_voltage*(charge_current/1000.0);
float discharge_watts = battery_voltage*(discharge_current/1000.0);
float ext_watts = ext_voltage*(ext_current/1000.0);
battery_ready = true;
// if (bt_state == BT_STATE_CONNECTED) {
// if (battery_installed) {
// if (external_power) {
// SerialBT.printf("External power connected, drawing %.2fw, %.1fmA at %.1fV\n", ext_watts, ext_current, ext_voltage);
// } else {
// SerialBT.println("Running on battery");
// }
// SerialBT.printf("Battery percentage %.1f%%\n", battery_percent);
// SerialBT.printf("Battery voltage %.2fv\n", battery_voltage);
// // SerialBT.printf("Temperature %.1f%\n", auxillary_temperature);
// if (battery_state == BATTERY_STATE_CHARGING) {
// SerialBT.printf("Charging with %.2fw, %.1fmA at %.1fV\n", charge_watts, charge_current, battery_voltage);
// } else if (battery_state == BATTERY_STATE_DISCHARGING) {
// SerialBT.printf("Discharging at %.2fw, %.1fmA at %.1fV\n", discharge_watts, discharge_current, battery_voltage);
// } else if (battery_state == BATTERY_STATE_CHARGED) {
// SerialBT.printf("Battery charged\n");
// }
// } else {
// SerialBT.println("No battery installed");
// }
// SerialBT.println("");
// }
}
else {
battery_ready = false;
}
#endif
if (battery_ready) {
pmu_rc++;
if (pmu_rc%PMU_R_INTERVAL == 0) {
kiss_indicate_battery();
if (pmu_temp_sensor_ready) { kiss_indicate_temperature(); }
}
}
}
void update_pmu() {
if (millis()-last_pmu_update >= pmu_update_interval) {
measure_battery();
measure_temperature();
last_pmu_update = millis();
}
}
bool init_pmu() {
#if IS_ESP32S3
pmu_temp_sensor_ready = true;
#endif
#if BOARD_MODEL == BOARD_RNODE_NG_21 || BOARD_MODEL == BOARD_LORA32_V2_1 || BOARD_MODEL == BOARD_TDECK || BOARD_MODEL == BOARD_T3S3 || BOARD_MODEL == BOARD_TECHO
pinMode(pin_vbat, INPUT);
return true;
#elif BOARD_MODEL == BOARD_HELTEC32_V3
// there are three version of V3: V3, V3.1, and V3.2
// V3 and V3.1 have a pull up on pin_ctrl and are active low
// V3.2 has a transistor and active high
// put the pin input mode and read it. if it's high, we have V3 or V3.1
// other wise, it's a V3.2
uint16_t pin_ctrl_value;
uint8_t pin_ctrl_active = LOW;
pinMode(pin_ctrl, INPUT);
pin_ctrl_value = digitalRead(pin_ctrl);
if(pin_ctrl_value == HIGH) {
// We have either a V3 or V3.1
pin_ctrl_active = LOW;
}
else {
// We have a V3.2
pin_ctrl_active = HIGH;
}
pinMode(pin_ctrl,OUTPUT);
digitalWrite(pin_ctrl, pin_ctrl_active);
return true;
#elif BOARD_MODEL == BOARD_HELTEC32_V4
pinMode(pin_ctrl,OUTPUT);
digitalWrite(pin_ctrl, HIGH);
return true;
#elif BOARD_MODEL == BOARD_HELTEC_T114
pinMode(pin_ctrl,OUTPUT);
digitalWrite(pin_ctrl, HIGH);
return true;
#elif BOARD_MODEL == BOARD_TBEAM
Wire.begin(I2C_SDA, I2C_SCL);
if (!PMU) {
PMU = new XPowersAXP2101(PMU_WIRE_PORT);
if (!PMU->init()) {
delete PMU;
PMU = NULL;
}
}
if (!PMU) {
PMU = new XPowersAXP192(PMU_WIRE_PORT);
if (!PMU->init()) {
delete PMU;
PMU = NULL;
}
}
if (!PMU) {
return false;
}
// Configure charging indicator
PMU->setChargingLedMode(XPOWERS_CHG_LED_OFF);
pinMode(PMU_IRQ, INPUT_PULLUP);
attachInterrupt(PMU_IRQ, setPmuFlag, FALLING);
if (PMU->getChipModel() == XPOWERS_AXP192) {
// Turn off unused power sources to save power
PMU->disablePowerOutput(XPOWERS_DCDC1);
PMU->disablePowerOutput(XPOWERS_DCDC2);
PMU->disablePowerOutput(XPOWERS_LDO2);
PMU->disablePowerOutput(XPOWERS_LDO3);
// Set the power of LoRa and GPS module to 3.3V
// LoRa
PMU->setPowerChannelVoltage(XPOWERS_LDO2, 3300);
// GPS
PMU->setPowerChannelVoltage(XPOWERS_LDO3, 3300);
// OLED
PMU->setPowerChannelVoltage(XPOWERS_DCDC1, 3300);
// Turn on LoRa
PMU->enablePowerOutput(XPOWERS_LDO2);
// Turn on GPS
//PMU->enablePowerOutput(XPOWERS_LDO3);
// protected oled power source
PMU->setProtectedChannel(XPOWERS_DCDC1);
// protected esp32 power source
PMU->setProtectedChannel(XPOWERS_DCDC3);
// enable oled power
PMU->enablePowerOutput(XPOWERS_DCDC1);
PMU->disableIRQ(XPOWERS_AXP192_ALL_IRQ);
PMU->enableIRQ(XPOWERS_AXP192_VBUS_REMOVE_IRQ |
XPOWERS_AXP192_VBUS_INSERT_IRQ |
XPOWERS_AXP192_BAT_CHG_DONE_IRQ |
XPOWERS_AXP192_BAT_CHG_START_IRQ |
XPOWERS_AXP192_BAT_REMOVE_IRQ |
XPOWERS_AXP192_BAT_INSERT_IRQ |
XPOWERS_AXP192_PKEY_SHORT_IRQ
);
}
else if (PMU->getChipModel() == XPOWERS_AXP2101) {
// Turn off unused power sources to save power
PMU->disablePowerOutput(XPOWERS_DCDC2);
PMU->disablePowerOutput(XPOWERS_DCDC3);
PMU->disablePowerOutput(XPOWERS_DCDC4);
PMU->disablePowerOutput(XPOWERS_DCDC5);
PMU->disablePowerOutput(XPOWERS_ALDO1);
PMU->disablePowerOutput(XPOWERS_ALDO2);
PMU->disablePowerOutput(XPOWERS_ALDO3);
PMU->disablePowerOutput(XPOWERS_ALDO4);
PMU->disablePowerOutput(XPOWERS_BLDO1);
PMU->disablePowerOutput(XPOWERS_BLDO2);
PMU->disablePowerOutput(XPOWERS_DLDO1);
PMU->disablePowerOutput(XPOWERS_DLDO2);
PMU->disablePowerOutput(XPOWERS_VBACKUP);
// Set the power of LoRa and GPS module to 3.3V
// LoRa
PMU->setPowerChannelVoltage(XPOWERS_ALDO2, 3300);
// GPS
PMU->setPowerChannelVoltage(XPOWERS_ALDO3, 3300);
PMU->setPowerChannelVoltage(XPOWERS_VBACKUP, 3300);
// ESP32 VDD
// ! No need to set, automatically open , Don't close it
// PMU->setPowerChannelVoltage(XPOWERS_DCDC1, 3300);
// PMU->setProtectedChannel(XPOWERS_DCDC1);
PMU->setProtectedChannel(XPOWERS_DCDC1);
// LoRa VDD
PMU->enablePowerOutput(XPOWERS_ALDO2);
// GNSS VDD
//PMU->enablePowerOutput(XPOWERS_ALDO3);
// GNSS RTC PowerVDD
//PMU->enablePowerOutput(XPOWERS_VBACKUP);
}
PMU->enableSystemVoltageMeasure();
PMU->enableVbusVoltageMeasure();
PMU->enableBattVoltageMeasure();
// It is necessary to disable the detection function of the TS pin on the board
// without the battery temperature detection function, otherwise it will cause abnormal charging
PMU->disableTSPinMeasure();
// Set the time of pressing the button to turn off
PMU->setPowerKeyPressOffTime(XPOWERS_POWEROFF_4S);
return true;
#elif BOARD_MODEL == BOARD_TBEAM_S_V1
Wire1.begin(I2C_SDA, I2C_SCL);
if (!PMU) {
PMU = new XPowersAXP2101(PMU_WIRE_PORT);
if (!PMU->init()) {
delete PMU;
PMU = NULL;
}
}
if (!PMU) {
return false;
}
/**
* gnss module power channel
* The default ALDO4 is off, you need to turn on the GNSS power first, otherwise it will be invalid during
* initialization
*/
PMU->setPowerChannelVoltage(XPOWERS_ALDO4, 3300);
PMU->enablePowerOutput(XPOWERS_ALDO4);
// lora radio power channel
PMU->setPowerChannelVoltage(XPOWERS_ALDO3, 3300);
PMU->enablePowerOutput(XPOWERS_ALDO3);
// m.2 interface
PMU->setPowerChannelVoltage(XPOWERS_DCDC3, 3300);
PMU->enablePowerOutput(XPOWERS_DCDC3);
/**
* ALDO2 cannot be turned off.
* It is a necessary condition for sensor communication.
* It must be turned on to properly access the sensor and screen
* It is also responsible for the power supply of PCF8563
*/
PMU->setPowerChannelVoltage(XPOWERS_ALDO2, 3300);
PMU->enablePowerOutput(XPOWERS_ALDO2);
// 6-axis , magnetometer ,bme280 , oled screen power channel
PMU->setPowerChannelVoltage(XPOWERS_ALDO1, 3300);
PMU->enablePowerOutput(XPOWERS_ALDO1);
// sdcard power channle
PMU->setPowerChannelVoltage(XPOWERS_BLDO1, 3300);
PMU->enablePowerOutput(XPOWERS_BLDO1);
// PMU->setPowerChannelVoltage(XPOWERS_DCDC4, 3300);
// PMU->enablePowerOutput(XPOWERS_DCDC4);
// not use channel
PMU->disablePowerOutput(XPOWERS_DCDC2); // not elicited
PMU->disablePowerOutput(XPOWERS_DCDC5); // not elicited
PMU->disablePowerOutput(XPOWERS_DLDO1); // Invalid power channel, it does not exist
PMU->disablePowerOutput(XPOWERS_DLDO2); // Invalid power channel, it does not exist
PMU->disablePowerOutput(XPOWERS_VBACKUP);
// Configure charging
PMU->setChargeTargetVoltage(XPOWERS_AXP2101_CHG_VOL_4V2);
PMU->setChargerConstantCurr(XPOWERS_AXP2101_CHG_CUR_500MA);
// TODO: Reset
PMU->setChargingLedMode(XPOWERS_CHG_LED_CTRL_CHG);
// Set the time of pressing the button to turn off
PMU->setPowerKeyPressOffTime(XPOWERS_POWEROFF_4S);
PMU->setPowerKeyPressOnTime(XPOWERS_POWERON_128MS);
// disable all axp chip interrupt
PMU->disableIRQ(XPOWERS_AXP2101_ALL_IRQ);
PMU->clearIrqStatus();
// It is necessary to disable the detection function of the TS pin on the board
// without the battery temperature detection function, otherwise it will cause abnormal charging
PMU->disableTSPinMeasure();
PMU->enableVbusVoltageMeasure();
PMU->enableBattVoltageMeasure();
return true;
#else
return false;
#endif
}

File diff suppressed because it is too large Load diff

55
RNode_Firmware/ROM.h Normal file
View file

@ -0,0 +1,55 @@
// Copyright (C) 2024, Mark Qvist
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
#ifndef ROM_H
#define ROM_H
#define CHECKSUMMED_SIZE 0x0B
// ROM address map ///////////////
#define ADDR_PRODUCT 0x00
#define ADDR_MODEL 0x01
#define ADDR_HW_REV 0x02
#define ADDR_SERIAL 0x03
#define ADDR_MADE 0x07
#define ADDR_CHKSUM 0x0B
#define ADDR_SIGNATURE 0x1B
#define ADDR_INFO_LOCK 0x9B
#define ADDR_CONF_SF 0x9C
#define ADDR_CONF_CR 0x9D
#define ADDR_CONF_TXP 0x9E
#define ADDR_CONF_BW 0x9F
#define ADDR_CONF_FREQ 0xA3
#define ADDR_CONF_OK 0xA7
#define ADDR_CONF_BT 0xB0
#define ADDR_CONF_DSET 0xB1
#define ADDR_CONF_DINT 0xB2
#define ADDR_CONF_DADR 0xB3
#define ADDR_CONF_DBLK 0xB4
#define ADDR_CONF_DROT 0xB8
#define ADDR_CONF_PSET 0xB5
#define ADDR_CONF_PINT 0xB6
#define ADDR_CONF_BSET 0xB7
#define ADDR_CONF_DIA 0xB9
#define INFO_LOCK_BYTE 0x73
#define CONF_OK_BYTE 0x73
#define BT_ENABLE_BYTE 0x73
#define EEPROM_RESERVED 200
//////////////////////////////////
#endif

440
RNode_Firmware/ST7789.h Normal file
View file

@ -0,0 +1,440 @@
/**
* The MIT License (MIT)
*
* Copyright (c) 2018 by ThingPulse, Daniel Eichhorn
* Copyright (c) 2018 by Fabrice Weinberg
* Copyright (c) 2024 by Heltec AutoMation
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* ThingPulse invests considerable time and money to develop these open source libraries.
* Please support us by buying our products (and not the clones) from
* https://thingpulse.com
*
*/
#ifndef ST7789Spi_h
#define ST7789Spi_h
#include "OLEDDisplay.h"
#include <SPI.h>
#define ST_CMD_DELAY 0x80 // special signifier for command lists
#define ST77XX_NOP 0x00
#define ST77XX_SWRESET 0x01
#define ST77XX_RDDID 0x04
#define ST77XX_RDDST 0x09
#define ST77XX_SLPIN 0x10
#define ST77XX_SLPOUT 0x11
#define ST77XX_PTLON 0x12
#define ST77XX_NORON 0x13
#define ST77XX_INVOFF 0x20
#define ST77XX_INVON 0x21
#define ST77XX_DISPOFF 0x28
#define ST77XX_DISPON 0x29
#define ST77XX_CASET 0x2A
#define ST77XX_RASET 0x2B
#define ST77XX_RAMWR 0x2C
#define ST77XX_RAMRD 0x2E
#define ST77XX_PTLAR 0x30
#define ST77XX_TEOFF 0x34
#define ST77XX_TEON 0x35
#define ST77XX_MADCTL 0x36
#define ST77XX_COLMOD 0x3A
#define ST77XX_MADCTL_MY 0x80
#define ST77XX_MADCTL_MX 0x40
#define ST77XX_MADCTL_MV 0x20
#define ST77XX_MADCTL_ML 0x10
#define ST77XX_MADCTL_RGB 0x00
#define ST77XX_RDID1 0xDA
#define ST77XX_RDID2 0xDB
#define ST77XX_RDID3 0xDC
#define ST77XX_RDID4 0xDD
// Some ready-made 16-bit ('565') color settings:
#define ST77XX_BLACK 0x0000
#define ST77XX_WHITE 0xFFFF
#define ST77XX_RED 0xF800
#define ST77XX_GREEN 0x07E0
#define ST77XX_BLUE 0x001F
#define ST77XX_CYAN 0x07FF
#define ST77XX_MAGENTA 0xF81F
#define ST77XX_YELLOW 0xFFE0
#define ST77XX_ORANGE 0xFC00
#define LED_A_ON LOW
#ifdef ESP_PLATFORM
#undef LED_A_ON
#define LED_A_ON HIGH
#define rtos_free free
#define rtos_malloc malloc
//SPIClass SPI1(HSPI);
#endif
class ST7789Spi : public OLEDDisplay {
private:
uint8_t _rst;
uint8_t _dc;
uint8_t _cs;
uint8_t _ledA;
int _miso;
int _mosi;
int _clk;
SPIClass * _spi;
SPISettings _spiSettings;
uint16_t _RGB=0xFFFF;
uint8_t _buffheight;
public:
/* pass _cs as -1 to indicate "do not use CS pin", for cases where it is hard wired low */
ST7789Spi(SPIClass *spiClass,uint8_t _rst, uint8_t _dc, uint8_t _cs, OLEDDISPLAY_GEOMETRY g = GEOMETRY_RAWMODE,uint16_t width=240,uint16_t height=320,int mosi=-1,int miso=-1,int clk=-1) {
this->_spi = spiClass;
this->_rst = _rst;
this->_dc = _dc;
this->_cs = _cs;
this->_mosi=mosi;
this->_miso=miso;
this->_clk=clk;
//this->_ledA = _ledA;
_spiSettings = SPISettings(40000000, MSBFIRST, SPI_MODE0);
setGeometry(g,width,height);
}
bool connect(){
this->_buffheight=displayHeight / 8;
this->_buffheight+=displayHeight % 8 ? 1:0;
pinMode(_cs, OUTPUT);
pinMode(_dc, OUTPUT);
//pinMode(_ledA, OUTPUT);
if (_cs != (uint8_t) -1) {
pinMode(_cs, OUTPUT);
}
pinMode(_rst, OUTPUT);
#ifdef ESP_PLATFORM
_spi->begin(_clk,_miso,_mosi,-1);
#else
_spi->begin();
#endif
_spi->setClockDivider (SPI_CLOCK_DIV2);
// Pulse Reset low for 10ms
digitalWrite(_rst, HIGH);
delay(1);
digitalWrite(_rst, LOW);
delay(10);
digitalWrite(_rst, HIGH);
_spi->begin ();
//digitalWrite(_ledA, LED_A_ON);
return true;
}
void display(void) {
#ifdef OLEDDISPLAY_DOUBLE_BUFFER
uint16_t minBoundY = UINT16_MAX;
uint16_t maxBoundY = 0;
uint16_t minBoundX = UINT16_MAX;
uint16_t maxBoundX = 0;
uint16_t x, y;
// Calculate the Y bounding box of changes
// and copy buffer[pos] to buffer_back[pos];
for (y = 0; y < _buffheight; y++) {
for (x = 0; x < displayWidth; x++) {
//Serial.printf("x %d y %d\r\n",x,y);
uint16_t pos = x + y * displayWidth;
if (buffer[pos] != buffer_back[pos]) {
minBoundY = min(minBoundY, y);
maxBoundY = max(maxBoundY, y);
minBoundX = min(minBoundX, x);
maxBoundX = max(maxBoundX, x);
}
buffer_back[pos] = buffer[pos];
}
yield();
}
// If the minBoundY wasn't updated
// we can savely assume that buffer_back[pos] == buffer[pos]
// holdes true for all values of pos
if (minBoundY == UINT16_MAX) return;
set_CS(LOW);
_spi->beginTransaction(_spiSettings);
for (y = minBoundY; y <= maxBoundY; y++)
{
for(int temp = 0; temp<8;temp++)
{
//setAddrWindow(minBoundX,y*8+temp,maxBoundX-minBoundX+1,1);
setAddrWindow(minBoundX,y*8+temp,maxBoundX-minBoundX+1,1);
//setAddrWindow(y*8+temp,minBoundX,1,maxBoundX-minBoundX+1);
uint32_t const pixbufcount = maxBoundX-minBoundX+1;
uint16_t *pixbuf = (uint16_t *)rtos_malloc(2 * pixbufcount);
for (x = minBoundX; x <= maxBoundX; x++)
{
pixbuf[x-minBoundX] = ((buffer[x + y * displayWidth]>>temp)&0x01)==1?_RGB:0;
}
#ifdef ESP_PLATFORM
_spi->transferBytes((uint8_t *)pixbuf, NULL, 2 * pixbufcount);
#else
_spi->transfer(pixbuf, NULL, 2 * pixbufcount);
#endif
rtos_free(pixbuf);
}
}
_spi->endTransaction();
set_CS(HIGH);
#else
set_CS(LOW);
_spi->beginTransaction(_spiSettings);
uint8_t x, y;
for (y = 0; y < _buffheight; y++)
{
for(int temp = 0; temp<8;temp++)
{
//setAddrWindow(minBoundX,y*8+temp,maxBoundX-minBoundX+1,1);
//setAddrWindow(minBoundX,y*8+temp,maxBoundX-minBoundX+1,1);
setAddrWindow(y*8+temp,0,1,displayWidth);
uint32_t const pixbufcount = displayWidth;
uint16_t *pixbuf = (uint16_t *)rtos_malloc(2 * pixbufcount);
for (x = 0; x < displayWidth; x++)
{
pixbuf[x] = ((buffer[x + y * displayWidth]>>temp)&0x01)==1?_RGB:0;
}
#ifdef ESP_PLATFORM
_spi->transferBytes((uint8_t *)pixbuf, NULL, 2 * pixbufcount);
#else
_spi->transfer(pixbuf, NULL, 2 * pixbufcount);
#endif
rtos_free(pixbuf);
}
}
_spi->endTransaction();
set_CS(HIGH);
#endif
}
virtual void resetOrientation() {
uint8_t madctl = ST77XX_MADCTL_RGB|ST77XX_MADCTL_MV|ST77XX_MADCTL_MX;
sendCommand(ST77XX_MADCTL);
WriteData(madctl);
delay(10);
}
virtual void flipScreenVertically() {
uint8_t madctl = ST77XX_MADCTL_RGB|ST77XX_MADCTL_MV|ST77XX_MADCTL_MY;
sendCommand(ST77XX_MADCTL);
WriteData(madctl);
delay(10);
}
virtual void mirrorScreen() {
uint8_t madctl = ST77XX_MADCTL_RGB|ST77XX_MADCTL_MV|ST77XX_MADCTL_MX|ST77XX_MADCTL_MY;
sendCommand(ST77XX_MADCTL);
WriteData(madctl);
delay(10);
}
virtual void setRotation(uint8_t r) {
uint8_t madctl = ST77XX_MADCTL_RGB|ST77XX_MADCTL_MV|ST77XX_MADCTL_MX;
if (r == 1) { madctl = 0xC0; }
if (r == 2) { madctl = ST77XX_MADCTL_RGB|ST77XX_MADCTL_MV|ST77XX_MADCTL_MY; }
if (r == 3) { madctl = 0x00; }
sendCommand(ST77XX_MADCTL);
WriteData(madctl);
delay(10);
}
void setRGB(uint16_t c)
{
this->_RGB=0x00|c>>8|c<<8&0xFF00;
}
void displayOn(void) {
//sendCommand(DISPLAYON);
}
void displayOff(void) {
//sendCommand(DISPLAYOFF);
}
//#define ST77XX_MADCTL_MY 0x80
//#define ST77XX_MADCTL_MX 0x40
//#define ST77XX_MADCTL_MV 0x20
//#define ST77XX_MADCTL_ML 0x10
protected:
// Send all the init commands
virtual void sendInitCommands()
{
sendCommand(ST77XX_SWRESET); // 1: Software reset, no args, w/delay
delay(150);
sendCommand(ST77XX_SLPOUT); // 2: Out of sleep mode, no args, w/delay
delay(10);
sendCommand(ST77XX_COLMOD); // 3: Set color mode, 16-bit color
WriteData(0x55);
delay(10);
sendCommand(ST77XX_MADCTL); // 4: Mem access ctrl (directions), Row/col addr, bottom-top refresh
WriteData(0x08);
sendCommand(ST77XX_CASET); // 5: Column addr set,
WriteData(0x00);
WriteData(0x00); // XSTART = 0
WriteData(0x00);
WriteData(240); // XEND = 240
sendCommand(ST77XX_RASET); // 6: Row addr set,
WriteData(0x00);
WriteData(0x00); // YSTART = 0
WriteData(320>>8);
WriteData(320&0xFF); // YSTART = 320
sendCommand(ST77XX_SLPOUT); // 7: hack
delay(10);
sendCommand(ST77XX_NORON); // 8: Normal display on, no args, w/delay
delay(10);
sendCommand(ST77XX_DISPON); // 9: Main screen turn on, no args, delay
delay(10);
sendCommand(ST77XX_INVON); // 10: invert
delay(10);
//uint8_t madctl = ST77XX_MADCTL_RGB|ST77XX_MADCTL_MX;
uint8_t madctl = ST77XX_MADCTL_RGB|ST77XX_MADCTL_MV|ST77XX_MADCTL_MX;
sendCommand(ST77XX_MADCTL);
WriteData(madctl);
delay(10);
setRGB(ST77XX_GREEN);
}
private:
void setAddrWindow(uint16_t x, uint16_t y, uint16_t w, uint16_t h) {
x += (320-displayWidth)/2;
y += (240-displayHeight)/2;
uint32_t xa = ((uint32_t)x << 16) | (x + w - 1);
uint32_t ya = ((uint32_t)y << 16) | (y + h - 1);
writeCommand(ST77XX_CASET); // Column addr set
SPI_WRITE32(xa);
writeCommand(ST77XX_RASET); // Row addr set
SPI_WRITE32(ya);
writeCommand(ST77XX_RAMWR); // write to RAM
}
int getBufferOffset(void) {
return 0;
}
inline void set_CS(bool level) {
if (_cs != (uint8_t) -1) {
digitalWrite(_cs, level);
}
};
inline void sendCommand(uint8_t com) __attribute__((always_inline)){
set_CS(HIGH);
digitalWrite(_dc, LOW);
set_CS(LOW);
_spi->beginTransaction(_spiSettings);
_spi->transfer(com);
_spi->endTransaction();
set_CS(HIGH);
digitalWrite(_dc, HIGH);
}
inline void WriteData(uint8_t data) __attribute__((always_inline)){
digitalWrite(_cs, LOW);
_spi->beginTransaction(_spiSettings);
_spi->transfer(data);
_spi->endTransaction();
digitalWrite(_cs, HIGH);
}
void SPI_WRITE32(uint32_t l)
{
_spi->transfer(l >> 24);
_spi->transfer(l >> 16);
_spi->transfer(l >> 8);
_spi->transfer(l);
}
void writeCommand(uint8_t cmd) {
digitalWrite(_dc, LOW);
_spi->transfer(cmd);
digitalWrite(_dc, HIGH);
}
// Private functions
void setGeometry(OLEDDISPLAY_GEOMETRY g, uint16_t width, uint16_t height) {
this->geometry = g;
switch (g) {
case GEOMETRY_128_128:
this->displayWidth = 128;
this->displayHeight = 128;
break;
case GEOMETRY_128_64:
this->displayWidth = 128;
this->displayHeight = 64;
break;
case GEOMETRY_128_32:
this->displayWidth = 128;
this->displayHeight = 32;
break;
case GEOMETRY_64_48:
this->displayWidth = 64;
this->displayHeight = 48;
break;
case GEOMETRY_64_32:
this->displayWidth = 64;
this->displayHeight = 32;
break;
case GEOMETRY_RAWMODE:
this->displayWidth = width > 0 ? width : 128;
this->displayHeight = height > 0 ? height : 64;
break;
}
uint8_t tmp=displayHeight % 8;
uint8_t _buffheight=displayHeight / 8;
if(tmp!=0)
_buffheight++;
this->displayBufferSize = displayWidth * _buffheight ;
}
};
#endif

1987
RNode_Firmware/Utilities.h Normal file

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,242 @@
// E-Ink display driver for LCMEN2R13EFC1
// Adapted from Meshtastic NicheGraphics driver
#include "LCMEN2R13EFC1.h"
// Look-up tables for FAST refresh
static const uint8_t LUT_FAST_VCOMDC[] = {
0x01, 0x06, 0x03, 0x02, 0x01, 0x01, 0x01,
0x01, 0x06, 0x02, 0x01, 0x01, 0x01, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
static const uint8_t LUT_FAST_WW[] = {
0x01, 0x06, 0x03, 0x02, 0x81, 0x01, 0x01,
0x01, 0x06, 0x02, 0x01, 0x01, 0x01, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
static const uint8_t LUT_FAST_BW[] = {
0x01, 0x86, 0x83, 0x82, 0x81, 0x01, 0x01,
0x01, 0x86, 0x82, 0x01, 0x01, 0x01, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
static const uint8_t LUT_FAST_WB[] = {
0x01, 0x46, 0x43, 0x02, 0x01, 0x01, 0x01,
0x01, 0x46, 0x42, 0x01, 0x01, 0x01, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
static const uint8_t LUT_FAST_BB[] = {
0x01, 0x06, 0x03, 0x42, 0x41, 0x01, 0x01,
0x01, 0x06, 0x02, 0x01, 0x01, 0x01, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
LCMEN2R13EFC1::LCMEN2R13EFC1()
: _spiSettings(6000000, MSBFIRST, SPI_MODE0)
{
// Calculate buffer size (8 pixels per byte)
_bufferRowSize = ((DISPLAY_WIDTH - 1) / 8) + 1; // 122px -> 16 bytes
_bufferSize = _bufferRowSize * DISPLAY_HEIGHT; // 16 * 250 = 4000 bytes
}
void LCMEN2R13EFC1::begin(SPIClass *spi, uint8_t pin_dc, uint8_t pin_cs, uint8_t pin_busy, uint8_t pin_rst) {
_spi = spi;
_pin_dc = pin_dc;
_pin_cs = pin_cs;
_pin_busy = pin_busy;
_pin_rst = pin_rst;
pinMode(_pin_dc, OUTPUT);
pinMode(_pin_cs, OUTPUT);
pinMode(_pin_busy, INPUT);
pinMode(_pin_rst, INPUT_PULLUP); // Active low, hold high
reset();
}
void LCMEN2R13EFC1::reset() {
pinMode(_pin_rst, OUTPUT);
digitalWrite(_pin_rst, LOW);
delay(10);
pinMode(_pin_rst, INPUT_PULLUP);
wait();
sendCommand(0x12); // Software reset
wait();
}
void LCMEN2R13EFC1::wait() {
// Busy when LOW
while (digitalRead(_pin_busy) == LOW) {
yield();
}
}
bool LCMEN2R13EFC1::isBusy() {
return (digitalRead(_pin_busy) == LOW);
}
void LCMEN2R13EFC1::sendCommand(const uint8_t command) {
_spi->beginTransaction(_spiSettings);
digitalWrite(_pin_dc, LOW); // DC low = command
digitalWrite(_pin_cs, LOW);
_spi->transfer(command);
digitalWrite(_pin_cs, HIGH);
digitalWrite(_pin_dc, HIGH);
_spi->endTransaction();
}
void LCMEN2R13EFC1::sendData(uint8_t data) {
sendData(&data, 1);
}
void LCMEN2R13EFC1::sendData(const uint8_t *data, uint32_t size) {
_spi->beginTransaction(_spiSettings);
digitalWrite(_pin_dc, HIGH); // DC high = data
digitalWrite(_pin_cs, LOW);
#if defined(ARCH_ESP32) || defined(ESP32)
_spi->transferBytes(data, NULL, size);
#else
for (uint32_t i = 0; i < size; i++) {
_spi->transfer(data[i]);
}
#endif
digitalWrite(_pin_cs, HIGH);
digitalWrite(_pin_dc, HIGH);
_spi->endTransaction();
}
void LCMEN2R13EFC1::configFull() {
sendCommand(0x00); // Panel setting register
sendData(0b11 << 6 // Display resolution
| 1 << 4 // B&W only
| 1 << 3 // Vertical scan direction
| 1 << 2 // Horizontal scan direction
| 1 << 1 // Shutdown: no
| 1 << 0 // Reset: no
);
sendCommand(0x50); // VCOM and data interval setting
sendData(0b10 << 6 // Border driven white
| 0b11 << 4 // Invert image colors: no
| 0b0111 // Interval between VCOM on and image data
);
}
void LCMEN2R13EFC1::configFast() {
sendCommand(0x00); // Panel setting register
sendData(0b11 << 6 // Display resolution
| 1 << 5 // LUT from registers (set below)
| 1 << 4 // B&W only
| 1 << 3 // Vertical scan direction
| 1 << 2 // Horizontal scan direction
| 1 << 1 // Shutdown: no
| 1 << 0 // Reset: no
);
sendCommand(0x50); // VCOM and data interval setting
sendData(0b11 << 6 // Border floating
| 0b01 << 4 // Invert image colors: no
| 0b0111 // Interval between VCOM on and image data
);
// Load LUT tables
sendCommand(0x20); // VCOM
sendData(LUT_FAST_VCOMDC, sizeof(LUT_FAST_VCOMDC));
sendCommand(0x21); // White -> White
sendData(LUT_FAST_WW, sizeof(LUT_FAST_WW));
sendCommand(0x22); // Black -> White
sendData(LUT_FAST_BW, sizeof(LUT_FAST_BW));
sendCommand(0x23); // White -> Black
sendData(LUT_FAST_WB, sizeof(LUT_FAST_WB));
sendCommand(0x24); // Black -> Black
sendData(LUT_FAST_BB, sizeof(LUT_FAST_BB));
}
void LCMEN2R13EFC1::writeNewImage() {
sendCommand(0x13);
sendData(_buffer, _bufferSize);
}
void LCMEN2R13EFC1::writeOldImage() {
sendCommand(0x10);
sendData(_buffer, _bufferSize);
}
void LCMEN2R13EFC1::update(uint8_t *imageData, UpdateType type) {
_updateType = type;
_buffer = imageData;
reset();
// Configure display
if (_updateType == UPDATE_FULL) {
configFull();
} else {
configFast();
}
// Transfer image data
if (_updateType == UPDATE_FULL) {
writeNewImage();
writeOldImage();
} else {
writeNewImage();
}
// Power on and start refresh
sendCommand(0x04); // Power on panel voltage
wait();
sendCommand(0x12); // Begin executing update
wait();
// Power off
sendCommand(0x02);
wait();
// Update "old memory" for next differential refresh
if (_updateType != UPDATE_FULL) {
writeOldImage();
wait();
}
}
void LCMEN2R13EFC1::powerOn() {
sendCommand(0x04);
wait();
}
void LCMEN2R13EFC1::powerOff() {
sendCommand(0x02);
wait();
}

View file

@ -0,0 +1,59 @@
// E-Ink display driver for LCMEN2R13EFC1 (Heltec VisionMaster E213)
// Adapted from Meshtastic firmware for RNode use
// Controller IC: Fitipower JD79656
// Resolution: 122x250 pixels (width x height)
// Supports FAST (partial) and FULL refresh
#ifndef LCMEN2R13EFC1_H
#define LCMEN2R13EFC1_H
#include <Arduino.h>
#include <SPI.h>
class LCMEN2R13EFC1 {
public:
// Display properties
static constexpr uint16_t DISPLAY_WIDTH = 122;
static constexpr uint16_t DISPLAY_HEIGHT = 250;
// Update types
enum UpdateType {
UPDATE_FULL = 0, // Full refresh (slower, ~3.6s)
UPDATE_FAST = 1 // Partial refresh (faster, ~720ms)
};
LCMEN2R13EFC1();
void begin(SPIClass *spi, uint8_t pin_dc, uint8_t pin_cs, uint8_t pin_busy, uint8_t pin_rst);
void update(uint8_t *imageData, UpdateType type);
bool isBusy();
void powerOn();
void powerOff();
private:
SPIClass *_spi;
uint8_t _pin_dc;
uint8_t _pin_cs;
uint8_t _pin_busy;
uint8_t _pin_rst;
SPISettings _spiSettings;
uint8_t *_buffer;
uint16_t _bufferRowSize;
uint32_t _bufferSize;
UpdateType _updateType;
void reset();
void wait();
void sendCommand(const uint8_t command);
void sendData(uint8_t data);
void sendData(const uint8_t *data, uint32_t size);
void configFull();
void configFast();
void writeNewImage();
void writeOldImage();
};
#endif // LCMEN2R13EFC1_H

View file

@ -0,0 +1,41 @@
// E-Ink display chip detection for VME213
// Detects between LCMEN213EFC1 (V1) and E0213A367 (V1.1)
// Based on Meshtastic einkDetect.h
#ifndef EINK_DETECT_VME213_H
#define EINK_DETECT_VME213_H
#include <Arduino.h>
enum EInkChipType {
EINK_LCMEN213EFC1 = 0, // Initial version (Fitipower JD79656)
EINK_E0213A367 = 1 // V1.1+ (Solomon Systech SSD1682)
};
// Detect E-Ink controller IC type by BUSY pin logic
// Fitipower: BUSY=LOW when busy
// Solomon Systech: BUSY=HIGH when busy
inline EInkChipType detectEInkChip(uint8_t pin_reset, uint8_t pin_busy) {
// Force display BUSY by holding reset pin active
pinMode(pin_reset, OUTPUT);
digitalWrite(pin_reset, LOW);
delay(10);
// Read BUSY pin logic while display is busy
pinMode(pin_busy, INPUT);
bool busyLogic = digitalRead(pin_busy);
// Release reset pin
pinMode(pin_reset, INPUT);
// Fitipower = LOW when busy
// Solomon = HIGH when busy
if (busyLogic == LOW) {
return EINK_LCMEN213EFC1;
} else {
return EINK_E0213A367;
}
}
#endif // EINK_DETECT_VME213_H

803
RNode_Firmware/sx126x.cpp Normal file
View file

@ -0,0 +1,803 @@
// Copyright Sandeep Mistry, Mark Qvist and Jacob Eva.
// Licensed under the MIT license.
#include "Boards.h"
#if MODEM == SX1262
#include "sx126x.h"
#if MCU_VARIANT == MCU_ESP32
#if MCU_VARIANT == MCU_ESP32 and !defined(CONFIG_IDF_TARGET_ESP32S3)
#include "soc/rtc_wdt.h"
#endif
#define ISR_VECT IRAM_ATTR
#else
#define ISR_VECT
#endif
#define OP_RF_FREQ_6X 0x86
#define OP_SLEEP_6X 0x84
#define OP_STANDBY_6X 0x80
#define OP_TX_6X 0x83
#define OP_RX_6X 0x82
#define OP_PA_CONFIG_6X 0x95
#define OP_SET_IRQ_FLAGS_6X 0x08 // Also provides info such as
// preamble detection, etc for
// knowing when it's safe to switch
// antenna modes
#define OP_CLEAR_IRQ_STATUS_6X 0x02
#define OP_GET_IRQ_STATUS_6X 0x12
#define OP_RX_BUFFER_STATUS_6X 0x13
#define OP_PACKET_STATUS_6X 0x14 // Get snr & rssi of last packet
#define OP_CURRENT_RSSI_6X 0x15
#define OP_MODULATION_PARAMS_6X 0x8B // BW, SF, CR, etc.
#define OP_PACKET_PARAMS_6X 0x8C // CRC, preamble, payload length, etc.
#define OP_STATUS_6X 0xC0
#define OP_TX_PARAMS_6X 0x8E // Set dbm, etc
#define OP_PACKET_TYPE_6X 0x8A
#define OP_BUFFER_BASE_ADDR_6X 0x8F
#define OP_READ_REGISTER_6X 0x1D
#define OP_WRITE_REGISTER_6X 0x0D
#define OP_DIO3_TCXO_CTRL_6X 0x97
#define OP_DIO2_RF_CTRL_6X 0x9D
#define OP_CAD_PARAMS 0x88
#define OP_CALIBRATE_6X 0x89
#define OP_RX_TX_FALLBACK_MODE_6X 0x93
#define OP_REGULATOR_MODE_6X 0x96
#define OP_CALIBRATE_IMAGE_6X 0x98
#define MASK_CALIBRATE_ALL 0x7f
#define IRQ_TX_DONE_MASK_6X 0x01
#define IRQ_RX_DONE_MASK_6X 0x02
#define IRQ_HEADER_DET_MASK_6X 0x10
#define IRQ_PREAMBLE_DET_MASK_6X 0x04
#define IRQ_PAYLOAD_CRC_ERROR_MASK_6X 0x40
#define IRQ_ALL_MASK_6X 0b0100001111111111
#define MODE_LONG_RANGE_MODE_6X 0x01
#define OP_FIFO_WRITE_6X 0x0E
#define OP_FIFO_READ_6X 0x1E
#define REG_OCP_6X 0x08E7
#define REG_LNA_6X 0x08AC // No agc in sx1262
#define REG_SYNC_WORD_MSB_6X 0x0740
#define REG_SYNC_WORD_LSB_6X 0x0741
#define REG_PAYLOAD_LENGTH_6X 0x0702 // https://github.com/beegee-tokyo/SX126x-Arduino/blob/master/src/radio/sx126x/sx126x.h#L98
#define REG_RANDOM_GEN_6X 0x0819
#define MODE_TCXO_3_3V_6X 0x07
#define MODE_TCXO_3_0V_6X 0x06
#define MODE_TCXO_2_7V_6X 0x06
#define MODE_TCXO_2_4V_6X 0x06
#define MODE_TCXO_2_2V_6X 0x03
#define MODE_TCXO_1_8V_6X 0x02
#define MODE_TCXO_1_7V_6X 0x01
#define MODE_TCXO_1_6V_6X 0x00
#define MODE_STDBY_RC_6X 0x00
#define MODE_STDBY_XOSC_6X 0x01
#define MODE_FALLBACK_STDBY_RC_6X 0x20
#define MODE_IMPLICIT_HEADER 0x01
#define MODE_EXPLICIT_HEADER 0x00
#define SYNC_WORD_6X 0x1424
#define XTAL_FREQ_6X (double)32000000
#define FREQ_DIV_6X (double)pow(2.0, 25.0)
#define FREQ_STEP_6X (double)(XTAL_FREQ_6X / FREQ_DIV_6X)
#if BOARD_MODEL == BOARD_TECHO
SPIClass spim3 = SPIClass(NRF_SPIM3, pin_miso, pin_sclk, pin_mosi) ;
#define SPI spim3
#elif defined(NRF52840_XXAA)
extern SPIClass spiModem;
#define SPI spiModem
#endif
extern SPIClass SPI;
#define MAX_PKT_LENGTH 255
sx126x::sx126x() :
_spiSettings(16E6, MSBFIRST, SPI_MODE0),
_ss(LORA_DEFAULT_SS_PIN), _reset(LORA_DEFAULT_RESET_PIN), _dio0(LORA_DEFAULT_DIO0_PIN), _busy(LORA_DEFAULT_BUSY_PIN), _rxen(LORA_DEFAULT_RXEN_PIN),
_frequency(0),
_txp(0),
_sf(0x07),
_bw(0x04),
_cr(0x01),
_ldro(0x00),
_packetIndex(0),
_preambleLength(18),
_implicitHeaderMode(0),
_payloadLength(255),
_crcMode(1),
_fifo_tx_addr_ptr(0),
_fifo_rx_addr_ptr(0),
_packet({0}),
_preinit_done(false),
_onReceive(NULL)
{ setTimeout(0); }
bool sx126x::preInit() {
pinMode(_ss, OUTPUT);
digitalWrite(_ss, HIGH);
#if BOARD_MODEL == BOARD_T3S3 || BOARD_MODEL == BOARD_HELTEC32_V3 || BOARD_MODEL == BOARD_HELTEC32_V4 || BOARD_MODEL == BOARD_TDECK || BOARD_MODEL == BOARD_XIAO_S3 || BOARD_MODEL == BOARD_VME213
SPI.begin(pin_sclk, pin_miso, pin_mosi, pin_cs);
#elif BOARD_MODEL == BOARD_TECHO
SPI.setPins(pin_miso, pin_sclk, pin_mosi);
SPI.begin();
#else
SPI.begin();
#endif
// Check version (retry for up to 2 seconds)
// TODO: Actually read version registers, not syncwords
long start = millis();
uint8_t syncmsb;
uint8_t synclsb;
while (((millis() - start) < 2000) && (millis() >= start)) {
syncmsb = readRegister(REG_SYNC_WORD_MSB_6X);
synclsb = readRegister(REG_SYNC_WORD_LSB_6X);
if ( uint16_t(syncmsb << 8 | synclsb) == 0x1424 || uint16_t(syncmsb << 8 | synclsb) == 0x4434) {
break;
}
delay(100);
}
if ( uint16_t(syncmsb << 8 | synclsb) != 0x1424 && uint16_t(syncmsb << 8 | synclsb) != 0x4434) {
return false;
}
_preinit_done = true;
return true;
}
uint8_t ISR_VECT sx126x::readRegister(uint16_t address) {
return singleTransfer(OP_READ_REGISTER_6X, address, 0x00);
}
void sx126x::writeRegister(uint16_t address, uint8_t value) {
singleTransfer(OP_WRITE_REGISTER_6X, address, value);
}
uint8_t ISR_VECT sx126x::singleTransfer(uint8_t opcode, uint16_t address, uint8_t value) {
waitOnBusy();
uint8_t response;
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(opcode);
SPI.transfer((address & 0xFF00) >> 8);
SPI.transfer(address & 0x00FF);
if (opcode == OP_READ_REGISTER_6X) { SPI.transfer(0x00); }
response = SPI.transfer(value);
SPI.endTransaction();
digitalWrite(_ss, HIGH);
return response;
}
void sx126x::rxAntEnable() {
if (_rxen != -1) { digitalWrite(_rxen, HIGH); }
}
void sx126x::loraMode() {
// Enable lora mode on the SX1262 chip
uint8_t mode = MODE_LONG_RANGE_MODE_6X;
executeOpcode(OP_PACKET_TYPE_6X, &mode, 1);
}
void sx126x::waitOnBusy() {
unsigned long time = millis();
if (_busy != -1) {
while (digitalRead(_busy) == HIGH) {
if (millis() >= (time + 100)) { break; }
}
}
}
void sx126x::executeOpcode(uint8_t opcode, uint8_t *buffer, uint8_t size) {
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(opcode);
for (int i = 0; i < size; i++) { SPI.transfer(buffer[i]); }
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx126x::executeOpcodeRead(uint8_t opcode, uint8_t *buffer, uint8_t size) {
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(opcode);
SPI.transfer(0x00);
for (int i = 0; i < size; i++) { buffer[i] = SPI.transfer(0x00); }
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx126x::writeBuffer(const uint8_t* buffer, size_t size) {
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(OP_FIFO_WRITE_6X);
SPI.transfer(_fifo_tx_addr_ptr);
for (int i = 0; i < size; i++) { SPI.transfer(buffer[i]); _fifo_tx_addr_ptr++; }
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx126x::readBuffer(uint8_t* buffer, size_t size) {
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(OP_FIFO_READ_6X);
SPI.transfer(_fifo_rx_addr_ptr);
SPI.transfer(0x00);
for (int i = 0; i < size; i++) { buffer[i] = SPI.transfer(0x00); }
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx126x::setModulationParams(uint8_t sf, uint8_t bw, uint8_t cr, int ldro) {
// Because there is no access to these registers on the sx1262, we have
// to set all these parameters at once or not at all.
uint8_t buf[8];
buf[0] = sf;
buf[1] = bw;
buf[2] = cr;
buf[3] = ldro; // Low data rate toggle
buf[4] = 0x00; // Unused params in LoRa mode
buf[5] = 0x00;
buf[6] = 0x00;
buf[7] = 0x00;
executeOpcode(OP_MODULATION_PARAMS_6X, buf, 8);
}
void sx126x::setPacketParams(long preamble_symbols, uint8_t headermode, uint8_t payload_length, uint8_t crc) {
// Because there is no access to these registers on the sx1262, we have
// to set all these parameters at once or not at all.
uint8_t buf[9];
buf[0] = uint8_t((preamble_symbols & 0xFF00) >> 8);
buf[1] = uint8_t((preamble_symbols & 0x00FF));
buf[2] = headermode;
buf[3] = payload_length;
buf[4] = crc;
buf[5] = 0x00; // standard IQ setting (no inversion)
buf[6] = 0x00; // unused params
buf[7] = 0x00;
buf[8] = 0x00;
executeOpcode(OP_PACKET_PARAMS_6X, buf, 9);
}
void sx126x::reset(void) {
if (_reset != -1) {
pinMode(_reset, OUTPUT);
digitalWrite(_reset, LOW);
delay(10);
digitalWrite(_reset, HIGH);
delay(10);
}
}
void sx126x::calibrate(void) {
// Put in STDBY_RC mode before calibration
uint8_t mode_byte = MODE_STDBY_RC_6X;
executeOpcode(OP_STANDBY_6X, &mode_byte, 1);
// Calibrate RC64k, RC13M, PLL, ADC and image
uint8_t calibrate = MASK_CALIBRATE_ALL;
executeOpcode(OP_CALIBRATE_6X, &calibrate, 1);
delay(5);
waitOnBusy();
}
void sx126x::calibrate_image(long frequency) {
uint8_t image_freq[2] = {0};
if (frequency >= 430E6 && frequency <= 440E6) { image_freq[0] = 0x6B; image_freq[1] = 0x6F; }
else if (frequency >= 470E6 && frequency <= 510E6) { image_freq[0] = 0x75; image_freq[1] = 0x81; }
else if (frequency >= 779E6 && frequency <= 787E6) { image_freq[0] = 0xC1; image_freq[1] = 0xC5; }
else if (frequency >= 863E6 && frequency <= 870E6) { image_freq[0] = 0xD7; image_freq[1] = 0xDB; }
else if (frequency >= 902E6 && frequency <= 928E6) { image_freq[0] = 0xE1; image_freq[1] = 0xE9; } // TODO: Allow higher freq calibration
executeOpcode(OP_CALIBRATE_IMAGE_6X, image_freq, 2);
waitOnBusy();
}
int sx126x::begin(long frequency) {
reset();
if (_busy != -1) { pinMode(_busy, INPUT); }
if (!_preinit_done) { if (!preInit()) { return false; } }
if (_rxen != -1) { pinMode(_rxen, OUTPUT); }
calibrate();
calibrate_image(frequency);
enableTCXO();
loraMode();
standby();
// Set sync word
setSyncWord(SYNC_WORD_6X);
#if DIO2_AS_RF_SWITCH
// enable dio2 rf switch
uint8_t byte = 0x01;
executeOpcode(OP_DIO2_RF_CTRL_6X, &byte, 1);
#endif
rxAntEnable();
setFrequency(frequency);
setTxPower(2);
enableCrc();
writeRegister(REG_LNA_6X, 0x96); // Set LNA boost
uint8_t basebuf[2] = {0}; // Set base addresses
executeOpcode(OP_BUFFER_BASE_ADDR_6X, basebuf, 2);
setModulationParams(_sf, _bw, _cr, _ldro);
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
#if HAS_LORA_PA
#if LORA_PA_GC1109
// Enable Vfem_ctl for supply to
// PA power net.
pinMode(LORA_PA_PWR_EN, OUTPUT);
digitalWrite(LORA_PA_PWR_EN, HIGH);
// Enable PA LNA and TX standby
pinMode(LORA_PA_CSD, OUTPUT);
digitalWrite(LORA_PA_CSD, HIGH);
// Keep PA CPS low until actual
// transmit. Does it save power?
// Who knows? Will have to measure.
pinMode(LORA_PA_CPS, OUTPUT);
digitalWrite(LORA_PA_CPS, LOW);
// On Heltec V4, the PA CTX pin
// is driven by the SX1262 DIO2
// pin directly, so we do not
// need to manually raise this.
#endif
#endif
return 1;
}
void sx126x::end() { sleep(); SPI.end(); _preinit_done = false; }
int sx126x::beginPacket(int implicitHeader) {
#if HAS_LORA_PA
#if LORA_PA_GC1109
// Enable PA CPS for transmit
digitalWrite(LORA_PA_CPS, HIGH);
#endif
#endif
standby();
if (implicitHeader) { implicitHeaderMode(); }
else { explicitHeaderMode(); }
_payloadLength = 0;
_fifo_tx_addr_ptr = 0;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
return 1;
}
int sx126x::endPacket() {
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
uint8_t timeout[3] = {0}; // Put in single TX mode
executeOpcode(OP_TX_6X, timeout, 3);
uint8_t buf[2];
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2);
// Wait for TX done
bool timed_out = false;
uint32_t w_timeout = millis()+LORA_MODEM_TIMEOUT_MS;
while ((millis() < w_timeout) && ((buf[1] & IRQ_TX_DONE_MASK_6X) == 0)) {
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2);
yield();
}
if (!(millis() < w_timeout)) { timed_out = true; }
// Clear IRQs
uint8_t mask[2];
mask[0] = 0x00;
mask[1] = IRQ_TX_DONE_MASK_6X;
executeOpcode(OP_CLEAR_IRQ_STATUS_6X, mask, 2);
if (timed_out) { return 0; } else { return 1; }
}
unsigned long preamble_detected_at = 0;
extern long lora_preamble_time_ms;
extern long lora_header_time_ms;
bool false_preamble_detected = false;
bool sx126x::dcd() {
uint8_t buf[2] = {0}; executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2);
uint32_t now = millis();
bool header_detected = false;
bool carrier_detected = false;
if ((buf[1] & IRQ_HEADER_DET_MASK_6X) != 0) { header_detected = true; carrier_detected = true; }
else { header_detected = false; }
if ((buf[1] & IRQ_PREAMBLE_DET_MASK_6X) != 0) {
carrier_detected = true;
if (preamble_detected_at == 0) { preamble_detected_at = now; }
if (now - preamble_detected_at > lora_preamble_time_ms + lora_header_time_ms) {
preamble_detected_at = 0;
if (!header_detected) { false_preamble_detected = true; }
uint8_t clearbuf[2] = {0};
clearbuf[1] = IRQ_PREAMBLE_DET_MASK_6X;
executeOpcode(OP_CLEAR_IRQ_STATUS_6X, clearbuf, 2);
}
}
// TODO: Maybe there's a way of unlatching the RSSI
// status without re-activating receive mode?
if (false_preamble_detected) { sx126x_modem.receive(); false_preamble_detected = false; }
return carrier_detected;
}
uint8_t sx126x::currentRssiRaw() {
uint8_t byte = 0;
executeOpcodeRead(OP_CURRENT_RSSI_6X, &byte, 1);
return byte;
}
int ISR_VECT sx126x::currentRssi() {
uint8_t byte = 0;
executeOpcodeRead(OP_CURRENT_RSSI_6X, &byte, 1);
int rssi = -(int(byte)) / 2;
#if HAS_LORA_LNA
rssi -= LORA_LNA_GAIN;
#endif
return rssi;
}
uint8_t sx126x::packetRssiRaw() {
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3);
return buf[2];
}
int ISR_VECT sx126x::packetRssi() {
// TODO: May need more calculations here
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3);
int pkt_rssi = -buf[0] / 2;
#if HAS_LORA_LNA
pkt_rssi -= LORA_LNA_GAIN;
#endif
return pkt_rssi;
}
int ISR_VECT sx126x::packetRssi(uint8_t pkt_snr_raw) {
// TODO: May need more calculations here
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3);
int pkt_rssi = -buf[0] / 2;
return pkt_rssi;
}
uint8_t ISR_VECT sx126x::packetSnrRaw() {
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3);
return buf[1];
}
float ISR_VECT sx126x::packetSnr() {
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3);
return float(buf[1]) * 0.25;
}
long sx126x::packetFrequencyError() {
// TODO: Implement this, no idea how to check it on the sx1262
const float fError = 0.0;
return static_cast<long>(fError);
}
size_t sx126x::write(uint8_t byte) { return write(&byte, sizeof(byte)); }
size_t sx126x::write(const uint8_t *buffer, size_t size) {
if ((_payloadLength + size) > MAX_PKT_LENGTH) { size = MAX_PKT_LENGTH - _payloadLength; }
writeBuffer(buffer, size);
_payloadLength = _payloadLength + size;
return size;
}
int ISR_VECT sx126x::available() {
uint8_t buf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, buf, 2);
return buf[0] - _packetIndex;
}
int ISR_VECT sx126x::read(){
if (!available()) { return -1; }
if (_packetIndex == 0) {
uint8_t rxbuf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, rxbuf, 2);
int size = rxbuf[0];
_fifo_rx_addr_ptr = rxbuf[1];
readBuffer(_packet, size);
}
uint8_t byte = _packet[_packetIndex];
_packetIndex++;
return byte;
}
int sx126x::peek() {
if (!available()) { return -1; }
if (_packetIndex == 0) {
uint8_t rxbuf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, rxbuf, 2);
int size = rxbuf[0];
_fifo_rx_addr_ptr = rxbuf[1];
readBuffer(_packet, size);
}
uint8_t b = _packet[_packetIndex];
return b;
}
void sx126x::flush() { }
void sx126x::onReceive(void(*callback)(int)){
_onReceive = callback;
if (callback) {
pinMode(_dio0, INPUT);
uint8_t buf[8]; // Set preamble and header detection irqs, plus dio0 mask
buf[0] = 0xFF; // Set irq masks, enable all
buf[1] = 0xFF;
buf[2] = 0x00; // Set dio0 masks
buf[3] = IRQ_RX_DONE_MASK_6X;
buf[4] = 0x00; // Set dio1 masks
buf[5] = 0x00;
buf[6] = 0x00; // Set dio2 masks
buf[7] = 0x00;
executeOpcode(OP_SET_IRQ_FLAGS_6X, buf, 8);
#ifdef SPI_HAS_NOTUSINGINTERRUPT
SPI.usingInterrupt(digitalPinToInterrupt(_dio0));
#endif
attachInterrupt(digitalPinToInterrupt(_dio0), sx126x::onDio0Rise, RISING);
} else {
detachInterrupt(digitalPinToInterrupt(_dio0));
#ifdef SPI_HAS_NOTUSINGINTERRUPT
SPI.notUsingInterrupt(digitalPinToInterrupt(_dio0));
#endif
}
}
void sx126x::receive(int size) {
#if HAS_LORA_PA
#if LORA_PA_GC1109
// Disable PA CPS for receive
digitalWrite(LORA_PA_CPS, LOW);
#endif
#endif
if (size > 0) {
implicitHeaderMode();
_payloadLength = size;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
} else { explicitHeaderMode(); }
if (_rxen != -1) { rxAntEnable(); }
uint8_t mode[3] = {0xFF, 0xFF, 0xFF}; // Continuous mode
executeOpcode(OP_RX_6X, mode, 3);
}
void sx126x::standby() {
uint8_t byte = MODE_STDBY_XOSC_6X; // STDBY_XOSC
executeOpcode(OP_STANDBY_6X, &byte, 1);
}
void sx126x::sleep() { uint8_t byte = 0x00; executeOpcode(OP_SLEEP_6X, &byte, 1); }
void sx126x::enableTCXO() {
#if HAS_TCXO
#if BOARD_MODEL == BOARD_RAK4631 || BOARD_MODEL == BOARD_HELTEC32_V3 || BOARD_MODEL == BOARD_XIAO_S3 || BOARD_MODEL == BOARD_VME213
uint8_t buf[4] = {MODE_TCXO_3_3V_6X, 0x00, 0x00, 0xFF};
#elif BOARD_MODEL == BOARD_TBEAM
uint8_t buf[4] = {MODE_TCXO_1_8V_6X, 0x00, 0x00, 0xFF};
#elif BOARD_MODEL == BOARD_TDECK
uint8_t buf[4] = {MODE_TCXO_1_8V_6X, 0x00, 0x00, 0xFF};
#elif BOARD_MODEL == BOARD_TBEAM_S_V1
uint8_t buf[4] = {MODE_TCXO_1_8V_6X, 0x00, 0x00, 0xFF};
#elif BOARD_MODEL == BOARD_T3S3
uint8_t buf[4] = {MODE_TCXO_1_8V_6X, 0x00, 0x00, 0xFF};
#elif BOARD_MODEL == BOARD_HELTEC_T114
uint8_t buf[4] = {MODE_TCXO_1_8V_6X, 0x00, 0x00, 0xFF};
#elif BOARD_MODEL == BOARD_TECHO
uint8_t buf[4] = {MODE_TCXO_1_8V_6X, 0x00, 0x00, 0xFF};
#elif BOARD_MODEL == BOARD_HELTEC32_V4
uint8_t buf[4] = {MODE_TCXO_1_8V_6X, 0x00, 0x00, 0xFF};
#endif
executeOpcode(OP_DIO3_TCXO_CTRL_6X, buf, 4);
#endif
}
// TODO: Once enabled, SX1262 needs a complete reset to disable TCXO
void sx126x::disableTCXO() { }
void sx126x::setTxPower(int level, int outputPin) {
// Currently no low power mode for SX1262 implemented, assuming PA boost
// WORKAROUND - Better Resistance of the SX1262 Tx to Antenna Mismatch, see DS_SX1261-2_V1.2 datasheet chapter 15.2
// RegTxClampConfig = @address 0x08D8
writeRegister(0x08D8, readRegister(0x08D8) | (0x0F << 1));
uint8_t pa_buf[4];
pa_buf[0] = 0x04; // PADutyCycle needs to be 0x04 to achieve 22dBm output, but can be lowered for better efficiency at lower outputs
pa_buf[1] = 0x07; // HPMax at 0x07 is maximum supported for SX1262
pa_buf[2] = 0x00; // DeviceSel 0x00 for SX1262 (0x01 for SX1261)
pa_buf[3] = 0x01; // PALut always 0x01 (reserved according to datasheet)
executeOpcode(OP_PA_CONFIG_6X, pa_buf, 4); // set pa_config for high power
if (level > 22) { level = 22; }
else if (level < -9) { level = -9; }
writeRegister(REG_OCP_6X, OCP_TUNED); // Use board-specific tuned OCP
uint8_t tx_buf[2];
tx_buf[0] = level;
tx_buf[1] = 0x02; // PA ramping time - 40 microseconds
executeOpcode(OP_TX_PARAMS_6X, tx_buf, 2);
_txp = level;
}
uint8_t sx126x::getTxPower() { return _txp; }
void sx126x::setFrequency(long frequency) {
_frequency = frequency;
uint8_t buf[4];
uint32_t freq = (uint32_t)((double)frequency / (double)FREQ_STEP_6X);
buf[0] = ((freq >> 24) & 0xFF);
buf[1] = ((freq >> 16) & 0xFF);
buf[2] = ((freq >> 8) & 0xFF);
buf[3] = (freq & 0xFF);
executeOpcode(OP_RF_FREQ_6X, buf, 4);
}
uint32_t sx126x::getFrequency() {
// We can't read the frequency on the sx1262 / 80
uint32_t frequency = _frequency;
return frequency;
}
void sx126x::setSpreadingFactor(int sf) {
if (sf < 5) { sf = 5; }
else if (sf > 12) { sf = 12; }
_sf = sf;
handleLowDataRate();
setModulationParams(sf, _bw, _cr, _ldro);
}
long sx126x::getSignalBandwidth() {
int bw = _bw;
switch (bw) {
case 0x00: return 7.8E3;
case 0x01: return 15.6E3;
case 0x02: return 31.25E3;
case 0x03: return 62.5E3;
case 0x04: return 125E3;
case 0x05: return 250E3;
case 0x06: return 500E3;
case 0x08: return 10.4E3;
case 0x09: return 20.8E3;
case 0x0A: return 41.7E3;
}
return 0;
}
extern bool lora_low_datarate;
void sx126x::handleLowDataRate() {
if ( long( (1<<_sf) / (getSignalBandwidth()/1000)) > 16)
{ _ldro = 0x01; lora_low_datarate = true; }
else { _ldro = 0x00; lora_low_datarate = false; }
}
// TODO: Check if there's anything the sx1262 can do here
void sx126x::optimizeModemSensitivity(){ }
void sx126x::setSignalBandwidth(long sbw) {
if (sbw <= 7.8E3) { _bw = 0x00; }
else if (sbw <= 10.4E3) { _bw = 0x08; }
else if (sbw <= 15.6E3) { _bw = 0x01; }
else if (sbw <= 20.8E3) { _bw = 0x09; }
else if (sbw <= 31.25E3) { _bw = 0x02; }
else if (sbw <= 41.7E3) { _bw = 0x0A; }
else if (sbw <= 62.5E3) { _bw = 0x03; }
else if (sbw <= 125E3) { _bw = 0x04; }
else if (sbw <= 250E3) { _bw = 0x05; }
else { _bw = 0x06; }
handleLowDataRate();
setModulationParams(_sf, _bw, _cr, _ldro);
optimizeModemSensitivity();
}
void sx126x::setCodingRate4(int denominator) {
if (denominator < 5) { denominator = 5; }
else if (denominator > 8) { denominator = 8; }
int cr = denominator - 4;
_cr = cr;
setModulationParams(_sf, _bw, cr, _ldro);
}
void sx126x::setPreambleLength(long preamble_symbols) {
_preambleLength = preamble_symbols;
setPacketParams(preamble_symbols, _implicitHeaderMode, _payloadLength, _crcMode);
}
void sx126x::setSyncWord(uint16_t sw) {
// TODO: Why was this hardcoded instead of using the config value?
// writeRegister(REG_SYNC_WORD_MSB_6X, (sw & 0xFF00) >> 8);
// writeRegister(REG_SYNC_WORD_LSB_6X, sw & 0x00FF);
writeRegister(REG_SYNC_WORD_MSB_6X, 0x14);
writeRegister(REG_SYNC_WORD_LSB_6X, 0x24);
}
void sx126x::setPins(int ss, int reset, int dio0, int busy, int rxen) {
_ss = ss;
_reset = reset;
_dio0 = dio0;
_busy = busy;
_rxen = rxen;
}
void sx126x::dumpRegisters(Stream& out) {
for (int i = 0; i < 128; i++) {
out.print("0x");
out.print(i, HEX);
out.print(": 0x");
out.println(readRegister(i), HEX);
}
}
void ISR_VECT sx126x::handleDio0Rise() {
uint8_t buf[2];
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2);
executeOpcode(OP_CLEAR_IRQ_STATUS_6X, buf, 2);
if ((buf[1] & IRQ_PAYLOAD_CRC_ERROR_MASK_6X) == 0) {
_packetIndex = 0;
uint8_t rxbuf[2] = {0}; // Read packet length
executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, rxbuf, 2);
int packetLength = rxbuf[0];
if (_onReceive) { _onReceive(packetLength); }
}
}
void ISR_VECT sx126x::onDio0Rise() { sx126x_modem.handleDio0Rise(); }
void sx126x::setSPIFrequency(uint32_t frequency) { _spiSettings = SPISettings(frequency, MSBFIRST, SPI_MODE0); }
void sx126x::enableCrc() { _crcMode = 1; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); }
void sx126x::disableCrc() { _crcMode = 0; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); }
void sx126x::explicitHeaderMode() { _implicitHeaderMode = 0; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); }
void sx126x::implicitHeaderMode() { _implicitHeaderMode = 1; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); }
byte sx126x::random() { return readRegister(REG_RANDOM_GEN_6X); }
sx126x sx126x_modem;
#endif

145
RNode_Firmware/sx126x.h Normal file
View file

@ -0,0 +1,145 @@
// Copyright Sandeep Mistry, Mark Qvist and Jacob Eva.
// Licensed under the MIT license.
#ifndef SX126X_H
#define SX126X_H
#include <Arduino.h>
#include <SPI.h>
#include "Modem.h"
#define LORA_DEFAULT_SS_PIN 10
#define LORA_DEFAULT_RESET_PIN 9
#define LORA_DEFAULT_DIO0_PIN 2
#define LORA_DEFAULT_RXEN_PIN -1
#define LORA_DEFAULT_TXEN_PIN -1
#define LORA_DEFAULT_BUSY_PIN -1
#define LORA_MODEM_TIMEOUT_MS 20E3
#define PA_OUTPUT_RFO_PIN 0
#define PA_OUTPUT_PA_BOOST_PIN 1
#define RSSI_OFFSET 157
class sx126x : public Stream {
public:
sx126x();
int begin(long frequency);
void end();
int beginPacket(int implicitHeader = false);
int endPacket();
int parsePacket(int size = 0);
int packetRssi();
int packetRssi(uint8_t pkt_snr_raw);
int currentRssi();
uint8_t packetRssiRaw();
uint8_t currentRssiRaw();
uint8_t packetSnrRaw();
float packetSnr();
long packetFrequencyError();
// from Print
virtual size_t write(uint8_t byte);
virtual size_t write(const uint8_t *buffer, size_t size);
// from Stream
virtual int available();
virtual int read();
virtual int peek();
virtual void flush();
void onReceive(void(*callback)(int));
void receive(int size = 0);
void standby();
void sleep();
void reset(void);
bool preInit();
uint8_t getTxPower();
void setTxPower(int level, int outputPin = PA_OUTPUT_PA_BOOST_PIN);
uint32_t getFrequency();
void setFrequency(long frequency);
void setSpreadingFactor(int sf);
long getSignalBandwidth();
void setSignalBandwidth(long sbw);
void setCodingRate4(int denominator);
void setPreambleLength(long preamble_symbols);
void setSyncWord(uint16_t sw);
bool dcd();
void enableCrc();
void disableCrc();
void enableTCXO();
void disableTCXO();
void rxAntEnable();
void loraMode();
void waitOnBusy();
void executeOpcode(uint8_t opcode, uint8_t *buffer, uint8_t size);
void executeOpcodeRead(uint8_t opcode, uint8_t *buffer, uint8_t size);
void writeBuffer(const uint8_t* buffer, size_t size);
void readBuffer(uint8_t* buffer, size_t size);
void setPacketParams(long preamble_symbols, uint8_t headermode, uint8_t payload_length, uint8_t crc);
void setModulationParams(uint8_t sf, uint8_t bw, uint8_t cr, int ldro);
// deprecated
void crc() { enableCrc(); }
void noCrc() { disableCrc(); }
byte random();
void setPins(int ss = LORA_DEFAULT_SS_PIN, int reset = LORA_DEFAULT_RESET_PIN, int dio0 = LORA_DEFAULT_DIO0_PIN, int busy = LORA_DEFAULT_BUSY_PIN, int rxen = LORA_DEFAULT_RXEN_PIN);
void setSPIFrequency(uint32_t frequency);
void dumpRegisters(Stream& out);
private:
void explicitHeaderMode();
void implicitHeaderMode();
void handleDio0Rise();
uint8_t readRegister(uint16_t address);
void writeRegister(uint16_t address, uint8_t value);
uint8_t singleTransfer(uint8_t opcode, uint16_t address, uint8_t value);
static void onDio0Rise();
void handleLowDataRate();
void optimizeModemSensitivity();
void calibrate(void);
void calibrate_image(long frequency);
private:
SPISettings _spiSettings;
int _ss;
int _reset;
int _dio0;
int _rxen;
int _busy;
long _frequency;
int _txp;
uint8_t _sf;
uint8_t _bw;
uint8_t _cr;
uint8_t _ldro;
int _packetIndex;
int _preambleLength;
int _implicitHeaderMode;
int _payloadLength;
int _crcMode;
int _fifo_tx_addr_ptr;
int _fifo_rx_addr_ptr;
uint8_t _packet[255];
bool _preinit_done;
void (*_onReceive)(int);
};
extern sx126x sx126x_modem;
#endif

503
RNode_Firmware/sx127x.cpp Normal file
View file

@ -0,0 +1,503 @@
// Copyright Sandeep Mistry, Mark Qvist and Jacob Eva.
// Licensed under the MIT license.
#include "Boards.h"
#if MODEM == SX1276
#include "sx127x.h"
#if MCU_VARIANT == MCU_ESP32
#if MCU_VARIANT == MCU_ESP32 and !defined(CONFIG_IDF_TARGET_ESP32S3)
#include "hal/wdt_hal.h"
#endif
#define ISR_VECT IRAM_ATTR
#else
#define ISR_VECT
#endif
// Registers
#define REG_FIFO_7X 0x00
#define REG_OP_MODE_7X 0x01
#define REG_FRF_MSB_7X 0x06
#define REG_FRF_MID_7X 0x07
#define REG_FRF_LSB_7X 0x08
#define REG_PA_CONFIG_7X 0x09
#define REG_OCP_7X 0x0b
#define REG_LNA_7X 0x0c
#define REG_FIFO_ADDR_PTR_7X 0x0d
#define REG_FIFO_TX_BASE_ADDR_7X 0x0e
#define REG_FIFO_RX_BASE_ADDR_7X 0x0f
#define REG_FIFO_RX_CURRENT_ADDR_7X 0x10
#define REG_IRQ_FLAGS_7X 0x12
#define REG_RX_NB_BYTES_7X 0x13
#define REG_MODEM_STAT_7X 0x18
#define REG_PKT_SNR_VALUE_7X 0x19
#define REG_PKT_RSSI_VALUE_7X 0x1a
#define REG_RSSI_VALUE_7X 0x1b
#define REG_MODEM_CONFIG_1_7X 0x1d
#define REG_MODEM_CONFIG_2_7X 0x1e
#define REG_PREAMBLE_MSB_7X 0x20
#define REG_PREAMBLE_LSB_7X 0x21
#define REG_PAYLOAD_LENGTH_7X 0x22
#define REG_MODEM_CONFIG_3_7X 0x26
#define REG_FREQ_ERROR_MSB_7X 0x28
#define REG_FREQ_ERROR_MID_7X 0x29
#define REG_FREQ_ERROR_LSB_7X 0x2a
#define REG_RSSI_WIDEBAND_7X 0x2c
#define REG_DETECTION_OPTIMIZE_7X 0x31
#define REG_HIGH_BW_OPTIMIZE_1_7X 0x36
#define REG_DETECTION_THRESHOLD_7X 0x37
#define REG_SYNC_WORD_7X 0x39
#define REG_HIGH_BW_OPTIMIZE_2_7X 0x3a
#define REG_DIO_MAPPING_1_7X 0x40
#define REG_VERSION_7X 0x42
#define REG_TCXO_7X 0x4b
#define REG_PA_DAC_7X 0x4d
// Modes
#define MODE_LONG_RANGE_MODE_7X 0x80
#define MODE_SLEEP_7X 0x00
#define MODE_STDBY_7X 0x01
#define MODE_TX_7X 0x03
#define MODE_RX_CONTINUOUS_7X 0x05
#define MODE_RX_SINGLE_7X 0x06
// PA config
#define PA_BOOST_7X 0x80
// IRQ masks
#define IRQ_TX_DONE_MASK_7X 0x08
#define IRQ_RX_DONE_MASK_7X 0x40
#define IRQ_PAYLOAD_CRC_ERROR_MASK_7X 0x20
#define SYNC_WORD_7X 0x12
#define MAX_PKT_LENGTH 255
extern SPIClass SPI;
sx127x::sx127x() :
_spiSettings(8E6, MSBFIRST, SPI_MODE0),
_ss(LORA_DEFAULT_SS_PIN), _reset(LORA_DEFAULT_RESET_PIN), _dio0(LORA_DEFAULT_DIO0_PIN),
_frequency(0), _packetIndex(0), _preinit_done(false), _onReceive(NULL) { setTimeout(0); }
void sx127x::setSPIFrequency(uint32_t frequency) { _spiSettings = SPISettings(frequency, MSBFIRST, SPI_MODE0); }
void sx127x::setPins(int ss, int reset, int dio0, int busy) { _ss = ss; _reset = reset; _dio0 = dio0; _busy = busy; }
uint8_t ISR_VECT sx127x::readRegister(uint8_t address) { return singleTransfer(address & 0x7f, 0x00); }
void sx127x::writeRegister(uint8_t address, uint8_t value) { singleTransfer(address | 0x80, value); }
void sx127x::standby() { writeRegister(REG_OP_MODE_7X, MODE_LONG_RANGE_MODE_7X | MODE_STDBY_7X); }
void sx127x::sleep() { writeRegister(REG_OP_MODE_7X, MODE_LONG_RANGE_MODE_7X | MODE_SLEEP_7X); }
void sx127x::setSyncWord(uint8_t sw) { writeRegister(REG_SYNC_WORD_7X, sw); }
void sx127x::enableCrc() { writeRegister(REG_MODEM_CONFIG_2_7X, readRegister(REG_MODEM_CONFIG_2_7X) | 0x04); }
void sx127x::disableCrc() { writeRegister(REG_MODEM_CONFIG_2_7X, readRegister(REG_MODEM_CONFIG_2_7X) & 0xfb); }
void sx127x::enableTCXO() { uint8_t tcxo_reg = readRegister(REG_TCXO_7X); writeRegister(REG_TCXO_7X, tcxo_reg | 0x10); }
void sx127x::disableTCXO() { uint8_t tcxo_reg = readRegister(REG_TCXO_7X); writeRegister(REG_TCXO_7X, tcxo_reg & 0xEF); }
void sx127x::explicitHeaderMode() { _implicitHeaderMode = 0; writeRegister(REG_MODEM_CONFIG_1_7X, readRegister(REG_MODEM_CONFIG_1_7X) & 0xfe); }
void sx127x::implicitHeaderMode() { _implicitHeaderMode = 1; writeRegister(REG_MODEM_CONFIG_1_7X, readRegister(REG_MODEM_CONFIG_1_7X) | 0x01); }
byte sx127x::random() { return readRegister(REG_RSSI_WIDEBAND_7X); }
void sx127x::flush() { }
bool sx127x::preInit() {
pinMode(_ss, OUTPUT);
digitalWrite(_ss, HIGH);
#if BOARD_MODEL == BOARD_T3S3
SPI.begin(pin_sclk, pin_miso, pin_mosi, pin_cs);
#else
SPI.begin();
#endif
// Check modem version
uint8_t version;
long start = millis();
while (((millis() - start) < 500) && (millis() >= start)) {
version = readRegister(REG_VERSION_7X);
if (version == 0x12) { break; }
delay(100);
}
if (version != 0x12) { return false; }
_preinit_done = true;
return true;
}
uint8_t ISR_VECT sx127x::singleTransfer(uint8_t address, uint8_t value) {
uint8_t response;
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(address);
response = SPI.transfer(value);
SPI.endTransaction();
digitalWrite(_ss, HIGH);
return response;
}
int sx127x::begin(long frequency) {
if (_reset != -1) {
pinMode(_reset, OUTPUT);
digitalWrite(_reset, LOW);
delay(10);
digitalWrite(_reset, HIGH);
delay(10);
}
if (_busy != -1) { pinMode(_busy, INPUT); }
if (!_preinit_done) { if (!preInit()) { return false; } }
sleep();
setFrequency(frequency);
// Set base addresses
writeRegister(REG_FIFO_TX_BASE_ADDR_7X, 0);
writeRegister(REG_FIFO_RX_BASE_ADDR_7X, 0);
// Set LNA boost and auto AGC
writeRegister(REG_LNA_7X, readRegister(REG_LNA_7X) | 0x03);
writeRegister(REG_MODEM_CONFIG_3_7X, 0x04);
setSyncWord(SYNC_WORD_7X);
enableCrc();
setTxPower(2);
standby();
return 1;
}
void sx127x::end() { sleep(); SPI.end(); _preinit_done = false; }
int sx127x::beginPacket(int implicitHeader) {
standby();
if (implicitHeader) { implicitHeaderMode(); }
else { explicitHeaderMode(); }
// Reset FIFO address and payload length
writeRegister(REG_FIFO_ADDR_PTR_7X, 0);
writeRegister(REG_PAYLOAD_LENGTH_7X, 0);
return 1;
}
int sx127x::endPacket() {
// Enter TX mode
writeRegister(REG_OP_MODE_7X, MODE_LONG_RANGE_MODE_7X | MODE_TX_7X);
// Wait for TX completion
while ((readRegister(REG_IRQ_FLAGS_7X) & IRQ_TX_DONE_MASK_7X) == 0) {
yield();
}
// Clear TX complete IRQ
writeRegister(REG_IRQ_FLAGS_7X, IRQ_TX_DONE_MASK_7X);
return 1;
}
bool sx127x::dcd() {
bool carrier_detected = false;
uint8_t status = readRegister(REG_MODEM_STAT_7X);
if ((status & SIG_DETECT) == SIG_DETECT) { carrier_detected = true; }
if ((status & SIG_SYNCED) == SIG_SYNCED) { carrier_detected = true; }
return carrier_detected;
}
uint8_t sx127x::currentRssiRaw() {
uint8_t rssi = readRegister(REG_RSSI_VALUE_7X);
return rssi;
}
int ISR_VECT sx127x::currentRssi() {
int rssi = (int)readRegister(REG_RSSI_VALUE_7X) - RSSI_OFFSET;
if (_frequency < 820E6) rssi -= 7;
return rssi;
}
uint8_t sx127x::packetRssiRaw() {
uint8_t pkt_rssi_value = readRegister(REG_PKT_RSSI_VALUE_7X);
return pkt_rssi_value;
}
int ISR_VECT sx127x::packetRssi(uint8_t pkt_snr_raw) {
int pkt_rssi = (int)readRegister(REG_PKT_RSSI_VALUE_7X) - RSSI_OFFSET;
int pkt_snr = ((int8_t)pkt_snr_raw)*0.25;
if (_frequency < 820E6) pkt_rssi -= 7;
if (pkt_snr < 0) {
pkt_rssi += pkt_snr;
} else {
// Slope correction is (16/15)*pkt_rssi,
// this estimation looses one floating point
// operation, and should be precise enough.
pkt_rssi = (int)(1.066 * pkt_rssi);
}
return pkt_rssi;
}
int ISR_VECT sx127x::packetRssi() {
int pkt_rssi = (int)readRegister(REG_PKT_RSSI_VALUE_7X) - RSSI_OFFSET;
int pkt_snr = packetSnr();
if (_frequency < 820E6) pkt_rssi -= 7;
if (pkt_snr < 0) { pkt_rssi += pkt_snr; }
else {
// Slope correction is (16/15)*pkt_rssi,
// this estimation looses one floating point
// operation, and should be precise enough.
pkt_rssi = (int)(1.066 * pkt_rssi);
}
return pkt_rssi;
}
uint8_t ISR_VECT sx127x::packetSnrRaw() { return readRegister(REG_PKT_SNR_VALUE_7X); }
float ISR_VECT sx127x::packetSnr() { return ((int8_t)readRegister(REG_PKT_SNR_VALUE_7X)) * 0.25; }
long sx127x::packetFrequencyError() {
int32_t freqError = 0;
freqError = static_cast<int32_t>(readRegister(REG_FREQ_ERROR_MSB_7X) & B111);
freqError <<= 8L;
freqError += static_cast<int32_t>(readRegister(REG_FREQ_ERROR_MID_7X));
freqError <<= 8L;
freqError += static_cast<int32_t>(readRegister(REG_FREQ_ERROR_LSB_7X));
if (readRegister(REG_FREQ_ERROR_MSB_7X) & B1000) { // Sign bit is on
freqError -= 524288; // B1000'0000'0000'0000'0000
}
const float fXtal = 32E6; // FXOSC: crystal oscillator (XTAL) frequency (2.5. Chip Specification, p. 14)
const float fError = ((static_cast<float>(freqError) * (1L << 24)) / fXtal) * (getSignalBandwidth() / 500000.0f);
return static_cast<long>(fError);
}
size_t sx127x::write(uint8_t byte) { return write(&byte, sizeof(byte)); }
size_t sx127x::write(const uint8_t *buffer, size_t size) {
int currentLength = readRegister(REG_PAYLOAD_LENGTH_7X);
if ((currentLength + size) > MAX_PKT_LENGTH) { size = MAX_PKT_LENGTH - currentLength; }
for (size_t i = 0; i < size; i++) { writeRegister(REG_FIFO_7X, buffer[i]); }
writeRegister(REG_PAYLOAD_LENGTH_7X, currentLength + size);
return size;
}
int ISR_VECT sx127x::available() { return (readRegister(REG_RX_NB_BYTES_7X) - _packetIndex); }
int ISR_VECT sx127x::read() {
if (!available()) { return -1; }
_packetIndex++;
return readRegister(REG_FIFO_7X);
}
int sx127x::peek() {
if (!available()) { return -1; }
// Remember current FIFO address, read, and then reset address
int currentAddress = readRegister(REG_FIFO_ADDR_PTR_7X);
uint8_t b = readRegister(REG_FIFO_7X);
writeRegister(REG_FIFO_ADDR_PTR_7X, currentAddress);
return b;
}
void sx127x::onReceive(void(*callback)(int)) {
_onReceive = callback;
if (callback) {
pinMode(_dio0, INPUT);
writeRegister(REG_DIO_MAPPING_1_7X, 0x00);
#ifdef SPI_HAS_NOTUSINGINTERRUPT
SPI.usingInterrupt(digitalPinToInterrupt(_dio0));
#endif
attachInterrupt(digitalPinToInterrupt(_dio0), sx127x::onDio0Rise, RISING);
} else {
detachInterrupt(digitalPinToInterrupt(_dio0));
#ifdef SPI_HAS_NOTUSINGINTERRUPT
SPI.notUsingInterrupt(digitalPinToInterrupt(_dio0));
#endif
}
}
void sx127x::receive(int size) {
if (size > 0) {
implicitHeaderMode();
writeRegister(REG_PAYLOAD_LENGTH_7X, size & 0xff);
} else { explicitHeaderMode(); }
writeRegister(REG_OP_MODE_7X, MODE_LONG_RANGE_MODE_7X | MODE_RX_CONTINUOUS_7X);
}
void sx127x::setTxPower(int level, int outputPin) {
// Setup according to RFO or PA_BOOST output pin
if (PA_OUTPUT_RFO_PIN == outputPin) {
if (level < 0) { level = 0; }
else if (level > 14) { level = 14; }
writeRegister(REG_PA_DAC_7X, 0x84);
writeRegister(REG_PA_CONFIG_7X, 0x70 | level);
} else {
if (level < 2) { level = 2; }
else if (level > 17) { level = 17; }
writeRegister(REG_PA_DAC_7X, 0x84);
writeRegister(REG_PA_CONFIG_7X, PA_BOOST_7X | (level - 2));
}
}
uint8_t sx127x::getTxPower() { byte txp = readRegister(REG_PA_CONFIG_7X); return txp; }
void sx127x::setFrequency(unsigned long frequency) {
_frequency = frequency;
uint32_t frf = ((uint64_t)frequency << 19) / 32000000;
writeRegister(REG_FRF_MSB_7X, (uint8_t)(frf >> 16));
writeRegister(REG_FRF_MID_7X, (uint8_t)(frf >> 8));
writeRegister(REG_FRF_LSB_7X, (uint8_t)(frf >> 0));
optimizeModemSensitivity();
}
uint32_t sx127x::getFrequency() {
uint8_t msb = readRegister(REG_FRF_MSB_7X);
uint8_t mid = readRegister(REG_FRF_MID_7X);
uint8_t lsb = readRegister(REG_FRF_LSB_7X);
uint32_t frf = ((uint32_t)msb << 16) | ((uint32_t)mid << 8) | (uint32_t)lsb;
uint64_t frm = (uint64_t)frf*32000000;
uint32_t frequency = (frm >> 19);
return frequency;
}
void sx127x::setSpreadingFactor(int sf) {
if (sf < 6) { sf = 6; }
else if (sf > 12) { sf = 12; }
if (sf == 6) {
writeRegister(REG_DETECTION_OPTIMIZE_7X, 0xc5);
writeRegister(REG_DETECTION_THRESHOLD_7X, 0x0c);
} else {
writeRegister(REG_DETECTION_OPTIMIZE_7X, 0xc3);
writeRegister(REG_DETECTION_THRESHOLD_7X, 0x0a);
}
writeRegister(REG_MODEM_CONFIG_2_7X, (readRegister(REG_MODEM_CONFIG_2_7X) & 0x0f) | ((sf << 4) & 0xf0));
handleLowDataRate();
}
long sx127x::getSignalBandwidth() {
byte bw = (readRegister(REG_MODEM_CONFIG_1_7X) >> 4);
switch (bw) {
case 0: return 7.8E3;
case 1: return 10.4E3;
case 2: return 15.6E3;
case 3: return 20.8E3;
case 4: return 31.25E3;
case 5: return 41.7E3;
case 6: return 62.5E3;
case 7: return 125E3;
case 8: return 250E3;
case 9: return 500E3; }
return 0;
}
void sx127x::setSignalBandwidth(long sbw) {
int bw;
if (sbw <= 7.8E3) {
bw = 0;
} else if (sbw <= 10.4E3) {
bw = 1;
} else if (sbw <= 15.6E3) {
bw = 2;
} else if (sbw <= 20.8E3) {
bw = 3;
} else if (sbw <= 31.25E3) {
bw = 4;
} else if (sbw <= 41.7E3) {
bw = 5;
} else if (sbw <= 62.5E3) {
bw = 6;
} else if (sbw <= 125E3) {
bw = 7;
} else if (sbw <= 250E3) {
bw = 8;
} else /*if (sbw <= 250E3)*/ {
bw = 9;
}
writeRegister(REG_MODEM_CONFIG_1_7X, (readRegister(REG_MODEM_CONFIG_1_7X) & 0x0f) | (bw << 4));
handleLowDataRate();
optimizeModemSensitivity();
}
void sx127x::setCodingRate4(int denominator) {
if (denominator < 5) { denominator = 5; }
else if (denominator > 8) { denominator = 8; }
int cr = denominator - 4;
writeRegister(REG_MODEM_CONFIG_1_7X, (readRegister(REG_MODEM_CONFIG_1_7X) & 0xf1) | (cr << 1));
}
void sx127x::setPreambleLength(long preamble_symbols) {
long length = preamble_symbols - 4;
writeRegister(REG_PREAMBLE_MSB_7X, (uint8_t)(length >> 8));
writeRegister(REG_PREAMBLE_LSB_7X, (uint8_t)(length >> 0));
}
extern bool lora_low_datarate;
void sx127x::handleLowDataRate() {
int sf = (readRegister(REG_MODEM_CONFIG_2_7X) >> 4);
if ( long( (1<<sf) / (getSignalBandwidth()/1000)) > 16) {
// Set auto AGC and LowDataRateOptimize
writeRegister(REG_MODEM_CONFIG_3_7X, (1<<3)|(1<<2));
lora_low_datarate = true;
} else {
// Only set auto AGC
writeRegister(REG_MODEM_CONFIG_3_7X, (1<<2));
lora_low_datarate = false;
}
}
void sx127x::optimizeModemSensitivity() {
byte bw = (readRegister(REG_MODEM_CONFIG_1_7X) >> 4);
uint32_t freq = getFrequency();
if (bw == 9 && (410E6 <= freq) && (freq <= 525E6)) {
writeRegister(REG_HIGH_BW_OPTIMIZE_1_7X, 0x02);
writeRegister(REG_HIGH_BW_OPTIMIZE_2_7X, 0x7f);
} else if (bw == 9 && (820E6 <= freq) && (freq <= 1020E6)) {
writeRegister(REG_HIGH_BW_OPTIMIZE_1_7X, 0x02);
writeRegister(REG_HIGH_BW_OPTIMIZE_2_7X, 0x64);
} else {
writeRegister(REG_HIGH_BW_OPTIMIZE_1_7X, 0x03);
}
}
void ISR_VECT sx127x::handleDio0Rise() {
int irqFlags = readRegister(REG_IRQ_FLAGS_7X);
// Clear IRQs
writeRegister(REG_IRQ_FLAGS_7X, irqFlags);
if ((irqFlags & IRQ_PAYLOAD_CRC_ERROR_MASK_7X) == 0) {
_packetIndex = 0;
int packetLength = _implicitHeaderMode ? readRegister(REG_PAYLOAD_LENGTH_7X) : readRegister(REG_RX_NB_BYTES_7X);
writeRegister(REG_FIFO_ADDR_PTR_7X, readRegister(REG_FIFO_RX_CURRENT_ADDR_7X));
if (_onReceive) { _onReceive(packetLength); }
writeRegister(REG_FIFO_ADDR_PTR_7X, 0);
}
}
void ISR_VECT sx127x::onDio0Rise() { sx127x_modem.handleDio0Rise(); }
sx127x sx127x_modem;
#endif

114
RNode_Firmware/sx127x.h Normal file
View file

@ -0,0 +1,114 @@
// Copyright Sandeep Mistry, Mark Qvist and Jacob Eva.
// Licensed under the MIT license.
#ifndef SX1276_H
#define SX1276_H
#include <Arduino.h>
#include <SPI.h>
#include "Modem.h"
#define LORA_DEFAULT_SS_PIN 10
#define LORA_DEFAULT_RESET_PIN 9
#define LORA_DEFAULT_DIO0_PIN 2
#define LORA_DEFAULT_BUSY_PIN -1
#define PA_OUTPUT_RFO_PIN 0
#define PA_OUTPUT_PA_BOOST_PIN 1
#define RSSI_OFFSET 157
// Modem status flags
#define SIG_DETECT 0x01
#define SIG_SYNCED 0x02
#define RX_ONGOING 0x04
class sx127x : public Stream {
public:
sx127x();
int begin(long frequency);
void end();
int beginPacket(int implicitHeader = false);
int endPacket();
int parsePacket(int size = 0);
int packetRssi();
int packetRssi(uint8_t pkt_snr_raw);
int currentRssi();
uint8_t packetRssiRaw();
uint8_t currentRssiRaw();
uint8_t packetSnrRaw();
float packetSnr();
long packetFrequencyError();
// from Print
virtual size_t write(uint8_t byte);
virtual size_t write(const uint8_t *buffer, size_t size);
// from Stream
virtual int available();
virtual int read();
virtual int peek();
virtual void flush();
void onReceive(void(*callback)(int));
void receive(int size = 0);
void standby();
void sleep();
bool preInit();
uint8_t getTxPower();
void setTxPower(int level, int outputPin = PA_OUTPUT_PA_BOOST_PIN);
uint32_t getFrequency();
void setFrequency(unsigned long frequency);
void setSpreadingFactor(int sf);
long getSignalBandwidth();
void setSignalBandwidth(long sbw);
void setCodingRate4(int denominator);
void setPreambleLength(long preamble_symbols);
void setSyncWord(uint8_t sw);
bool dcd();
void enableCrc();
void disableCrc();
void enableTCXO();
void disableTCXO();
byte random();
void setPins(int ss = LORA_DEFAULT_SS_PIN, int reset = LORA_DEFAULT_RESET_PIN, int dio0 = LORA_DEFAULT_DIO0_PIN, int busy = LORA_DEFAULT_BUSY_PIN);
void setSPIFrequency(uint32_t frequency);
private:
void explicitHeaderMode();
void implicitHeaderMode();
void handleDio0Rise();
uint8_t readRegister(uint8_t address);
void writeRegister(uint8_t address, uint8_t value);
uint8_t singleTransfer(uint8_t address, uint8_t value);
static void onDio0Rise();
void handleLowDataRate();
void optimizeModemSensitivity();
private:
SPISettings _spiSettings;
int _ss;
int _reset;
int _dio0;
int _busy;
long _frequency;
int _packetIndex;
int _implicitHeaderMode;
bool _preinit_done;
void (*_onReceive)(int);
};
extern sx127x sx127x_modem;
#endif

887
RNode_Firmware/sx128x.cpp Normal file
View file

@ -0,0 +1,887 @@
// Copyright Sandeep Mistry, Mark Qvist and Jacob Eva.
// Licensed under the MIT license.
#include "Boards.h"
#if MODEM == SX1280
#include "sx128x.h"
#define MCU_1284P 0x91
#define MCU_2560 0x92
#define MCU_ESP32 0x81
#define MCU_NRF52 0x71
#if defined(__AVR_ATmega1284P__)
#define PLATFORM PLATFORM_AVR
#define MCU_VARIANT MCU_1284P
#elif defined(__AVR_ATmega2560__)
#define PLATFORM PLATFORM_AVR
#define MCU_VARIANT MCU_2560
#elif defined(ESP32)
#define PLATFORM PLATFORM_ESP32
#define MCU_VARIANT MCU_ESP32
#elif defined(NRF52840_XXAA)
#define PLATFORM PLATFORM_NRF52
#define MCU_VARIANT MCU_NRF52
#endif
#ifndef MCU_VARIANT
#error No MCU variant defined, cannot compile
#endif
#if MCU_VARIANT == MCU_ESP32
#if MCU_VARIANT == MCU_ESP32 and !defined(CONFIG_IDF_TARGET_ESP32S3)
#include "hal/wdt_hal.h"
#endif
#define ISR_VECT IRAM_ATTR
#else
#define ISR_VECT
#endif
// SX128x registers
#define OP_RF_FREQ_8X 0x86
#define OP_SLEEP_8X 0x84
#define OP_STANDBY_8X 0x80
#define OP_TX_8X 0x83
#define OP_RX_8X 0x82
#define OP_SET_IRQ_FLAGS_8X 0x8D
#define OP_CLEAR_IRQ_STATUS_8X 0x97
#define OP_GET_IRQ_STATUS_8X 0x15
#define OP_RX_BUFFER_STATUS_8X 0x17
#define OP_PACKET_STATUS_8X 0x1D
#define OP_CURRENT_RSSI_8X 0x1F
#define OP_MODULATION_PARAMS_8X 0x8B
#define OP_PACKET_PARAMS_8X 0x8C
#define OP_STATUS_8X 0xC0
#define OP_TX_PARAMS_8X 0x8E
#define OP_PACKET_TYPE_8X 0x8A
#define OP_BUFFER_BASE_ADDR_8X 0x8F
#define OP_READ_REGISTER_8X 0x19
#define OP_WRITE_REGISTER_8X 0x18
#define IRQ_TX_DONE_MASK_8X 0x01
#define IRQ_RX_DONE_MASK_8X 0x02
#define IRQ_HEADER_DET_MASK_8X 0x10
#define IRQ_HEADER_ERROR_MASK_8X 0x20
#define IRQ_PAYLOAD_CRC_ERROR_MASK_8X 0x40
#define MODE_LONG_RANGE_MODE_8X 0x01
#define OP_FIFO_WRITE_8X 0x1A
#define OP_FIFO_READ_8X 0x1B
#define IRQ_PREAMBLE_DET_MASK_8X 0x80
#define REG_PACKET_SIZE 0x901
#define REG_FIRM_VER_MSB 0x154
#define REG_FIRM_VER_LSB 0x153
#define XTAL_FREQ_8X (double)52000000
#define FREQ_DIV_8X (double)pow(2.0, 18.0)
#define FREQ_STEP_8X (double)(XTAL_FREQ_8X / FREQ_DIV_8X)
#if defined(NRF52840_XXAA)
extern SPIClass spiModem;
#define SPI spiModem
#endif
extern SPIClass SPI;
#define MAX_PKT_LENGTH 255
sx128x::sx128x() :
_spiSettings(8E6, MSBFIRST, SPI_MODE0),
_ss(LORA_DEFAULT_SS_PIN), _reset(LORA_DEFAULT_RESET_PIN), _dio0(LORA_DEFAULT_DIO0_PIN), _rxen(pin_rxen), _busy(LORA_DEFAULT_BUSY_PIN), _txen(pin_txen),
_frequency(0), _txp(0), _sf(0x05), _bw(0x34), _cr(0x01), _packetIndex(0), _implicitHeaderMode(0), _payloadLength(255), _crcMode(0), _fifo_tx_addr_ptr(0),
_fifo_rx_addr_ptr(0), _rxPacketLength(0), _preinit_done(false), _tcxo(false) { setTimeout(0); }
bool ISR_VECT sx128x::getPacketValidity() {
uint8_t buf[2];
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2);
executeOpcode(OP_CLEAR_IRQ_STATUS_8X, buf, 2);
if ((buf[1] & IRQ_PAYLOAD_CRC_ERROR_MASK_8X) == 0) { return true; }
else { return false; }
}
void ISR_VECT sx128x::onDio0Rise() {
BaseType_t int_status = taskENTER_CRITICAL_FROM_ISR();
// On the SX1280, there is a bug which can cause the busy line
// to remain high if a high amount of packets are received when
// in continuous RX mode. This is documented as Errata 16.1 in
// the SX1280 datasheet v3.2 (page 149)
// Therefore, the modem is set into receive mode each time a packet is received.
if (sx128x_modem.getPacketValidity()) { sx128x_modem.receive(); sx128x_modem.handleDio0Rise(); }
else { sx128x_modem.receive(); }
taskEXIT_CRITICAL_FROM_ISR(int_status);
}
void sx128x::handleDio0Rise() {
_packetIndex = 0;
uint8_t rxbuf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_8X, rxbuf, 2);
// If implicit header mode is enabled, use pre-set packet length as payload length instead.
// See SX1280 datasheet v3.2, page 92
if (_implicitHeaderMode == 0x80) { _rxPacketLength = _payloadLength; }
else { _rxPacketLength = rxbuf[0]; }
if (_receive_callback) { _receive_callback(_rxPacketLength); }
}
bool sx128x::preInit() {
pinMode(_ss, OUTPUT);
digitalWrite(_ss, HIGH);
// TODO: Check if this change causes issues on any platforms
#if MCU_VARIANT == MCU_ESP32
#if BOARD_MODEL == BOARD_T3S3 || BOARD_MODEL == BOARD_HELTEC32_V3 || BOARD_MODEL == BOARD_HELTEC32_V4 || BOARD_MODEL == BOARD_TDECK
SPI.begin(pin_sclk, pin_miso, pin_mosi, pin_cs);
#else
SPI.begin();
#endif
#else
SPI.begin();
#endif
// Detect modem (retry for up to 500ms)
long start = millis();
uint8_t version_msb;
uint8_t version_lsb;
while (((millis() - start) < 500) && (millis() >= start)) {
version_msb = readRegister(REG_FIRM_VER_MSB);
version_lsb = readRegister(REG_FIRM_VER_LSB);
if ((version_msb == 0xB7 && version_lsb == 0xA9) || (version_msb == 0xB5 && version_lsb == 0xA9)) { break; }
delay(100);
}
if ((version_msb != 0xB7 || version_lsb != 0xA9) && (version_msb != 0xB5 || version_lsb != 0xA9)) { return false; }
_preinit_done = true;
return true;
}
uint8_t ISR_VECT sx128x::readRegister(uint16_t address) { return singleTransfer(OP_READ_REGISTER_8X, address, 0x00); }
void sx128x::writeRegister(uint16_t address, uint8_t value) { singleTransfer(OP_WRITE_REGISTER_8X, address, value); }
uint8_t ISR_VECT sx128x::singleTransfer(uint8_t opcode, uint16_t address, uint8_t value) {
waitOnBusy();
uint8_t response;
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(opcode);
SPI.transfer((address & 0xFF00) >> 8);
SPI.transfer(address & 0x00FF);
if (opcode == OP_READ_REGISTER_8X) { SPI.transfer(0x00); }
response = SPI.transfer(value);
SPI.endTransaction();
digitalWrite(_ss, HIGH);
return response;
}
void sx128x::rxAntEnable() {
if (_txen != -1) { digitalWrite(_txen, LOW); }
if (_rxen != -1) { digitalWrite(_rxen, HIGH); }
}
void sx128x::txAntEnable() {
if (_txen != -1) { digitalWrite(_txen, HIGH); }
if (_rxen != -1) { digitalWrite(_rxen, LOW); }
}
void sx128x::loraMode() {
uint8_t mode = MODE_LONG_RANGE_MODE_8X;
executeOpcode(OP_PACKET_TYPE_8X, &mode, 1);
}
void sx128x::waitOnBusy() {
unsigned long time = millis();
while (digitalRead(_busy) == HIGH) {
if (millis() >= (time + 100)) { break; }
}
}
void sx128x::executeOpcode(uint8_t opcode, uint8_t *buffer, uint8_t size) {
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(opcode);
for (int i = 0; i < size; i++) { SPI.transfer(buffer[i]); }
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx128x::executeOpcodeRead(uint8_t opcode, uint8_t *buffer, uint8_t size) {
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(opcode);
SPI.transfer(0x00);
for (int i = 0; i < size; i++) { buffer[i] = SPI.transfer(0x00); }
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx128x::writeBuffer(const uint8_t* buffer, size_t size) {
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(OP_FIFO_WRITE_8X);
SPI.transfer(_fifo_tx_addr_ptr);
for (int i = 0; i < size; i++) { SPI.transfer(buffer[i]); _fifo_tx_addr_ptr++; }
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx128x::readBuffer(uint8_t* buffer, size_t size) {
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(OP_FIFO_READ_8X);
SPI.transfer(_fifo_rx_addr_ptr);
SPI.transfer(0x00);
for (int i = 0; i < size; i++) { buffer[i] = SPI.transfer(0x00); }
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx128x::setModulationParams(uint8_t sf, uint8_t bw, uint8_t cr) {
// because there is no access to these registers on the sx1280, we have
// to set all these parameters at once or not at all.
uint8_t buf[3];
buf[0] = sf << 4;
buf[1] = bw;
buf[2] = cr;
executeOpcode(OP_MODULATION_PARAMS_8X, buf, 3);
if (sf <= 6) { writeRegister(0x925, 0x1E); }
else if (sf <= 8) { writeRegister(0x925, 0x37); }
else if (sf >= 9) { writeRegister(0x925, 0x32); }
writeRegister(0x093C, 0x1);
}
uint8_t preamble_e = 0;
uint8_t preamble_m = 0;
uint32_t last_me_result_target = 0;
extern long lora_preamble_symbols;
void sx128x::setPacketParams(uint32_t target_preamble_symbols, uint8_t headermode, uint8_t payload_length, uint8_t crc) {
if (last_me_result_target != target_preamble_symbols) {
// Calculate exponent and mantissa values for modem
if (target_preamble_symbols >= 0xF000) target_preamble_symbols = 0xF000;
uint32_t calculated_preamble_symbols;
uint8_t e = 1;
uint8_t m = 1;
while (e <= 15) {
while (m <= 15) {
calculated_preamble_symbols = m * (pow(2,e));
if (calculated_preamble_symbols >= target_preamble_symbols-4) break;
m++;
}
if (calculated_preamble_symbols >= target_preamble_symbols-4) break;
m = 1; e++;
}
last_me_result_target = target_preamble_symbols;
lora_preamble_symbols = calculated_preamble_symbols+4;
_preambleLength = lora_preamble_symbols;
preamble_e = e;
preamble_m = m;
}
uint8_t buf[7];
buf[0] = (preamble_e << 4) | preamble_m;
buf[1] = headermode;
buf[2] = payload_length;
buf[3] = crc;
buf[4] = 0x40; // Standard IQ setting (no inversion)
buf[5] = 0x00; // Unused params
buf[6] = 0x00;
executeOpcode(OP_PACKET_PARAMS_8X, buf, 7);
}
void sx128x::reset() {
if (_reset != -1) {
pinMode(_reset, OUTPUT);
digitalWrite(_reset, LOW);
delay(10);
digitalWrite(_reset, HIGH);
delay(10);
}
}
int sx128x::begin(unsigned long frequency) {
reset();
if (_rxen != -1) { pinMode(_rxen, OUTPUT); }
if (_txen != -1) { pinMode(_txen, OUTPUT); }
if (_busy != -1) { pinMode(_busy, INPUT); }
if (!_preinit_done) {
if (!preInit()) {
return false;
}
}
standby();
loraMode();
rxAntEnable();
setFrequency(frequency);
// TODO: Implement LNA boost
//writeRegister(REG_LNA, 0x96);
setModulationParams(_sf, _bw, _cr);
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
setTxPower(_txp);
// Set base addresses
uint8_t basebuf[2] = {0};
executeOpcode(OP_BUFFER_BASE_ADDR_8X, basebuf, 2);
_radio_online = true;
return 1;
}
void sx128x::end() {
sleep();
SPI.end();
_bitrate = 0;
_radio_online = false;
_preinit_done = false;
}
int sx128x::beginPacket(int implicitHeader) {
standby();
if (implicitHeader) { implicitHeaderMode(); }
else { explicitHeaderMode(); }
_payloadLength = 0;
_fifo_tx_addr_ptr = 0;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
return 1;
}
int sx128x::endPacket() {
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
txAntEnable();
// Put in single TX mode
uint8_t timeout[3] = {0};
executeOpcode(OP_TX_8X, timeout, 3);
uint8_t buf[2];
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2);
// Wait for TX done
bool timed_out = false;
uint32_t w_timeout = millis()+LORA_MODEM_TIMEOUT_MS;
while ((millis() < w_timeout) && ((buf[1] & IRQ_TX_DONE_MASK_8X) == 0)) {
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2);
yield();
}
if (!(millis() < w_timeout)) { timed_out = true; }
// clear IRQ's
uint8_t mask[2];
mask[0] = 0x00;
mask[1] = IRQ_TX_DONE_MASK_8X;
executeOpcode(OP_CLEAR_IRQ_STATUS_8X, mask, 2);
if (timed_out) { return 0; }
else { return 1; }
}
unsigned long preamble_detected_at = 0;
extern long lora_preamble_time_ms;
extern long lora_header_time_ms;
bool false_preamble_detected = false;
bool sx128x::dcd() {
uint8_t buf[2] = {0}; executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2);
uint32_t now = millis();
bool header_detected = false;
bool carrier_detected = false;
if ((buf[1] & IRQ_HEADER_DET_MASK_8X) != 0) { header_detected = true; carrier_detected = true; }
else { header_detected = false; }
if ((buf[0] & IRQ_PREAMBLE_DET_MASK_8X) != 0) {
carrier_detected = true;
if (preamble_detected_at == 0) { preamble_detected_at = now; }
if (now - preamble_detected_at > lora_preamble_time_ms + lora_header_time_ms) {
preamble_detected_at = 0;
if (!header_detected) { false_preamble_detected = true; }
uint8_t clearbuf[2] = {0}; clearbuf[0] = IRQ_PREAMBLE_DET_MASK_8X;
executeOpcode(OP_CLEAR_IRQ_STATUS_8X, clearbuf, 2);
}
}
// TODO: Maybe there's a way of unlatching the RSSI
// status without re-activating receive mode?
if (false_preamble_detected) { sx128x_modem.receive(); false_preamble_detected = false; }
return carrier_detected;
}
uint8_t sx128x::currentRssiRaw() {
uint8_t byte = 0;
executeOpcodeRead(OP_CURRENT_RSSI_8X, &byte, 1);
return byte;
}
int ISR_VECT sx128x::currentRssi() {
uint8_t byte = 0;
executeOpcodeRead(OP_CURRENT_RSSI_8X, &byte, 1);
int rssi = -byte / 2;
return rssi;
}
uint8_t sx128x::packetRssiRaw() {
uint8_t buf[5] = {0};
executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 5);
return buf[0];
}
int ISR_VECT sx128x::packetRssi(uint8_t pkt_snr_raw) {
// TODO: May need more calculations here
uint8_t buf[5] = {0};
executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 5);
int pkt_rssi = -buf[0] / 2;
return pkt_rssi;
}
uint8_t ISR_VECT sx128x::packetSnrRaw() {
uint8_t buf[5] = {0};
executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 5);
return buf[1];
}
float ISR_VECT sx128x::packetSnr() {
uint8_t buf[5] = {0};
executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 5);
return float(buf[1]) * 0.25;
}
long sx128x::packetFrequencyError() {
// TODO: Implement this, page 120 of sx1280 datasheet
int32_t freqError = 0;
const float fError = 0.0;
return static_cast<long>(fError);
}
void sx128x::flush() { }
int ISR_VECT sx128x::available() { return _rxPacketLength - _packetIndex; }
size_t sx128x::write(uint8_t byte) { return write(&byte, sizeof(byte)); }
size_t sx128x::write(const uint8_t *buffer, size_t size) {
if ((_payloadLength + size) > MAX_PKT_LENGTH) { size = MAX_PKT_LENGTH - _payloadLength; }
writeBuffer(buffer, size);
_payloadLength = _payloadLength + size;
return size;
}
int ISR_VECT sx128x::read() {
if (!available()) { return -1; }
// If received new packet
if (_packetIndex == 0) {
uint8_t rxbuf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_8X, rxbuf, 2);
int size;
// If implicit header mode is enabled, read packet length as payload length instead.
// See SX1280 datasheet v3.2, page 92
if (_implicitHeaderMode == 0x80) {
size = _payloadLength;
} else {
size = rxbuf[0];
}
_fifo_rx_addr_ptr = rxbuf[1];
if (size > 255) { size = 255; }
readBuffer(_packet, size);
}
uint8_t byte = _packet[_packetIndex];
_packetIndex++;
return byte;
}
int sx128x::peek() {
if (!available()) { return -1; }
uint8_t b = _packet[_packetIndex];
return b;
}
void sx128x::onReceive(void(*callback)(int)) {
_receive_callback = callback;
if (callback) {
pinMode(_dio0, INPUT);
// Set preamble and header detection irqs, plus dio0 mask
uint8_t buf[8];
// Set irq masks, enable all
buf[0] = 0xFF;
buf[1] = 0xFF;
// On the SX1280, no RxDone IRQ is generated if a packet is received with
// an invalid header, but the modem will be taken out of single RX mode.
// This can cause the modem to not receive packets until it is reset
// again. This is documented as Errata 16.2 in the SX1280 datasheet v3.2
// (page 150) Below, the header error IRQ is mapped to dio0 so that the
// modem can be set into RX mode again on reception of a corrupted
// header.
// set dio0 masks
buf[2] = 0x00;
buf[3] = IRQ_RX_DONE_MASK_8X | IRQ_HEADER_ERROR_MASK_8X;
// Set dio1 masks
buf[4] = 0x00;
buf[5] = 0x00;
// Set dio2 masks
buf[6] = 0x00;
buf[7] = 0x00;
executeOpcode(OP_SET_IRQ_FLAGS_8X, buf, 8);
#ifdef SPI_HAS_NOTUSINGINTERRUPT
SPI.usingInterrupt(digitalPinToInterrupt(_dio0));
#endif
attachInterrupt(digitalPinToInterrupt(_dio0), onDio0Rise, RISING);
} else {
detachInterrupt(digitalPinToInterrupt(_dio0));
#ifdef SPI_HAS_NOTUSINGINTERRUPT
_spiModem->notUsingInterrupt(digitalPinToInterrupt(_dio0));
#endif
}
}
void sx128x::receive(int size) {
if (size > 0) {
implicitHeaderMode();
// Tell radio payload length
//_rxPacketLength = size;
//_payloadLength = size;
//setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
} else {
explicitHeaderMode();
}
rxAntEnable();
// On the SX1280, there is a bug which can cause the busy line
// to remain high if a high amount of packets are received when
// in continuous RX mode. This is documented as Errata 16.1 in
// the SX1280 datasheet v3.2 (page 149)
// Therefore, the modem is set to single RX mode below instead.
// uint8_t mode[3] = {0x03, 0xFF, 0xFF}; // Countinuous RX mode
uint8_t mode[3] = {0}; // single RX mode
executeOpcode(OP_RX_8X, mode, 3);
}
void sx128x::standby() {
uint8_t byte = 0x01; // Always use STDBY_XOSC
executeOpcode(OP_STANDBY_8X, &byte, 1);
}
void sx128x::setPins(int ss, int reset, int dio0, int busy, int rxen, int txen) {
_ss = ss;
_reset = reset;
_dio0 = dio0;
_busy = busy;
_rxen = rxen;
_txen = txen;
}
void sx128x::setTxPower(int level, int outputPin) {
uint8_t tx_buf[2];
// RAK4631 with WisBlock SX1280 module (LIBSYS002)
#if BOARD_VARIANT == MODEL_13 || BOARD_VARIANT == MODEL_21
if (level > 27) { level = 27; }
else if (level < 0) { level = 0; }
_txp = level;
int reg_value;
switch (level) {
case 0:
reg_value = -18;
break;
case 1:
reg_value = -16;
break;
case 2:
reg_value = -15;
break;
case 3:
reg_value = -14;
break;
case 4:
reg_value = -13;
break;
case 5:
reg_value = -12;
break;
case 6:
reg_value = -11;
break;
case 7:
reg_value = -9;
break;
case 8:
reg_value = -8;
break;
case 9:
reg_value = -7;
break;
case 10:
reg_value = -6;
break;
case 11:
reg_value = -5;
break;
case 12:
reg_value = -4;
break;
case 13:
reg_value = -3;
break;
case 14:
reg_value = -2;
break;
case 15:
reg_value = -1;
break;
case 16:
reg_value = 0;
break;
case 17:
reg_value = 1;
break;
case 18:
reg_value = 2;
break;
case 19:
reg_value = 3;
break;
case 20:
reg_value = 4;
break;
case 21:
reg_value = 5;
break;
case 22:
reg_value = 6;
break;
case 23:
reg_value = 7;
break;
case 24:
reg_value = 8;
break;
case 25:
reg_value = 9;
break;
case 26:
reg_value = 12;
break;
case 27:
reg_value = 13;
break;
default:
reg_value = 0;
break;
}
tx_buf[0] = reg_value + 18;
tx_buf[1] = 0xE0; // Ramping time, 20 microseconds
executeOpcode(OP_TX_PARAMS_8X, tx_buf, 2);
// T3S3 SX1280 PA
#elif BOARD_VARIANT == MODEL_AC
if (level > 20) { level = 20; }
else if (level < 0) { level = 0; }
_txp = level;
int reg_value;
switch (level) {
case 0:
reg_value = -18;
break;
case 1:
reg_value = -17;
break;
case 2:
reg_value = -16;
break;
case 3:
reg_value = -15;
break;
case 4:
reg_value = -14;
break;
case 5:
reg_value = -13;
break;
case 6:
reg_value = -12;
break;
case 7:
reg_value = -10;
break;
case 8:
reg_value = -9;
break;
case 9:
reg_value = -8;
break;
case 10:
reg_value = -7;
break;
case 11:
reg_value = -6;
break;
case 12:
reg_value = -5;
break;
case 13:
reg_value = -4;
break;
case 14:
reg_value = -3;
break;
case 15:
reg_value = -2;
break;
case 16:
reg_value = -1;
break;
case 17:
reg_value = 0;
break;
case 18:
reg_value = 1;
break;
case 19:
reg_value = 2;
break;
case 20:
reg_value = 3;
break;
default:
reg_value = 0;
break;
}
tx_buf[0] = reg_value;
tx_buf[1] = 0xE0; // Ramping time, 20 microseconds
// For SX1280 boards with no specific PA requirements
#else
if (level > 13) { level = 13; }
else if (level < -18) { level = -18; }
_txp = level;
tx_buf[0] = level + 18;
tx_buf[1] = 0xE0; // Ramping time, 20 microseconds
#endif
executeOpcode(OP_TX_PARAMS_8X, tx_buf, 2);
}
void sx128x::setFrequency(uint32_t frequency) {
_frequency = frequency;
uint8_t buf[3];
uint32_t freq = (uint32_t)((double)frequency / (double)FREQ_STEP_8X);
buf[0] = ((freq >> 16) & 0xFF);
buf[1] = ((freq >> 8) & 0xFF);
buf[2] = (freq & 0xFF);
executeOpcode(OP_RF_FREQ_8X, buf, 3);
}
uint32_t sx128x::getFrequency() {
// We can't read the frequency on the sx1280
uint32_t frequency = _frequency;
return frequency;
}
void sx128x::setSpreadingFactor(int sf) {
if (sf < 5) { sf = 5; }
else if (sf > 12) { sf = 12; }
_sf = sf;
setModulationParams(sf, _bw, _cr);
handleLowDataRate();
}
uint32_t sx128x::getSignalBandwidth() {
int bw = _bw;
switch (bw) {
case 0x34: return 203.125E3;
case 0x26: return 406.25E3;
case 0x18: return 812.5E3;
case 0x0A: return 1625E3;
}
return 0;
}
void sx128x::setSignalBandwidth(uint32_t sbw) {
if (sbw <= 203.125E3) { _bw = 0x34; }
else if (sbw <= 406.25E3) { _bw = 0x26; }
else if (sbw <= 812.5E3) { _bw = 0x18; }
else { _bw = 0x0A; }
setModulationParams(_sf, _bw, _cr);
handleLowDataRate();
optimizeModemSensitivity();
}
// TODO: add support for new interleaving scheme, see page 117 of sx1280 datasheet
void sx128x::setCodingRate4(int denominator) {
if (denominator < 5) { denominator = 5; }
else if (denominator > 8) { denominator = 8; }
_cr = denominator - 4;
setModulationParams(_sf, _bw, _cr);
}
extern bool lora_low_datarate;
void sx128x::handleLowDataRate() {
if (_sf > 10) { lora_low_datarate = true; }
else { lora_low_datarate = false; }
}
void sx128x::optimizeModemSensitivity() { } // TODO: Check if there's anything the sx1280 can do here
uint8_t sx128x::getCodingRate4() { return _cr + 4; }
void sx128x::setPreambleLength(long preamble_symbols) { setPacketParams(preamble_symbols, _implicitHeaderMode, _payloadLength, _crcMode); }
void sx128x::setSyncWord(int sw) { } // TODO: Implement
void sx128x::enableTCXO() { } // TODO: Need to check how to implement on sx1280
void sx128x::disableTCXO() { } // TODO: Need to check how to implement on sx1280
void sx128x::sleep() { uint8_t byte = 0x00; executeOpcode(OP_SLEEP_8X, &byte, 1); }
uint8_t sx128x::getTxPower() { return _txp; }
uint8_t sx128x::getSpreadingFactor() { return _sf; }
void sx128x::enableCrc() { _crcMode = 0x20; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); }
void sx128x::disableCrc() { _crcMode = 0; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); }
void sx128x::setSPIFrequency(uint32_t frequency) { _spiSettings = SPISettings(frequency, MSBFIRST, SPI_MODE0); }
void sx128x::explicitHeaderMode() { _implicitHeaderMode = 0; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); }
void sx128x::implicitHeaderMode() { _implicitHeaderMode = 0x80; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); }
void sx128x::dumpRegisters(Stream& out) { for (int i = 0; i < 128; i++) { out.print("0x"); out.print(i, HEX); out.print(": 0x"); out.println(readRegister(i), HEX); } }
sx128x sx128x_modem;
#endif

146
RNode_Firmware/sx128x.h Normal file
View file

@ -0,0 +1,146 @@
// Copyright Sandeep Mistry, Mark Qvist and Jacob Eva.
// Licensed under the MIT license.
#ifndef SX128X_H
#define SX128X_H
#include <Arduino.h>
#include <SPI.h>
#include "Modem.h"
#define LORA_DEFAULT_SS_PIN 10
#define LORA_DEFAULT_RESET_PIN 9
#define LORA_DEFAULT_DIO0_PIN 2
#define LORA_DEFAULT_RXEN_PIN -1
#define LORA_DEFAULT_TXEN_PIN -1
#define LORA_DEFAULT_BUSY_PIN -1
#define LORA_MODEM_TIMEOUT_MS 15E3
#define PA_OUTPUT_RFO_PIN 0
#define PA_OUTPUT_PA_BOOST_PIN 1
#define RSSI_OFFSET 157
class sx128x : public Stream {
public:
sx128x();
int begin(unsigned long frequency);
void end();
void reset();
int beginPacket(int implicitHeader = false);
int endPacket();
int parsePacket(int size = 0);
int packetRssi();
int packetRssi(uint8_t pkt_snr_raw);
int currentRssi();
uint8_t packetRssiRaw();
uint8_t currentRssiRaw();
uint8_t packetSnrRaw();
float packetSnr();
long packetFrequencyError();
// from Print
virtual size_t write(uint8_t byte);
virtual size_t write(const uint8_t *buffer, size_t size);
// from Stream
virtual int available();
virtual int read();
virtual int peek();
virtual void flush();
void onReceive(void(*callback)(int));
void receive(int size = 0);
void standby();
void sleep();
bool preInit();
uint8_t getTxPower();
void setTxPower(int level, int outputPin = PA_OUTPUT_PA_BOOST_PIN);
uint32_t getFrequency();
void setFrequency(uint32_t frequency);
void setSpreadingFactor(int sf);
uint8_t getSpreadingFactor();
uint32_t getSignalBandwidth();
void setSignalBandwidth(uint32_t sbw);
void setCodingRate4(int denominator);
uint8_t getCodingRate4();
void setPreambleLength(long preamble_symbols);
void setSyncWord(int sw);
bool dcd();
void clearIRQStatus();
void enableCrc();
void disableCrc();
void enableTCXO();
void disableTCXO();
void txAntEnable();
void rxAntEnable();
void loraMode();
void waitOnBusy();
void executeOpcode(uint8_t opcode, uint8_t *buffer, uint8_t size);
void executeOpcodeRead(uint8_t opcode, uint8_t *buffer, uint8_t size);
void writeBuffer(const uint8_t* buffer, size_t size);
void readBuffer(uint8_t* buffer, size_t size);
void setPacketParams(uint32_t target_preamble_symbols, uint8_t headermode, uint8_t payload_length, uint8_t crc);
void setModulationParams(uint8_t sf, uint8_t bw, uint8_t cr);
void crc() { enableCrc(); }
void noCrc() { disableCrc(); }
void setPins(int ss = LORA_DEFAULT_SS_PIN, int reset = LORA_DEFAULT_RESET_PIN, int dio0 = LORA_DEFAULT_DIO0_PIN, int busy = LORA_DEFAULT_BUSY_PIN, int rxen = LORA_DEFAULT_RXEN_PIN, int txen = LORA_DEFAULT_TXEN_PIN);
void setSPIFrequency(uint32_t frequency);
void dumpRegisters(Stream& out);
private:
void explicitHeaderMode();
void implicitHeaderMode();
bool getPacketValidity();
void handleDio0Rise();
uint8_t readRegister(uint16_t address);
void writeRegister(uint16_t address, uint8_t value);
uint8_t singleTransfer(uint8_t opcode, uint16_t address, uint8_t value);
static void onDio0Rise();
void handleLowDataRate();
void optimizeModemSensitivity();
private:
SPISettings _spiSettings;
int _ss;
int _reset;
int _dio0;
int _rxen;
int _txen;
int _busy;
int _modem;
unsigned long _frequency;
int _txp;
uint8_t _sf;
uint8_t _bw;
uint8_t _cr;
int _packetIndex;
uint32_t _preambleLength;
int _implicitHeaderMode;
int _payloadLength;
int _crcMode;
int _fifo_tx_addr_ptr;
int _fifo_rx_addr_ptr;
uint8_t _packet[256];
bool _preinit_done;
bool _tcxo;
bool _radio_online;
int _rxPacketLength;
uint32_t _bitrate;
void (*_receive_callback)(int);
};
extern sx128x sx128x_modem;
#endif

View file

@ -322,6 +322,14 @@ uint8_t boot_vector = 0x00;
void led_tx_off() { digitalWrite(pin_led_tx, LED_OFF); }
void led_id_on() { }
void led_id_off() { }
#elif BOARD_MODEL == BOARD_VME213
// VME213 has no physical LEDs, only E-Ink display
void led_rx_on() { }
void led_rx_off() { }
void led_tx_on() { }
void led_tx_off() { }
void led_id_on() { }
void led_id_off() { }
#elif BOARD_MODEL == BOARD_HUZZAH32
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }

74
build-vme213.ps1 Normal file
View file

@ -0,0 +1,74 @@
# Build script for Heltec VisionMaster E213
$ErrorActionPreference = "Stop"
$ARDUINO_CLI = ".\tools\arduino-cli.exe"
$BOARD_MODEL = "0x40"
$ARDUINO_ESP_CORE_VER = "2.0.17"
Write-Host "=== RNode Firmware Build for VME213 ===" -ForegroundColor Cyan
# Check if arduino-cli exists
if (-not (Test-Path $ARDUINO_CLI)) {
Write-Host "ERROR: arduino-cli not found at $ARDUINO_CLI" -ForegroundColor Red
exit 1
}
# Update core index
Write-Host "`nUpdating Arduino core index..." -ForegroundColor Yellow
& $ARDUINO_CLI core update-index --config-file arduino-cli.yaml
# Install ESP32 core if not installed
Write-Host "`nChecking ESP32 core..." -ForegroundColor Yellow
$coreInstalled = & $ARDUINO_CLI core list | Select-String "esp32:esp32"
if (-not $coreInstalled) {
Write-Host "Installing ESP32 core $ARDUINO_ESP_CORE_VER..." -ForegroundColor Yellow
& $ARDUINO_CLI core install "esp32:esp32@$ARDUINO_ESP_CORE_VER" --config-file arduino-cli.yaml
}
# Install required libraries
Write-Host "`nChecking required libraries..." -ForegroundColor Yellow
$requiredLibs = @(
"Adafruit SSD1306",
"Adafruit SH110X",
"Adafruit GFX Library",
"Adafruit BusIO",
"Crypto"
)
foreach ($lib in $requiredLibs) {
$libInstalled = & $ARDUINO_CLI lib list | Select-String $lib
if (-not $libInstalled) {
Write-Host "Installing $lib..." -ForegroundColor Yellow
& $ARDUINO_CLI lib install $lib
}
}
# Create build directory
if (-not (Test-Path "build")) {
New-Item -ItemType Directory -Path "build" | Out-Null
}
# Compile firmware
Write-Host "`nCompiling firmware for VME213..." -ForegroundColor Green
& $ARDUINO_CLI compile `
--fqbn esp32:esp32:esp32s3:CDCOnBoot=cdc,PartitionScheme=no_ota `
--build-property "build.extra_flags=-DBOARD_MODEL=$BOARD_MODEL" `
--output-dir build `
--verbose `
RNode_Firmware.ino
if ($LASTEXITCODE -eq 0) {
Write-Host "`n=== Build SUCCESS ===" -ForegroundColor Green
Write-Host "Firmware binary: build\RNode_Firmware.ino.bin" -ForegroundColor Cyan
# Show file size
$binFile = "build\RNode_Firmware.ino.bin"
if (Test-Path $binFile) {
$size = (Get-Item $binFile).Length
$sizeKB = [math]::Round($size / 1KB, 2)
Write-Host "Binary size: $sizeKB KB" -ForegroundColor Cyan
}
} else {
Write-Host "`n=== Build FAILED ===" -ForegroundColor Red
exit 1
}

242
src/LCMEN2R13EFC1.cpp Normal file
View file

@ -0,0 +1,242 @@
// E-Ink display driver for LCMEN2R13EFC1
// Adapted from Meshtastic NicheGraphics driver
#include "LCMEN2R13EFC1.h"
// Look-up tables for FAST refresh
static const uint8_t LUT_FAST_VCOMDC[] = {
0x01, 0x06, 0x03, 0x02, 0x01, 0x01, 0x01,
0x01, 0x06, 0x02, 0x01, 0x01, 0x01, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
static const uint8_t LUT_FAST_WW[] = {
0x01, 0x06, 0x03, 0x02, 0x81, 0x01, 0x01,
0x01, 0x06, 0x02, 0x01, 0x01, 0x01, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
static const uint8_t LUT_FAST_BW[] = {
0x01, 0x86, 0x83, 0x82, 0x81, 0x01, 0x01,
0x01, 0x86, 0x82, 0x01, 0x01, 0x01, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
static const uint8_t LUT_FAST_WB[] = {
0x01, 0x46, 0x43, 0x02, 0x01, 0x01, 0x01,
0x01, 0x46, 0x42, 0x01, 0x01, 0x01, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
static const uint8_t LUT_FAST_BB[] = {
0x01, 0x06, 0x03, 0x42, 0x41, 0x01, 0x01,
0x01, 0x06, 0x02, 0x01, 0x01, 0x01, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
LCMEN2R13EFC1::LCMEN2R13EFC1()
: _spiSettings(6000000, MSBFIRST, SPI_MODE0)
{
// Calculate buffer size (8 pixels per byte)
_bufferRowSize = ((DISPLAY_WIDTH - 1) / 8) + 1; // 122px -> 16 bytes
_bufferSize = _bufferRowSize * DISPLAY_HEIGHT; // 16 * 250 = 4000 bytes
}
void LCMEN2R13EFC1::begin(SPIClass *spi, uint8_t pin_dc, uint8_t pin_cs, uint8_t pin_busy, uint8_t pin_rst) {
_spi = spi;
_pin_dc = pin_dc;
_pin_cs = pin_cs;
_pin_busy = pin_busy;
_pin_rst = pin_rst;
pinMode(_pin_dc, OUTPUT);
pinMode(_pin_cs, OUTPUT);
pinMode(_pin_busy, INPUT);
pinMode(_pin_rst, INPUT_PULLUP); // Active low, hold high
reset();
}
void LCMEN2R13EFC1::reset() {
pinMode(_pin_rst, OUTPUT);
digitalWrite(_pin_rst, LOW);
delay(10);
pinMode(_pin_rst, INPUT_PULLUP);
wait();
sendCommand(0x12); // Software reset
wait();
}
void LCMEN2R13EFC1::wait() {
// Busy when LOW
while (digitalRead(_pin_busy) == LOW) {
yield();
}
}
bool LCMEN2R13EFC1::isBusy() {
return (digitalRead(_pin_busy) == LOW);
}
void LCMEN2R13EFC1::sendCommand(const uint8_t command) {
_spi->beginTransaction(_spiSettings);
digitalWrite(_pin_dc, LOW); // DC low = command
digitalWrite(_pin_cs, LOW);
_spi->transfer(command);
digitalWrite(_pin_cs, HIGH);
digitalWrite(_pin_dc, HIGH);
_spi->endTransaction();
}
void LCMEN2R13EFC1::sendData(uint8_t data) {
sendData(&data, 1);
}
void LCMEN2R13EFC1::sendData(const uint8_t *data, uint32_t size) {
_spi->beginTransaction(_spiSettings);
digitalWrite(_pin_dc, HIGH); // DC high = data
digitalWrite(_pin_cs, LOW);
#if defined(ARCH_ESP32) || defined(ESP32)
_spi->transferBytes(data, NULL, size);
#else
for (uint32_t i = 0; i < size; i++) {
_spi->transfer(data[i]);
}
#endif
digitalWrite(_pin_cs, HIGH);
digitalWrite(_pin_dc, HIGH);
_spi->endTransaction();
}
void LCMEN2R13EFC1::configFull() {
sendCommand(0x00); // Panel setting register
sendData(0b11 << 6 // Display resolution
| 1 << 4 // B&W only
| 1 << 3 // Vertical scan direction
| 1 << 2 // Horizontal scan direction
| 1 << 1 // Shutdown: no
| 1 << 0 // Reset: no
);
sendCommand(0x50); // VCOM and data interval setting
sendData(0b10 << 6 // Border driven white
| 0b11 << 4 // Invert image colors: no
| 0b0111 // Interval between VCOM on and image data
);
}
void LCMEN2R13EFC1::configFast() {
sendCommand(0x00); // Panel setting register
sendData(0b11 << 6 // Display resolution
| 1 << 5 // LUT from registers (set below)
| 1 << 4 // B&W only
| 1 << 3 // Vertical scan direction
| 1 << 2 // Horizontal scan direction
| 1 << 1 // Shutdown: no
| 1 << 0 // Reset: no
);
sendCommand(0x50); // VCOM and data interval setting
sendData(0b11 << 6 // Border floating
| 0b01 << 4 // Invert image colors: no
| 0b0111 // Interval between VCOM on and image data
);
// Load LUT tables
sendCommand(0x20); // VCOM
sendData(LUT_FAST_VCOMDC, sizeof(LUT_FAST_VCOMDC));
sendCommand(0x21); // White -> White
sendData(LUT_FAST_WW, sizeof(LUT_FAST_WW));
sendCommand(0x22); // Black -> White
sendData(LUT_FAST_BW, sizeof(LUT_FAST_BW));
sendCommand(0x23); // White -> Black
sendData(LUT_FAST_WB, sizeof(LUT_FAST_WB));
sendCommand(0x24); // Black -> Black
sendData(LUT_FAST_BB, sizeof(LUT_FAST_BB));
}
void LCMEN2R13EFC1::writeNewImage() {
sendCommand(0x13);
sendData(_buffer, _bufferSize);
}
void LCMEN2R13EFC1::writeOldImage() {
sendCommand(0x10);
sendData(_buffer, _bufferSize);
}
void LCMEN2R13EFC1::update(uint8_t *imageData, UpdateType type) {
_updateType = type;
_buffer = imageData;
reset();
// Configure display
if (_updateType == UPDATE_FULL) {
configFull();
} else {
configFast();
}
// Transfer image data
if (_updateType == UPDATE_FULL) {
writeNewImage();
writeOldImage();
} else {
writeNewImage();
}
// Power on and start refresh
sendCommand(0x04); // Power on panel voltage
wait();
sendCommand(0x12); // Begin executing update
wait();
// Power off
sendCommand(0x02);
wait();
// Update "old memory" for next differential refresh
if (_updateType != UPDATE_FULL) {
writeOldImage();
wait();
}
}
void LCMEN2R13EFC1::powerOn() {
sendCommand(0x04);
wait();
}
void LCMEN2R13EFC1::powerOff() {
sendCommand(0x02);
wait();
}

59
src/LCMEN2R13EFC1.h Normal file
View file

@ -0,0 +1,59 @@
// E-Ink display driver for LCMEN2R13EFC1 (Heltec VisionMaster E213)
// Adapted from Meshtastic firmware for RNode use
// Controller IC: Fitipower JD79656
// Resolution: 122x250 pixels (width x height)
// Supports FAST (partial) and FULL refresh
#ifndef LCMEN2R13EFC1_H
#define LCMEN2R13EFC1_H
#include <Arduino.h>
#include <SPI.h>
class LCMEN2R13EFC1 {
public:
// Display properties
static constexpr uint16_t DISPLAY_WIDTH = 122;
static constexpr uint16_t DISPLAY_HEIGHT = 250;
// Update types
enum UpdateType {
UPDATE_FULL = 0, // Full refresh (slower, ~3.6s)
UPDATE_FAST = 1 // Partial refresh (faster, ~720ms)
};
LCMEN2R13EFC1();
void begin(SPIClass *spi, uint8_t pin_dc, uint8_t pin_cs, uint8_t pin_busy, uint8_t pin_rst);
void update(uint8_t *imageData, UpdateType type);
bool isBusy();
void powerOn();
void powerOff();
private:
SPIClass *_spi;
uint8_t _pin_dc;
uint8_t _pin_cs;
uint8_t _pin_busy;
uint8_t _pin_rst;
SPISettings _spiSettings;
uint8_t *_buffer;
uint16_t _bufferRowSize;
uint32_t _bufferSize;
UpdateType _updateType;
void reset();
void wait();
void sendCommand(const uint8_t command);
void sendData(uint8_t data);
void sendData(const uint8_t *data, uint32_t size);
void configFull();
void configFast();
void writeNewImage();
void writeOldImage();
};
#endif // LCMEN2R13EFC1_H

41
src/einkDetect_VME213.h Normal file
View file

@ -0,0 +1,41 @@
// E-Ink display chip detection for VME213
// Detects between LCMEN213EFC1 (V1) and E0213A367 (V1.1)
// Based on Meshtastic einkDetect.h
#ifndef EINK_DETECT_VME213_H
#define EINK_DETECT_VME213_H
#include <Arduino.h>
enum EInkChipType {
EINK_LCMEN213EFC1 = 0, // Initial version (Fitipower JD79656)
EINK_E0213A367 = 1 // V1.1+ (Solomon Systech SSD1682)
};
// Detect E-Ink controller IC type by BUSY pin logic
// Fitipower: BUSY=LOW when busy
// Solomon Systech: BUSY=HIGH when busy
inline EInkChipType detectEInkChip(uint8_t pin_reset, uint8_t pin_busy) {
// Force display BUSY by holding reset pin active
pinMode(pin_reset, OUTPUT);
digitalWrite(pin_reset, LOW);
delay(10);
// Read BUSY pin logic while display is busy
pinMode(pin_busy, INPUT);
bool busyLogic = digitalRead(pin_busy);
// Release reset pin
pinMode(pin_reset, INPUT);
// Fitipower = LOW when busy
// Solomon = HIGH when busy
if (busyLogic == LOW) {
return EINK_LCMEN213EFC1;
} else {
return EINK_E0213A367;
}
}
#endif // EINK_DETECT_VME213_H

View file

@ -125,7 +125,7 @@ bool sx126x::preInit() {
pinMode(_ss, OUTPUT);
digitalWrite(_ss, HIGH);
#if BOARD_MODEL == BOARD_T3S3 || BOARD_MODEL == BOARD_HELTEC32_V3 || BOARD_MODEL == BOARD_HELTEC32_V4 || BOARD_MODEL == BOARD_TDECK || BOARD_MODEL == BOARD_XIAO_S3
#if BOARD_MODEL == BOARD_T3S3 || BOARD_MODEL == BOARD_HELTEC32_V3 || BOARD_MODEL == BOARD_HELTEC32_V4 || BOARD_MODEL == BOARD_TDECK || BOARD_MODEL == BOARD_XIAO_S3 || BOARD_MODEL == BOARD_VME213
SPI.begin(pin_sclk, pin_miso, pin_mosi, pin_cs);
#elif BOARD_MODEL == BOARD_TECHO
SPI.setPins(pin_miso, pin_sclk, pin_mosi);
@ -614,7 +614,7 @@ void sx126x::sleep() { uint8_t byte = 0x00; executeOpcode(OP_SLEEP_6X, &byte, 1)
void sx126x::enableTCXO() {
#if HAS_TCXO
#if BOARD_MODEL == BOARD_RAK4631 || BOARD_MODEL == BOARD_HELTEC32_V3 || BOARD_MODEL == BOARD_XIAO_S3
#if BOARD_MODEL == BOARD_RAK4631 || BOARD_MODEL == BOARD_HELTEC32_V3 || BOARD_MODEL == BOARD_XIAO_S3 || BOARD_MODEL == BOARD_VME213
uint8_t buf[4] = {MODE_TCXO_3_3V_6X, 0x00, 0x00, 0xFF};
#elif BOARD_MODEL == BOARD_TBEAM
uint8_t buf[4] = {MODE_TCXO_1_8V_6X, 0x00, 0x00, 0xFF};

674
tools/LICENSE.txt Normal file
View file

@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

BIN
tools/arduino-cli.exe Normal file

Binary file not shown.