# Teoría eléctrica y electromagnética y apuntes sobre la «La Maquina» ![Felipe VI URE](http://telecomlobby.com/Images/felipe_vi_ure_riccardo_giuntoli_radioham_notes.webp) Subiendo una montaña Genovesa, allí fue la primera vez que cargaba con una radio en 27Mhz y banda lateral en mi mochila, soñaba con conectarme con países lejanos y gente desconocida. Allí fue, cerca del 1992. Desde aquella fecha mucha vida ha pasado delante de mis ojos, felicidad, trabajos, amores y muertes. Ahora en el 2020, debajo de esta QSL donde se representa rey Felipe VI de España y su identificación en la radio afición empiezo a estudiar y apuntar mis notas en esta parte de mi pagina web. Pagina donde se subraya que estoy estudiando esta arte con el fin de salir del control neuronal vía radio que ha sido activado sobre mi organismo en Noviembre 2017. Estudio también para juntarme a ti, Saray. Mujer que amo. #### 1.1 Estructura de la materia Tanto los cuerpos sólidos como los líquidos y gases están compuestos de pequeñas partículas cuyas propiedades son idénticas al cuerpo al cual pertenecen. Se llaman **moléculas** [[1]](https://es.wikipedia.org/wiki/Mol%C3%A9cula) y presentan espacios entra ellos.río* #### 1.1.1 Molécula Están en continuo movimiento y entre ellas existen fuerzas atractivas y repulsivas según el estado en que se encuentre la materia: - **Sólidos** [[2]](https://es.wikipedia.org/wiki/S%C3%B3lido), atractivas. - **Líquidos** [[3]](https://es.wikipedia.org/wiki/L%C3%ADquido), equilibradas. - **Gases** [[4]](https://es.wikipedia.org/wiki/Gas), repulsivas. Mediante **calor** [[5]](https://es.wikipedia.org/wiki/Calor) podemos pasar de estado sólido a líquido y de líquido a gaseoso. Mediante el **frío** [[6]](https://es.wikipedia.org/wiki/Fr%C3%ADo) el revés. > En la red de neuroestimuladores inalámbricos que ven individuos objetivo como clientes del complejo sistema de radio que la compone muchas veces se puede apreciar algo parecido a humo sobresalir de nuestro cuerpo. Es muy posible que los ingenieros que hayan programado este magnifico sistema de radio quieran representar un flujo de calor desde el interior del cuerpo humano hacía fuera. Por esto en red neuronal mensajería subliminal se habla de «maquina a vapor». Cada molécula está compuesta por distintos átomos según el **elemento químico** [[7]](https://es.wikipedia.org/wiki/Elemento_qu%C3%ADmico) que constituyan. #### 1.1.2 Átomo ![Tabla elementos](https://telecomlobby.com/Images/tabla_elementos.webp) Una molécula la podemos descomponer en partículas muchos menores llamadas **átomos** [[8]](https://es.wikipedia.org/wiki/%C3%81tomo). Toda la materia que existe en la naturaleza está formada por cuerpos simples denominados elementos. El átomo es la parte más pequeña de estos cuerpos que conserva las características originales de un elemento cualquiera. Para entender la **electricidad** [[9]](https://es.wikipedia.org/wiki/Electricidad) hay que estudiar átomo y componentes. Cada átomo consta de dos partes el núcleo y la corteza, el núcleo está cargado con carga eléctrica positiva y se compone básicamente de **protones** [[10]](https://es.wikipedia.org/wiki/Prot%C3%B3n), partículas con carga positiva, y **neutrones** [[11]](https://es.wikipedia.org/wiki/Neutr%C3%B3n), partículas con **masa** [[12]](https://es.wikipedia.org/wiki/Masa) pero sin **carga** [[13]](https://es.wikipedia.org/wiki/Carga_el%C3%A9ctrica). Alrededor del núcleo, existen una o más capas, cuyo conjunto se denomina corteza, donde describen órbitas a gran velocidad los **electrones** [[14]](https://es.wikipedia.org/wiki/Electr%C3%B3n), partículas de carga negativa fuertemente atraídos por la carga positiva de este y resulta extremadamente difícil cambiarlos de órbita; los de las órbitas exteriores pueden llegar a abandonar un átomo para pasar a otro, o bien quedar como electrones libres. #### 1.1.3 Ionización o electrización. Carga eléctrica. ![Ionización](https://telecomlobby.com/Images/tabla_ionizacion.webp) Si no sometidos a la acción de ninguna fuerza externa el átomo es neutro del punto de vista eléctrico. Si perdiese electrones, quedaría cargado positivamente y se denominaría **ion** [[15]](https://es.wikipedia.org/wiki/Ion) positivo, al revés o sea con un exceso de electrones tiene carga negativa y tendremos un ion negativo. La carga eléctrica es un estado de desequilibrio entre el número de electrones y protones; los cuerpos con cargas de distinto signo se atraen entre sí mientras que los que poseen el mismo tipo de carga se repelen. #### 1.1.4 Conductores, semiconductores y aislantes. Las capas más externas de la corteza del átomo si no están semillenas o sea a tener menos del 50% de su capacidad de electrones existe el peligro de abandono de estos en dichas capas; toman el nombre de electrones libres. Un cuerpo conductor de electricidad es una sustancia compuesta por átomos cuya capa más externa no llega a estar semillena de electrones asegurando así el paso de la **corriente** [[16]](https://es.wikipedia.org/wiki/Corriente_el%C3%A9ctrica) que otra cosa no es que un flujo de electrones libres desde un cuerpo con carga negativa a otro con carga positiva. Los metales tienen una pequeña energía de ionización, tienden a tener un gran número de electrones libres y por ello son buenos conductores de la electricidad. Un aislador o aislante lo forma sustancias que presentan gran resistencia a que las cargas que las forman se desplacen y por tanto no conducen, en condiciones normales, la electricidad. > Los productos necesarios a cubrir nuestro cuerpo humano del ser receptores y clientes finales de la red de monitorio neuronal son sin duda ninguna aislantes. Un **semiconductor** [[17]](https://es.wikipedia.org/wiki/Semiconductor) es un elemento que cambia comportamiento dependiendo donde en que campo eléctrico se encuentre. #### 1.1.5 Conductividad. Propiedad que tienen los cuerpos o las sustancias de transmitir de un punto a otro de su masa el calor o la electricidad. La **Comisión Electrotécnica Internacional** [[18]](https://www.iec.ch/) definió como patrón de la conductividad eléctrica la de un hilo de cobre de 1 metro de longitud y un gramo de masa, que da una resistencia de 0,15388 Ω a 20 °C a lo cual asignó una **conductividad eléctrica** [[19]](https://es.wikipedia.org/wiki/Conductividad_el%C3%A9ctrica) de 100% IACS, a toda **aleación** [[20]](https://es.wikipedia.org/wiki/Aleaci%C3%B3n) de cobre con una conductividad mayor se le denomina de alta conductividad. **Conductancia** [[21]](https://es.wikipedia.org/wiki/Conductancia_el%C3%A9ctrica) es la medida de la facilidad con que la electricidad fluye a través de un circuito o de un objeto. La unidad de medida de conductancia es el **Siemens** [[22]](https://es.wikipedia.org/wiki/Siemens_(unidad)) y de la conductividad el Siemens/m. Siendo lambda λ un coeficiente de conductividad propio de cada materia podemos expresar la conductancia como $$ \begin{align*} Conductancia = \frac{λxsuperficie(cm^2)}{longitud(cm)}\\ \end{align*} $$ La inversa de la conductividad es la **resistividad** [[23]](https://es.wikipedia.org/wiki/Resistividad) que expresa la **resistencia** [[24]](https://es.wikipedia.org/wiki/Resistencia_el%C3%A9ctrica) de un conductor de las medidas antes mencionadas, que es la inversa de la conductancia, la temperatura del conductor influye en la resistencia, si aumenta la resistencia también lo hará y viceversa; ocurre en los cuerpos conductores; en los semiconductores el fenómeno es inverso. #### 1.1.6 campo eléctrico: intensidad de campo. Unidad de campo: voltios/metro. Potencial. Apantallamiento de campos eléctricos. Una carga eléctrica es la cantidad de electricidad acumulada en un cuerpo y se mide en una unidad denominada **Culombio** [[25]](https://es.wikipedia.org/wiki/Culombio) que equivale a: $$ \begin{align*} C = 6,24x10^{18} electrones\\ \end{align*} $$ En cualquier punto del espacio en donde exista una carga eléctrica se origina un **campo eléctrico** [[26]](https://es.wikipedia.org/wiki/Campo_el%C3%A9ctrico) que se manifiesta, experimentalmente, por la fuerza de origen eléctrico a que se halla sometida cualquier carga que se sitúe en el otro punto de su alrededor. La **ley de Coulomb** [[27]](https://es.wikipedia.org/wiki/Ley_de_Coulomb) dice que el valor de la fuerza con que se atraen o se repelen dos cargas puntuales en reposo es directamente proporcional al producto de dichas cargas e inversamente proporcional al cuadrado de la distancia que las separa: $$ \begin{align*} F = k\frac{q_1q_2}{d^2}\\ \end{align*} $$ estando la carga q1 situada en un punto P a una distancia d de otra carga puntual q2. La intensidad del **campo eléctrico** [[28]](https://es.wikipedia.org/wiki/Campo_el%C3%A9ctrico) en un punto se define como la fuerza ejercida sobre la unidad de carga eléctrica positiva colocada en el citado punto, y viene dada por la expresión: $$ \begin{align*} E = \frac{F}{q_2}=k\frac{q_1}{q_2}\\ \end{align*} $$ La intensidad del campo eléctrico, en un punto dado, se mide en **voltios** [[29]](https://es.wikipedia.org/wiki/Voltio) partido por metro. Si interponemos entre un campo eléctrico y un punto dado una pantalla de material conductor, el citado punto no recibe la influencia del campo eléctrico. Este efecto se conoce como **apantallamiento** [[30]](https://es.wikipedia.org/wiki/Apantallamiento_el%C3%A9ctrico) o blindaje. El **potencial eléctrico** [[31]](https://es.wikipedia.org/wiki/Potencial_el%C3%A9ctrico) en un punto es el trabajo que debe realizar una fuerza eléctrica para mover una carga positiva q desde el infinito con potencial cero hasta ese punto, dividido por dicha carga. Es el trabajo que debe realizar una fuerza externa para traer una carga unitaria q desde el infinito hasta el punto considerado en contra de la fuerza eléctrica dividido por esa carga: $$ \begin{align*} V = \frac{F}{q}\\ \end{align*} $$ Se puede representar el potencial eléctrico mediante las denominadas **superficies equipotenciales** [[32]](https://es.wikipedia.org/wiki/Superficie_equipotencial), que son el lugar geométrico de los puntos del espacio en los que el potencial tiene un mismo valor o, dicho de otra manera, las superficies en las que todos sus puntos de un campo de fuerza que tienen el mismo potencial. #### 1.2 Teoría eléctrica. #### 1.2.1 Corriente eléctrica, voltaje y resistencia. Circuito eléctrico. ![circuito simbolos](https://telecomlobby.com/Images/circuito_simbolos.webp) Se denomina corriente eléctrica al paso de electrones a lo largo de un conductor que une dos puntos con distinta carga eléctrica. La **corriente continua** [[33]](https://es.wikipedia.org/wiki/Corriente_continua) es un flujo continuo de electrones a través de un conductor entre dos puntos de distinto potencial y sus valores son constantes, las cargas eléctricas circulan siempre en la misma dirección; es continua toda corriente que mantenga la misma **polaridad** [[34]](https://bit.ly/3nqudHw). La **corriente alterna** [[35]](https://es.wikipedia.org/wiki/Corriente_alterna) a la corriente eléctrica en la que la magnitud y dirección varían cíclicamente. Para que circule la corriente eléctrica deben desplazarse los electrones, lo que precisa una fuerza que los empuje la llamada **fuerza electromotriz** [[36]](https://es.wikipedia.org/wiki/Fuerza_electromotriz) que es producida por una diferencia de potencial o **voltaje** [[37]](https://bit.ly/36B9Hgz). La intensidad de una corriente eléctrica depende, para una misma diferencia de potencial, del diámetro del **conductor** [[38]](https://es.wikipedia.org/wiki/Conductor_el%C3%A9ctrico), que opone siempre una **resistencia** [[39]](https://es.wikipedia.org/wiki/Resistencia_el%C3%A9ctrica). Podemos hacer una comparación de términos entre **hidráulica** [[40]](https://es.wikipedia.org/wiki/Hidr%C3%A1ulica) y electricidad: - Desnivel; diferencia de potencial. - **Fuerza hidráulica** [[41]](https://bit.ly/2IxeKX7); fuerza electromotriz. - Tubería; conductor. - Caudal de agua; intensidad de corriente - Partículas de agua; electrones. Existen seis formas elementales de producción de corriente eléctrica. Un **circuito eléctrico** [[42]](https://es.wikipedia.org/wiki/Circuito) es un conjunto de conductores por el que circula la corriente eléctrica y en el cual hay intercalados, generalmente, elementos productores y consumidores de la misma. #### 1.2.2 Unidades eléctricas fundamentales: voltios, amperios y ohmios El voltaje es la presión eléctrica o diferencia del nivel de cargas que existe entre dos puntos como resultado de la presencia de una **fuerza electromotriz** [[43]](https://es.wikipedia.org/wiki/Fuerza_electromotriz) entra ellos. Para medirla se utiliza el **Voltio** [[44]](https://es.wikipedia.org/wiki/Voltio); 1 V es la fuerza electromotriz necesaria para producir una corriente de 1 **amperio** [[45]](https://es.wikipedia.org/wiki/Amperio) en un circuito cuya resistencia sea de 1 **ohmio** [[46]](https://es.wikipedia.org/wiki/Ohmio): $$ \begin{align*} Voltios = amperios x ohmios \end{align*} $$ Un **kilovoltio** son 1000 voltios. Un **milivoltio** es la milésima parte de un voltio y el **microvoltio μV** es la millonésima parte del voltio. La corriente eléctrica es el flujo o movimiento de los electrones a través de un conductor como consecuencia de la aplicación de una tensión o diferencia de potencial, la intensidad de corriente es el amperio que corresponde al paso de una carga de un culombio durante un segundo: $$ \begin{align*} I = \frac{q}{t}\\\\ Amperio = \frac{Culombio}{segundo} \end{align*} $$ La resistencia es la dificultad o facilidad que encuentra la corriente eléctrica para circular a través de un material. La unidad de resistencia es el ohmio Ω. representa la resistencia de un conductor en el que, con una diferencia de potencial aplicada en sus extremos de 1 V circula una corriente de 1 A de intensidad. #### 1.2.3 Ley de Ohm Al pasar una corriente I por una resistencia R se produce una caída de tensión o ddp que se expresa con la fórmula: $$ \begin{align*} E = IxR \end{align*} $$ Si aumenta la resistencia disminuye la intensidad y viceversa. #### 1.2.4 Aplicación de la Ley de Ohm. Resistencias. Agrupación de resistencias. Si tomamos dos conductores de la misma forma y tamaño pero de distintos materiales y les aplicamos una misma fem, las corrientes que circularán serán distintas, porque cada material, al tener una conductividad distinta, tiene una resistencia al paso de la corriente diferente. Una resistencia es un elemento o componente de un circuito eléctrico formado por un encapsulado de material que una cierta cantidad de resistencia y con dos rabillos o puntos para su conexión a un circuito. Las resistencias pueden agruparse en serie, en paralelo o combinando ambas formas. El cálculo de la resistencia resultante se realiza aplicando la Ley de Ohm. En el caso de resistencia conectadas en serie la resistencia del conjunto es la suma de los valores de cada una de ellas $$ \begin{align*} R = R_1+R_2+R_3 \end{align*} $$ La intensidad que pasa por cada una de ellas es igual a la del conjunto: $$ \begin{align*} I = I_1 = I_2 = I_3 \end{align*} $$ En el caso de resistencias conectadas en paralelo, la del conjunto es menor que la de cada una de ellas. La intensidad es inversamente proporcional a su valor. $$ \begin{align*} R = \frac{1}{\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}}\\\\ I = I_1+I_2+I_3 \end{align*} $$ Un **shunt** [[47]](https://bit.ly/3eZMHfb) es una resistencia acoplada en paralelo con cualquier elemento de un circuito para derivar corriente por ella. Una aplicación típica son los aparatos de medida que soportan poca intensidad de corriente, **galvanómetro** [[48]](https://es.wikipedia.org/wiki/Galvan%C3%B3metro) G, por lo que es preciso limitar ésta adoptando una resistencia en paralelo Rs. #### 1.2.5 Código de colores de las resistencias. ![resistencias](https://telecomlobby.com/Images/banda_colores_resistencias.webp) Permite indicar su valor en ohmios mediante bandas de colores. El conjunto de dichos anillos nos da la lectura del número de ohmios de la resistencia. La tolerancia de una resistencia expresa los márgenes alrededor de los cuales puede variar su valor. A mayor precisión, menor tolerancia. #### 1.2.6 Disipación de potencia en las resistencias Una resistencia se intercala en un circuito para obstaculizar el paso de la corriente y transformar en calor el voltaje que no necesitamos ne un punto dado. Se conoce como **efecto Joule** [[49]](https://es.wikipedia.org/wiki/Efecto_Joule). Todo conducto por lo que circula una corriente experimenta un aumento de su temperatura. La ley de joule enuncia que la cantidad de calor desprendida en un conductor por el paso de una corriente constante es proporcional al cuadrado de la intensidad de la corriente, a la resistencia del conductor y al tiempo que dure el paso. se llama potencia de disipación, medidas en vatios, al producto del votake por la intensidad que ha de circular por la resistencia: $$ \begin{align*} P = V xI \end{align*} $$ Si la resistencia disipa una potencia mayor que aquélla para la que está preparada, se quema, cortándose el hilo del que está hecha o fundiéndose el material resistivo. Disipación máxima es la potencia calorífica que podemos suministrar a un resistencia sin que la temperatura se eleve peligrosamente. Los valores de disipación de potencia más frecuentes de las resistencias son los de 0,125W, 0,25W, 0,5W y 1 W. #### 1.2.7 Coeficientes negativos y positivos de temperatura NTP y PTC Un **termistor** [[50]](https://es.wikipedia.org/wiki/Termistor) NTC es una resistencia cuyo valor se va reduciendo a medida que aumenta la temperatura. Análogamente a un NTC un termistor PTC es una resistencia cuyo valor va aumentando a medida que aumenta la temperatura. #### 1.2.8 Otros tipos de resistencias. Una resistencia ajustable permite fijar su valor dentro de un rango mediante una abrazadera móvil en contacto con el elemento resistivo. Un **reóstato** [[51]]() es una resistencia variable que se usa en los circuitos de gran consumo, empleándose para regular la corriente en máquinas y motores. Un **potenciómetro** [[52]](https://es.wikipedia.org/wiki/Potenci%C3%B3metro) es una resistencia variable que puede ser variada por el usuario para realizar cualquier función. Es lineal cuando su resistencia es proporcional al desplazamiento del cursor ya que se desliza por una pista uniforme. En el no lineal al ser la pista de diferente grosor, la respuesta, la resistencia, no corresponde al desplazamiento del cursor. Estos últimos suelen tener una respuesta que se aproxima a la función logaritmo. #### 1.2.9 Leyes de Kirchhoff Las leyes de **Kirchhoff** [[53]](https://es.wikipedia.org/wiki/Gustav_Kirchhoff) son útiles al análisis de múltiples tipos de circuitos: 1. La suma de las intensidades de corriente que llegan a un nudo de un circuito es igual a la suma de las intensidades que salen de él. 2. En un circuito cerrado o malla la suma de todas las caídas de tensión es igual a la suma de todas las subidas de tensión, la suma algebraica de las tensiones en todo circuito cerrado es cero. ### External links 1. https://es.wikipedia.org/wiki/Mol%C3%A9cula 2. https://es.wikipedia.org/wiki/S%C3%B3lido 3. https://es.wikipedia.org/wiki/L%C3%ADquido 4. https://es.wikipedia.org/wiki/Gas 5. https://es.wikipedia.org/wiki/Calor 6. https://es.wikipedia.org/wiki/Fr%C3%ADo 7. https://es.wikipedia.org/wiki/Elemento_qu%C3%ADmico 8. https://es.wikipedia.org/wiki/%C3%81tomo 9. https://es.wikipedia.org/wiki/Electricidad 10. https://es.wikipedia.org/wiki/Prot%C3%B3n 11. https://es.wikipedia.org/wiki/Neutr%C3%B3n 12. https://es.wikipedia.org/wiki/Masa 13. https://es.wikipedia.org/wiki/Carga_el%C3%A9ctrica 14. https://es.wikipedia.org/wiki/Electr%C3%B3n 15. https://es.wikipedia.org/wiki/Ion 16. https://es.wikipedia.org/wiki/Corriente_el%C3%A9ctrica 17. https://es.wikipedia.org/wiki/Semiconductor 18. https://www.iec.ch/ 19. https://es.wikipedia.org/wiki/Conductividad_el%C3%A9ctrica 20. https://es.wikipedia.org/wiki/Aleaci%C3%B3n 21. https://es.wikipedia.org/wiki/Conductancia_el%C3%A9ctrica 22. https://es.wikipedia.org/wiki/Siemens_(unidad) 23. https://es.wikipedia.org/wiki/Resistividad 24. https://es.wikipedia.org/wiki/Resistencia_el%C3%A9ctrica 25. https://es.wikipedia.org/wiki/Culombio 26. https://es.wikipedia.org/wiki/Campo_el%C3%A9ctrico 27. https://es.wikipedia.org/wiki/Ley_de_Coulomb 28. https://es.wikipedia.org/wiki/Campo_el%C3%A9ctrico 29. https://es.wikipedia.org/wiki/Voltio 30. https://es.wikipedia.org/wiki/Apantallamiento_el%C3%A9ctrico 31. https://es.wikipedia.org/wiki/Potencial_el%C3%A9ctrico 32. https://es.wikipedia.org/wiki/Superficie_equipotencial 33. https://es.wikipedia.org/wiki/Corriente_continua 34. https://bit.ly/3nqudHw 35. https://es.wikipedia.org/wiki/Corriente_alterna 36. https://es.wikipedia.org/wiki/Fuerza_electromotriz 37. https://bit.ly/36B9Hgz 38. https://es.wikipedia.org/wiki/Conductor_el%C3%A9ctrico 39. https://es.wikipedia.org/wiki/Resistencia_el%C3%A9ctrica 40. https://es.wikipedia.org/wiki/Hidr%C3%A1ulica 41. https://bit.ly/2IxeKX7 42. https://es.wikipedia.org/wiki/Circuito 43. https://es.wikipedia.org/wiki/Fuerza_electromotriz 44. https://es.wikipedia.org/wiki/Voltio 45. https://es.wikipedia.org/wiki/Amperio 46. https://es.wikipedia.org/wiki/Ohmio 47. https://bit.ly/3eZMHfb 48. https://es.wikipedia.org/wiki/Galvan%C3%B3metro 49. https://es.wikipedia.org/wiki/Efecto_Joule 50. https://es.wikipedia.org/wiki/Termistor 51. https://es.wikipedia.org/wiki/Reostato 52. https://es.wikipedia.org/wiki/Potenci%C3%B3metro 53. https://es.wikipedia.org/wiki/Gustav_Kirchhoff