RNode_Firmware/sx128x.cpp

901 lines
19 KiB
C++
Raw Normal View History

// Copyright (c) Sandeep Mistry. All rights reserved.
// Licensed under the MIT license.
2024-10-11 10:39:38 -04:00
// Modifications and additions copyright 2024 by Mark Qvist
// Obviously still under the MIT license.
#include "sx128x.h"
2024-02-10 11:13:52 -05:00
#include "Boards.h"
#define MCU_1284P 0x91
#define MCU_2560 0x92
#define MCU_ESP32 0x81
#define MCU_NRF52 0x71
#if defined(__AVR_ATmega1284P__)
#define PLATFORM PLATFORM_AVR
#define MCU_VARIANT MCU_1284P
#elif defined(__AVR_ATmega2560__)
#define PLATFORM PLATFORM_AVR
#define MCU_VARIANT MCU_2560
#elif defined(ESP32)
#define PLATFORM PLATFORM_ESP32
#define MCU_VARIANT MCU_ESP32
#elif defined(NRF52840_XXAA)
#define PLATFORM PLATFORM_NRF52
#define MCU_VARIANT MCU_NRF52
#endif
#ifndef MCU_VARIANT
#error No MCU variant defined, cannot compile
#endif
#if MCU_VARIANT == MCU_ESP32
2024-02-10 11:13:52 -05:00
#if MCU_VARIANT == MCU_ESP32 and !defined(CONFIG_IDF_TARGET_ESP32S3)
2024-09-30 07:45:58 -04:00
#include "hal/wdt_hal.h"
2024-02-10 11:13:52 -05:00
#endif
#define ISR_VECT IRAM_ATTR
#else
#define ISR_VECT
#endif
#define OP_RF_FREQ_8X 0x86
#define OP_SLEEP_8X 0x84
#define OP_STANDBY_8X 0x80
#define OP_TX_8X 0x83
#define OP_RX_8X 0x82
#define OP_SET_IRQ_FLAGS_8X 0x8D // also provides info such as
// preamble detection, etc for
// knowing when it's safe to switch
// antenna modes
#define OP_CLEAR_IRQ_STATUS_8X 0x97
#define OP_GET_IRQ_STATUS_8X 0x15
#define OP_RX_BUFFER_STATUS_8X 0x17
#define OP_PACKET_STATUS_8X 0x1D // get snr & rssi of last packet
#define OP_CURRENT_RSSI_8X 0x1F
#define OP_MODULATION_PARAMS_8X 0x8B // bw, sf, cr, etc.
#define OP_PACKET_PARAMS_8X 0x8C // crc, preamble, payload length, etc.
#define OP_STATUS_8X 0xC0
#define OP_TX_PARAMS_8X 0x8E // set dbm, etc
#define OP_PACKET_TYPE_8X 0x8A
#define OP_BUFFER_BASE_ADDR_8X 0x8F
#define OP_READ_REGISTER_8X 0x19
#define OP_WRITE_REGISTER_8X 0x18
#define IRQ_TX_DONE_MASK_8X 0x01
#define IRQ_RX_DONE_MASK_8X 0x02
#define IRQ_HEADER_DET_MASK_8X 0x10
#define IRQ_HEADER_ERROR_MASK_8X 0x20
#define IRQ_PAYLOAD_CRC_ERROR_MASK_8X 0x40
#define MODE_LONG_RANGE_MODE_8X 0x01
#define OP_FIFO_WRITE_8X 0x1A
#define OP_FIFO_READ_8X 0x1B
#define IRQ_PREAMBLE_DET_MASK_8X 0x80
#define REG_PACKET_SIZE 0x901
#define REG_FIRM_VER_MSB 0x154
#define REG_FIRM_VER_LSB 0x153
#define XTAL_FREQ_8X (double)52000000
#define FREQ_DIV_8X (double)pow(2.0, 18.0)
#define FREQ_STEP_8X (double)(XTAL_FREQ_8X / FREQ_DIV_8X)
2024-02-10 11:13:52 -05:00
#if defined(NRF52840_XXAA)
extern SPIClass spiModem;
#define SPI spiModem
#endif
extern SPIClass SPI;
#define MAX_PKT_LENGTH 255
sx128x::sx128x() :
_spiSettings(8E6, MSBFIRST, SPI_MODE0),
_ss(LORA_DEFAULT_SS_PIN), _reset(LORA_DEFAULT_RESET_PIN), _dio0(LORA_DEFAULT_DIO0_PIN), _rxen(LORA_DEFAULT_RXEN_PIN), _busy(LORA_DEFAULT_BUSY_PIN),
_frequency(0),
_txp(0),
_sf(0x50),
_bw(0x34),
_cr(0x01),
_packetIndex(0),
_preambleLength(18),
_implicitHeaderMode(0),
_payloadLength(255),
_crcMode(0),
_fifo_tx_addr_ptr(0),
_fifo_rx_addr_ptr(0),
_packet({0}),
_rxPacketLength(0),
_preinit_done(false),
_onReceive(NULL)
{
// overide Stream timeout value
setTimeout(0);
}
bool sx128x::preInit() {
// setup pins
pinMode(_ss, OUTPUT);
// set SS high
digitalWrite(_ss, HIGH);
SPI.begin();
// check version (retry for up to 2 seconds)
long start = millis();
uint8_t version_msb;
uint8_t version_lsb;
while (((millis() - start) < 2000) && (millis() >= start)) {
version_msb = readRegister(REG_FIRM_VER_MSB);
version_lsb = readRegister(REG_FIRM_VER_LSB);
if ((version_msb == 0xB7 && version_lsb == 0xA9) || (version_msb == 0xB5 && version_lsb == 0xA9)) {
break;
}
delay(100);
}
if ((version_msb != 0xB7 || version_lsb != 0xA9) && (version_msb != 0xB5 || version_lsb != 0xA9)) {
return false;
}
_preinit_done = true;
return true;
}
uint8_t ISR_VECT sx128x::readRegister(uint16_t address)
{
return singleTransfer(OP_READ_REGISTER_8X, address, 0x00);
}
void sx128x::writeRegister(uint16_t address, uint8_t value)
{
singleTransfer(OP_WRITE_REGISTER_8X, address, value);
}
uint8_t ISR_VECT sx128x::singleTransfer(uint8_t opcode, uint16_t address, uint8_t value)
{
waitOnBusy();
uint8_t response;
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(opcode);
SPI.transfer((address & 0xFF00) >> 8);
SPI.transfer(address & 0x00FF);
if (opcode == OP_READ_REGISTER_8X) {
SPI.transfer(0x00);
}
response = SPI.transfer(value);
SPI.endTransaction();
digitalWrite(_ss, HIGH);
return response;
}
void sx128x::rxAntEnable()
{
if (_txen != -1) {
digitalWrite(_txen, LOW);
}
if (_rxen != -1) {
digitalWrite(_rxen, HIGH);
}
}
void sx128x::txAntEnable()
{
if (_txen != -1) {
digitalWrite(_txen, HIGH);
}
if (_rxen != -1) {
digitalWrite(_rxen, LOW);
}
}
void sx128x::loraMode() {
// enable lora mode on the SX1262 chip
uint8_t mode = MODE_LONG_RANGE_MODE_8X;
executeOpcode(OP_PACKET_TYPE_8X, &mode, 1);
}
void sx128x::waitOnBusy() {
unsigned long time = millis();
if (_busy != -1) {
while (digitalRead(_busy) == HIGH)
{
if (millis() >= (time + 100)) {
break;
}
// do nothing
}
}
}
void sx128x::executeOpcode(uint8_t opcode, uint8_t *buffer, uint8_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(opcode);
for (int i = 0; i < size; i++)
{
SPI.transfer(buffer[i]);
}
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx128x::executeOpcodeRead(uint8_t opcode, uint8_t *buffer, uint8_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(opcode);
SPI.transfer(0x00);
for (int i = 0; i < size; i++)
{
buffer[i] = SPI.transfer(0x00);
}
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx128x::writeBuffer(const uint8_t* buffer, size_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(OP_FIFO_WRITE_8X);
SPI.transfer(_fifo_tx_addr_ptr);
for (int i = 0; i < size; i++)
{
SPI.transfer(buffer[i]);
_fifo_tx_addr_ptr++;
}
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx128x::readBuffer(uint8_t* buffer, size_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(OP_FIFO_READ_8X);
SPI.transfer(_fifo_rx_addr_ptr);
SPI.transfer(0x00);
for (int i = 0; i < size; i++)
{
buffer[i] = SPI.transfer(0x00);
}
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx128x::setModulationParams(uint8_t sf, uint8_t bw, uint8_t cr) {
// because there is no access to these registers on the sx1280, we have
// to set all these parameters at once or not at all.
uint8_t buf[3];
buf[0] = sf;
buf[1] = bw;
buf[2] = cr;
executeOpcode(OP_MODULATION_PARAMS_8X, buf, 3);
if (sf <= 6) {
writeRegister(0x925, 0x1E);
} else if (sf <= 8) {
writeRegister(0x925, 0x37);
} else if (sf >= 9) {
writeRegister(0x925, 0x32);
}
writeRegister(0x093C, 0x1);
}
void sx128x::setPacketParams(uint32_t preamble, uint8_t headermode, uint8_t length, uint8_t crc) {
// because there is no access to these registers on the sx1280, we have
// to set all these parameters at once or not at all.
uint8_t buf[7];
// calculate exponent and mantissa values for modem
uint8_t e = 1;
uint8_t m = 1;
uint32_t preamblelen;
while (e <= 15) {
while (m <= 15) {
preamblelen = m * (pow(2,e));
if (preamblelen >= preamble) break;
m++;
}
if (preamblelen >= preamble) break;
m = 0;
e++;
}
buf[0] = (e << 4) | m;
buf[1] = headermode;
buf[2] = length;
buf[3] = crc;
// standard IQ setting (no inversion)
buf[4] = 0x40;
// unused params
buf[5] = 0x00;
buf[6] = 0x00;
executeOpcode(OP_PACKET_PARAMS_8X, buf, 7);
}
int sx128x::begin(unsigned long frequency)
{
if (_reset != -1) {
pinMode(_reset, OUTPUT);
// perform reset
digitalWrite(_reset, LOW);
delay(10);
digitalWrite(_reset, HIGH);
delay(10);
}
2024-05-05 12:16:09 -04:00
if (_rxen != -1) {
pinMode(_rxen, OUTPUT);
}
if (_txen != -1) {
pinMode(_txen, OUTPUT);
}
if (_busy != -1) {
pinMode(_busy, INPUT);
}
if (!_preinit_done) {
if (!preInit()) {
return false;
}
}
idle();
loraMode();
rxAntEnable();
setFrequency(frequency);
// set LNA boost
// todo: implement this
//writeRegister(REG_LNA, 0x96);
setModulationParams(_sf, _bw, _cr);
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
// set output power to 2 dBm
setTxPower(2);
// set base addresses
uint8_t basebuf[2] = {0};
executeOpcode(OP_BUFFER_BASE_ADDR_8X, basebuf, 2);
return 1;
}
void sx128x::end()
{
// put in sleep mode
sleep();
// stop SPI
SPI.end();
_preinit_done = false;
}
int sx128x::beginPacket(int implicitHeader)
{
// put in standby mode
idle();
if (implicitHeader) {
implicitHeaderMode();
} else {
explicitHeaderMode();
}
_payloadLength = 0;
_fifo_tx_addr_ptr = 0;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
return 1;
}
int sx128x::endPacket()
{
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
txAntEnable();
// put in single TX mode
uint8_t timeout[3] = {0};
executeOpcode(OP_TX_8X, timeout, 3);
uint8_t buf[2];
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2);
// wait for TX done
while ((buf[1] & IRQ_TX_DONE_MASK_8X) == 0) {
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2);
yield();
}
// clear IRQ's
uint8_t mask[2];
mask[0] = 0x00;
mask[1] = IRQ_TX_DONE_MASK_8X;
executeOpcode(OP_CLEAR_IRQ_STATUS_8X, mask, 2);
return 1;
}
uint8_t sx128x::modemStatus() {
// imitate the register status from the sx1276 / 78
uint8_t buf[2] = {0};
executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2);
uint8_t clearbuf[2] = {0};
uint8_t byte = 0x00;
if ((buf[0] & IRQ_PREAMBLE_DET_MASK_8X) != 0) {
byte = byte | 0x01 | 0x04;
// clear register after reading
clearbuf[0] = 0xFF;
}
if ((buf[1] & IRQ_HEADER_DET_MASK_8X) != 0) {
byte = byte | 0x02 | 0x04;
// clear register after reading
clearbuf[1] = 0xFF;
}
executeOpcode(OP_CLEAR_IRQ_STATUS_8X, clearbuf, 2);
return byte;
}
uint8_t sx128x::currentRssiRaw() {
uint8_t byte = 0;
executeOpcodeRead(OP_CURRENT_RSSI_8X, &byte, 1);
return byte;
}
int ISR_VECT sx128x::currentRssi() {
uint8_t byte = 0;
executeOpcodeRead(OP_CURRENT_RSSI_8X, &byte, 1);
int rssi = -byte / 2;
return rssi;
}
uint8_t sx128x::packetRssiRaw() {
uint8_t buf[5] = {0};
executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 5);
return buf[0];
}
int ISR_VECT sx128x::packetRssi() {
// may need more calculations here
uint8_t buf[5] = {0};
executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 5);
int pkt_rssi = -buf[0] / 2;
return pkt_rssi;
}
int ISR_VECT sx128x::packetRssi(uint8_t pkt_snr_raw) {
// may need more calculations here
uint8_t buf[5] = {0};
executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 5);
int pkt_rssi = -buf[0] / 2;
return pkt_rssi;
}
uint8_t ISR_VECT sx128x::packetSnrRaw() {
uint8_t buf[5] = {0};
executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 5);
return buf[1];
}
float ISR_VECT sx128x::packetSnr() {
uint8_t buf[5] = {0};
executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 3);
return float(buf[1]) * 0.25;
}
long sx128x::packetFrequencyError()
{
int32_t freqError = 0;
// todo: implement this, page 120 of sx1280 datasheet
const float fError = 0.0;
return static_cast<long>(fError);
}
size_t sx128x::write(uint8_t byte)
{
return write(&byte, sizeof(byte));
}
size_t sx128x::write(const uint8_t *buffer, size_t size)
{
if ((_payloadLength + size) > MAX_PKT_LENGTH) {
size = MAX_PKT_LENGTH - _payloadLength;
}
// write data
writeBuffer(buffer, size);
_payloadLength = _payloadLength + size;
return size;
}
int ISR_VECT sx128x::available()
{
return _rxPacketLength - _packetIndex;
}
int ISR_VECT sx128x::read()
{
if (!available()) {
return -1;
}
uint8_t byte = _packet[_packetIndex];
_packetIndex++;
return byte;
}
int sx128x::peek()
{
if (!available()) {
return -1;
}
uint8_t b = _packet[_packetIndex];
return b;
}
void sx128x::flush()
{
}
void sx128x::onReceive(void(*callback)(int))
{
_onReceive = callback;
if (callback) {
pinMode(_dio0, INPUT);
// set preamble and header detection irqs, plus dio0 mask
uint8_t buf[8];
// set irq masks, enable all
buf[0] = 0xFF;
buf[1] = 0xFF;
// set dio0 masks
buf[2] = 0x00;
buf[3] = IRQ_RX_DONE_MASK_8X;
// set dio1 masks
buf[4] = 0x00;
buf[5] = 0x00;
// set dio2 masks
buf[6] = 0x00;
buf[7] = 0x00;
executeOpcode(OP_SET_IRQ_FLAGS_8X, buf, 8);
//#ifdef SPI_HAS_NOTUSINGINTERRUPT
// SPI.usingInterrupt(digitalPinToInterrupt(_dio0));
//#endif
attachInterrupt(digitalPinToInterrupt(_dio0), sx128x::onDio0Rise, RISING);
} else {
detachInterrupt(digitalPinToInterrupt(_dio0));
//#ifdef SPI_HAS_NOTUSINGINTERRUPT
// SPI.notUsingInterrupt(digitalPinToInterrupt(_dio0));
//#endif
}
}
void sx128x::receive(int size)
{
if (size > 0) {
implicitHeaderMode();
// tell radio payload length
_rxPacketLength = size;
//_payloadLength = size;
//setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
} else {
explicitHeaderMode();
}
rxAntEnable();
uint8_t mode[3] = {0xFF, 0xFF, 0xFF}; // continuous mode
executeOpcode(OP_RX_8X, mode, 3);
}
void sx128x::idle()
{
#if HAS_TCXO
// STDBY_XOSC
uint8_t byte = 0x01;
#else
// STDBY_RC
uint8_t byte = 0x00;
#endif
executeOpcode(OP_STANDBY_8X, &byte, 1);
}
void sx128x::sleep()
{
uint8_t byte = 0x00;
executeOpcode(OP_SLEEP_8X, &byte, 1);
}
void sx128x::enableTCXO() {
// todo: need to check how to implement on sx1280
}
void sx128x::disableTCXO() {
// todo: need to check how to implement on sx1280
}
void sx128x::setTxPower(int level, int outputPin) {
if (level > 13) {
level = 13;
} else if (level < -18) {
level = -18;
}
_txp = level;
level = level + 18;
uint8_t tx_buf[2];
tx_buf[0] = level;
tx_buf[1] = 0xE0; // ramping time - 20 microseconds
executeOpcode(OP_TX_PARAMS_8X, tx_buf, 2);
}
uint8_t sx128x::getTxPower() {
return _txp;
}
void sx128x::setFrequency(unsigned long frequency) {
_frequency = frequency;
uint8_t buf[3];
uint32_t freq = (uint32_t)((double)frequency / (double)FREQ_STEP_8X);
buf[0] = ((freq >> 16) & 0xFF);
buf[1] = ((freq >> 8) & 0xFF);
buf[2] = (freq & 0xFF);
executeOpcode(OP_RF_FREQ_8X, buf, 3);
}
uint32_t sx128x::getFrequency() {
// we can't read the frequency on the sx1280
uint32_t frequency = _frequency;
return frequency;
}
void sx128x::setSpreadingFactor(int sf)
{
if (sf < 5) {
sf = 5;
} else if (sf > 12) {
sf = 12;
}
_sf = sf << 4;
setModulationParams(sf << 4, _bw, _cr);
handleLowDataRate();
}
long sx128x::getSignalBandwidth()
{
int bw = _bw;
switch (bw) {
case 0x34: return 203.125E3;
case 0x26: return 406.25E3;
case 0x18: return 812.5E3;
case 0x0A: return 1625E3;
}
return 0;
}
void sx128x::handleLowDataRate(){
// todo: do i need this??
}
void sx128x::optimizeModemSensitivity(){
// todo: check if there's anything the sx1280 can do here
}
void sx128x::setSignalBandwidth(long sbw)
{
if (sbw <= 203.125E3) {
_bw = 0x34;
} else if (sbw <= 406.25E3) {
_bw = 0x26;
} else if (sbw <= 812.5E3) {
_bw = 0x18;
} else {
_bw = 0x0A;
}
setModulationParams(_sf, _bw, _cr);
handleLowDataRate();
optimizeModemSensitivity();
}
void sx128x::setCodingRate4(int denominator)
{
if (denominator < 5) {
denominator = 5;
} else if (denominator > 8) {
denominator = 8;
}
_cr = denominator - 4;
// todo: add support for new interleaving scheme, see page 117 of sx1280
// datasheet
// update cr values for sx1280's use
setModulationParams(_sf, _bw, _cr);
}
void sx128x::setPreambleLength(long length)
{
_preambleLength = length;
setPacketParams(length, _implicitHeaderMode, _payloadLength, _crcMode);
}
void sx128x::setSyncWord(int sw)
{
// not implemented
}
void sx128x::enableCrc()
{
_crcMode = 0x20;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
void sx128x::disableCrc()
{
_crcMode = 0;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
byte sx128x::random()
{
// todo: implement
}
void sx128x::setPins(int ss, int reset, int dio0, int busy, int rxen, int txen)
{
_ss = ss;
_reset = reset;
_dio0 = dio0;
_busy = busy;
_rxen = rxen;
_txen = txen;
}
void sx128x::setSPIFrequency(uint32_t frequency)
{
_spiSettings = SPISettings(frequency, MSBFIRST, SPI_MODE0);
}
void sx128x::dumpRegisters(Stream& out)
{
for (int i = 0; i < 128; i++) {
out.print("0x");
out.print(i, HEX);
out.print(": 0x");
out.println(readRegister(i), HEX);
}
}
void sx128x::explicitHeaderMode()
{
_implicitHeaderMode = 0;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
void sx128x::implicitHeaderMode()
{
_implicitHeaderMode = 0x80;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
void ISR_VECT sx128x::handleDio0Rise()
{
uint8_t buf[2];
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2);
executeOpcode(OP_CLEAR_IRQ_STATUS_8X, buf, 2);
if ((buf[1] & IRQ_PAYLOAD_CRC_ERROR_MASK_8X) == 0) {
// received a packet
_packetIndex = 0;
uint8_t rxbuf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_8X, rxbuf, 2);
_rxPacketLength = rxbuf[0];
_fifo_rx_addr_ptr = rxbuf[1];
readBuffer(_packet, _rxPacketLength);
if (_onReceive) {
_onReceive(_rxPacketLength);
}
}
}
void ISR_VECT sx128x::onDio0Rise()
{
sx128x_modem.handleDio0Rise();
}
sx128x sx128x_modem;