Ngspice User’s Manual
Version 36 plus
(ngspice development version)

Holger Vogt, Marcel Hendrix, Paolo Nenzi, Dietmar Warning

January 18, 2022



Locations

The project and download pages of ngspice may be found at
Ngspice home page http://ngspice.sourceforge.net/
Project page at SourceForge http://sourceforge.net/projects/ngspice/

Download page at SourceForge https://sourceforge.net/projects/ngspice/files/ng-spice-
rework/

Git source download https://sourceforge.net/p/ngspice/ngspice/ci/master/tree/

Status

This manual is a work in progress. Some to-dos are listed in Chapt. 24.3. More is surely
needed. You are invited to report bugs, missing items, wrongly described items, bad
English style, etc.

How to use this Manual

The manual is a “work in progress.” It may accompany a specific ngspice release, e.g.
ngspice-35 as manual version 35. If its name contains ‘Version xxplus’, it describes the
actual code status, found at the date of issue in the Git Source Code Management (SCM)
tool. This manual is intended to provide a complete description of ngspice’s functionality,
features, commands, and procedures. This manual is not a book about learning SPICE
usage, however the novice user may find some hints how to start using ngspice. Chapter
21.1 gives a short introduction how to set up and simulate a small circuit. Chapter 32 is
about compiling and installing ngspice from a tarball or the actual Git source code, which
you may find on the ngspice web pages. If you are running a specific Linux distribution,
you may check if it provides ngspice as part of the package. Some are listed here.

License

This document is covered by the Creative Commons Attribution Share-Alike (CC-BY-SA)
v4.0..

Part of chapters 12 and 25-27 are in the public domain.
Chapter 30 is covered by New BSD (chapt. 33.3.2).


http://ngspice.sourceforge.net/
http://sourceforge.net/projects/ngspice/
https://sourceforge.net/projects/ngspice/files/ng-spice-rework/
https://sourceforge.net/projects/ngspice/files/ng-spice-rework/
https://sourceforge.net/p/ngspice/ngspice/ci/master/tree/
http://ngspice.sourceforge.net/download.html
http://ngspice.sourceforge.net/packages.html
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Part 1

Ngspice User’s Manual






Contents

I Ngspice User’s Manual 3
1 Introduction 33
1.1 Simulation Algorithms . . . . . . . ... ... 0o 34
1.1.1  Analog Simulation . . . . .. ... ... ... . 34
1.1.2  Device Models for Analog Simulation . . . . .. ... ... ... .. 34
1.1.3 Digital Simulation . . . . ... ... ... . 0oL 35
1.1.4 Mixed-Signal Simulation . . . . . . . ... ... ... ... ... 35
1.1.5 Mixed-Level Simulation . . . . ... ... ... ... ... ... 36

1.2 Supported Analyses . . . . . . . .. 37
1.21 DC Analysis . . . . . . . . 37
1.2.2  AC Small-Signal Analysis . . . .. .. ... .. ... ... ..... 38
1.2.3  Transient Analysis . . . . . . . .. ... .. 38
1.2.4  Pole-Zero Analysis . . . . . . . .. ... 39
1.2.5 Small-Signal Distortion Analysis . . . . . . . ... ... ... .... 39
1.2.6  Sensitivity Analysis . . . . . . . ... 39
1.2.7 Noise Analysis. . . . . . . . . . 40
1.2.8 Periodic Steady State Analysis. . . . . . .. ... ... ... .... 40

1.3 Analysis at Different Temperatures . . . . . . .. ... ... .. ... ... 40
1.3.1 Introduction . . . . . . . . .. .. 40
1.3.2  Controlling the temperature . . . . . . . ... ... .. ... .... 42

1.4 Convergence . . . . . . . . .. e 43
1.4.1 Voltage convergence criterion . . . . . . .. .. .. ... ... ... 43
1.4.2  Current convergence criterion . . . . . . .. .. ... ... 44
1.4.3 Convergence failure . . . . . . . .. ... .. 44



6 CONTENTS
2 Circuit Description 45
2.1 General Structure and Conventions . . . . . . . ... ... .. ... .... 45
2.1.1 Input file structure . . . . . .. .o 45
2.1.2 Syntax check . . .. ... 45
2.1.3  Circuit elements (device instances) . . . ... ... ... ... ... 46
2.1.4  Some naming conventions . . . . . . ... ... 47

2.2 Dot commands . . .. ... ... 48
2.3 Basiclines . . . . . . . 50
2.3.1 TITLE line . . . . . . . . . . . . e 50
232 ENDLine. . ... ... .. 51
2.3.3 Comments . . . . . . . ... 51
2.3.4 End-of-line comments . . . . . . ... ... ... L. 51
2.3.5 Continuation lines . . . . . .. ... .. ... ... ... ... 52

2.4 MODEL Device Models . . . . . . . ... ... ... ... 52
2.5 .SUBCKT Subcircuits . . . . . . . . . . . ... . 53
2.5.1 SUBCKT Line . . . . . . . . . . e 54
252 ENDSLine . . . ... . . 5Y)
2.5.3 Subcircuit Calls . . . . . ... ... 55

2.6 .GLOBAL . . . . . . . 55
2.7 INCLUDE . . .. . . . e 56
2.8 LIB . . . e 56
2.9 .PARAM Parametric netlists . . . . . . . . . . ... ... ... 56
2.9.1 .paramline . . .. .. ... o7
2.9.2 Brace expressions in circuit elements: . . . . ... ... L. 57
2.9.3 Subcircuit parameters . . . . ... Lo 58
2.9.4 Symbolscope . . . ... 59
2.9.5 Syntax of expressions . . . . .. ... Lo 59
2.9.6 Reserved words . . . . . .. .. 62
2.9.7 A word of caution on the three ngspice expression parsers. . . . . . 62

2.10 . FUNC . . . . o e 62
2.11 .CSPARAM . . . . 63
2.12 TEMP . . . . . e 63
2.13 .IF Condition-Controlled Netlist . . . . . .. .. ... ... ... .. .... 64
2.14 Parameters, functions, expressions, and command scripts . . . . . . . . .. 66
2.14.1 Parameters . . . . . . . . . . ... 66
2.14.2 Nonlinear sources . . . . . . . . . . . . o e 66

2.14.3 Control commands, Command scripts . . . . . . . .. .. ... ... 66



CONTENTS

3 Circuit Elements and Models
3.1 About netlists, device instances, models and model parameters .
3.2 General options . . . . ... Lo
3.2.1 Paralleling devices with multiplierm . . . ... ... ..
3.2.2 Instance and model parameters . . . ... ... ... ..
3.2.3 Model binning . . . .. ... 0oL
3.2.4  Initial conditions . . . . .. ... 0oL
3.3 Elementary Devices . . . . . . . . . ... oL
3.3.1 Resistors . . . . .. ..
3.3.2  Semiconductor Resistors . . . . . ... ... ... ..
3.3.3  Semiconductor Resistor Model (R) . . . . ... ... ..
3.3.4 Resistors, dependent on expressions (behavioral resistor)
3.3.50 Resistor with nonlinear r2 cmc model . . . . . . . . ..
3.3.6 Capacitors . . . . . . . . . ...
3.3.7 Semiconductor Capacitors . . . . . ... ... ... ...

3.3.8  Semiconductor Capacitor Model (C) . . . ... ... ..

3.3.9 Capacitors, dependent on expressions (behavioral capacitor)

3.3.10 Inductors . . . .. ..o
3.3.11 Inductor model . . . . .. ..o
3.3.12 Coupled (Mutual) Inductors . . . . ... ... ... ...
3.3.13 Inductors, dependent on expressions (behavioral inductor)
3.3.14 Capacitor or inductor with initial conditions . . . . . . .
3.3.15 Switches . . . . ... L
3.3.16 Switch Model (SW/CSW) . . . ... ... ... .. ...

4 Voltage and Current Sources
4.1 Independent Sources for Voltage or Current . . . . . . . .. ..
4.1.1 Pulse. . . .. ..
4.1.2 Sinusoidal . . . . ...
4.1.3 Exponential . . . .. ... ...
4.1.4 Piece-Wise Linear . . . . . . .. ... ... ...
4.1.5 Single-Frequency FM . . . . . . . ... ...
4.1.6  Amplitude modulated source (AM) . . . ... ... ...
4.1.7 Transient noise source . . . . . . .. ... ... ...

4.1.8 Random voltage source . . . . . . .. .. ... ... ..

69
69
70
70
72
73
73
74
74
76
76
78
78
79
80
80
82
83
84
85
86
87
88
89



8 CONTENTS
4.1.9 External voltage or current input . . . . . .. ... ... ... 97
4.1.10 Arbitrary Phase Sources . . . . . .. .. ... L. 98

4.2 Linear Dependent Sources . . . . . . . . . ... ... . 98
4.2.1 Gxxxx: Linear Voltage-Controlled Current Sources (VCCS) . . .. 98
4.2.2 Exxxx: Linear Voltage-Controlled Voltage Sources (VCVS) . . . . . 99
4.2.3 Fxxxx: Linear Current-Controlled Current Sources (CCCS) . . .. 99
4.2.4  Hxxxx: Linear Current-Controlled Voltage Sources (CCVS) . . .. 99
4.2.5 Polynomial Source Compatibility . . . . ... ... ... ... ... 100

5 Non-linear Dependent Sources (Behavioral Sources) 101

5.1 Bxxxx: Nonlinear dependent source (ASRC) . . . ... ... ... ... .. 101
5.1.1 Syntax and usage . . . . . . ... 101
5.1.2  Special B-Source Variables time, temper, hertz . . . . . . . . .. .. 105
5.1.3  par(expression’) . . ... 105
5.1.4  Piecewise Linear Function: pwl . . . . . ... ... ... ... ... 105

5.2  Exxxx: non-linear voltage source . . . . . . .. .. ... L. 108
521 VOL . . . . e 108
522 VALUE . . . . . 108
523 TABLE . . . . . . 108
524 POLY . . . . . e 109
52.5 LAPLACE. . . . . . . . . e 109

5.3 Gxxxx: non-linear current source . . . . . . .. ... 110
531 CUR . . .. e 110
532 VALUE . . . . .. 110
5.3.3 TABLE . . . . . . . 111
534 POLY . . . . . e 111
535 LAPLACE. . . . . . . . . . e 111
5.3.6 Example . . . . ..o 111

5.4 Debugging a behavioral source . . . . . . .. ... 112

5.5 POLY Sources . . . . . . . . . 113
5.5.1 E voltage source, G current source . . . .. .. .. ... ... ... 114

5.5.2  F voltage source, H current source . . . . . . .. .. ... ... ... 114



CONTENTS 9

6 Transmission Lines 117
6.1 Lossless Transmission Lines . . . . . . . . ... ... ... ... ...... 117
6.2 Lossy Transmission Lines . . . . . . . . . . .. .. .. ... ... . ..... 118

6.2.1 Lossy Transmission Line Model (LTRA) . . .. .. ... ... ... 118
6.3 Uniform Distributed RC Lines . . . . . . . . . . ... ... ... ... ... 120
6.3.1  Uniform Distributed RC Model (URC) . . . . ... ... ... ... 120
6.4 KSPICE Lossy Transmission Lines . . . . ... .. .. ... ... ..... 121
6.4.1 Single Lossy Transmission Line (TXL) . . ... .. ... ... ... 122
6.4.2 Coupled Multiconductor Line (CPL) . . . ... .. ... ... ... 122

7 Diodes 125
7.1 Junction Diodes . . . . . . . . ... 125
7.2 Diode Model (D) . . . .. ... 126
7.3 Diode Equations . . . . . . ... 128

8 BJT 133
8.1 Bipolar Junction Transistors (BJTs) . . . . . ... ... ... ... .. ... 133
8.2 BJT Models (NPN/PNP) . . . . .. . 133

8.2.1 Gummel-Poon Models . . . . . ... ... ... ... ... ... 134
8.2.2 VBIC Model . . . . ... .. . 140
8.2.3 MEXTRAM Model . . . . ... .. ... .. .. .. ... . ..... 141
8.2.4 HICUM level 2 Model . . . . . ... ... .. .. ... ....... 141
8.2.5 HICUM level 0 Model . . . . ... ... ... ... ... ...... 143

9 JFETs 145
9.1 Junction Field-Effect Transistors (JFETs) . . .. ... ... ... ... .. 145
9.2 JFET Models (NJE/PJF) .. . . ... 145

9.2.1 Basic model statement . . . . . ... .00 145
9.2.2 JFET level 1 model with Parker Skellern modification . . . . . . . . 145
9.2.3 JFET level 2 Parker Skellern model . . . . . ... ... ... .... 148

10 MESFETs 151
10.1 MESFETs . . . . . . . . e 151
10.2 MESFET Models (NMFE/PMF) . . . . ... .. ... ... .. ... ... 151

10.2.1 Basic model statements. . . . . . . ... ... 151
10.2.2 Model by Statze.a. . . . . . . . ..o 151
10.2.3 Model by Ytterdalea. . . . . ... ... ... ... ... .... 152
10.2.4 hfetl . . . . . . .. 152

1025 hfet2 . . . 0oL 153



10

11 MOSFETs

11.1 MOSFET devices . . . . . . . . . . .. ... ...
11.2 MOSFET models (NMOS/PMOS) . . ... ... ... ...
11.2.1 MOS Level 1 . . . .. ... . . ...
11.22 MOS Level 2 . . . . . .. ..o o
11.2.3 MOS Level 3 . . . . . .. ... . ... ...
11.24 MOS Level 6 . . . . . ... ... . ...
11.2.5 Notes on Level 1-6 models . . . . . .. ... ... ..
11.2.6 MOS Level 9 . . . . . .. ... .. .. ... ...,
11.2.7 BSIM Models . . . . . ... ... ... ... ... .
11.2.8 BSIM1 model (level 4) . . . . ... .. ... ... ..
level 5) . . ..o
levels 8,49) . . . . . .. ... ... ..
11.2.11 BSIM4 model (levels 14, 54) . . . . ... .. .. ...
11.2.12EKV2.6 Model . . . . . ... ... ... .. .. ...
11.2.13PSP Model . . . . . . .. ...
11.2.14 BSIMSOI models (levels 10, 58, 55, 56, 57) . . . . . .
11.2.15S0I3 model (level 60) . . . . . . . .. ... ... ...
11.2.16 HiSIM models of the University of Hiroshima . . . .
11.3 Power MOSFET model (VDMOS) . . ... ... ... ...

11.2.9 BSIM2 model

(
(
11.2.10 BSIM3 model (
(

12 Mixed-Mode and Behavioral Modeling with XSPICE

12.1 Code Model Element & .MODEL Cards . . . ... ... ..
12.1.1 Syntax . . . . . ..o
12.1.2 Examples . . . . ... ..o
12.1.3 Search path for file input . . . . . . ... ... ...

12.2 Analog Models . . . . . . . ...
1221 Gain . . . . ..o
12.2.2 Summer . . . . ...
12.2.3 Multiplier . . . . . . ... ...
12.2.4 Divider. . . . . . . ..o
12.2.5 Limiter. . . . . . . .. .o o
12.2.6 Controlled Limiter . . . . .. .. ... .. ... ...
12.2.7 PWL Controlled Source . . . .. .. ... ... ...
12.2.8 Filesource (PWL sourced from file) . . . .. .. ...

CONTENTS

155



CONTENTS 11

12.2.9 multi_input_pwlblock . . . . . ... ..o 190
12.2.10 Analog Switch . . . . . . . ... Lo 191
12.2.11 Alternative Analog Switch . . . . . .. ... ... ... .. ... .. 192
12.2.127Zener Diode . . . . . . . . ..o 194
12.2.13 Current Limiter . . . . . . . . . . ... 195
12.2.14 Hysteresis Block . . . . . . . .. ... oo 198
12.2.15 Differentiator . . . . . . . ..o 199
12.2.16Integrator . . . . . . . oL 201
12.2.17S-Domain Transfer Function . . . . . . .. .. .. .. ... ... .. 202
12.2.18Slew Rate Block . . . . . . . . ... 205
12.2.191Inductive Coupling . . . . . . . . . . . . . 206
12.2.20 Magnetic Core . . . . . . . . . Lo 207
12.2.21 Controlled Sine Wave Oscillator . . . . . . .. ... ... ... ... 211
12.2.22 Controlled Triangle Wave Oscillator . . . . . . . . .. ... .. ... 212
12.2.23 Controlled Square Wave Oscillator . . . . . .. .. ... ... ... 213
12.2.24 Controlled One-Shot . . . . . . . . .. .. ... ... .. 214
12.2.25 Capacitance Meter . . . . . . . . . . . ... ... 217
12.2.26 Inductance Meter . . . . . . . . ... oL 217
12.2.27Memristor . . . . ..o Lo 218
12.2.282D table model . . . . .. ... oo 219
12.2.293D table model . . . . . . ... oo 221
12.2.30 Simple Diode Model . . . . . . . . . ... 223
12.2.31 Analog delay . . . . . . . . .. 225
12.3 Hybrid Models . . . . . . . . . . 226
12.3.1 Digital-to-Analog Node Bridge . . . . . . . .. .. ... ... .... 226
12.3.2 Analog-to-Digital Node Bridge . . . . . . . .. .. ... ... .... 228
12.3.3 Controlled Digital Oscillator . . . . . . .. .. ... ... ... ... 229
12.3.4 Node bridge from digital to real with enable . . . . . . . ... ... 230
12.3.5 A Z**-1 block working on real data . . . . . . . ... ... ... .. 231
12.3.6 A gain block for event-driven real data . . . . . . . ... ... ... 231
12.3.7 Node bridge from real to analog voltage . . . . . . ... ... ... 232
12.4 Digital Models . . . . . . .. . 233
1241 Buffer . . . . . 233
12.4.2 Inverter . . . . . . . L 234

1243 And . . .. 235



12 CONTENTS
1244 Nand . . . . . . . . 236
1245 Or . . . o 237
124.6 Nor. . . . . . . 238
12.4.7 Xor . . . . 239
1248 Xnor . . . ..o 240
12.4.9 Tristate . . . . . . .. 241
12410Pullup . . . . oo 243
124.11Pulldown . . . . . . . .. 243
12.412D Flip Flop . . . . . . . . 244
124.13JK Flip Flop . . . . . . . . 246
12.4.14Toggle Flip Flop . . . . . . . . .. .. . 248
12.4.15Set-Reset Flip Flop . . . . . . . . . ... .. L. 250
12416 D Latch . . . . . . .. oL 253
12.4.17Set-Reset Latch . . . . . . . .. ... 255
12.4.18 State Machine . . . . . . . ... o 257
12.4.19Frequency Divider . . . . . . . . . ..o o 261
12420RAM . . . . o 262
12.4.21 Digital Source . . . . . . . ... 264
124.22LUT . . 0 oo 266
12.4.23 General LUT . . . . . .. 000 o 267

12.5 Predefined Node Types for event driven simulation . . . . ... ... ... 269
12.5.1 Digital Node Type . . . . . . . . . ... L 269

12.5.2 Real Node Type . . . . . . . . . . . o 269

12.5.3 Int Node Type . . . . . . . . . 270

12.5.4 (Digital) Input/Output . . . . . . ... ... .00 270

13 Verilog A Device models 271
13.1 Introduction . . . . . . . . .. 271
13.2 ADMS . . . . e 271
13.3 How to integrate a Verilog-A model into ngspice . . . . . . . .. ... ... 271
13.3.1 How to setup a *.va model for ngspice . . . . . ... ... ... .. 271

13.3.2 Adding admsXml to your build environment . . . . . . . ... ... 272

13.3.3 Compile ngspice with ADMS . . . . ... ... ... ... ..... 272

14 Mixed-Level Simulation (ngspice with TCAD) 273
14.1 Cider . . . . . . o 273

14.2 GSS, Genius . . . . . . . e 274



CONTENTS 13

15 Analyses and Output Control (batch mode) 275
15.1 Simulator Variables (.options) . . . . . .. ... ... ... .. ... 275
15.1.1 General Options. . . . . . . . . . . ... . 276
15.1.2 OP and DC Solution Options . . . . . .. .. .. ... ... .... 277
15.1.3 AC Solution Options . . . . . . . . .. ... ... ... ... ... 278
15.1.4 Transient Analysis Options. . . . . . . . .. ... ... ... .... 279
15.1.5 ELEMENT Specific options . . . . . . . ... ... .. ... .... 280
15.1.6 Transmission Lines Specific Options . . . . . . . . . ... ... ... 280
15.1.7 Precedence of option and .options commands . . . . . . . . ... .. 280

15.2 Imitial Conditions . . . . . . . . . . ... 281
15.2.1 .NODESET: Specify Initial Node Voltage Guesses . . . . . . . . .. 281
15.2.2 IC: Set Initial Conditions . . . . . .. .. .. .. ... ... .... 281

15.3 Analyses . . . . . L 282
15.3.1 .AC: Small-Signal AC Analysis . . .. ... ... .. ... ..... 282
15.3.2 .DC: DC Transfer Function . . . . .. .. .. .. ... .. ..... 283
15.3.3 .DISTO: Distortion Analysis . . . . . . . ... ... ... ... ... 284
15.3.4 .NOISE: Noise Analysis . . . . .. .. ... ... .. ... ..... 286
15.3.5 .OP: Operating Point Analysis . . . . . . .. ... ... ... .... 287
15.3.6 .PZ: Pole-Zero Analysis. . . . . . . . . . ... ... 288
15.3.7 .SENS: DC or Small-Signal AC Sensitivity Analysis . . . . .. . .. 289
15.3.8 .TF: Transfer Function Analysis . . . . . .. ... ... ... .... 289
15.3.9 .TRAN: Transient Analysis . . . . . ... ... ... ... ..... 290
15.3.10 Transient noise analysis (at low frequency) . . . . . .. . . ... .. 290
15.3.11.PSS: Periodic Steady State Analysis . . . . .. ... ... ... .. 294

15.4 Measurements after AC, DC and Transient Analysis . . . . . . . ... ... 295
15.4.1 meas(ure) . . . . . ... 295
15.4.2 batch versus interactive mode . . . . . .. ... L 295
15.4.3 General remarks . . . .. ... 295
15.4.4 Input. . . . . . . e 296
15.4.5 Trig Targ . . . . . . o 297
15.4.6 Find ... When . . . . . . .. .o 298
15.4.7 AVG|MIN|MAX|PP|RMS|MIN_ATIMAX_AT . . . ... ... ... .... 299
15.4.8 Integ . . . . . . . 300
15.4.9 param . . . . ..o 300

15.4.10 par(’expression” ) . . . . ... 300



14 CONTENTS
15411 DDeriv . . . o L 301
15.4.12More examples . . . . . ..o 301

15.5 Safe Operating Area (SOA) warning messages . . . . . . . . . . ... ... 302
15.5.1 Resistor and Capacitor SOA model parameters . . . . .. .. ... 303
15.5.2 Diode SOA model parameters . . . . . . . ... .. ... ...... 303
15.5.3 BJT SOA model parameters . . . . . . . .. ... ... ... .... 304
15.5.4 MOS SOA model parameters . . . .. . .. .. ... ... ..... 304
15.5.5 VDMOS SOA model parameters . . . . . ... ... ... ..... 305

15.6 Batch Output . . . . . . . . . .. 305
15.6.1 .SAVE: Name vector(s) to be saved in raw file . . . ... ... ... 305
15.6.2 .PRINT Lines . . . . . . . . . . . 306
15.6.3 .PLOT Lines . . . . . . . . . . . 307
15.6.4 .FOUR: Fourier Analysis of Transient Analysis Output . . . . . .. 307
15.6.5 .PROBE: Save device node currents or differential voltages . . . . . 308
15.6.6 par(’expression’): Algebraic expressions for output. . . . . . . . .. 311
15.6.7 .width . . . . . . .. 311

15.7 Measuring current through device terminals . . . . . .. .. .. ... ... 312
15.7.1 Using the .probe command . . . . . . . . . ... ... ... ..... 312
15.7.2 Adding a voltage source in series . . . . . . ... ... ... ... 312
15.7.3 Using option ’'savecurrents’ . . . . . . . . . .. ... 312

16 Starting ngspice 315

16.1 Introduction . . . . . . . . ... 315

16.2 Where to obtain ngspice . . . . . . . ... Lo 315

16.3 Command line options for starting ngspice . . . . . . . .. ... ... ... 316

16.4 Starting options . . . . . . . . ..o 318
16.4.1 Batchmode . . . . . . . . . ... 318
16.4.2 Interactive mode . . . . . . . . .. ..o 318
16.4.3 Control mode (Interactive mode with control file or control section) 319

16.5 Standard configuration file spinit . . . . . . ... ... 320

16.6 User defined configuration file .spiceinit . . . . . . . . .. ... . ... ... 321

16.7 Environmental variables . . . . . . . ..o o000 321
16.7.1 Ngspice specific variables . . . . . . .. .. ... ... ... .. ... 321
16.7.2 Common environment variables . . . . . . ... .. .. ... .... 322

16.8 Memory usage . . . . . . . ... 322



CONTENTS 15

16.9 Simulation time . . . . . . ..o 323
16.10Ngspice on multi-core processors using OpenMP . . . . . . . .. ... ... 323
16.10.1Introduction . . . . . . .. ..o 323
16.10.2Internals . . . . . . .o 324
16.10.3Some results . . . . . ... Lo 324
16.10.4Usage . . . . . . 325
16.10.5 Literature . . . . . . . oL oL 326
16.11Server mode option -s. . . . . . . . ..o 326
16.12Pipe mode option -p . . . . . . ... 327
16.13Ngspice control via input, output fifos. . . . . . .. ... ... ... ... 329
16.14Compatibility . . . . . . . .. 330
16.14.1 Compatibility mode . . . . . . . . . . . ... 330
16.14.2 Missing functions . . . . . . . . .. ..o 331
16.14.3Devices . . . . . . 331
16.14.4 Controls and commands . . . . . . .. .. ... L 332
16.14.5 PSPICE Compatibility mode . . . . . .. .. ... ... ... ... 333
16.14.6 LTSPICE Compatibility mode . . . . . . . .. ... ... ... ... 334
16.14.7 LTSPICE/PSPICE Compatibility mode . . . . . ... .. ... .. 336
16.14.8 KiCad Compatibility mode . . . . . . . . . . .. .. ... ... ... 336
16.14.9 Spectre Compatibility mode . . . . . . . . .. ... ... ... 337
16.14.1HSPICE Compatibility mode . . . . . . . .. . .. ... ... ... 337
16.15Tests . . . . o e 337
16.16Tools for debugging a circuit netlist . . . . . . . . ... ... ... 338
16.16.1options and initial conditions . . . . . . . ... ... ... 338
16.16.2set debug . . . . . ..o 338
16.16.3set ngdebug . . . . ... 338
16.16.4miscellaneous . . . . . .. ..o 339
16.17Reporting bugs and errors . . . . . . ... Lo 339
17 Interactive Interpreter 341
17.1 Introduction . . . . . . . . .. 341
17.2 Expressions, Functions, and Constants . . . . . . . . .. ... ... .... 342
17.3 Plots . . . . o o 346
17.4 Command Interpretation . . . . . . . . . .. ... 347

17.4.1 On the console . . . . . . . . . . 347



16

CONTENTS

17.4.2 Scripts . . . . . . 347
17.4.3 Add-on to circuit file . . . . . . . ... 348
175 Commands . . . . . . . .. 348
17.5.1 Ac*: Perform an AC, small-signal frequency response analysis . . . 348
17.5.2 Alias: Create an alias for a command . . . . . . . . .. ... .... 349
17.5.3 Alter*: Change a device or model parameter . . . . . . . ... . .. 349
17.5.4 Altermod™: Change model parameter(s) . . . ... ... ... ... 351
17.5.5 Alterparam™®: Change value of a global parameter . . . . . . . . .. 352
17.5.6 Asciiplot: Plot values using old-style character plots . . . . . . . .. 353
17.5.7 Aspice®: Asynchronous ngspice run . . . . . . . .. .. .. .. ... 353
17.5.8 Bug: Output URL for ngspice bug tracker . . . . .. ... ... .. 353
17.5.9 Cd: Change directory . . . . . . . . . . .. ... ... ... 353
17.5.10 Cdump: Dump the control flow to the screen. . . . . . . . . .. .. 354
17.5.11 Circbyline*: Enter a circuit line by line . . . . . . ... ... .. .. 354
17.5.12 Codemodel*: Load an XSPICE code model library . . . . ... .. 355
17.5.13 Compose: Compose a vector . . . . . . . . . . . . . ... ... ... 356
17.5.14 Cutout: Cut out a section of all vectors in a tran plot . . . . . . .. 357
17.5.15Dc*: Perform a DC-sweep analysis . . . . . . . . ... . ...... 357
17.5.16 Define: Define a function . . . . . . .. .. .. ... 357
17.5.17 Deftype: Define a new type for a vector or plot . . . . . . ... .. 358
17.5.18 Delete*: Remove a trace or breakpoint . . . . . . . ... ... ... 358
17.5.19 Destroy: Delete an output dataset . . . . . . ... ... ... ... 358
17.5.20 Devhelp: information on available devices . . . . . . ... ... .. 358
17.5.21 Diff: Compare vectors . . . . . . . . . ... 359
17.5.22 Display: List known vectors and types . . . . . .. ... ... ... 359
17.5.23Echo: Print text . . . . . .. ... oo 360
17.5.24 Edit*: Edit the current circuit . . . . . . . . .. ... ... 360
17.5.25 Edisplay: Print a list of all the event nodes . . . . . . . ... ... 360
17.5.26 Eprint: Print an event driven node . . . . . . . . .. ... ... .. 360
17.5.27 Eprved: Dump event nodes in VCD format . . . . ... ... ... 361
17.5.28 Esave: Save a set of event node outputs . . . . . ... .. ... .. 361
17.5.29 FFT: fast Fourier transform of vectors . . . .. . ... .. ... .. 361
17.5.30 Fourier: Perform a Fourier transform . . . . . .. . ... ... ... 363
17.5.31 Getewd: Print the current working directory . . . . . . . . .. . .. 364

17.5.32 Gnuplot: Graphics output via gnuplot . . . . . . . ... ... ... 364



CONTENTS 17

17.5.33 Hardcopy: Save a plot to a file for printing . . . . . . . .. .. ... 365
17.5.34 Help: Print summaries of Ngspice commands . . . . . . . . ... .. 365
17.5.35 History: Review previous commands . . . . . . .. ... ... ... 365
17.5.36 Inventory: Print circuit inventory . . . . . . . . .. . ... ... .. 368
17.5.37Iplot*: Incremental plot . . . . . . ... . ... .. ... .. .... 368
17.5.38 Jobs™: List active asynchronous ngspice runs . . . . . . . . . . . .. 368
17.5.39 Let: Assign a value to a vector . . . . . . ... .. ... .. .... 368
17.5.40 Linearize™: Interpolate to a linear scale . . . . . . . . .. ... ... 369
17.5.41 Listing™®: Print a listing of the current circuit . . . . . . . . . . . .. 370
17.5.42Load: Load rawfile data . . . . . . .. .. ... ... ... ... .. 371
17.5.43 Mc__source™®: Reload the circuit netlist from an internal storage . . 371
17.5.44 Meas™: Measurements on simulation data . . . . . ... ... ... 371
17.5.45 Mdump*: Dump the matrix values to a file (or to console) . . . . . 372
17.5.46 Mrdump™*: Dump the matrix right hand side values to a file (or to
console) . .. 372
17.5.47Noise™: Noise analysis . . . . . . . ... . ... ... ... ..... 373
17.5.48 Op*: Perform an operating point analysis . . . . . .. .. ... .. 373
17.5.49 Option*: Set a ngspice option . . . . . . . . .. .. .. ... .... 373
17.5.50 Plot: Plot vectors on the display . . . .. .. ... ... ... ... 374
17.5.51 Pre_ <command>: execute commands prior to parsing the circuit . 376
17.5.52Print: Print values . . . . . . . . . ... 0oL 376
17.5.53 Psd: power spectral density of vectors . . . . . .. ... ... ... 377
17.5.54 Quit: Leave Ngspice . . . . . . . . . . . . . ... .. ... ..... 377
17.5.55 Rehash: Reset internal hash tables . . . . .. ... ... ... ... 377
17.5.56 Remcirc*: Remove the current circuit . . . . . . . . .. .. .. ... 378
17.5.57 Remzerovec: Remove zero length vectors . . . . . . ... ... ... 378
17.5.58 Reset*: Reset an analysis . . . . . ... .. ... ... ....... 378
17.5.59 Reshape: Alter the dimensionality or dimensions of a vector . . . . 378
17.5.60 Resume*: Continue a simulation after a stop . . . . . . . ... ... 379
17.5.61 Rspice*: Remote ngspice submission . . . . .. .. ... ... ... 379
17.5.62 Run*: Run analysis from the input file . . . . . .. ... ... ... 380
17.5.63 Rusage: Resource usage . . . . . . .. .. . ... ... ... 380
17.5.64 Save™: Save a set of outputs . . . . .. . .. ... ... ... 381
17.5.65Sens*: Run a sensitivity analysis . . . . . ... .. .. ... .... 382

17.5.66 Set: Set the value of a variable . . . . . . . . . .. ... ... ... 383



18

CONTENTS

17.5.67 Setcs: Set the value of a variable, case preserved . . . . . . . .. .. 384
17.5.68 Setcirc*: Change the current circuit . . . . . . . . . .. .. ... .. 384
17.5.69 Setplot: Switch the current set of vectors . . . . . . ... ... ... 384
17.5.70 Setscale: Set the scale vector for the current plot . . . . . ... .. 385
17.5.71 Setseed: Set the seed value for the random number generator . . . . 385
17.5.72 Settype: Set the type of a vector . . . . . .. ... ... 385
17.5.73 Shell: Call the command interpreter. . . . . . . . . ... ... ... 386
17.5.74 Shift: Alter a list variable . . . . . . . .. ... ... L. 386
17.5.75 Show*: List device state . . . . . . . . . .. .. ... .. ... ... 386
17.5.76 Showmod*: List model parameter values . . . . . . ... ... ... 387
17.5.77 Snload*: Load the snapshot file . . . . ... ... ... ... .... 387
17.5.78 Snsave™: Save a snapshot file . . . . ... .. ... ... .. ... . 388
17.5.79 Source: Read a ngspice input file . . . ... ... ... ... .... 389
17.5.80 Spec: Create a frequency domain plot . . . . . . . . ... ... ... 390
17.5.81 Status*: Display breakpoint information . . . . .. ... ... ... 390
17.5.82Step*: Run a fixed number of time-points . . . . . .. .. .. ... 390
17.5.83Stop™: Set a breakpoint . . . . .. ... ... 391
17.5.84 Stremp: Compare two strings . . . . . . . ... ... ... ... 391
17.5.85 Sysinfo*: Print system information . . . . . .. ... ... ... .. 392
17.5.86 Tf*: Run a Transfer Function analysis . . . . . .. ... ... ... 392
17.5.87 Trace*: Trace nodes . . . . . . . . . . .. . ... 393
17.5.88 Tran®: Perform a transient analysis . . . . . . . .. ... ... ... 393
17.5.89 Transpose: Swap the elements in a multi-dimensional data set . . . 394
17.5.90 Unalias: Retract an alias . . . . . . ... ... ... ... ... ... 394
17.5.91 Undefine: Retract a definition . . . . . . . .. ... ... ... ... 394
17.5.92 Unlet: Delete the specified vector(s) . . . . . . . .. ... ... ... 394
17.5.93 Unset: Clear a variable . . . . . . . .. .. .. ... ... ..... 395
17.5.94 Version: Print the version of ngspice . . . . . . . . ... ... ... 395
17.5.95 Where*: Identify troublesome node or device . . . . . . .. ... .. 396
17.5.96 Wrdata: Write data to a file (simple table) . . . . . ... ... ... 397
17.5.97 Write: Write data to a file (Spice3f5 format) . . . . ... ... . .. 397
17.5.98 Wrnodev: Write node voltage values to a file (.ic=xx format) . . . . 398

17.5.99 Wrs2p: Write scattering parameters to file (Touchstone® format) . 399

17.6 Control Structures . . . . . . . . . s, 399

17.6.1 While-End . . . . .. ... o 399



CONTENTS 19

17.6.2 Repeat - End . . . . . . . . .o 400
17.6.3 Dowhile- End . . . . . . . . ... 400
17.6.4 Foreach-End . . . . ... .. ... ... L 401
17.6.5 If-Then-Else . . . . . .. . . . . 401
17.6.6 Label . . . . . . . . . 402
17.6.7 Goto . . . . . . 402
17.6.8 Continue . . . . . . . . . . 403
17.6.9 Break . . . . . . . 403

17.7 Internally predefined variables . . . . . . .. .. ... ... ... ... .. 403
17.8 Scripts . . . . . e 410
17.8.1 Variables. . . . . . . . ... 411
17.82 Vectors. . . . . . . . o 411
17.8.3 Assessing vectors in subcircuits . . . . ... ..o 411
17.8.4 Commands . . . . . . . . . .. 412
17.8.5 control structures . . . . . .. ... Lo 412
17.8.6 Example script 'spectrum’ . . . . . . ... ... 416
17.8.7 Example script for random numbers . . . . . . ... ... 418
17.8.8 Parameter sweep . . . . . . . . . ... 419
17.8.9 Output redirection . . . . . . . . . ... oL 419

17.9 Scattering parameters (S-parameters) . . . . . . . . ... ... .. 421
17.9.1 Intro . . . . . . . 421
17.9.2 S-parameter measurement basics . . . . ... ... 421
17.9.3 Usage . . . . . o 423
17.10Using shell variables . . . . . . . . . .. L oo 423
17.1IMISCELLANEOUS . . . . . . . e 424
17.12Bugs . . . . o e 424
18 Ngspice User Interfaces 425
18.1 MS Windows Graphical User Interface . . . .. ... .. ... ... .... 425
18.2 MS Windows Console . . . . . . . . .. .. ... 428
183 Linux . . . . . L 429
184 CygWin . . . . . . . o e 429
18.5 Error handling . . . . . . . . ..o 429
18.6 Output-to-file options . . . . . . . . . . ... .. 430

18.6.1 Graphicsfiles . . . . . . . . ... 430



20 CONTENTS
18.6.2 Tabulated files . . . . . . .. ... 435

18.7 Gnuplot . . . . . 438
18.7.1 Using Gnuplot to produce 1D graphs of (electrical) simulation results438
18.7.2 Using gnuplot to produce 2D contour plots for Cider . . . . . . .. 439

18.8 Integration with CAD software and ‘third party’ GUIs . . ... ... ... 443
18.8.1 KiCad . . . . . . . . 443
18.8.2 Xschem . . . . . . .. 443
18.8.3 GNU Spice GUIL . . . . . . . . . .. .. 443
18.8.4 XCircuit . . . . . . .. 443
18.8.5 GEDA . . . . . . 443
18.8.6 MSEspice . . . . . . . . 444
18.8.7 GNU Octave . . . . . . . . . 444

19 ngspice as shared library or dynamic link library 445
19.1 Compile options . . . . . . . . . . 445
19.1.1 How to get the sources . . . . . . . . . . ... ... ... ... 445
19.1.2 Linux, MINGW, CYGWIN . . . ... ... ... ... ... .... 445
19.1.3 MS Visual Studio . . . . . . . .. ... 446

19.2 Linking shared ngspice to a calling application . . . . . . . ... ... ... 446
19.2.1 Linking during creating the caller . . . . . . .. .. . ... ... .. 446
19.2.2 Loading at runtime . . . . . . . .. ... L 446

19.3 Shared ngspice API . . . . . . . . . . .. 446
19.3.1 structs and types defined for transporting data . . . . . . . .. . .. 446
19.3.2 Exported functions . . . . . . . ... 449
19.3.3 Callback functions . . . . . . . . ... ... Lo 451

19.4 General remarks on using the APT. . . . . . .. ... ... ... ... ... 454
19.4.1 Loading anetlist . . . . . .. .. ... oL 454
19.4.2 Running the simulation . . . . . . . .. .. ... 0oL 456
19.4.3 Accessing data . . . . . ... 456
19.4.4 Altering model or device parameters . . . . . . .. ... ... ... 457
19.4.5 Output . . . . . . . . 458
19.4.6 Error handling . . . . .. .. ... .o L 458

19.5 Example applications . . . . . . . ..o Lo 458
19.6 ngspice parallel . . . . . . ..o 458
19.6.1 Go parallel! . . . . . . ... 459
19.6.2 Additional exported functions . . . . . . .. ... ... L. 460
19.6.3 Additional callback functions . . . . . .. .. ... ... ... .. 461

19.6.4 Parallel ngspice example . . . . . . .. ... ... 462



CONTENTS

20 TCLspice

20.1
20.2
20.3
20.4
20.5

20.6

20.7

tclspice framework . ... oL Lo
tclspice documentation . . . . ... Lo
spicetoblt . . . . .
Running TCLspice . . . . . . . . . .
examples . . ...
20.5.1 Active capacitor measurement . . . . . . .. ... ...
20.5.2 Optimization of a linearization circuit for a Thermistor . . . . . . .
20.5.3 Progressive display . . . . . . ... o
Compiling . . . . . . . .
20.6.1 Linux . . . ...
20.6.2 MS Windows . . . . . . ...
MS Windows 32 Bit binaries . . . . . . . . ... ... 0L

21 Example Circuits

21.1
21.2
21.3
214
21.5
21.6
21.7

AC coupled transistor amplifier . . . . . . ... ... ... L.
Differential Pair . . . . . . . . ...
MOSFET Characterization . . . . . . . . . . .. .. ... ... ....
RTL Inverter . . . . . . . . o
Four-Bit Binary Adder (Bipolar) . . .. ... ... ... ... ... ...
Four-Bit Binary Adder (MOS) . . . . . ... ... ... oL

Transmission-Line Inverter . . . . . . . . . . . ... ...

22 Statistical circuit analysis

22.1
22.2
22.3
224
22.5

22.6

Introduction . . . . . . .. L
Using random param(eters) . . . . . . ... ... ...
Behavioral sources (B, E, G, R, L, C) with random control . . . . . . . ..
ngspice scripting language . . . . . . .. Lo Lo
Monte-Carlo Simulation . . . . .. .. ... ...
22.5.1 Example 1 . . . . . ..o
22.5.2 Example 2 . . . . .o
2253 Example 3 . . . . ..o

Data evaluation with Gnuplot . . . . . . . ... ... ... ... ......

21

463
463
463
464
464
465
465
467
471
472
472
472
473

475
475
481
481
481
482
484
485



22

23 Circuit optimization with ngspice

23.1 Optimization of a circuit . . . . . . .. .. ... ...
23.2 ngspice optimizer using ngspice scripts . . . . . . . .
23.3 ngspice optimizer using tclspice . . . . .. ... ...
23.4 ngspice optimizer using a Python script . . . . . . ..
23.5 ngspice optimizer using ASCO . . . . ... ... ...

23.5.1 Three stage operational amplifier

23.5.2 Digital inverter . . . .. ... ...
23.5.3 Bandpass . . . .. ... ... L.
23.5.4 Class-E power amplifier . . . ... ... ...

24 Notes

24.1 Glossary . . . . ...
24.2 Acronyms and Abbreviations . . . . . ... ... ...
243 ToDo . . .. . .

IT XSPICE Software User’s Manual

25 XSPICE Basics

25.1 ngspice with the XSPICE option . . . . .. ... ..
25.2 The XSPICE Code Model Subsystem . . . . .. ...
25.3 XSPICE Top-Level Diagram . . . . .. .. ... ...

26 Execution Procedures

26.1 Simulation and Modeling Overview . . . . . .. . ..
26.1.1 Describing the Circuit . . . . . ... .. ...
26.2 Circuit Description Syntax . . . . . . ... ... ...
26.2.1 XSPICE Syntax Extensions . . . .. ... ..

26.3 How to create code models . . . . . . .. . ... ...

27 Example circuits

27.1 Amplifier with XSPICE model ‘gain” . . . . .. ...
27.2 XSPICE advanced usage . . . . . ... .. ... ...
27.2.1 Circuit example C3 . . . . . .. .. ... ...
27.2.2 Running example C3 . . . . . . ... ... ..

CONTENTS

497



CONTENTS

28 Code Models and User-Defined Nodes
28.1 Code Model Data Type Definitions . . . . . . . . ... .. ... ... ...
28.2 Creating Code Models . . . . . . . .. ... .
28.3 Creating User-Defined Nodes . . . . . . . . . . . ... ... ... ... ...

28.4 Adding a new code model library . . . . . ... ... L.

28.5 Compiling and loading the new code model (library) . . ... .. ... ..

28.6 Interface Specification File . . . . . . . . . . . ... L

28.6.1
28.6.2
28.6.3
28.6.4

The Name Table . . . . ... ... ...
The Port Table . . . . . . . . ... ...
The Parameter Table . . . . . . . . . ... ... .. ... ... ..
Static Variable Table . . . . . . . .. ... ... ... ...

28.7 Model Definition File . . . . . . . . .

28.7.1
28.7.2

Macros . . . . .o

Function Library . . . . . . . ... o oo

28.8 User-Defined Node Definition File . . . . . . . . . . . . . . .. . ... ...

28.8.1
28.8.2
28.8.3

Macros . . . . .o

Function Library . . . . . . . ... .. ... ...

Example UDN Definition File . . . . . . ... ... ... ... ...

29 Error Messages

29.1 Preprocessor Error Messages . . . . . . . . . ..o oL

29.2 Simulator Error Messages . . . . . . . . ...

29.3 Code Model Error Messages . . . . . . . . . . . ...

29.3.1
29.3.2
29.3.3
29.3.4
29.3.5
29.3.6
29.3.7
29.3.8
29.3.9

Code Model aswitch . . . . . ... ... ... ... ...
Code Model climit . . . ... ... ... ... ... ... ... ...
Code Model core . . . . . . . ... ...
Code Model d_osc . . . . . . . . .
Code Model d_source . . . . . . . . . . . . ... ... ...
Code Model d_state . . . . . . . . . . .. ..
Code Model oneshot . . . . . .. ... ... L
Code Model pwl. . . . . . . ..o
Code Model s xfer . . . . . . . . . . . . . ..

29.3.10Code Model sine . . . . . . .. ..o
29.3.11Code Model square . . . . . . . . .. ...
29.3.12Code Model triangle . . . . . . ... ..o

23

537
938
939
939
540
041
041
043
043
545
047
948
048
957
2965
266
566
969



24 CONTENTS

IITI CIDER 585
30 CIDER User’s Manual 587
30.1 SPECIFICATION . . . . . . . . e 587
30.1.1 Examples . . . . . .. 588
30.2 BOUNDARY, INTERFACE . . . . . . .. ... ... 589
30.2.1 DESCRIPTION . . . . . .. .. 589
30.2.2 PARAMETERS . . . . . . . .. 590
30.2.3 EXAMPLES . . . . . . . . 590
30.3 COMMENT . . . . . . 590
30.3.1 DESCRIPTION . . . . . .. .. . . . 591
30.3.2 EXAMPLES . . . . . . . .. 591
30.4 CONTACT . . . . s s e 591
30.4.1 DESCRIPTION . . . . . .. .. . . 591
30.4.2 PARAMETERS . . . . . . . .. 591
30.4.3 EXAMPLES . . . . . . .. 591
30.4.4 SEE ALSO . . . . . . . 592

30.5 DOMAIN, REGION . . . . . .. . 592
30.5.1 DESCRIPTION . . . . . . . .. . 592
30.5.2 PARAMETERS . . . . . . . .. 592
30.5.3 EXAMPLES . . . . . . ... 592
30.5.4 SEE ALSO . . . . . . . 593

30.6 DOPING . . . . . o 593
30.6.1 DESCRIPTION . . . . . . . .. . . 593
30.6.2 PARAMETERS . . . . . . . .. 596
30.6.3 EXAMPLES . . . . . . ... 596
30.6.4 SEE ALSO . . . . . . . 597

30.7 ELECTRODE . . . . . . .o 597
30.7.1 DESCRIPTION . . . . . .. .. . . 597
30.7.2 PARAMETERS . . . . . . . . . . 298
30.7.3 EXAMPLES . . . . . . . .. 598
30.7.4 SEE ALSO . . . . . . . 599

30.8 END . . o oo 599
30.8.1 DESCRIPTION . . . . . .. .. . 599

30.9 MATERIAL . . . . . oo 299



CONTENTS 25

30.9.1 DESCRIPTION . . . . . .. .. 599
30.9.2 PARAMETERS . . . . . . . .. 600
30.9.3 EXAMPLES . . . . . . .. 600
30.9.4 SEE ALSO . . . . . . . . 600
30.10METHOD . . . . . . 601
30.10.1 DESCRIPTION . . . . . . . .. o 601
30.10.2 Parameters . . . . .. ..o 601
30.10.3Examples . . . .. 602
30.11Mobility . . . . . 602
30.11.1 Description . . . . . . . ..o 602
30.11.2Parameters . . . . . . ... 603
30.11.3Examples . . . . . .. 603
30.11.4SEE ALSO . . . . . . . 604
30.1L.5BUGS . . . . 604
30.12MODELS . . . . . o 604
30.12.1DESCRIPTION . . . . . . . .. o 604
30.12.2 Parameters . . . . .. .. 604
30.12.3Examples . . . .. 605
30.12.4See also . . . .. 605
30.125Bugs . ... 605
30.130PTIONS . . . . . o o 605
30.13.1DESCRIPTION . . . . . . . .. o 605
30.13.2Parameters . . . . . ... L 606
30.13.3Examples . . . . ..o 606
30.13.4See also . . . .. 607
30.140UTPUT . . . . . e 607
30.14.1DESCRIPTION . . . . . . . .. o 607
30.14.2 Parameters . . . . . . ... Lo 608
30.14.3Examples . . . . ..o 608
30.14.4SEE ALSO . . . . . . 609
30.15TITLE « . . . o o 609
30.15.1DESCRIPTION . . . . . . . . ... 609
30.15.2EXAMPLES . . . . . . 609
30.15.3BUGS . . . . . . 609

30.16X.MESH, Y. MESH . . . . . .. ... 609



26

30.16.1 DESCRIPTION . . . . . ... ... ... ...
30.16.2 Parameters . . . . ... ..o
30.16.3 EXAMPLES . . . ... ... ... ... ...
30.16.4SEE ALSO . . . . ... .. ... ...
30.17TNUMD . . . . . oo
30.17.1DESCRIPTION . . . . . ... ... ... ...
30.17.2Parameters . . . . ... ...
30.17.3EXAMPLES . . . ... ... ... ...
30.17.4SEE ALSO . . . . . ...
30.175BUGS . . ..o
30.18NBJT . . o oo
30.18.1DESCRIPTION . . . . . ... ... ... ...
30.18.2 Parameters . . . . ... ...
30.18. 3EXAMPLES . . . ... .. ... ... ...
30.18.4SEE ALSO . . . . . ...
30.185BUGS . . . . ..o
30.19NUMOS . . . . ...
30.19.1DESCRIPTION . . . . . ... ... ... ...
30.19.2 Parameters . . . . ... ...
30.19.3EXAMPLES . . . ... ... ... ...
30.19.4SEE ALSO . . . .. ...
30.202D contour plots . . . . . ...
30.21Cider examples . . . . . . ...

IV  Miscellaneous

31 Model and Device Parameters

31.1 Accessing internal device parameters . . . . .. . ..
31.2 Elementary Devices . . . . . .. ... ... ... ...
31.2.1 Resistor . . . ... .. ... L.
31.2.2 Capacitor - Fixed capacitor . . . .. .. ...
31.2.3 Inductor - Fixed inductor . . . .. ... ...
31.2.4 Mutual - Mutual Inductor . . . . .. ... ..

31.3 Voltage and current sources . . . . .. .. ... ...

31.3.1 Bxxxx - Arbitrary source (ASRC)

CONTENTS



CONTENTS 27

31.3.2 Isource - Independent current source . . . ... ... ... .. ... 629
31.3.3 Vsource - Independent voltage source . . . . . .. ... ... .... 630
31.3.4 Fxxxx: Current-Controlled Current Source (CCCS) . . . ... . .. 631
31.3.5 Hxxxx: Current-Controlled Voltage Source (CCVS) . . . ... . .. 631
31.3.6 Gxxxx: Voltage-Controlled Current Source (VCCS) . . . . ... .. 632
31.3.7 Exxxx: Voltage-Controlled Voltage Source (VCVS) . . . .. .. .. 632
31.4 Transmission Lines . . . . . . . .. . Lo 633
31.4.1 CplLines - Simple Coupled Multiconductor Lines . . . . .. .. .. 633
31.4.2 LTRA - Lossy transmission line . . . . ... .. .. ... ...... 634
31.4.3 Tranline - Lossless transmission line . . . . . .. .. ... ... ... 635
31.4.4 TransLine - Simple Lossy Transmission Line . . . . . . . .. .. .. 636
31.4.5 URC - Uniform R. C. line . . ... ... ... ... ... ...... 637
315 BITs . . o e 638
31.5.1 BJT - Bipolar Junction Transistor. . . . . . . .. ... ... .... 638
31.5.2 VBIC - Vertical Bipolar Inter-Company Model . . . . . . . . .. .. 641
31.6 MOSFETSs . . . . . . . e 645

31.6.1 MOSI1 - Level 1 MOSFET model with Meyer capacitance model . . 645
31.6.2 MOS2 - Level 2 MOSFET model with Meyer capacitance model . . 648
31.6.3 MOS3 - Level 3 MOSFET model with Meyer capacitance model . . 652
31.6.4 MOS6 - Level 6 MOSFET model with Meyer capacitance model . . 656

31.6.5 MOS9 - Modified Level 3 MOSFET model . . . . .. ... ..... 659
31.6.6 BSIM1 - Berkeley Short Channel IGFET Model . . . . . . . .. .. 663
31.6.7 BSIM2 - Berkeley Short Channel IGFET Model . . . . . . . .. .. 666
31.6.8 BSIM3 . . . . . . . e 670
31.6.9 BSIM4 . . . . . . . e 671

32 Compilation notes 673
32.1 Ngspice Installation under Linux (and other "UNIXes’) . . . ... ... .. 673
32.1.1 Prerequisites. . . . . . . . .. 673
32.1.2 Imstall from Git . . . . . .. . ... 673
32.1.3 Install from a tarball, e.g. from ngspice-36.tar.gz. . . . . . . . . .. 675
32.1.4 Compilation using an user defined directory tree for object files . . 675
32.1.5 ngspice as a shared library . . . . . ... ... 676
32.1.6 Relative paths for spinit and code models. . . . . . . . .. ... .. 676

32.1.7 Installation on Red Hat or Oracle Linux (and similar, e.g. Centos) . 677



28 CONTENTS
32.1.8 Advanced Install . . . .. ... ... .0 677
32.1.9 Compilers and Options . . . . . . . . .. . ... ... ... ..., 679
32.1.10 Compiling For Multiple Architectures . . . . . . . . . . . .. .. .. 680
32.1.11 Installation Names . . . . . . . .. . . ... .. L. 680
32.1.120ptional Features . . . . . . . . . . ... ... 680
32.1.13 Specifying the System Type . . . . . . . .. .. .. ... ... ... 681
32.1.14 Sharing Defaults . . . . .. .. ... oo 681
32.1.150peration Controls . . . . . . . . . . . ... .. 681

32.2 Ngspice Compilation under Windows OS . . . . . . .. .. ... ... ... 681
32.2.1 Building ngspice with MS Visual Studio 2019 . . . . . . .. .. .. 681
32.2.2 How to make ngspice with MINGW and MSYS2 . . ... ... .. 684
32.2.3 make ngspice with pure CYGWIN . . . . . ... ... ... ... .. 687
32.2.4 ngspice mingw or cygwin console executable w/o graphics . . . . . 688
32.2.5 ngspice for MS Windows, cross compiled from Linux . . .. .. .. 688

32.3 Ngspice Compilation under macOS . . . . . . . . . .. .. ... ... ... 689
32.3.1 Prerequisites. . . . . . . . . ... 689
32.3.2 Compiling ngspice . . . . . . . ... 690
32.3.3 Compiling ngspice shared library . . . . .. .. .. ... ... ... 690

32.4 Reporting errors. . . . . . . . ..o 690

33 Copyrights and licenses 691

33.1 Documentation license . . . . . . . . . .. ... 691

33.2 ngspice license . . . . . ..o 691

33.3 Some license details . . . . . . . .. oL 691
33.3.1 CC-BY-SA . . . . 691
33.3.2 ‘Modified” BSD license . . . . . . . . .. ... ... ... ... . 692

33.4 On the historical evolvement of the ngspice licenses . . . . . . . .. .. .. 693
33.4.1 XSPICE SOFTWARE (documentation) copyright . . . . . ... .. 693
33.4.2 CIDER RESEARCH SOFTWARE AGREEMENT (superseded by

33.4.3) 693
33.4.3 ‘Modified’ BSD license . . . . . . . . ... ... L. 694
33.4.4 XSPICE . . . . . . 695
33.4.5 tclspice, numparam . . . . . ... oL 695

33.4.6 Linking to GPLd libraries (e.g. readline, fftw, table.cm): . . . . . . 695



Prefaces

Preface to the first edition

This manual has been assembled from different sources:

1. The spice3f5 manual,
2. the XSPICE user’s manual,

3. the CIDER user’s manual

and some original material needed to describe the new features and the newly implemented
models. This cut and paste approach, while not being orthodox, allowed ngspice to have
a full manual in a fraction of the time that writing a completely new text would have
required. The use of LaTex and Iy X instead of TeXinfo, which was the original encoding
for the manual, further helped to reduce the writing effort and improved the quality of
the result, at the expense of an on-line version of the manual but, due to the complexity
of the software I hardly think that users will ever want to read an on-line text version.

In writing this text I followed the spice3f5 manual, both in the chapter sequence and
presentation of material, mostly because that was already the user manual of SPICE.

Ngspice is an open source software, users can download the source code, compile, and
run it. This manual has an entire chapter describing program compilation and available
options to help users in building ngspice (see Chapt. 32). The source package already
comes with all ‘safe’ options enabled by default, and activating the others can produce
unpredictable results and thus is recommended to expert users only. This is the first
ngspice manual and I have removed all the historical material that described the differences
between ngspice and spice3, since it was of no use for the user and not so useful for the
developer who can look for it in the Changelogs of in the revision control system.

I want to acknowledge the work done by Emmanuel Rouat and Arno W. Peters for
converting the original spice3f documentation to TEXinfo. Their effort gave ngspice users
the only available documentation that described the changes for many years. A good
source of ideas for this manual came from the on-line spice3f manual written by Charles
D.H. Williams (Spice3f5 User Guide), constantly updated and useful for its many insights.

As always, errors, omissions and unreadable phrases are only my fault.

Paolo Nenzi

Roma, March 24th 2001

29


http://newton.ex.ac.uk/teaching/CDHW/Electronics2/userguide/index.html#toc

30 CONTENTS

Indeed. At the end of the day, this is engineering, and one learns to live
within the limitations of the tools.

Kevin Aylward, Warden of the King’s Ale

Preface to the current edition (as of Aug 2021)

Due to the wealth of new material and options in ngspice the actual order of chapters has
been revised. Several new chapters have been added. The [yX text processor has allowed
adding internal cross references. The PDF format has become the standard format for
distribution of the manual. There is also a xhtml version available. Within each new
ngspice distribution (starting with ngspice-21) a manual edition is provided reflecting the
ngspice status at the time of distribution. At the same time, located at ngspice manuals,
the manual is constantly updated. Every new ngspice feature should enter this manual
as soon as it has been made available in the Git source code master branch.

Holger Vogt
Miilheim, 2021


http://ngspice.sourceforge.net/docs/ngspice-html-manual/manual.xhtml
http://ngspice.cvs.sourceforge.net/viewvc/ngspice/ngspice/ng-spice-manuals/

Acknowledgments

ngspice contributors

Spice3 and CIDER were originally written at The University of California at Berkeley
(USA).

XSPICE has been provided by Georgia Institute of Technology, Atlanta (USA).

Since then, there have been many people working on the software, most of them releasing
patches to the original code through the Internet.

The following people have contributed in some way:

Vera Albrecht,
Cecil Aswell,

Giles C. Billingsley,
Phil Barker,

Steven Borley,
Stuart Brorson,
Mansun Chan,
Wayne A. Christopher,
Al Davis,

Glao S. Dezai,

Jon Engelbert,
Daniele Foci,

Noah Friedman,
David A. Gates,
Alan Gillespie,
John Heidemann,
Marcel Hendrix,
Jeffrey M. Hsu,
JianHui Huang,

S. Hwang,

Chris Inbody,
Gordon M. Jacobs,
Min-Chie Jeng,
Beorn Johnson,
Stefan Jones,
Kenneth H. Keller,
Francesco Lannutti,

31



32 CONTENTS

Robert Larice,
Mathew Lew,

Robert Lindsell,
Weidong Liu,
Kartikeya Mayaram,
Richard D. McRoberts,
Manfred Metzger,

Jim Monte,

Wolfgang Muees,
Paolo Nenzi,

Gary W. Ng,

Hong June Park,
Stefano Perticaroli,
Arno Peters,
Serban-Mihai Popescu,
Georg Post,

Thomas L. Quarles,
Emmanuel Rouat,
Jean-Marc Routure,
Jaijeet S. Roychowdhury,
Lionel Sainte Cluque,
Takayasu Sakurai,
Amakawa Shuhei,
Kanwar Jit Singh,

Bill Swartz,

Hitoshi Tanaka,

Brian Taylor,

Steve Tell,

Andrew Tuckey,
Andreas Unger,

Holger Vogt,

Dietmar Warning,
Michael Widlok,
Charles D.H. Williams,
Antony Wilson,

and many others...

If someone helped in the development and has not been inserted in this list then this
omission was unintentional. If you feel you should be on this list then please write to
<ngspice-devel@lists.sourceforge.net>. Do not be shy, we would like to make a list as
complete as possible.


mailto:ngspice-devel@lists.sourceforge.net

Chapter 1

Introduction

Ngspice is a general-purpose circuit simulation program for nonlinear and linear analyses.
Circuits may contain resistors, capacitors, inductors, mutual inductors, independent or
dependent voltage and current sources, loss-less and lossy transmission lines, switches,
uniform distributed RC lines, and the five most common semiconductor devices: diodes,
BJTs, JFETs, MESFETs, and MOSFETs.

Some introductory remarks on how to use ngspice may be found in Chapt. 21.

Ngspice is an update of Spice3f5, the last Berkeley’s release of Spice3 simulator family.
Ngspice is being developed to include new features to existing Spice3f5 and to fix its bugs.
Improving a complex software like a circuit simulator is a very hard task and, while some
improvements have been made, most of the work has been done on bug fixing and code
refactoring.

Ngspice has built-in models for the semiconductor devices, and the user need specify only
the pertinent model parameter values.

Ngspice supports mixed-level simulation and provides a direct link between technology pa-
rameters and circuit performance. A mixed-level circuit and device simulator can provide
greater simulation accuracy than a stand-alone circuit or device simulator by numerically
modeling the critical devices in a circuit. Compact models can be used for all other de-
vices. The mixed-level extensions to ngspice is CIDER, a mixed-level circuit and device
simulator integrated into ngspice code.

Ngspice supports mixed-signal simulation through the integration of XSPICE code. XSPICE
software, developed as an extension to Spice3C1 by GeorgiaTech, has been enhanced and
ported to ngspice to provide ‘board’ level and mixed-signal simulation.

The XSPICE extension enables pure digital simulation as well.

New devices can be added to ngspice by several means: behavioral B-, E- or G-sources,
the XSPICE code-model interface for C-like device coding, and the ADMS interface based
on Verilog-A and XML.

Finally, numerous small bugs have been discovered and fixed, and the program has been
ported to a wider variety of computing platforms.

33



34 CHAPTER 1. INTRODUCTION

1.1 Simulation Algorithms

Computer-based circuit simulation is often used as a tool by designers, test engineers,
and others who want to analyze the operation of a design without examining the physical
circuit. Simulation allows you to change quickly the parameters of many of the circuit ele-
ments to determine how they affect the circuit response. Often it is difficult or impossible
to change these parameters in a physical circuit.

However, to be practical, a simulator must execute in a reasonable amount of time.
The key to efficient execution is choosing the proper level of modeling abstraction for
a given problem. To support a given modeling abstraction, the simulator must provide
appropriate algorithms.

Historically, circuit simulators have supported either an analog simulation algorithm or a
digital simulation algorithm. Ngspice inherits the XSPICE framework and supports both
analog and digital algorithms and is a ‘mixed-mode’ simulator.

1.1.1 Analog Simulation

Analog simulation focuses on the linear and non-linear behavior of a circuit over a con-
tinuous time or frequency interval. The circuit response is obtained by iteratively solving
Kirchhoff’s Laws for the circuit at time steps selected to ensure the solution has converged
to a stable value and that numerical approximations of integrations are sufficiently accu-
rate. Since Kirchhoff’s laws form a set of simultaneous equations, the simulator operates
by solving a matrix of equations at each time point. This matrix processing generally
results in slower simulation times when compared to digital circuit simulators.

The response of a circuit is a function of the applied sources. Ngspice offers a variety
of source types including DC, sine-wave, and pulse. In addition to specifying sources,
the user must define the type of simulation to be run. This is termed the ‘mode of
analysis’. Analysis modes include DC analysis, AC analysis, and transient analysis. For
DC analysis, the time-varying behavior of reactive elements is neglected and the simulator
calculates the DC solution of the circuit. Swept DC analysis may also be accomplished
with ngspice. This is simply the repeated application of DC analysis over a range of
DC levels for the input sources. For AC analysis, the simulator determines the response
of the circuit, including reactive elements to small-signal sinusoidal inputs over a range
of frequencies. The simulator output in this case includes amplitudes and phases as
a function of frequency. For transient analysis, the circuit response, including reactive
elements, is analyzed to calculate the behavior of the circuit as a function of time.

1.1.2 Device Models for Analog Simulation

There are three models for bipolar junction transistors, all based on the integral-charge
model of Gummel and Poon; however, if the Gummel-Poon parameters are not specified,
the basic model (BJT) reduces to the simpler Ebers-Moll model. In either case and in
either models, charge storage effects, ohmic resistances, and a current-dependent output
conductance may be included. The second bipolar model BJT2 adds dc current compu-
tation in the substrate diode. The third model (VBIC) contains further enhancements
for advanced bipolar devices.



1.1. SIMULATION ALGORITHMS 35

The semiconductor diode model can be used for either junction diodes or Schottky barrier
diodes. There are two models for JFET: the first (JFET) is based on the model of
Shichman and Hodges, the second (JFET2) is based on the Parker-Skellern model. All
the original six MOSFET models are implemented: MOS1 is described by a square-law
I-V characteristic, MOS2 [1] is an analytical model, while MOS3 [1] is a semi-empirical
model; MOS6 [2] is a simple analytic model accurate in the short channel region; MOS9,
is a slightly modified Level 3 MOSFET model - not to confuse with Philips level 9; BSIM
1 [3, 4]; BSIM2 [5] are the old BSIM (Berkeley Short-channel IGFET Model) models.
MOS2, MOS3, and BSIM include second-order effects such as channel-length modulation,
subthreshold conduction, scattering-limited velocity saturation, small-size effects, and
charge controlled capacitances. The recent MOS models for submicron devices are the
BSIM3 (Berkeley BSIM3 web page) and BSIM4 (Berkeley BSIM4 web page) models.
Silicon-on-insulator MOS transistors are described by the SOI models from the BSIMSOI
family (Berkeley BSIMSOI web page) and the STAG [18] one. There is partial support
for a couple of HFET models and one model for MESA devices.

1.1.3 Digital Simulation

Digital circuit simulation differs from analog circuit simulation in several respects. A
primary difference is that a solution of Kirchhoft’s laws is not required. Instead, the
simulator must only determine whether a change in the logic state of a node has occurred
and propagate this change to connected elements. Such a change is called an ‘event’.

When an event occurs, the simulator examines only those circuit elements that are affected
by the event. As a result, matrix analysis is not required in digital simulators. By
comparison, analog simulators must iteratively solve for the behavior of the entire circuit
because of the forward and reverse transmission properties of analog components. This
difference results in a considerable computational advantage for digital circuit simulators,
which is reflected in the significantly greater speed of digital simulations.

1.1.4 Mixed-Signal Simulation

Modern circuits often contain a mix of analog and digital circuits. To simulate such circuits
efficiently and accurately a mix of analog and digital simulation techniques is required.
When analog simulation algorithms are combined with digital simulation algorithms, the
result is termed ‘mixed-mode simulation’

Two basic methods of implementing mixed-mode simulation used in practice are the ‘na-
tive mode’ and ‘glued mode’ approaches. Native mode simulators implement both an
analog algorithm and a digital algorithm in the same executable. Glued mode simulators
actually use two simulators, one of which is analog and the other digital. This type of
simulator must define an input/output protocol so that the two executables can com-
municate with each other effectively. The communication constraints tend to reduce the
speed, and sometimes the accuracy, of the complete simulator. On the other hand, the
use of a glued mode simulator allows the component models developed for the separate
executables to be used without modification.

Ngspice is a native mode simulator providing both analog and event-based simulation
in the same executable. The underlying algorithms of ngspice (coming from XSPICE


http://www-device.eecs.berkeley.edu/bsim/?page=BSIM3
http://www-device.eecs.berkeley.edu/bsim/?page=BSIM4
http://www-device.eecs.berkeley.edu/bsim/?page=BSIMSOI

36 CHAPTER 1. INTRODUCTION

and its Code Model Subsystem) allow use of all the standard SPICE models, provide a
pre-defined collection of the most common analog and digital functions, and provide an
extensible base on which to build additional models.

1.1.4.1 User-Defined Nodes

Ngspice supports creation of ‘User-Defined Node’ types. User-Defined Node types allow
you to specify nodes that propagate data other than voltages, currents, and digital states.
Like digital nodes, User-Defined Nodes use event-driven simulation, but the state value
may be an arbitrary data type. A simple example application of User-Defined Nodes is
the simulation of a digital signal processing filter algorithm. In this application, each
node could assume a real or integer value. More complex applications may define types
that involve complex data such as digital data vectors or even non-electronic data.

Ngspice digital simulation is actually implemented as a special case of this User-Defined
Node capability where the digital state is defined by a data structure that holds a Boolean
logic state and a strength value.

1.1.5 Mixed-Level Simulation

Ngspice can simulate numerical device models for diodes and transistors in two different
ways, either through the integrated DSIM simulator or interfacing to GSS TCAD system.
DSIM is an internal C-based device simulator that is part of the CIDER simulator, the
mixed-level simulator based on SPICE3f5. CIDER within ngspice provides circuit anal-
yses, compact models for semiconductor devices, and one- or two-dimensional numerical
device models.

1.1.5.1 CIDER (DSIM)

CIDER integrates the DSIM simulator with Spice3. It provides accurate, one- and two-
dimensional numerical device models based on the solution of Poisson’s equation, and
the electron and hole current-continuity equations. DSIM incorporates many of the same
basic physical models found in the Stanford two-dimensional device simulator PISCES.
Input to CIDER consists of a SPICE-like description of the circuit and its compact mod-
els, and PISCES-like descriptions of the structures of numerically modeled devices. As a
result, CIDER should seem familiar to designers already accustomed to these two tools.
The CIDER input format has great flexibility and allows access to physical model pa-
rameters. New physical models have been added to allow simulation of state-of-the-art
devices. These include transverse field mobility degradation important in scaled-down
MOSFETs and a polysilicon model for poly-emitter bipolar transistors. Temperature de-
pendence has been included over the range from -50C to 150C. The numerical models
can be used to simulate all the basic types of semiconductor devices: resistors, MOS
capacitors, diodes, BJTs, JFETs and MOSFETs. BJTs and JFETs can be modeled with
or without a substrate contact. Support has been added for the management of device
internal states.



1.2. SUPPORTED ANALYSES 37

1.1.5.2 GSS TCAD

GSS is a TCAD software that enables two-dimensional numerical simulation of semicon-
ductor device with well-known drift-diffusion and hydrodynamic method. GSS has Basic
DDM (drift-diffusion method) solver, Lattice Temperature Corrected DDM solver, EBM
(energy balance method) solver and Quantum corrected DDM solver based on density-
gradient theory. The GSS program is directed via input statements by a user specified
disk file. Supports triangle mesh generation and adaptive mesh refinement. Employs PMI
(physical model interface) to support various materials, including compound semiconduc-
tor materials such as SiGe and AlGaAs. Supports DC sweep, transient and AC sweep
calculations. The device can be stimulated by voltage or current source(s).

GSS is no longer updated, but is still available as open source as a limited edition of the
commercial GENIUS TCAD tool. This interface has not been tested with actual ngspice
versions and may need some maintenance efforts.

1.2 Supported Analyses
The ngspice simulator supports the following different types of analysis:

1. DC Analysis (Operating Point and DC Sweep)
2. AC Small-Signal Analysis

3. Transient Analysis

4. Pole-Zero Analysis

5. Small-Signal Distortion Analysis

6. Sensitivity Analysis

7. Noise Analysis

Applications that are exclusively analog can make use of all analysis modes with the
exception of Code Model subsystem that do not implements Pole-Zero, Distortion, Sensi-
tivity and Noise analyses. Event-driven applications that include digital and User-Defined
Node types may make use of DC (operating point and DC sweep) and Transient only.

In order to understand the relationship between the different analyses and the two un-
derlying simulation algorithms of ngspice, it is important to understand what is meant
by each analysis type. This is detailed below.

1.2.1 DC Analysis

The DC analysis portion of ngspice determines the dc operating point of the circuit with
inductors shorted and capacitors opened. DC analysis options are specified on the .DC,
.TF, and .0P control lines.



38 CHAPTER 1. INTRODUCTION

DC analysis does not consider any time dependence on any of the sources within the sys-
tem description. The simulator algorithm subdivides the circuit into those portions that
require the analog simulator algorithm and those that require the event-driven algorithm.
Each subsystem block is then iterated to solution, with the interfaces between analog
nodes and event-driven nodes iterated for consistency across the entire system.

Once stable values are obtained for all nodes in the system, the analysis halts and the
results may be displayed or printed out as you request them.

A dc analysis is automatically performed prior to a transient analysis to determine the
transient initial conditions, and prior to an ac small-signal analysis to determine the
linearized, small-signal models for nonlinear devices. If requested, the DC small-signal
value of a transfer function (ratio of output variable to input source), input resistance,
and output resistance is also computed as a part of the DC solution. DC analysis can also
be used to generate DC transfer curves: a specified independent voltage, current source,
resistor or temperature is stepped over a user-specified range and the DC output variables
are stored for each sequential source value.

1.2.2 AC Small-Signal Analysis

AC analysis is limited to analog nodes and represents the small signal, sinusoidal solution
of the analog system described at a particular frequency or set of frequencies. This
analysis is similar to the DC analysis in that it represents the steady-state behavior of
the described system with a single input node at a given set of stimulus frequencies.

The program first computes the dc operating point of the circuit and determines linearized,
small-signal models for all of the nonlinear devices in the circuit. The resultant linear
circuit is then analyzed over a user-specified range of frequencies. The desired output of
an ac small-signal analysis is usually a transfer function (voltage gain, transimpedance,
etc). If the circuit has only one ac input, it is convenient to set that input to unity and
zero phase, so that output variables have the same value as the transfer function of the
output variable with respect to the input.

1.2.3 Transient Analysis

Transient analysis is an extension of DC analysis to the time domain. A transient analysis
first obtains a DC solution to provide a point of departure for simulating time-varying
behavior. Once the DC solution is obtained, the time-dependent aspects of the system are
reintroduced, and the two simulator algorithms incrementally solve for the time varying
behavior of the entire system. Inconsistencies in node values are resolved by the two
simulation algorithms such that the time-dependent waveforms created by the analysis are
consistent across the entire simulated time interval. Resulting time-varying descriptions
of node behavior for the specified time interval are accessible to you.

All sources that are not time dependent (for example, power supplies) are set to their dc
value. The transient time interval is specified on a .TRAN control line.



1.2. SUPPORTED ANALYSES 39

1.2.4 Pole-Zero Analysis

Pole-zero analysis in ngspice computes the poles and/or zeros in the small-signal ac trans-
fer function. Ngspice first computes the dc operating point and then determines the lin-
earized, small-signal models for all the nonlinear devices in the circuit. The small-signal
circuit model is then used to find the poles and zeros of the transfer function. Two types
of transfer functions are allowed: one of the form (output voltage)/(input voltage) and
the other of the form (output voltage)/(input current). These two types of transfer func-
tions cover all the cases and one can find the poles/zeros of functions like input/output
impedance and voltage gain. The input and output ports are specified as two pairs of
nodes. The pole-zero analysis works with resistors, capacitors, inductors, linear-controlled
sources, independent sources, BJTs, MOSFETs, JFETs and diodes. Transmission lines
are not supported.

The method used in the analysis is a sub-optimal numerical search. For large circuits it
may take a considerable time or fail to find all poles and zeros. Please note, that for some
circuits, the method becomes “lost” and may find an excessive number of poles or zeros.

1.2.5 Small-Signal Distortion Analysis

Distortion analysis in ngspice computes steady-state harmonic and intermodulation prod-
ucts for small input signal magnitudes. If signals of a single frequency are specified as
the input to the circuit, the complex values of the second and third harmonics are deter-
mined at every point in the circuit. If there are signals of two frequencies input to the
circuit, the analysis finds out the complex values of the circuit variables at the sum and
difference of the input frequencies, and at the difference of the smaller frequency from the
second harmonic of the larger frequency. Distortion analysis is supported for the following
nonlinear devices:

« Diodes (DIO),
. BJT,
o JFET (level 1),

MOSFETs (levels 1, 2, 3, 9, and BSIM1),
« MESFET (level 1).

All linear devices are automatically supported by distortion analysis. If there are switches
present in the circuit, the analysis continues to be accurate provided the switches do not
change state under the small excitations used for distortion calculations.

If a device model does not support direct small signal distortion analysis, please use the
Fourier of FFT statements and evaluate the output per scripting.

1.2.6 Sensitivity Analysis

Ngspice can calculate either the DC operating-point sensitivity or the AC small-signal
sensitivity of an output variable with respect to all circuit variables, including model



40 CHAPTER 1. INTRODUCTION

parameters. Ngspice calculates the difference in an output variable (either a node voltage
or a branch current) by perturbing each parameter of each device independently. Since the
method is a numerical approximation, the results may demonstrate second order effects
in highly sensitive parameters, or may fail to show very low but non-zero sensitivity.

Since each variable is perturbed by a small fraction of its value, zero-valued parameters
are not analyzed, reducing what is usually a very large amount of data.

1.2.7 Noise Analysis

Noise analysis in ngspice measures the device-generated noise for a given circuit. When
provided with an input source and an output port, the analysis calculates the noise con-
tributions of each device, and each noise generator within each device, as measured as a
voltage at the output port. Noise analysis also calculates the equivalent input noise of
the circuit, based on the output noise. This is done for every frequency point in a spec-
ified range - the calculated value of the noise corresponds to the spectral density of the
circuit variable viewed as a stationary Gaussian stochastic process. After calculating the
spectral densities, noise analysis integrates these values over the specified frequency range
to arrive at the total noise voltage and current over this frequency range. The calculated
values correspond to the variance of the circuit variables viewed as stationary Gaussian
processes.

1.2.8 Periodic Steady State Analysis

Ezxperimental code.

PSS is a radio frequency periodical large-signal dedicated analysis. The implementation
is based on a time domain shooting method that make use of transient analysis. As
it is in early development stage, PSS performs analysis only on autonomous circuits,
meaning that it is able to predict fundamental frequency and (harmonic) amplitude(s)
for oscillators, VCOs, etc.. The algorithm is based on a search of the minimum error
vector defined as the difference of RHS vectors between two occurrences of an estimated
period. Convergence is reached when the mean of this error vector decreases below a given
threshold parameter. Results of PSS are the basis of periodical large-signal analyses like
PAC or PNoise.

1.3 Analysis at Different Temperatures

1.3.1 Introduction

Temperature, in ngspice, is a property associated to the entire circuit, rather than an
analysis option. Circuit temperature has a default (nominal) value of 27°C (300.15 K)
that can be changed using the TEMP option in an .option control line (see 15.1.1) or by
the . TEMP line (see 2.12), which has precedence over the .option TEMP line. All analyses
are, thus, performed at circuit temperature, and if you want to simulate circuit behavior
at different temperatures you should prepare a netlist for each temperature.



1.3. ANALYSIS AT DIFFERENT TEMPERATURES 41

All input data for ngspice is assumed to have been measured at the circuit nominal
temperature. This value can further be overridden for any device that models temperature
effects by specifying the TNOM parameter on the .model itself. Individual instances may
further override the circuit temperature through the specification of TEMP and DTEMP
parameters on the instance. The two options are not independent even if you can specify
both on the instance line, the TEMP option overrides DTEMP. The algorithm to compute
instance temperature is described below:

Algorithm 1.1 Instance temperature computation

IF TEMP is specified THEN
instance temperature = TEMP
ELSE IF

instance temperature = circuit_ temperature + DTEMP
END IF

Temperature dependent support is provided for all devices except voltage and current
sources (either independent and controlled) and BSIM models. BSIM MOSFETs have an
alternate temperature dependency scheme that adjusts all of the model parameters before
input to ngspice.

For details of the BSIM temperature adjustment, see [6] and [7]. Temperature appears
explicitly in the exponential terms of the BJT and diode model equations. In addition,
saturation currents have a built-in temperature dependence. The temperature dependence
of the saturation current in the BJT models is determined by:

Is (Ty) = Is (T)) (%)X exp (%) (1)

where k is Boltzmann’s constant, g is the electronic charge, E, is the energy gap model
parameter, and XTI is the saturation current temperature exponent (also a model pa-
rameter, and usually equal to 3).

The temperature dependence of forward and reverse beta is according to the formula:

T

B(T)) = B (Ty) <TO>XTB (1.2)

where Tj and T are in degrees Kelvin, and XT'B is a user-supplied model parameter.
Temperature effects on beta are carried out by appropriate adjustment to the values of
Br, Isg, Bgr, and Isc (SPICE model parameters BF, ISE, BR, and ISC, respectively).

Temperature dependence of the saturation current in the junction diode model is deter-
mined by:

Is (T3) = Is (Ty) (%) e (%) (13)

where N is the emission coefficient model parameter, and the other symbols have the
same meaning as above. Note that for Schottky barrier diodes, the value of the saturation



42 CHAPTER 1. INTRODUCTION

current temperature exponent, XTI, is usually 2. Temperature appears explicitly in the
value of junction potential, U (in Ngspice PHI), for all the device models.

The temperature dependence is determined by:

kT N,Ny
U(r)=="n (Ni (T)2> (1.4)

where £ is Boltzmann’s constant, ¢ is the electronic charge, N, is the acceptor impurity
density, Ny is the donor impurity density, NV; is the intrinsic carrier concentration, and £,
is the energy gap. Temperature appears explicitly in the value of surface mobility, My(or
Up), for the MOSFET model.

The temperature dependence is determined by:

_ My (To)
- 15
(%)

To

The effects of temperature on resistors, capacitor and inductors is modeled by the formula:

My (T) (L5)

R(T)=R(Ty) 1 +TCy (T — Tp) + TCy (T — Tp)°] (1.6)

where T is the circuit temperature, 7} is the nominal temperature, and 7T'C; and T'C}, are
the first and second order temperature coefficients.

1.3.2 Controlling the temperature

The default temperature is set to 27 °C.
.temp 40
will set the overall temperature to 40 °C (2.12). The command
.options temp=60
will set the overall temperature to 60 °C (15.1.1). Both commands are equivalent, however

.temp will override .options temp.

The temperature of an individual device may be determined by the instance parameters
temp or dtemp.

M1 d g s b MOSN temp=35
will set the temperature of the specific MOS device to 35 °C.

M2 d g s b MOSN dtemp=20



1.4. CONVERGENCE 43

will set the temperature of device M2 at a delta of 20° above the overall temperature.

The temperatures thus set are static throughout the simulation. It is possible, however,
to sweep the temperature by a command like

.dc temp 25 49 2

starting at 25 °C, stopping at 49 °C with a step of 2° (see 15.3.2).

The current overall temperature may be assessed by the variable TEMPER, which can be
used as part of an equation in B sources (5.1.2) or behavioral E, G, R, L, C sources (e.g.
5.2). A typical example may look like

Btl 1 2 V="5 + TEMPER*TEMPER’

The nominal temperature, a reference temperature where device model parameters have
been measured, is called tnom.

.options tnom=25

will set the nominal temperature for all devices to 25 °C (15.1.1). Tnom sometimes may
be set as a model parameter in a .model line (3.2.2), depending on the specific class of
devices and its model parameter set.

1.4 Convergence

Ngspice uses the Newton-Raphson algorithm to solve nonlinear equations arising from
circuit description. The NR algorithm is interactive and terminates when both of the
following conditions hold:

1. The nonlinear branch currents converge to within a tolerance of 0.1% or 1 picoamp
(1.0e-12 Amp), whichever is larger.

2. The node voltages converge to within a tolerance of 0.1% or 1 microvolt (1.0e-6
Volt), whichever is larger.

1.4.1 Voltage convergence criterion

The algorithm has reached convergence when the difference between the last iteration k
and the current one (k + 1)

|+ — M| < RELTOL v, + VNTOL, (1.7)

n

where

(k+1)

vP|). (1.8)

Unppae = INAX (‘v



44 CHAPTER 1. INTRODUCTION

The RELTOL (RELative TOLerance) parameter, which default value is 1073, specifies
how small the solution update must be, relative to the node voltage, to consider the
solution to have converged. The VNTOL (absolute convergence) parameter, which has 1uV
as default value, becomes important when node voltages have near zero values. The
relative parameter alone, in such case, would need too strict tolerances, perhaps lower
than computer round-off error, and thus convergence would never be achieved. VNTOL
forces the algorithm to consider as converged any node whose solution update is lower
than its value.

1.4.2 Current convergence criterion

Ngspice checks the convergence on the non-linear functions that describe the non-linear
branches in circuit elements. In semiconductor devices the functions defines currents
through the device and thus the name of the criterion.

Ngspice computes the difference between the value of the nonlinear function computed
for the last voltage and the linear approximation of the same current computed with the
actual voltage

it ) | < RELTOL 4y, + ABSTOL, (1.9)
where
i =m0 (150 ) (1.10)

In the two expressions above, the m indicates the linear approximation of the current.

1.4.3 Convergence failure

Although the algorithm used in ngspice has been found to be very reliable, in some cases
it fails to converge to a solution. When this failure occurs, the program terminates the
job. Failure to converge in dc analysis is usually due to an error in specifying circuit
connections, element values, or model parameter values. Regenerative switching circuits
or circuits with positive feedback probably will not converge in the dc analysis unless the
OFF option is used for some of the devices in the feedback path, .nodeset control line is
used to force the circuit to converge to the desired state.



Chapter 2

Circuit Description

2.1 General Structure and Conventions

2.1.1 Input file structure

The circuit to be analyzed is described to ngspice by a set of element instance lines, which
define the circuit topology and element instance values, and a set of control lines, which
define the model parameters and the run controls. All lines are assembled in an input file
to be read by ngspice. Two lines are essential:

e The first line in the input file must be the title, which is the only comment line that
does not need any special character in the first place.

o The last line must be .end, plus a newline delimiter.

The order of the remaining lines is alomost arbitrary (except, of course, that continuation
lines must immediately follow the line being continued, .subckt ... .ends, .if ... .endif,
or .control ... .endc have to enclose their specific lines). Leading white spaces in a
line are ignored, as well as empty lines.

The lines described in sections 2.1 to 2.12 are typically used in the core of the input file,
outside of a .control section (see 16.4.3). An exception is the .include includefile
line (2.7) that may be placed anywhere in the input file. The contents of includefile
will be inserted exactly in place of the .include line.

2.1.2 Syntax check

A very preliminary syntax check has been added to the input parser.

2.1.2.1 Valid utf-8 characters

The input file will be scanned for valid utf-8 characters. If non-valid characters are found,
reading the input is stopped.

45



46 CHAPTER 2. CIRCUIT DESCRIPTION

2.1.2.2 Special characters leading a line

If the first character in a netlist or .control line is one of =[]?()&%$§\"!:, then ngspice
replaces it by '*’ and issues a warning. Command set strict_errorhandling will force
ngspice to exit.

2.1.2.3 Dot command couple completion

Check for .control ... .endc, .subckt ... .ends, .if ... .endif.

2.1.3 Circuit elements (device instances)

Each element in the circuit is a device instance specified by an instance line that con-
tains:

o the element instance name,

e the circuit nodes to which the element is connected,

« and the values of the parameters that determine the electrical characteristics of the
element.

The first letter of the element instance name specifies the element type. The format
for the ngspice element types is given in the following manual chapters. In the rest of
the manual, the strings XXXXXXX, YYYYYYY, and ZZZZZZZ denote arbitrary alphanumeric
strings.

For example, a resistor instance name must begin with the letter R and can contain one or
more characters. Hence, R, R1, RSE, ROUT, and R3AC2ZY are valid resistor names. Details
of each type of device are supplied in a following section 3. Table 2.1 lists the element
types available in ngspice, sorted by their first letter.



2.1. GENERAL STRUCTURE AND CONVENTIONS

47

\ First letter \

Element description

Comments, links

12
analog (12.2
A XSPICE code model digitagl; E12'4§
mixed signal (12.3)

B Behavioral (arbitrary) source 5.1
C Capacitor 3.3.6
D Diode 7
E Voltage-controlled voltage source (VCVS) nl(;?fﬁflef:f(?é)
F Current-controlled current source (CCCs) linear (4.2.3)
G Voltage-controlled current source (VCCS) hnea‘ur (4:2.1),

non-linear (5.3)
H Current-controlled voltage source (CCVS) linear (4.2.4)
I Current source 4.1
J Junction field effect transistor (JFET) 9
K Coupled (Mutual) Inductors 3.3.12
L Inductor 3.3.10

11

M Metal oxide field effect transistor (MOSFET) BSIM3 (11.2.10)

BSIM4 (11.2.11)
N Numerical device for GSS 14.2
O Lossy transmission line 6.2
p Coupled multiconductor line (CPL) 6.4.2
Q Bipolar junction transistor (BJT) 8
R Resistor 3.3.1
S Switch (voltage-controlled) 3.3.15
T Lossless transmission line 6.1
U Uniformly distributed RC line 6.3
\Y Voltage source 4.1
W Switch (current-controlled) 3.3.15
X Subcircuit 2.5.3
Y Single lossy transmission line (TXL) 6.4.1
Z Metal semiconductor field effect transistor (MESFET) 10

Table 2.1: ngspice element types

2.1.4 Some naming conventions

Fields on a line are separated by one or more blanks, a comma, an equal (=) sign, or a left
or right parenthesis; extra spaces are ignored. A line may be continued by entering a ‘+’
(plus) in column 1 of the following line; ngspice continues reading beginning with column
2. A name field must begin with a letter (A through Z) and cannot contain any delimiters.
A number field may be an integer field (12, -44), a floating point field (3.14159), either
an integer or floating point number followed by an integer exponent (le-14, 2.65e3), or
either an integer or a floating point number followed by one of the following scale factors:




48 CHAPTER 2. CIRCUIT DESCRIPTION

\ Suffix \ Name \ Factor ‘

T Tera 10%2
G Giga 10°
Meg | Mega 10°
K Kilo 10°
mil Mil | 25.4 x 1076
m milli 1073
u micro 1076
n nano 107?
p pico 10712
f femto 1071

Table 2.2: Ngspice scale factors

Letters immediately following a number that are not scale factors are ignored, and letters
immediately following a scale factor are ignored. Hence, 10, 10V, 10Volts, and 10Hz all
represent the same number, and M, MA, MSec, and MMhos all represent the same scale
factor. Note that 1000, 1000.0, 1000Hz, 1e3, 1.0e3, 1kHz, and 1k all represent the same
number. Note that ‘M’ or ‘m’ denote ‘milli’, i.e. 1073. Suffix meg has to be used for
10°. If compatibility mode LT (16.14.6) is set, ngspice will accept the RKM notation for
entering resistance or capacitance values, e.g. 2K7 or 100R.

Nodes names may be arbitrary character strings and are case insensitive, if ngspice is used
in batch mode (16.4.1). If in interactive (16.4.2) or control (16.4.3) mode, node names
may either be plain numbers or arbitrary character strings, not starting with a number.
The ground node must be named ‘0’ (zero). For compatibility reason gnd is accepted as
ground node, and will internally be treated as a global node and be converted to ‘0. If
this is not feasible, you may switch the conversion off by setting set no_auto_gnd in one
of the configuration files spinit or .spiceinit. Each circuit has to have a ground node (gnd
or 0)! Note the difference in ngspice where the nodes are treated as character strings
and not evaluated as numbers, thus ‘0" and 00 are distinct nodes in ngspice but not in

SPICE2.

Ngspice requires that the following topological constraints are satisfied:

o The circuit cannot contain a loop of voltage sources and/or inductors and cannot
contain a cut-set of current sources and/or capacitors.

o Each node in the circuit must have a dc path to ground.

o Every node must have at least two connections except for transmission line nodes
(to permit unterminated transmission lines) and MOSFET substrate nodes (which
have two internal connections anyway).

2.2 Dot commands

This section summarizes all dot commands available in ngspice, with links to their detailed
presentation, in alphabetical order. Control section (or interactive) commands are listed
and explained in chapter 17.5.



2.2. DOT COMMANDS

.AC start an ac simulation (15.3.1).

.CONTROL start a .control section (16.4.3).

.CSPARAM define parameter(s) made available in a control section (2.11).
.DC start a dc simulation (15.3.2).

.DISTO start a distortion analysis simulation (15.3.3).

.ELSE conditional branching in the netlist (2.13).

.ELSEIF conditional branching in the netlist (2.13).

.END end of the netlist (2.3.2).

.ENDC end of the .control section (16.4.3).

.ENDIF conditional branching in the netlist (2.13).

.ENDS end of subcircuit definition (2.5.2).

.FOUR Fourier analysis of transient simulation output (15.6.4).
.FUNC define a function (2.10).

.GLOBAL define global nodes (2.6).

.IC set initial conditions (15.2.2).

.IF conditional branching in the netlist (2.13).

.INCLUDE include part of the netlist (2.7).

.LIB include a library (2.8).

.MEAS measurements during the simulation (15.4).

.MODEL list of device model parameters (2.4).

.NODESET set initial conditions (15.2.1).

.NOISE start a noise simulation (15.3.4).

.0P start an operating point simulation (15.3.5).

.OPTIONS set simulator options (15.1).

.PARAM define parameter(s) (2.9).

.PLOT printer plot during batch simulation (15.6.3).

.PRINT tabular listing during batch simulation (15.6.2).
.PROBE save device currents, voltages and differential voltages (15.6.5).

.PSS start a periodic steady state analysis (15.3.11).

49



20 CHAPTER 2. CIRCUIT DESCRIPTION

.PZ start a pole-zero analysis simulation (15.3.6).

.SAVE name simulation result vectors to be saved (15.6.1).
.SENS start a sensitivity analysis (15.3.7).

.SUBCKT start of subcircuit definitions (2.5).

.TEMP set the ciruit temperature (2.12).

.TF start a transfer function analysis (15.3.8).

.TITLE title of the netlist (2.3.1).

.TRAN start a transient simulation (15.3.9).

.WIDTH width of printer plot (15.6.7).

2.3 Basic lines

2.3.1 .TITLE line

Examples:

POWER AMPLIFIER CIRCUIT
* additional lines following

Test of CAM cell
* additional lines following

The title line must be the first in the input file. Its contents are printed verbatim as the
heading for each section of output.

As an alternative, you may place a .TITLE <any title> line anywhere in your input
deck. The first line of your input deck will be overridden by the contents of this line
following the .TITLE statement.

.TITLE line example:

sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K
* additional lines following
.TITLE Test of CAM cell

* additional lines following

will internally be replaced by



2.3. BASIC LINES 51

Internal input deck:

Test of CAM cell
* additional lines following
%

*TITLE Test of CAM cell
* additional lines following
...

2.3.2 .END Line

Examples:

.end

The .end line must always be the last in the input file. Note that the period is an integral
part of the name.

2.3.3 Comments

General Form:
* <any comment>
Examples:

* RF=1K Gain should be 100
* Check open-loop gain and phase margin

The asterisk in the first column indicates that this line is a comment line. Comment lines
may be placed anywhere in the circuit description.

2.3.4 End-of-line comments

General Form

<any command> $ <any comment >
<any command> ; <any comment>

Examples:

RF2=1K $ Gain should be 100
C1=10p ; Check open-loop gain and phase margin
.param nl=1 //new value



52 CHAPTER 2. CIRCUIT DESCRIPTION

ngspice supports comments that begin with double characters ‘¢ ’ (dollar plus space) or
‘//’. For readability you should precede each comment character with a space. ngspice
will accept the single character ‘$’.

Please note that the ‘$’ character is not a valid end-of-line comment delimiter, if the
PSPICE compatibility mode (16.14.5) has been chosen. Then ’$’ becomes an ordinary
character.

2.3.5 Continuation lines

General Form:

<any command>
+ <continuation of any command> ; some comment
+ <further continuation of any command>

If input lines get overly long, they may be split into two or more lines (e.g. for better
readability). Internally they will be merged into a single line. Each follow-up line starts
with charachter '+ ’ plus additional space. Follw-up lines have to follow immediately after
each other. End-of-line comments will be ignored. The following lines do not allow using
continuation lines: .title, .1lib, and .include.

2.4 .MODEL Device Models

General form:
.model mname type(pnamel=pvall pname2=pval2 ... )
Examples:

.model MOD1 npn (bf=50 is=1e-13 vbf=50)

Most simple circuit elements typically require only a few parameter values. However,
some devices (semiconductor devices in particular) that are included in ngspice require
many parameter values. Often, many devices in a circuit are defined by the same set of
device model parameters. For these reasons, a set of device model parameters is defined
on a separate .model line and assigned a unique model name. The device element lines
in ngspice then refer to the model name.

For these more complex device types, each device element line contains the device name,
the nodes the device is connected to, and the device model name. In addition, other
optional parameters may be specified for some devices: geometric factors and an initial
condition (see the following section on Transistors (8 to 11) and Diodes (7) for more
details). mname in the above is the model name, and type is one of the following fifteen

types:



2.5. .SUBCKT SUBCIRCUITS 53

\ Code \ Model Type \
R Semiconductor resistor model
C Semiconductor capacitor model
L Inductor model
SW Voltage controlled switch
CSW Current controlled switch
URC Uniform distributed RC model
LTRA Lossy transmission line model
D Diode model
NPN NPN BJT model
PNP PNP BJT model
NJF N-channel JFET model
PJF P-channel JFET model
NMOS N-channel MOSFET model
PMOS P-channel MOSFET model
NMF N-channel MESFET model
PMF P-channel MESFET model
VDMOS Power MOS model

Table 2.3: Ngspice model types

Parameter values are defined by appending the parameter name followed by an equal sign
and the parameter value. Model parameters that are not given a value are assigned the
default values given below for each model type. Models are listed in the section on each
device along with the description of device element lines. Model parameters and their
default values are given in Chapt. 31.

2.5 .SUBCKT Subcircuits

A subcircuit that consists of ngspice elements can be defined and referenced in a fashion
similar to device models. Subcircuits are the way ngspice implements hierarchical mod-
eling, but this is not entirely true because each subcircuit instance is flattened during
parsing, and thus ngspice is not a hierarchical simulator.

The subcircuit is defined in the input deck by a grouping of element cards delimited by
the .subckt and the .ends cards (or the keywords defined by the substart and subend
options (see 17.7)); the program then automatically inserts the defined group of elements
wherever the subcircuit is referenced. Instances of subcircuits within a larger circuit are
defined through the use of an instance card that begins with the letter ‘X A complete
example of all three of these cards follows:



54 CHAPTER 2. CIRCUIT DESCRIPTION

Example:

* The following is the instance card:
*

xdivl 10 7 0 vdivide

* The following are the subcircuit definition cards:
*

.subckt vdivide 1 2 3

r1 1 2 10K

r2 2 3 5K

.ends

The above specifies a subcircuit with ports numbered ‘17, ‘2’ and ‘3’

e Resistor ‘R1’ is connected from port ‘1’ to port ‘2’, and has value 10 kOhms.

e Resistor ‘R2’ is connected from port ‘2’ to port ‘3", and has value 5 kOhms.

The instance card, when placed in an ngspice deck, will cause subcircuit port ‘1’ to be
equated to circuit node ‘10’, while port ‘2’ will be equated to node ‘7" and port ‘3’ will
equated to node ‘0’.

There is no limit on the size or complexity of subcircuits, and subcircuits may contain
other subcircuits. An example of subcircuit usage is given in Chapt. 21.6.

2.5.1 .SUBCKT Line

General form:
.SUBCKT subnam N1 <N2 N3 ...>
Examples:

.SUBCKT OPAMP 1 2 3 4

A circuit definition is begun with a .SUBCKT line. subnam is the subcircuit name, and
N1, N2, ... are the external nodes, which cannot be zero. The group of element lines
that immediately follow the .SUBCKT line define the subcircuit. The last line in a sub-
circuit definition is the .ENDS line (see below). Control lines may not appear within a
subcircuit definition; however, subcircuit definitions may contain anything else, including
other subcircuit definitions, device models, and subcircuit calls (see below). Note that
any device models or subcircuit definitions included as part of a subcircuit definition are
strictly local (i.e., such models and definitions are not known outside the subcircuit defi-
nition). Also, any element nodes not included on the .SUBCKT line are strictly local, with
the exception of 0 (ground) that is always global. If you use parameters, the .SUBCKT line
will be extended (see 2.9.3).



2.6. .GLOBAL 25

2.5.2 .ENDS Line

General form:
.ENDS <SUBNAM>
Examples:

.ENDS OPAMP

The .ENDS line must be the last one for any subcircuit definition. The subcircuit name,
if included, indicates which subcircuit definition is being terminated; if omitted, all sub-
circuits being defined are terminated. The name is needed only when nested subcircuit
definitions are being made.

2.5.3 Subcircuit Calls

General form:
XYYYYYYY N1 <N2 N3 ...> SUBNAM
Examples:

X1 2 4 17 3 1 MULTI

Subcircuits are used in ngspice by specifying pseudo-elements beginning with the letter
X, followed by the circuit nodes to be used in expanding the subcircuit. If you use
parameters, the subcircuit call will be modified (see 2.9.3).

2.6 .GLOBAL

General form:
.GLOBAL nodename
Examples:

.GLOBAL gnd vcc

Nodes defined in the .GLOBAL statement are available to all circuit and subcircuit blocks
independently from any circuit hierarchy. After parsing the circuit, these nodes are ac-
cessible from top level.



26 CHAPTER 2. CIRCUIT DESCRIPTION

2.7 .INCLUDE

General form:
. INCLUDE filename
Examples:

.INCLUDE /users/spice/common/bsim3-param.mod

Frequently, portions of circuit descriptions will be reused in several input files, particularly
with common models and subcircuits. In any ngspice input file, the . INCLUDE line may
be used to copy some other file as if that second file appeared in place of the .INCLUDE
line in the original file.

There is no restriction on the file name imposed by ngspice beyond those imposed by the
local operating system.

2.8 .LIB

General form:
.LIB filename libname
Examples:

.LIB /users/spice/common/mosfets.lib mosl

The .LIB statement allows including library descriptions into the input file. Inside the
*1ib file a library libname will be selected. The statements of each library inside the
*1ib file are enclosed in .LIB libname <...> .ENDL statements.

If the compatibility mode (16.14) is set to ’ps’ by set ngbehavior=ps (17.7) in spinit
(16.5) or .spiceinit (16.6), then a simplified syntax .LIB filename is available: a warning
is issued and filename is simply included as described in Chapt. 2.7.

2.9 .PARAM Parametric netlists

Ngspice allows for the definition of parametric attributes in the netlists. This is an
enhancement of the ngspice front-end that adds arithmetic functionality to the circuit
description language.



2.9. .PARAM PARAMETRIC NETLISTS 57

2.9.1 .param line

General form:
.param <ident> = <expr> <ident> = <expr>
Examples:

.param pippo=5

.param po=6 pp=7.8 pap={AGAUSS(pippo, 1, 1.67)%
.param pippp={pippo + pp}

.param p={pp}

.param pop=’pp+p’

This line assigns numerical values to identifiers. More than one assignment per line
is possible using a separating space. Parameter identifier names must begin with an
alphabetic character. The other characters must be either alphabetic, a number, or ! #
$ % [ ] _ as special characters. The variables time, temper, and hertz (see 5.1.1) are
not valid identifier names. Other restrictions on naming conventions apply as well, see
2.9.6.

The .param lines inside subcircuits are copied per call, like any other line. All assignments
are executed sequentially through the expanded circuit. Before its first use, a parameter
name must have been assigned a value. Expressions defining a parameter should be put
within braces {p+p2}, or alternatively within single quotes ’AGAUSS (pippo, 1, 1.67)°.
An assignment cannot be self-referential, something like .param pip = ’pip+3’ will not
work.

The current ngspice version does not always need quotes or braces in expressions, es-
pecially when spaces are used sparingly. However, it is recommended to do so, as the
following examples demonstrate.

.param a = 123 * 3 b = sqrt(9) $ doesn’t work, a <= 123
.param a = 123 * 3’ b = sqrt(9) $ ok.

.param ¢ = a + 123 $ won’t work

.param ¢ = ’a + 123’ $ ok.

.param ¢ = a+123 $ ok.

2.9.2 Brace expressions in circuit elements:
General form:

{ <expr> }
Examples:

These are allowed in .model lines and in device lines. A SPICE number is a floating
point number with an optional scaling suffix, immediately glued to the numeric tokens



o8 CHAPTER 2. CIRCUIT DESCRIPTION

(see Chapt. 2.9.5). Brace expressions ({..}) cannot be used to parameterize node names
or parts of names. All identifiers used within an <expr> must have known values at the
time when the line is evaluated, else an error is flagged.

2.9.3 Subcircuit parameters

General form:
.subckt <identn> node node ... <ident >=<value> <ident>=<value>
Examples:

.subckt myfilter in out rval=100k cval=100nF

<identn> is the name of the subcircuit given by the user. node is an integer number
or an identifier, for one of the external nodes. The first <ident>=<value> introduces an
optional section of the line. Each <ident> is a formal parameter, and each <value> is
either a SPICE number or a brace expression. Inside the .subckt ... .ends context, each
formal parameter may be used like any identifier that was defined on a .param control
line. The <value> parts are supposed to be default values of the parameters. However,
in the current version of ngspice, they are not used and each invocation of the subcircuit
must supply the _exact_ number of actual parameters.

The syntax of a subcircuit call (invocation) is:

General form:
X<name> node node ... <identn> <ident>=<value> <ident>=<value>
Examples:

X1 input output myfilter rval=1k cval=1ln

Here <name> is the symbolic name given to that instance of the subcircuit, <identn>
is the name of a subcircuit defined beforehand. node node ... is the list of actual
nodes where the subcircuit is connected. <value> is either a SPICE number or a brace
expression { <expr> } . The sequence of <value> items on the X line must exactly
match the number and the order of formal parameters of the subcircuit.



2.9. .PARAM PARAMETRIC NETLISTS 29

Subcircuit example with parameters:

* Param-example
.param amplitude= 1V
*

.subckt myfilter in out rval=100k cval=100nF
Ra in pl {2xrval}
Rb pl out {2*rval}
Ci1 p1 O {2*cval}
Ca in p2 {cvalt}

Cb p2 out A{cval}

R1 p2 0 {rval}
.ends myfilter

X1 input output myfilter rval=1k cval=1n
V1 input O AC {amplitude}
.end

2.9.4 Symbol scope

All subcircuit and model names are considered global and must be unique. The .param
symbols that are defined outside of any .subckt ... .ends section are global. Inside such
a section, the pertaining params: symbols and any .param assignments are considered
local: they mask any global identical names, until the .ends line is encountered. You
cannot reassign to a global number inside a .subckt, a local copy is created instead.
Scope nesting works up to a level of 10. For example, if the main circuit calls A that has
a formal parameter xx, A calls B that has a param. xx, and B calls C that also has a
formal param. xx, there will be three versions of ‘xx’ in the symbol table but only the
most local one - belonging to C - is visible.

2.9.5 Syntax of expressions

<expr> ( optional parts within [...] )

An expression may be one of:

<atom> where <atom> is either a spice number or an identifier
<unary-operator> <atom>

<function-name> ( <expr> [ , <expr> ...] )

<atom> <binary-operator> <expr>

( <expr> )

As expected, atoms, built-in function calls and stuff within parentheses are evaluated
before the other operators. The operators are evaluated following a list of precedence
close to the one of the C language. For equal precedence binary ops, evaluation goes left
to right. Functions operate on real values only!



60 CHAPTER 2. CIRCUIT DESCRIPTION

] Operator \f\has \I’recedence \ Description ‘
- 1 unary -
! 1 unary not
*% - 2 power, like pwr
* 3 multiply
/ 3 divide
b 3 modulo
\ 3 integer divide
+ 4 add
- 4 subtract
== ) equality
I= <> 5 non-equal
<= 5 less or equal
>= ) greater or equal
< ) less than
> ) greater than
&& 6 boolean and
| ] 7 boolean or

c?x:y 8 ternary operator

The number zero is used to represent boolean False. Any other number represents boolean
True. The result of logical operators is 1 or 0. An example input file is shown below:

Example input file with logical operators:

* Logical operators

vior 10 {1 |l 0}
viand 2 0 {1 && 0O}
vinot 3 0 {! 1}
vimod 4 0 {5 % 3%
vidiv 5 0 {5 \ 3}
vOnot 6 0 {! 0}
.control

op

print allv

.endc

.end



2.9. .PARAM PARAMETRIC NETLISTS

] Built-in function

Notes

sqrt(x)

y = sqrt(x)

sin(x), cos(x), tan(x)

sinh(x), cosh(x), tanh(x)

asin(x), acos(x), atan(x)

asinh(x), acosh(x), atanh(x)

arctan(x) atan(x), kept for compatibility
exp(x)
In(x), log(x)
abs(x)
nint(x) Nearest integer, half integers towards even
int(x) Nearest integer rounded towards 0
floor(x) Nearest integer rounded towards -oo
ceil(x) Nearest integer rounded towards +oo
pow(x,y) x raised to the power of y (pow from C runtime library)
pwr(x,y) pow(fabs(x), y)
min(x, y)
max(x, y)
sgn(x) 1.0 for x > 0, 0.0 for x == 0, -1.0 for x < 0

ternary_fen(x, y, z)

xX? y: z

gauss(nom, rvar, sigma)

nominal value plus variation drawn from Gaussian
distribution with mean 0 and standard deviation rvar
(relative to nominal), divided by sigma

agauss(nom, avar, sigma)

nominal value plus variation drawn from Gaussian
distribution with mean 0 and standard deviation avar
(absolute), divided by sigma

unif(nom, rvar)

nominal value plus relative variation (to nominal)
uniformly distributed between + /-rvar

aunif(nom, avar)

nominal value plus absolute variation uniformly
distributed between + /-avar

limit(nom, avar)

nominal value +/-avar, depending on random number
in [-1, 1] being > 0 or < 0

The scaling suffixes (any decorative alphanumeric string may follow):

’ suffix \ value ‘

g 1e9
meg le6
le3
le-3
le-6
1le-9
le-12
le-15

o e | B

Note: there are intentional redundancies in expression syntax, e.g.

X7y , xx*y and

pwr(x,y) all have nearly the same result.

61




62 CHAPTER 2. CIRCUIT DESCRIPTION

2.9.6 Reserved words

In addition to the above function names and to the verbose operators ( not and or div
mod ), other words are reserved and cannot be used as parameter names: or, defined,
sqr, sqrt, sin, cos, exp, 1n, log, loglO, arctan, abs, pwr, time, temper, hertz.

2.9.7 A word of caution on the three ngspice expression parsers

The historical parameter notation using & as the first character of a line as equivalence
to .param. is deprecated and will be removed in a coming release.

Confusion may arise in ngspice because of its multiple numerical expression features. The
.param lines and the brace expressions (see Chapt. 2.10) are evaluated in the front-
end, that is, just after the subcircuit expansion. (Technically, the X lines are kept as
comments in the expanded circuit so that the actual parameters can be correctly sub-
stituted). Therefore, after the netlist expansion and before the internal data setup, all
number attributes in the circuit are known constants. However, there are circuit elements
in Spice that accept arithmetic expressions not evaluated at this point, but only later
during circuit analysis. These are the arbitrary current and voltage sources (B-sources,
5), as well as E- and G-sources and R-, L-, or C-devices. The syntactic difference is that
‘compile-time’ expressions are within braces, but ‘run-time’ expressions have no braces.
To make things more complicated, the back-end ngspice scripting language accepts arith-
metic/logic expressions that operate only on its own scalar or vector data sets (17.2).
Please see Chapt. 2.14.

It would be desirable to have the same expression syntax, operator and function set,
and precedence rules, for the three contexts mentioned above. In the current Numparam
implementation, that goal is not achieved.

2.10 .FUNC

This keyword defines a function. The syntax of the expression is the same as for a . param
(2.9.5).

General form:

.func <ident> { <expr> }

.func <ident> = { <expr> }
Examples:
.func icos(x) {cos(x) - 1}

.func f(x,y) {xx*y}
.func foo(a,b) = {a + b}

.func will initiate a replacement operation. After reading the input files, and before
parameters are evaluated, all occurrences of the icos(x) function will be replaced by



2.11. .CSPARAM 63

cos(x)-1. All occurrences of f(x,y) will be replaced by x*y. Function statements may
be nested to a depth of t.b.d..

2.11 .CSPARAM

Create a constant vector (see 17.8.2) from a parameter in plot (17.3) const.

General form:
.csparam <ident> = <expr>
Examples:

.param pippo=5

.param pp=6

.csparam pippp={pippo + pp}
.param p={pp}’

.csparam pap=’pp+p’

In the example shown, vectors pippp, and pap are added to the constants that already
reside in plot const, having length one and real values. These vectors are generated dur-
ing circuit parsing and thus cannot be changed later (same as with ordinary parameters).
They may be used in ngspice scripts and .control sections (see Chapt. 17).

The use of .csparam is still experimental and has to be tested. A simple usage is shown
below.

* test csparam

.param TEMPS = 27

.csparam newt = {3*TEMPS}
.csparam mytemp = ’2 + TEMPS’
.control

echo $&newt $&mytemp

.endc

.end

2.12 .TEMP

Sets the circuit temperature in degrees Celsius.

General form
.temp value
Examples:

.temp 27



64 CHAPTER 2. CIRCUIT DESCRIPTION

This card overrides the circuit temperature given in an .option line (15.1.1).

2.13 .IF Condition-Controlled Netlist

A simple . IF-.ELSE(IF) block allows condition-controlling of the netlist. boolean expression
is any expression according to Chapt. 2.9.5 that evaluates parameters and returns a
boolean 1 or 0. The netlist block in between the .if ... .endif statements may contain
device instances or .model cards that are selected according to the logic condition.



2.13. .IF CONDITION-CONTROLLED NETLIST 65

General form:

.if (boolean expression)
:éiseif(boolean expression)
Lelse
endif

Example 1:

* device instance in IF-ELSE block
.param ok=0 ok2=1

vi

101
R1 1 0 2
.if (ok && ok2)
R11 1 0 2
.else
R11 1 0 0.5 $ <-- selected

.endif
Example 2:

* .model in IF-ELSE block
.param m0=0 ml=1

M1 1 2 3 4 N1 W=1 L=0.5

.if (m0==1)

.model N1 NMOS level=49 Version=3.1

.elseif (m1==1)

.model N1 NMOS level=49 Version=3.2.4 $ <-- selected
.else

.model N1 NMOS level=49 Version=3.3.0

.endif

Nesting of .IF-.ELSE(IF)-.ENDIF blocks is possible. Several .elseif are allowed per
block, of course only one . else (please see example ngspice/tests/regression/misc/if-elseif.cir).
However some restrictions apply, as the following netlist components are not supported
within the .IF-.ENDIF block: .SUBCKT, .INC, .LIB, and .PARAM.



66 CHAPTER 2. CIRCUIT DESCRIPTION

2.14 Parameters, functions, expressions, and com-
mand scripts

In ngspice there are several ways to describe functional dependencies. In fact there are
three independent function parsers, being active before, during, and after the simulation.
So it might be due to have a few words on their interdependence.

2.14.1 Parameters

Parameters (Chapt. 2.9.1) and functions, either defined within the .param statement or
with the .func statement (Chapt. 2.10) are evaluated before any simulation is started,
that is during the setup of the input and the circuit. Therefore these statements may not
contain any simulation output (voltage or current vectors), because it is simply not yet
available. The syntax is described in Chapt. 2.9.5. During the circuit setup all functions
are evaluated, all parameters are replaced by their resulting numerical values. Thus it will
not be possible to get feedback from a later stage (during or after simulation) to change
any of the parameters.

2.14.2 Nonlinear sources

During the simulation, the B source (Chapt. 5) and their associated E and G sources, as
well as some devices (R, C, L) may contain expressions. These expressions may contain
parameters from above (evaluated immediately upon ngspice start up), numerical data,
predefined functions, but also node voltages and branch currents resulting from the sim-
ulation. The source or device values are continuously updated during the simulation.
Therefore the sources are powerful tools to define non-linear behavior, you may even cre-
ate new ‘devices’ by yourself. Unfortunately the expression syntax (see Chapt. 5.1) and
the predefined functions may deviate from the ones for parameters listed in 2.9.1.

2.14.3 Control commands, Command scripts

Commands, as described in detail in Chapt. 17.5, may be used interactively, but also
as a command script enclosed in .control ... .endc lines. The scripts may contain
expressions (see Chapt. 17.2). The expressions may work upon simulation output vectors
(of node voltages, branch currents), as well as upon predefined or user defined vectors
and variables, and are invoked after the simulation. Parameters from 2.9.1 defined by
the .param statement are not allowed in these expressions. However you may define such
parameters with .csparam (2.11). Again the expression syntax (see Chapt. 17.2) will
deviate from the one for parameters or B sources listed in 2.9.1 and 5.1.

If you want to use parameters from 2.9.1 inside your control script, you may use .csparam
(2.11) or apply a trick by defining a voltage source with the parameter as its value,
and then have it available as a vector (e.g. after a transient simulation) with a then
constant output (the parameter). A feedback from here back into parameters (2.14.1)
is never possible. Also you cannot access non-linear sources of the preceding simulation.
However you may start a first simulation inside your control script, then evaluate its



2.14. PARAMETERS, FUNCTIONS, EXPRESSIONS, AND COMMAND SCRIPTS67

output using expressions, change some of the element or model parameters with the
alter and altermod statements (see Chapt. 17.5.3) and then automatically start a new
simulation.

Expressions and scripting are powerful tools within ngspice, and we will enhance the
examples given in Chapt. 21 continuously to describe these features.



68

CHAPTER 2. CIRCUIT DESCRIPTION



Chapter 3

Circuit Elements and Models

Data fields that are enclosed in less-than and greater-than signs (‘< >’) are optional.
All indicated punctuation (parentheses, equal signs, etc.) is optional but indicate the
presence of any delimiter. Further, future implementations may require the punctuation
as stated. A consistent style adhering to the punctuation shown here makes the input
easier to understand. With respect to branch voltages and currents, ngspice uniformly
uses the associated reference convention (current flows in the direction of voltage drop).

3.1 About netlists, device instances, models and model
parameters

The input to ngspice is a netlist, which lists all circuit elements, their interconnects and
model parameters.

Netlist example of a simple bipolar amplifier:

bipolar amplifier

R3 vcc intc 10k

R1 vcc intb 68k

R2 intb 0 10k

Cout out intc 10u

Cin intb in 10u

RLoad out 0 100k

Q1 intc intb O BC546B

VCC wvcc 0 5
Vin in 0 dc 0 ac 1 sin(0 1m 500)

.model BC546B npn ( IS=7.59E-15 VAF=73.4 BF=480 IKF=0.0962 NE=1.266
+ ISE=3.278E-15 IKR=0.03 ISC=2.00E-13 NC=1.2 NR=1 BR=5 RC=0.25 CJC=
+ FC=0.5 MJC=0.33 VJC=0.65 CJE=1.25E-11 MJE=0.55 VJE=0.65 TF=4.26E-
+ ITF=0.6 VTF=3 XTF=20 RB=100 IRB=0.0001 RBM=10 RE=0.5 TR=1.50E-07)
.end

69



70 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

After the first line, which is always a title line only, the netlist starts. Each line here is a
device instance (except for lines starting with a dot ”’). We have simple circuit elements
that consist of a single line only, e.g. resistors like R3. In its simplest implementation,
the resistor model does not need any model parameters except for the resistance value
(same for capacitors like Cout). Netlist lines like R3 vce intc 10k are called instance lines,
as each line is the representation of an instance of a generic model hard-coded into the
ngspice simulator (here: resistor). R3 denotes the device name. Its first character R
denotes a resistor. The next two tokens vcc intc are the two nodes of the resistor, 10k is
the resistance value. Equal node names on different devices denote a connection between
these nodes.

A more complex device is described by the instance line Q1 intc intb 0 BC546B. Q denotes
a bipolar transistor, intc intb 0 are the three nodes collector, base, and emitter. BC546B is
the name of a model parameter set, named after a real transistor and describing (together
with the implemented bipolar transistor model) its electrical behavior. The associated
model parameters are given in the line .model BC546B npn (IS=7.59E-15 ...). This is not an
instance line, because starting with a dot. It contains the model parameters as supplied by
the device manufacturer or by people having them extracted from the electrical behavior
and data sheet (to be found e.g. on his or her web pages). BC546B is the name of the
model parameter set and relates it to the device instance. npn is the type of the device.
The parameters (name=value) are given in brackets.

The instance Q1... requires model parameters. For a quick test one may do without
device maker’s model parameters.

Simplified bipolar transistor instance and model parameter set:

Q1 intc intb O defaultmod
.model defaultmod npn

If you enter the bipolar transistor instance as shown above, you make use of a default
model parameter set supplied by ngspice. defaultmod is an arbitrary name. This procedure
models a generic bipolar transistor, not resembling any commercial device. The default
parameter values may be assessed by the command showmod Q1.

You will get more information on devices, instances and models in the following chapters
3.3 to 12.

3.2 General options

3.2.1 Paralleling devices with multiplier m

When it is needed to simulate several devices of the same kind in parallel, use the ‘m’
(parallel multiplier) instance parameter available for the devices listed in Table 3.1. This
multiplies the value of the element’s matrix stamp with m’s value. The netlist below shows
how to correctly use the parallel multiplier:



3.2. GENERAL OPTIONS 71

Multiple device example:

dl 2 0 mydiode m=10

d01 1 0 mydiode
d02 1 0 mydiode
d03 1 0 mydiode
d04 1 0 mydiode
d05 1 0 mydiode
d06 1 0 mydiode
d07 1 0 mydiode
d08 1 0 mydiode
d09 1 0 mydiode
d10 1 O mydiode

The d1 instance connected between nodes 2 and 0 is equivalent to the 10 parallel devices
d01-d10 connected between nodes 1 and 0.

The following devices support the multiplier m:

’ First letter \ Element description ‘

Capacitor
Diode
Current-controlled current source (CCCs)
Voltage-controlled current source (VCCS)
Current source
Junction field effect transistor (JFET)
Inductor
Metal oxide field effect transistor (MOSFET)
Bipolar junction transistor (BJT)
Resistor
Subcircuit (for details see below)
Metal semiconductor field effect transistor (MESFET)

N4 BO| Z || = QT O

Table 3.1: ngspice elements supporting multiplier 'm’

When the X line (e.g. x1 a b subl m=5) contains the token m=value (as shown) or
m=expression, subcircuit invocation is done in a special way. If an instance line of the
subcircuit subl contains any of the elements shown in table 3.1, then these elements are
instantiated with the additional parameter m (in this example having the value 5). If such
an element already has an m multiplier parameter, the element m is multiplied with the
m derived from the X line. This works recursively, meaning that if a subcircuit contains
another subcircuit (a nested X line), then the latter m parameter will be multiplied by the
former one, and so on.



72 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

Example 1:

.param madd = 6
X1 a b subl m=5
.subckt subl al bl
Csl al bl C=bp m=’madd-2°’
.ends

In example 1, the capacitance between nodes a and b will be C = 5pF*(madd-2)*5 =
100pF.

Example 2:

.param madd = 4
X1 a b subl m=3
.subckt subl al bl
X2 al bl sub2 m=’madd-2°
.ends
.subckt sub2 a2 b2
Cs2 a2 b2 3p m=2
.ends

In example 2, the capacitance between nodes a and b is C = 3pF*2*(madd-2)*3 = 36pF.

Using m may fail to correctly describe geometrical properties for real devices like MOS
transistors.

M1 d g s nmos W=0.3u L=0.18u m=20
is probably not be the same as
M1 d g s nmos W=6u L=0.18u

because the former may suffer from small width (or edge) effects, whereas the latter is
simply a wide transistor.

3.2.2 Instance and model parameters

The simple device example below consists of two lines: The device is defined on the
instance line, starting with Lload .... The first letter determines the device type (an
inductor in this example). Following the device name are two nodes 1 and 2, then the
inductance value 1u is set. The model name ind1 is a connection to the respective model
line. Finally we have a parameter on the instance line, together with its value dtemp=>5.
Parameters on an instance line are called instance parameters.

The model line starts with the token .model, followed by the model name, the model type
and at least one model parameter, here tc1=0.001. There are complex models with more
than 100 model parameters.

Lload 1 2 1u indl dtemp=5
.MODEL indl L tc1=0.001



3.2. GENERAL OPTIONS 73

Instance parameters are listed in each of the following device descriptions. Model pa-
rameters sometimes are given below as well, for complex models like the BSIM transistor
models, they are available in the model makers documentation. Instance parameters may
also be placed in the .model line. Thus they are recognized by each device instance refer-
ring to that model. Their values may be overridden for a specific instance of a device by
placing them additionally onto its instance line.

3.2.3 Model binning

Binning is a kind of range partitioning for geometry dependent models like MOSFET’s.
The purpose is to cover larger geometry ranges (Width and Length) with higher accuracy
than the model built-in geometry formulas. Each size range described by the additional
model parameters LMIN, LMAX, WMIN and WMAX has its own model parameter set.
These model cards are defined by a number extension, like ‘nch.1’. ngspice has an algo-
rithm to choose the right model card by the requested W and L.

This is implemented for BSIM3 (11.2.10) and BSIM4 (11.2.11) models.

3.2.4 Initial conditions

Two different forms of initial conditions may be specified for some devices. The first form
is included to improve the dc convergence for circuits that contain more than one stable
state. If a device is specified OFF, the dc operating point is determined with the terminal
voltages for that device set to zero. After convergence is obtained, the program continues
to iterate to obtain the exact value for the terminal voltages. If a circuit has more than
one dc stable state, the OFF option can be used to force the solution to correspond to a
desired state. If a device is specified OFF when in reality the device is conducting, the
program still obtains the correct solution (assuming the solutions converge) but more
iterations are required since the program must independently converge to two separate
solutions.

The .NODESET control line (see Chapt. 15.2.1) serves a similar purpose as the OFF option.
The .NODESET option is easier to apply and is the preferred means to aid convergence. The
second form of initial conditions are specified for use with the transient analysis. These
are true ‘initial conditions’ as opposed to the convergence aids above. See the description
of the .IC control line (Chapt. 15.2.2) and the .TRAN control line (Chapt. 15.3.9) for a
detailed explanation of initial conditions.


http://ngspice.sourceforge.net/literature.html

74 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

3.3 Elementary Devices

3.3.1 Resistors

General form:

RXXXXXXX n+ n- <resistancel|r=>value <ac=val> <m=val>
+ <scale=val> <temp=val> <dtemp=val> <tcl=val> <tc2=val>
+ <noisy=0[1>

Examples:

R1 1 2 100

RC1 12 17 1K

R2 5 7 1K ac=2K
RL 1 4 2K m=2

Ngspice has a fairly complex model for resistors. It can simulate both discrete and semi-
conductor resistors. Semiconductor resistors in ngspice means: resistors described by
geometrical parameters. So, do not expect detailed modeling of semiconductor effects.

n+ and n- are the two element nodes, value is the resistance (in ohms) and may be
positive or negative! but not zero.

Simulating small valued resistors: If you need to simulate very small
resistors (0.001 Ohm or less), you should use CCVS (transresistance).
It is less efficient but improves overall numerical accuracy. Consider a
small resistance as a large conductance.

Ngspice can assign a resistor instance a different value for AC analysis, specified using the
ac keyword. This value must not be zero as described above. The AC resistance is used
in AC analysis only (neither Pole-Zero nor Noise). If you do not specify the ac parameter,
it is defaulted to value.

Ngspice calculates the nominal resistance as

_ VALUE scale
Rnom = m ( )
3.1
R _ ac scale
acnom — m_ "

If you want to simulate temperature dependence of a resistor, you need to specify its tem-
perature coefficients, using a .model line or as instance parameters, like in the examples
below:

LA negative resistor modeling an active element can cause convergence problems, please avoid it.



3.3. ELEMENTARY DEVICES 75

Examples:

RE1 1 2 800 newres dtemp=5
.MODEL newres R tc1=0.001

RE2 a b 1.4k tcl=2m tc2=1.4u

RE3 nl n2 1Meg tce=700m

The temperature coefficients tcl and tc2 describe a quadratic temperature dependence
(see equation 1.6) of the resistance. If given in the instance line (the R... line) their
values will override the tcl and tc2 of the .model line (3.3.3). Ngspice has an additional
temperature model equation 3.2 parameterized by tce given in model or instance line. If
all parameters are given (quadratic and exponential) the exponential temperature model
is chosen.

R(T) = R(Ty) [1.017F(T-T0)] (3.2)

where T is the circuit temperature, T is the nominal temperature, and T'C'E is the
exponential temperature coefficients.

Instance temperature is useful even if resistance does not vary with it, since the thermal
noise generated by a resistor depends on its absolute temperature. Resistors in ngspice
generates two different noises: thermal and flicker. While thermal noise is always gener-
ated in the resistor, to add a flicker noise? source you have to add a .model card defining
the flicker noise parameters. It is possible to simulate resistors that do not generate any
kind of noise using the noisy (or noise) keyword and assigning zero to it, as in the
following example:

Example:

Rmd 134 57 1.5k noisy=0

If you are interested in temperature effects or noise equations, read the next section on
semiconductor resistors.

2Flicker noise can be used to model carbon resistors.



76 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

3.3.2 Semiconductor Resistors

General form:

RXXXXXXX n+ n- <value> <mname> <l=length> <w=width>
+ <temp=val> <dtemp=val> <m=val> <ac=val> <scale=val>
+ <noisy = 0[1>

Examples:

RLOAD 2 10 10K
RMOD 3 7 RMODEL L=10u W=1u

This is the more general form of the resistor presented before (3.3.1) and allows the
modeling of temperature effects and for the calculation of the actual resistance value from
strictly geometric information and the specifications of the process. If value is specified,
it overrides the geometric information and defines the resistance. If mname is specified,
then the resistance may be calculated from the process information in the model mname
and the given length and width. If value is not specified, then mname and length must
be specified. If width is not specified, then it is taken from the default width given in
the model.

The (optional) temp value is the temperature at which this device is to operate, and
overrides the temperature specification on the .option control line and the value specified
in dtemp.

3.3.3 Semiconductor Resistor Model (R)

The resistor model consists of process-related device data that allow the resistance to
be calculated from geometric information and to be corrected for temperature. The
parameters available are as follows:

’ Name \ Parameter \ Units \ Default \ Example ‘
TC1 first order temperature coeft. Qfoc 0.0 -
TC2 second order temperature coeft. Qfoc2 0.0 -
RSH sheet resistance /g - 50

DEFW default width m le-6 2e-6
NARROW narrowing due to side etching m 0.0 le-7
SHORT shortening due to side etching m 0.0 le-7
TNOM parameter measurement temperature °C 27 50
KF flicker noise coefficient 0.0 le-25
AF flicker noise exponent 0.0 1.0
WF flicker noise width exponent 1.0
LF flicker noise length exponent 1.0
EF flicker noise frequency exponent 1.0
R (RES) | default value if element value not given | Q - 1000

The sheet resistance is used with the narrowing parameter and 1 and w from the resistor
device to determine the nominal resistance by the formula:



3.3. ELEMENTARY DEVICES 77

o .y L= SHORT
nom = IS T NARROW

(3.3)

DEFW is used to supply a default value for w if one is not specified for the device. If either
rsh or 1 is not specified, then the standard default resistance value of 1 mOhm is used.
TNOM is used to override the circuit-wide value given on the .options control line where
the parameters of this model have been measured at a different temperature. After the
nominal resistance is calculated, it is adjusted for temperature by the formula:

R(T) = R(TNOM) (1 + TCL(T — TNOM) + TC(T — TNOM)2> (3.4)

where R(TNOM) = R,om|Racnom- In the above formula, ‘T” represents the instance
temperature, which can be explicitly set using the temp keyword or calculated using the
circuit temperature and dtemp, if present. If both temp and dtemp are specified, the latter
is ignored. Ngspice improves SPICE’s resistors noise model, adding flicker noise (1/f) to
it and the noisy (or noise) keyword to simulate noiseless resistors. The thermal noise
in resistors is modeled according to the equation:

2= ——Af (3.5)

where ‘k’ is the Boltzmann’s constant, and ‘7" the instance temperature.

Flicker noise model is:

- KFI4F
2y = e A f (3.6)

inn WWFLLFfEF

A small list of sheet resistances (in ©/0) for conductors is shown below. The table repre-
sents typical values for MOS processes in the 0.5 - 1 um

range. The table is taken from: N. Weste, K. Eshraghian - Principles of CMOS VLSI
Design 2nd Edition, Addison Wesley.

Material ‘ Min. ‘ Typ. ‘ Max. ‘

Inter-metal (metall - metal2) | 0.005 | 0.007 | 0.1

Top-metal (metal3) 0.003 | 0.004 | 0.05
Polysilicon (poly) 15 20 30
Silicide 2 3 6

Diffusion (n+, p+) 10 25 100
Silicided diffusion 2 4 10

n-well 1000 | 2000 | 5000




78 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

3.3.4 Resistors, dependent on expressions (behavioral resistor)

General form:

RXXXXXXX n+ n- R = ’expression’ <tcl=value> <tc2=value> <noisy=0>

RXXXXXXX n+ n- ’expression’ <tcl=value> <tc2=value> <noisy=0>
Examples:

Rl rr 0 r = ’V(rr) < {Vvt} 7 {RO} : {2%RO}’ tcl=2e-03 tc2=3.3e-06

R2 r2 rr r = {6k + B50*TEMPER?}
.param rpl = 20
R3 nol no2 r = ’5k * rpl’ noisy=1

Expression may be an equation or an expression containing node voltages or branch
currents (in the form of i(vm)) and any other terms as given for the B source and described
in Chapt. 5.1. Tt may contain parameters (2.9.1) and the special variables time, temper,
and hertz (5.1.2). An example file is given below. Small signal noise in the resistor
(15.3.4) may be evaluated as white noise, depending on resistance, temperature and tcl,
tc2. To enable noise calculation, add the flag noisy=1 to the instance line. As a default
the behavioral resistor is noiseless.

Example input file for non-linear resistor:

Non-linear resistor

.param RO=1k Vi=1 Vt=0.5

* resistor depending on control voltage V(rr)
R1 rr 0 r = ’V(rr) < {vt} ? {RO} : {2xR0O}’
* control voltage

Vi rr 0 PWL(O O 100u {Vil})

.control

unset askquit

tran 100n 100u uic

plot i(V1)

.endc

.end

3.3.5 Resistor with nonlinear r2 cmc model

In the adms version of ngspice, a resistor model r2 cmc is implemented. This is a 2-
terminal resistor model developed by the resistor subcommittee of the CMC. The goal
was to have a standard 2-terminal resistor model with standard parameter names and
a standard, numerically well behaved nonlinearity model. It may be selected by setting
level=2 in the .model line.

For now a detailed description is available in the Verilog A source code file to be found a
src/spicelib/devices/adms/r2__cme/admsva/r2__cme.va.



3.3. ELEMENTARY DEVICES 79

Example input file for non-linear resistor with r2_ cmc model

r2 cmc

vi 1 0 10

Rr2_cmc 1 0 rmodel w=1lu 1=20u isnoisy=1

.model rmodel r(level=2 rsh=200 x1=0.2u xw=-0.05u

+ p3=0.12 q3=1.6 p2=0.015 g2=3.8 tcl=1.5e-4 tc2=T7e-7)
.control

op

let res = v(1) / -vi#branch

print res .endc

.end

3.3.6 Capacitors

General form:

CXXXXXXX n+ n- <value> <mname> <m=val> <scale=val> <temp=val>
+ <dtemp=val> <tcl=val> <tc2=val> <ic=init_condition>

Examples:

CBYP 13 0 1UF
C0SC 17 23 10U IC=3V

Ngspice provides a detailed model for capacitors. Capacitors in the netlist can be specified
giving their capacitance or their geometrical and physical characteristics. Following the
original SPICE3 ‘convention’, capacitors specified by their geometrical or physical char-
acteristics are called ‘semiconductor capacitors’ and are described in the next section.

In this first form n+ and n- are the positive and negative element nodes, respectively and
value is the capacitance in Farads.

Capacitance can be specified in the instance line as in the examples above or in a .model
line, as in the example below:

Cl1 15 5 cstd
C2 2 7 cstd
.model cstd C cap=3n

Both capacitors have a capacitance of 3nF.

If you want to simulate temperature dependence of a capacitor, you need to specify its
temperature coefficients, using a .model line, like in the example below:

CEB 1 2 1u capl dtemp=5
.MODEL capl C tc1=0.001



80 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

The (optional) initial condition is the initial (time zero) value of capacitor voltage (in
Volts). Note that the initial conditions (if any) apply only if the uic option is specified
on the .tran control line.

Ngspice calculates the nominal capacitance as described below:

Crom = value - scale - m (3.7)

The temperature coefficients tcl and tc2 describe a quadratic temperature dependence
(see equationl7.14) of the capacitance. If given in the instance line (the C... line) their
values will override the tc1l and tc2 of the .model line (3.3.8).

3.3.7 Semiconductor Capacitors

General form:

CXXXXXXX n+ n- <value> <mname> <l=length> <w=width> <m=val>
+ <scale=val> <temp=val> <dtemp=val> <ic=init_condition>

Examples:

CLOAD 2 10 10P
CMOD 3 7 CMODEL L=10u W=1u

This is the more general form of the Capacitor presented in section (3.3.6), and allows
for the calculation of the actual capacitance value from strictly geometric information
and the specifications of the process. If value is specified, it defines the capacitance and
both process and geometrical information are discarded. If value is not specified, the
capacitance is calculated from information contained model mname and the given length
and width (1, w keywords, respectively).

It is possible to specify mname only, without geometrical dimensions and set the capaci-
tance in the .model line (3.3.6).

3.3.8 Semiconductor Capacitor Model (C)

The capacitor model contains process information that may be used to compute the
capacitance from strictly geometric information.



3.3. ELEMENTARY DEVICES 81

\ Name \ Parameter \ Units \ Default \ Example \
CAP model capacitance F 0.0 le-6
CJ junction bottom capacitance F/m? - 5e-5
CJSW junction sidewall capacitance Efm - 2e-11
DEFW default device width m le-6 2e-6
DEFL default device length m 0.0 le-6
\ NARROW \ narrowing due to side etching \ m \ 0.0 \ le-7 \
’ SHORT ‘ shortening due to side etching ‘ m ‘ 0.0 ‘ le-7 ‘
| TC1 | first order temperature coeff. | Flec | 0.0 | 0.001 |
’ TC2 \ second order temperature coeff. \ Ffoc2 \ 0.0 \ 0.0001 ‘
’ TNOM \ parameter measurement temperature \ °C \ 27 \ 50 ‘
] DI \ relative dielectric constant \ E/m \ - \ 1 ‘
’ THICK ‘ insulator thickness ‘ m ‘ 0.0 ‘ le-9 ‘
The capacitor has a capacitance computed as:
If value is specified on the instance line then
Crom = value - scale - m (3.8)
If model capacitance is specified then
Crom = CAP - scale - m (3.9)

If neither value nor CAP are specified, then geometrical and physical parameters are take
into account:

Cy = CJ(I — SHORT)(w — NARROW) + 2CJSW (I — SHORT + w — NARROW) (3.10)

CJ can be explicitly given on the .model line or calculated by physical parameters. When
CJ is not given, is calculated as:

If THICK is not zero:

CJ = T]I){IIEJK if DI is specified,

(3.11)

€S9 .
CJ = TI?IOCQK otherwise.

If the relative dielectric constant is not specified the one for SiO2 is used. The values
of the constants are ¢y = 8.854214871e — 12”5I and €g;0, = 3.4531479969¢ — 11%. The
nominal capacitance is then computed as:

Crom = Cy scalem (3.12)

After the nominal capacitance is calculated, it is adjusted for temperature by the formula:

O(T) = C(TNOM) (1 4+ TCL (T — TNOM) + TCy(T — TNOM)2> (3.13)



82 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

where C(TNOM) = Com-

In the above formula, “T” represents the instance temperature, which can be explicitly set
using the temp keyword or calculated using the circuit temperature and dtemp, if present.

3.3.9 Capacitors, dependent on expressions (behavioral capaci-
tor)

There are two forms for behavioral capacitors allowed:

1. Capacitance formulated expressions C = ’expression’

2. Charge formulated expressions () = ’expression’

General form:

CXXXXXXX n+ n- C = ’expression’ <tcl=value> <tc2=value>

CXXXXXXX n+ n- ’expression’ <tcl=value> <tc2=value>

CXXXXXXX n+ n- Q = ’expression’ <tcl=value> <tc2=value>
Examples:

Cl cc 0 ¢ = ’V(cec) < {vt} 7 {C1} : {Ch}’ tcl=-1e-03 tc2=1.3e-05

Cl a b q = "lux(4xatan(V(a,b)/4)*2+V(a,b)) /3’

Expression may be an equation or an expression containing node voltages or branch
currents (in the form of i(vm)) and any other terms as given for the B source and described
in Chapt. 5.1. It may contain parameters (2.9.1) and the special variables time, temper,
and hertz (5.1.2).



3.3. ELEMENTARY DEVICES 83

Example input file:

Behavioral Capacitor
.param Cl=b6n Ch=1n Vt=1m I1=100n

.ic v(cc) =0 v(cc2) =0
* capacitor depending on control voltage V(cc)
Cl cc 0 ¢c = ’V(cc) < {Vt} ? {Cl} : {Ch}’

I1 0 1 {11}

Exxx nl-copy n2 n2 cc2 1

Cxxx mnl-copy n2 1

Bxxx c¢cc2 n2 I = ’(V(cc2) < {Vt} 7 {C1l} : {Ch})’ = i(Exxx)
I2 n2 22 {Il1}

vn2 n2 0 DC O

* measure charge by integrating current
aintl %id(1 cc) 2 time count

aint2 %id (22 cc2) 3 time_count

.model time_count int(in_offset=0.0 gain=1.0
+ out_lower_limit=-1el12 out_upper_limit=1lel2
+ limit_range=1e-9 out_ic=0.0)

.control

unset askquit

tran 100n 100u

plot v (2)

plot v(cc) v(cc2)

.endc

.end

3.3.10 Inductors

General form:

LYYYYYYY n+ n- <value> <mname> <nt=val> <m=val>
+ <scale=val> <temp=val> <dtemp=val> <tcl=val>
+ <tc2=val> <ic=init condition>

Examples:

LLINK 42 69 1UH
LSHUNT 23 51 10U IC=15.7MA

The inductor device implemented into ngspice has many enhancements over the original
one.n+ and n- are the positive and negative element nodes, respectively. value is the
inductance in Henry. Inductance can be specified in the instance line as in the examples
above or in a .model line, as in the example below:



84 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

L1 15 5 indmodl
L2 2 7 indmodl
.model indmodl L ind=3n

Both inductors have an inductance of 3nH.

The nt is used in conjunction with a .model line, and is used to specify the number of
turns of the inductor. If you want to simulate temperature dependence of an inductor,
you need to specify its temperature coefficients, using a .model line, like in the example
below:

Lload 1 2 1u indl dtemp=5
.MODEL indl L tc1=0.001

The (optional) initial condition is the initial (time zero) value of inductor current (in
Amps) that flows from n+, through the inductor, to n-. Note that the initial conditions
(if any) apply only if the UIC option is specified on the .tran analysis line.

Ngspice calculates the nominal inductance as described below:

L. = value scale (3.14)
m

3.3.11 Inductor model

The inductor model contains physical and geometrical information that may be used to
compute the inductance of some common topologies like solenoids and toroids, wound in
air or other material with constant magnetic permeability.

’ Name \ Parameter \ Units \ Default \ Example ‘
IND model inductance H 0.0 le-3
CSECT cross section m? 0.0 le-3
LENGTH length m 0.0 le-2
TC1 first order temperature coeff. Hfoc 0.0 0.001
TC2 second order temperature coeff. Hfoc2 0.0 0.0001
TNOM | parameter measurement temperature | °C 27 50
NT number of turns - 0.0 10
MU relative magnetic permeability H/m, 0.0 -

The inductor has an inductance computed as:

If value is specified on the instance line then

L. = value scale (3.15)
m

If model inductance is specified then

IND scal
L, = —2 5% (3.16)
m



3.3. ELEMENTARY DEVICES 85

If neither value nor IND are specified, then geometrical and physical parameters are take
into account. In the following formulas

NT refers to both instance and model parameter (instance parameter overrides model
parameter):

If LENGTH is not zero:

LENGTH
L _ o NT? CSECT
nom LENGTH

{an — MUuNT*CSECT ¢ ] ig specified, (3.17)

otherwise.

with py = 1.25663706143592%[. After the nominal inductance is calculated, it is adjusted
for temperature by the formula

L(T) = L(TNOM) (1 +TCy(T — TNOM) + TCo(T — TNOM)2>, (3.18)

where L(TNOM) = L,,y,. In the above formula, ‘T” represents the instance tempera-
ture, which can be explicitly set using the temp keyword or calculated using the circuit
temperature and dtemp, if present.

3.3.12 Coupled (Mutual) Inductors

General form:
KXXXXXXX LYYYYYYY LZZZZ7Z7Z7Z7 value
Examples:

K43 LAA LBB 0.999
KXFRMR L1 L2 0.87

LYYYYYYY and LZZZ7Z777 are the names of the two coupled inductors, and value is
the coefficient of coupling, K, which must be greater than 0 and less than or equal to 1.
Using the ‘dot’ convention for drawing the coupled inductors, place a ‘dot” on the first
node of each inductor. If you have more than two inductors interacting, pairwise coupling
is supported.

Pairwise coupling of more than two inductors:

L1 1 0 10u
L2 2 0 11lu
L3 3 0 10u

K12 L1 L2 0.99
K23 L2 L3 0.99
K13 L1 L3 0.98



86 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

When there are more than two inductors coupled for interaction, some combination of
coupling constants are not possible physically because the magnetic fields then would
violate energy conservation. ngspice checks the coupling matrix for such conditions and
issues a warning.

3.3.13 Inductors, dependent on expressions (behavioral induc-
tor)

General form:

LXXXXXXX n+ n- L = ’expression’ <tcl=value> <tc2=value>
LXXXXXXX n+ n- ’expression’ <tcl=value> <tc2=value>

Examples:
L1 12 111 L = ’i(Vm) < {It} 7 {L1} : {Lh}’ tcl=-4e-03 tc2=6e-05

Expression may be an equation or an expression containing node voltages or branch
currents (in the form of i(vm)) and any other terms as given for the B source and described
in Chapt. 5.1. It may contain parameters (2.9.1) and the special variables time, temper,
and hertz (5.1.2).



3.3. ELEMENTARY DEVICES 87

Example input file:

Variable inductor
.param L1=0.5m Lh=5m It=50u Vi=2m
.ic v(int21) = 0

* variable inductor depending on control current i(Vm)
L1 12 111 L = ’i(Vm) < {It} ? {L1} : {Lh}’

* measure current through inductor

vm 111 0 dc O

* voltage on inductor

Vi 12 0 {Vi}

* fixed inductor

L3 33 331 {L1}

* measure current through inductor
vm33 331 0 dc O

* voltage on inductor

V3 33 0 {Vi}

* non linear inductor (discrete setup)

F21 int21 0 B21 -1

L21 int21 0 1

B21 n1 n2 V = ’(i(Vm21) < {It} 7 {L1} : {Lh})’ * v(int21)
* measure current through inductor

vm21 n2 0 dc O

V21 n1 0 {Vi}

.control

unset askquit

tran 1lu 100u uic
plot i(Vm) i(vm33)
plot i(vm21) i(vm33)
plot i(vm)-i(vm21)
.endc

.end

3.3.14 Capacitor or inductor with initial conditions

The simulator supports the specification of voltage and current initial conditions on capac-
itor and inductor models, respectively. These models are not the standard ones supplied
with SPICES, but are in fact code models that can be substituted for the SPICE models
when realistic initial conditions are required. For details please refer to Chapter 12. A
XSPICE deck example using these models is shown below:

*
* This circuit contains a capacitor and an inductor with



88 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

* initial conditions on them. Each of the components

* has a parallel resistor so that an exponential decay

* of the initial condition occurs with a time constant of
* 1 second.

k3

al 1 0 cap

.model cap capacitor (c=1000uf ic=1)
rl 1 0 1k

*

a2 2 0 ind

.model ind inductor (1=1H ic=1)
r2 20 1.0

*

.control

tran 0.01 3

plot v(1) v(2)

.endc

.end

3.3.15 Switches

Two types of switches are available: a voltage controlled switch (type SXXXXXX, model
SW) and a current controlled switch (type WXXXXXXX, model CSW). A switching
hysteresis may be defined, as well as on- and off-resistances (0 < R < 00).

General form

SXXXXXXX N+ N- NC+ NC- MODEL <ON><OQOFF>
WYYYYYYY N+ N- VNAM MODEL <ON><QOFF>

Examples:

s1 1 2 3 4 switchl ON

s2 5 6 3 0 sm2 off

Switchl 1 2 10 0O smodell

wl 1 2 vclock switchmodl

W2 3 0 vramp sml ON

wreset 5 6 vclck lossyswitch OFF

Nodes 1 and 2 are the nodes between which the switch terminals are connected. The model
name is mandatory while the initial conditions are optional. For the voltage controlled
switch, nodes 3 and 4 are the positive and negative controlling nodes respectively. For
the current controlled switch, the controlling current is that through the specified voltage
source. The direction of positive controlling current flow is from the positive node, through
the source, to the negative node.

The instance parameters ON or OFF are required, when the controlling voltage (cur-
rent) starts inside the range of the hysteresis loop (different outputs during forward vs.



3.3. ELEMENTARY DEVICES 89

backward voltage or current ramp). Then ON or OFF determine the initial state of the
switch.

3.3.16 Switch Model (SW/CSW)

The switch model allows an almost ideal switch to be described in ngspice. The switch is
not quite ideal, in that the resistance can not change from 0 to infinity, but must always
have a finite positive value. By proper selection of the on and off resistances, they can
be effectively zero and infinity in comparison to other circuit elements. The parameters
available are shown below.

’ Name \ Parameter \ Units \ Default \ Switch model ‘
VT | threshold voltage \Y% 0.0 SW
IT threshold current A 0.0 CSW
VH | hysteresis voltage \Y 0.0 SW
[H hysteresis current A 0.0 CSW
RON on resistance Q 1.0 SW,CSW
ROFF off resistance Q 1.0e+12 (*) SW,CSW

(*) Or 1/GMIN, if you have set GMIN to any other value, see the .0PTIONS control
line (15.1.2) for a description of GMIN, its default value results in an off-resistance of
1.0e+12 ohms.

The use of an ideal element that is highly nonlinear such as a switch can cause large
discontinuities to occur in the circuit node voltages. A rapid change such as that associated
with a switch changing state can cause numerical round-off or tolerance problems leading
to erroneous results or time step difficulties. The user of switches can improve the situation
by taking the following steps:

o First, it is wise to set the ideal switch impedance just high or low enough to be
negligible with respect to other circuit elements. Using switch impedances that
are close to ‘ideal’ in all cases aggravates the problem of discontinuities mentioned
above. Of course, when modeling real devices such as MOSFETS, the on resistance
should be adjusted to a realistic level depending on the size of the device being
modeled.

o If a wide range of ON to OFF resistance must be used in the switches (ROFF/RON
> le+12), then the tolerance on errors allowed during transient analysis should be
decreased by using the .0PTIONS control line and specifying TRTOL to be less than
the default value of 7.0.

o When switches are placed around capacitors, then the option CHGTOL should also
be reduced. Suggested values for these two options are 1.0 and le-16 respectively.
These changes inform ngspice to be more careful around the switch points so that
no errors are made due to the rapid change in the circuit.



90

CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

Example input file:

Switch test

.tran 2us b5ms

*switch control voltage
vli 1 0 DC 0.0 PWL(O O 2e-3 2 4e-3 0)

*switch control voltage starting inside hysteresis window
*please note influence of instance parameters ON, OFF

v2 2 0 DC 0.0 PWL(O 0.9 2e-3 2 4e-3 0.4)

*switch control current
i3 3 0 DC 0.0 PWL(0O O 2e-3 2m 4e-3 0) $ <--- switch control current
*load voltage
vd 4 0 DC 2.0
*input load for current source i3
r3 3 33 10k
vm3 33 0 dc 0 $§ <--- measure the current
* ouput load resistors

ri0 4 10 10k

r20 4 20 10k

r30 4 30 10k

r40 4 40 10k

%

sl 10 0 1 0 switchl OFF

s2 20 0 2 0 switchl OFF

s3 30 0 2 0 switchl ON

.model switchl sw vt=1 vh=0.2 ron=1 roff=10k

*

wl 40 0 vm3 wswitchl off

.model wswitchl csw

*

it=1m ih=0.2m ron=1 roff=10k

.control

run

plot v(1) v (10)

plot v(10) vs v(1) $ <-- get hysteresis loop

plot v(2) v(20) $§ <--- different initial values

plot v(20) vs v(2) $ <-- get hysteresis 1loop

plot v(2) v(30) $§ <--- different initial values

plot v(30) vs v(2) $§ <-- get hysteresis loop

plot v(40) vs vm3#branch $§ <--- current controlled switch hysteresi
.endc

.end



Chapter 4

Voltage and Current Sources

4.1 Independent Sources for Voltage or Current
General form:

VXXXXXXX N+ N- <<DC> DC/TRAN VALUE> <AC <ACMAG <ACPHASE>>>
+ <DISTOF1 <F1MAG <F1PHASE>>> <DISTOF2 <F2MAG <F2PHASE>>>
IYYYYYYY N+ N- <<DC> DC/TRAN VALUE> <AC <ACMAG <ACPHASE>>>
+ <DISTOF1 <F1MAG <F1PHASE>>> <DISTOF2 <F2MAG <F2PHASE>>>

Examples:

VCC 10 0 DC 6

VIN 13 2 0.001 AC 1 SIN(O 1 1MEG)

ISRC 23 21 AC 0.333 45.0 SFFM(0 1 10K 5 1K)
VMEAS 12 9

VCARRIER 1 0 DISTOF1 0.1 -90.0

VMODULATOR 2 0 DISTOF2 0.01

IIN1 1 5 AC 1 DISTOF1 DISTOF2 0.001

n+ and n- are the positive and negative nodes, respectively. Note that voltage sources
need not be grounded. Positive current is assumed to flow from the positive node, through
the source, to the negative node. A current source of positive value forces current to flow
out of the n+ node, through the source, and into the n- node. Voltage sources, in addition
to being used for circuit excitation, are the ‘ammeters’ for ngspice, that is, zero valued
voltage sources may be inserted into the circuit for the purpose of measuring current.
They of course have no effect on circuit operation since they represent short-circuits.

DC/TRAN is the dc and transient analysis value of the source. If the source value is zero
both for dc and transient analyses, this value may be omitted. If the source value is
time-invariant (e.g., a power supply), then the value may optionally be preceded by the
letters DC.

The keyword AC together with its value ACMAG (and optional value ACPHASE) are required
when the voltage or current source is intended to become the small signal source in an

91



92 CHAPTER 4. VOLTAGE AND CURRENT SOURCES

ac simulation. ACMAG is the ac magnitude and ACPHASE is the ac phase. The voltage or
current source then will become a reference for all nodes. All small signal node amplitude
values obtained after the simulation have been divided by the reference ACMAG. A typcal
ACMAG value thus may be unity. Any measured phase has been shifted by ACPHASE. If
ACPHASE is omitted, a value of zero is assumed. If the source is not an ac small-signal
input, the keyword AC and the ac values are to be avoided.

DISTOF1 and DISTOF2 are the keywords that specify that the independent source has
distortion inputs at the frequencies F1 and F2 respectively (see the description of the
.DISTO control line). The keywords may be followed by an optional magnitude and
phase. The default values of the magnitude and phase are 1.0 and 0.0 respectively.

Any independent source can be assigned a time-dependent value for transient analysis. If
a source is assigned a time-dependent value, the time-zero value is used for dc analysis.
There are nine independent source functions:

e pulse,

e exponential,

 sinusoidal,

e piece-wise linear,

o single-frequency FM

« AM

» transient noise

« random voltages or currents

 and external data (only with ngspice shared library).

If parameters other than source values are omitted or set to zero, the default values shown
are assumed. TSTEP is the printing increment and TSTOP is the final time — see the . TRAN
control line for an explanation.

4.1.1 Pulse

General form:
PULSE(V1 V2 TD TR TF PW PER PHASE)
Examples:

VIN 3 0 PULSE(-1 1 2NS 2NS 2NS 50NS 100NS)



4.1. INDEPENDENT SOURCES FOR VOLTAGE OR CURRENT 93
\ Name \ Parameter \ Default Value \ Units \
V1 Initial value - V, A
V2 Pulsed value - V, A
TD Delay time 0.0 sec
TR Rise time TSTEP sec
TF Fall time TSTEP sec
PW Pulse width TSTOP sec
PER Period TSTOP sec
PHASE Phase 0.0 degrees
A single pulse, without phase offset, is described by the following table:
’ Time \ Value ‘
0 V1
TD V1
TD+TR V2
TD+TR+PW V2
TD+TR+-PW4TF | V1
TSTOP V1
Intermediate points are determined by linear interpolation.
4.1.2 Sinusoidal
General form:
SIN(VO VA FREQ TD THETA PHASE)
Examples:
VIN 3 0 SIN(O 1 100MEG 1NS 1E10)
’ Name \ Parameter \ Default Value \ Units ‘
VO Offset - V, A
VA Amplitude - V, A
FREQ Frequency 1/rsTop Hz
TD Delay 0.0 sec
THETA | Damping factor 0.0 Usec
PHASE Phase 0.0 degrees
The shape of the waveform is described by the following formula:
ifo<t<TD

VO
V(t) =
(t) {VO + VAe WTDITHETAgiy (27 . FREQ - (t — TD) + PHASE) if TD <t < TSTOP.

(4.1)



94 CHAPTER 4. VOLTAGE AND CURRENT SOURCES
4.1.3 Exponential
General form:
EXP(V1 V2 TD1 TAU1 TD2 TAU2)
Examples:

VIN 3 0 EXP(-4 -1 2NS 30NS 60NS 40NS)

’ Name \ Parameter \ Default Value \ Units ‘
V1 Initial value - V, A
V2 pulsed value - V, A

TD1 rise delay time 0.0 sec
TAU1 | rise time constant TSTEP sec
TD2 fall delay time TD1+TSTEP | sec
TAU2 | fall time constant TSTEP sec

The shape of the waveform is described by the following formula:

Let V21 =V2-V1,V12=V1-V2:

V1 if 0<t<TDI,
V()= V1+Val(1—e maor if TD1 <t < TD2,
V14 V21 (1— e Faot) + V12 (1 _ e—(t%§522)> if TD2 < t < TSTOP.
(4.2)
4.1.4 Piece-Wise Linear
General form:
PWL(T1 V1 <T2 V2 T3 V3 T4 V4 ...>) <r=value> <td=value>

Examples:

VCLOCK 7 5 PWL(0O -7 10NS -7 11NS -3 17NS -3 18NS -7 50NS -7)
+ r=0 td=15NS

Each pair of values (7}, V;) specifies that the value of the source is V; (in Volts or Amps)
at time = T;. The value of the source at intermediate values of time is determined by
using linear interpolation on the input values. The parameter r determines a repeat time
point. If r is set to -1 or is not given, the whole sequence of values (7}, V;) is issued once
only, then the output stays at its final value. If r = 0, the whole sequence from time 0 to
time Th is repeated forever. If r = 10ns, the sequence between 10ns and 50ns is repeated
forever. The r value has to be one of the time points T1 to Tn of the PWL sequence. If



4.1. INDEPENDENT SOURCES FOR VOLTAGE OR CURRENT 95

td is given, the whole PWL sequence is delayed by the value of td. Please note that for
now r and td are available only with the voltage source, not with the current source.

4.1.5 Single-Frequency FM

General Form:
SFFM(VO VA FC MDI FS PHASEC PHASES)
Examples:

Vi 12 0 SFFM(0 1M 20K 5 1K)

\ Name \ Parameter \ Default value \ Units \
VO Offset - V, A
VA Amplitude - V,A
FC Carrier frequency Yrsrop Hz
MDI Modulation index -
FS Signal frequency 1/rsrop Hz
PHASEC carrier phase 0 degrees
PHASES signal phase 0 degrees

The shape of the waveform is described by the following equation:

V(t)=Vo+ Vasin(2r- FC -t+ MDI sin(2r - FS-t+ PHASES)+ PHASEC)
(4.3)

4.1.6 Amplitude modulated source (AM)

General form:
AM(VA VO MF FC TD PHASES)
Examples:

Vi 12 0 AM(0.5 1 20K 5MEG 1m)

’ Name \ Parameter \ Default value \ Units ‘
VA Amplitude - V, A
VO Offset - V, A
MF Modulating frequency - Hz
FC Carrier frequency Yrsrop Hz
TD Signal delay - S

PHASES Phase 0.0 degrees




96 CHAPTER 4. VOLTAGE AND CURRENT SOURCES

The shape of the waveform is described by the following equation:

V(t) = Va (VO +sin(2n- MF -t) + PHASES)sin (21 - FC -t + PHASES)  (4.4)

4.1.7 Transient noise source

General form:
TRNOISE(NA NT NALPHA NAMP RTSAM RTSCAPT RTSEMT)
Examples:

VNoiw 1 0 DC O TRNOISE(20n 0.5n O 0) $ white
VNoilof 1 0 DC O TRNOISE(O 10p 1.1 12p) $ 1/f
VNoiwlof 1 O DC O TRNOISE(20 10p 1.1 12p) $ white and 1/f
IALL 10 O DC O trnoise(im 1u 1.0 O0.1m 15m 22u 50u)
$ white, 1/f, RTS

Transient noise is an experimental feature allowing (low frequency) transient noise injec-
tion and analysis. See Chapt. 15.3.10 for a detailed description. NA is the Gaussian noise
rms voltage amplitude, NT is the time between sample values (breakpoints will be en-
forced on multiples of this value). NALPHA (exponent to the frequency dependency), NAMP
(rms voltage or current amplitude) are the parameters for 1/f noise, RTSAM the random
telegraph signal amplitude, RTSCAPT the mean of the exponential distribution of the trap
capture time, and RTSEMT its emission time mean. White Gaussian, 1/f, and RTS noise
may be combined into a single statement.

\ Name \ Parameter \ Default value \ Units \

NA Rms noise amplitude (Gaussian) - V, A

NT Time step - sec
NALPHA 1/f exponent 0<a<?2 -

NAMP Amplitude (1/f) - V, A

RTSAM Amplitude - V, A

RTSCAPT Trap capture time - sec

RTSEMT Trap emission time - sec

If you set NT and RTSAM to 0, the noise option TRNOISE ... is ignored. Thus you may
switch off the noise contribution of an individual voltage source VNOI by the command

alter @vnoi[trnoise] = [ 00 0 0 ] $ no noise
alter Q@vrts[trnoise] = [ 00 0 0 0 0 O] $ no noise
See Chapt. 17.5.3 for the alter command.

You may switch off all TRNOISE noise sources by setting
set notrnoise

to your .spiceinit file (for all your simulations) or into your control section in front of the
next run or tran command (for this specific and all following simulations). The command



4.1. INDEPENDENT SOURCES FOR VOLTAGE OR CURRENT 97

unset notrnoise
will reinstate all noise sources.

The noise generators are implemented into the independent voltage (vsrc) and current
(isrc) sources.

4.1.8 Random voltage source

The TRRANDOM option yields statistically distributed voltage values, derived from the
ngspice random number generator. These values may be used in the transient simula-
tion directly within a circuit, e.g. for generating a specific noise voltage, but especially
they may be used in the control of behavioral sources (B, E, G sources 5, voltage control-
lable A sources 12, capacitors 3.3.9, inductors 3.3.13, or resistors 3.3.4) to simulate the
circuit dependence on statistically varying device parameters. A Monte-Carlo simulation
may thus be handled in a single simulation run.

General form:

TRRANDOM(TYPE TS <TD <PARAM1 <PARAM2>>>)
Examples:

VR1 r1 O dc O trrandom (2 10m O 1) $ Gaussian

TYPE determines the random variates generated: 1 is uniformly distributed, 2 Gaussian,
3 exponential, 4 Poisson. TS is the duration of an individual voltage value. TD is a time
delay with 0 V output before the random voltage values start up. PARAM1 and PARAM2
depend on the type selected.

’ TYPE ‘ description ‘ ‘ PARAMI1 ‘ default ‘ ‘ PARAM2 ‘ default ‘
1 Uniform Range 1 Offset 0
2 Gaussian Standard Dev. 1 Mean 0
3 Exponential Mean 1 Offset 0
4 Poisson Lambda 1 Offset 0

4.1.9 External voltage or current input

General form:
EXTERNAL
Examples:

Vex 1 0 dc 0 external
Iex i1 i2 dc 0 extermnal <m = xx>

Voltages or currents may be set from the calling process, if ngspice is compiled as a shared
library and loaded by the process. See Chapt. 19.6.3 for an explanation.



98 CHAPTER 4. VOLTAGE AND CURRENT SOURCES

4.1.10 Arbitrary Phase Sources

ngspice supports arbitrary phase independent sources that output at TIME=0.0 a value
corresponding to some specified phase shift. Other versions of SPICE use the TD (delay
time) parameter to set phase-shifted sources to their time-zero value until the delay time
has elapsed. The ngspice phase parameter is specified in degrees and is included after the
SPICE3 parameters normally used to specify an independent source. Partial examples of
usage for pulse and sine waveforms are shown below:

* Phase shift is specified as final parameter

* on the independent source cards. Phase shift for both of the
* following is specified as +45 degrees
*

vli 10 0.0 sin(0 1 1k 0 0 45.0)
rl1 10 1k

*

0.0 pulse(-1 1 0 le-5 le-5 be-4 1le-3 45.0)
1k

<

220
220

* B

4.2 Linear Dependent Sources

Ngspice allows circuits to contain linear dependent sources characterized by any of the
four equations

’i:gv‘v:ev‘i:fi‘v:hi‘

where g, e, f, and h are constants representing transconductance, voltage gain, current
gain, and transresistance, respectively. Non-linear dependent sources for voltages or cur-
rents (B, E, G) are described in Chapt. 5.

4.2.1 Gxxxx: Linear Voltage-Controlled Current Sources (VCCS)

General form:
GXXXXXXX N+ N- NC+ NC- VALUE <m=val>
Examples:

G1 2 05 0 0.1

n+ and n- are the positive and negative nodes, respectively. Current flow is from the
positive node, through the source, to the negative

node. nc+ and nc- are the positive and negative controlling nodes, respectively. value
is the transconductance (in mhos). m is an optional multiplier to the output current. val
may be a numerical value or an expression according to 2.9.5 containing references to
other parameters. Instance parameters are listed in chapt. 31.3.6.



4.2. LINEAR DEPENDENT SOURCES 99

4.2.2 Exxxx: Linear Voltage-Controlled Voltage Sources (VCVS)

General form:
EXXXXXXX N+ N- NC+ NC- VALUE
Examples:

El1 2 3 14 1 2.0

n+ is the positive node, and n- is the negative node. nc+ and nc- are the positive and
negative controlling nodes, respectively. value is the voltage gain. Instance parameters
are listed in chapt. 31.3.7.

4.2.3 Fxxxx: Linear Current-Controlled Current Sources (CCCS)

General form:
FXXXXXXX N+ N- VNAM VALUE <m=val>
Examples:

F1 13 5 VSENS 5 m=2

n+ and n- are the positive and negative nodes, respectively. Current flow is from the
positive node, through the source, to the negative node. vnam is the name of a voltage
source through which the controlling current flows. The direction of positive controlling
current flow is from the positive node, through the source, to the negative node of vnam.
value is the current gain. m is an optional multiplier to the output current. Instance
parameters are listed in chapt. 31.3.4.

4.2.4 Hxxxx: Linear Current-Controlled Voltage Sources (CCVS)

General form:
HXXXXXXX N+ N- VNAM VALUE
Examples:

HX 5 17 VZ 0.5K

n+ and n- are the positive and negative nodes, respectively. vnam is the name of a voltage
source through which the controlling current flows. The direction of positive controlling
current flow is from the positive node, through the source, to the negative node of vnam.
value is the transresistance (in ohms). Instance parameters are listed in chapt. 31.3.5.



100 CHAPTER 4. VOLTAGE AND CURRENT SOURCES

4.2.5 Polynomial Source Compatibility

Dependent polynomial sources available in SPICE2G6 are fully supported in ngspice using
the XSPICE extension (25.1). The form used to specify these sources is shown in Table
4.1. For details on its usage please see Chapt. 5.5.

Dependent Polynomial Sources

Source Type \ Instance Card

POLYNOMIAL VCVS | EXXXXXXX N+ N- POLY(ND) NC1+ NC1- PO (P1...)

D)
POLYNOMIAL VCCS | GXXXXXXX N+ N- POLY(ND) NCI+ NCI- P0 (P1...)
POLYNOMIAL CCCS | FXXXXXXX N+ N- POLY(ND) VNAMI IVNAM2...? PO (P1...)

POLYNOMIAL CCVS | HXXXXXXX N+ N- POLY(ND) VNAM1 IVNAM2...? PO (P1...)

Table 4.1: Dependent Polynomial Sources



Chapter 5

Non-linear Dependent Sources
(Behavioral Sources)

The non-linear dependent sources B ( see Chapt. 5.1), E (see 5.2), G see (5.3) described
in this chapter allow the generation of voltages or currents that result from evaluating a
mathematical expression. Internally E and G sources are converted to the more general
B source. All three sources may be used to introduce behavioral modeling and analysis.

5.1 Bxxxx: Nonlinear dependent source (ASRC)

5.1.1 Syntax and usage

General form:

BXXXXXXX n+ n- <i=expr> <v=expr> <tcl=value> <tc2=value>
+ <temp=value> <dtemp=value>

Examples:
Bl 0 1 I=cos(v(1))+sin(v(2))
B2 0 1 V=1n(cos(log(v(1,2)72)))-v(3)~4+v(2) v (1)
B3 3 4 I=17
B4 3 4 V=exp(pi~i(vdd))
B5 2 0 V= V(1) < {Vliow} ? {Vliow}
+ V(1) > {Vhigh} ? {Vhigh} : V(1)

n+ is the positive node, and n- is the negative node. The values of the V and I parameters
determine the voltages and currents across and through the device, respectively. If I is
given then the device is a current source, and if V is given the device is a voltage source.
One and only one of these parameters must be given. All instance parameters are listed
in chapter 31.3.1.

A simple model is implemented for temperature behavior by the formula:

101



102CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

I(T) = I(TNOM) (1 + TCy(T — TNOM) + TCy(T — TNOM)2> (5.1)

or

V(T) = V(TNOM) (1 + TCH(T — TNOM) + TCy(T — TNOM)2> (5.2)

In the above formula, “T” represents the instance temperature, which can be explicitly set
using the temp keyword or calculated using the circuit temperature and dtemp, if present.
If both temp and dtemp are specified, the latter is ignored.

The small-signal AC behavior of the nonlinear source is a linear dependent source (or
sources) with a proportionality constant equal to the derivative (or derivatives) of the
source at the DC operating point. The expressions given for V and I may be any function
of voltages and currents through voltage sources in the system.

The following functions of a single real variable are defined:

Trigonometric functions: cos, sin, tan, acos, asin, atan
Hyperbolic functions: cosh, sinh, acosh, asinh, atanh

Exponential and logarithmic: exp, In, log, logl0 (In, log with base e, logl0 with base
10)

Other: abs, sqrt, u, u2, uramp, floor, ceil, i
Functions of two variables are min, max, pow, **, pwr, ~

Functions of three variables are a 7 b:c

For convergence reasons the ‘exp’ function has a limit of 14 for its argument, beyond that
value it will increase linearily. The function ‘u’ is the unit step function, with a value
of one for arguments greater than zero, a value of 0.5 at zero, and a value of zero for
arguments less than zero. The function ‘u2’ returns a value of zero for arguments less
than zero, one for arguments greater than one and assumes the value of the argument
between these limits. The function ‘uramp’ is the integral of the unit step: for an input x,
the value is zero if x is less than zero, or, if x is greater than or equal to zero, the value is
x. These three functions are useful in synthesizing piece-wise non-linear functions, though
convergence may be adversely affected.

The function i(xyz) returns the current through the first node of device instance xyz.
The following standard operators are defined: +, -, *, /, =, unary -
Logical operators are !'=, <> >= <= == > < ||, &&, !

A ternary function is defined asa ? b : ¢, which means IF a, THEN b, ELSE c. Be
sure to place a space in front of ‘?’ to allow the parser distinguishing it from other tokens.

The B source functions pow, **, =, and pwr need some special care to avoid undefined
regions in x1, as they differ from the common mathematical usage (and from the functions
depicted in chapt. 2.9.5).

The functions y = pow(x1,x2), x1**x2, and x1°x2 , all of them describing y = 2172
resolve to the following:



5.1. BXXXX: NONLINEAR DEPENDENT SOURCE (ASRC) 103

y = pow(fabs(x1l), x2)

pow in the preceding line is the standard C math library function.

The function y = pwr(x1,x2) resolves to

if (x1 < 0.0)

y = (-pow(-x1, x2));
else

y = (pow(xl, x2));

pow here again is the standard C math library function.

Example: Ternary function

* B source test Clamped voltage source

* C. P. Basso "Switched-mode power supplies", New York, 2008
.param Vhigh = 4.6

.param Vlow = 0.4

Vinl 1 0 DC O PWL(O O 1u 5)

Bcl 2 0 V= V(1) < Vliow 7 Vliow : V(1) > Vhigh ? Vhigh : V(1)
.control

unset askquit

tran b5n 1u

plot V(2) vs V(1)

.endc

.end

If the argument of log, In, or sqrt becomes less than zero, the absolute value of the
argument is used. If a divisor becomes zero or the argument of log or In becomes zero,
an error will result. Other problems may occur when the argument for a function in a
partial derivative enters a region where that function is undefined.

Parameters may be used like {Vlow} shown in the example above. Parameters will be
evaluated upon set up of the circuit, vectors like V(1) will be evaluated during the simu-
lation.

To get time into the expression you can integrate the current from a constant current
source with a capacitor and use the resulting voltage (don’t forget to set the initial voltage
across the capacitor).

Non-linear resistors, capacitors, and inductors may be synthesized with the nonlinear de-
pendent source. Nonlinear resistors, capacitors and inductors are implemented with their
linear counterparts by a change of variables implemented with the nonlinear dependent
source. The following subcircuit will implement a nonlinear capacitor:



104CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

Example: Non linear capacitor

.3ubckt nlcap pos neg

* Bx: calculate f(input voltage)

Bx 1 0 v = f(v(pos,neg))

* Cx: linear capacitance

Cx 2 01

* Vx: Ammeter to measure current into the capacitor
Vx 2 1 DC OVolts

* Drive the current through Cx back into the circuit
Fx pos neg Vx 1

.ends

Example for f(v(pos,neg)):

Bx 1 0 V = v(pos,neg)*v(pos,neg)

Non-linear resistors or inductors may be described in a similar manner. An example for
a nonlinear resistor using this template is shown below.

Example: Non linear resistor

* use of ’hertz’ variable in nonlinear resistor
* . param rbase=1k
* some tests

Bl 1 0 V = hertzxv(33)
B2 2 0 V = v(33)xhertz
b3 3 0 V = 6.283e3/(hertz+6.283e3)*v(33)

Vi 33 0 DC 0 AC 1

x*x Translate R1 10 0 R=’1k/sqrt (HERTZ)’ to B source *x*x
.Subckt nlres pos neg rb=rbase

* Bx: calculate f(input voltage)

Bx 1 0 v = -1 / {rb} / sqrt(HERTZ) * v(pos, neg)
* Rx: linear resistance

Rx 2 0 1



5.1. BXXXX: NONLINEAR DEPENDENT SOURCE (ASRC) 105

Example: Non linear resistor (continued)

* Vx: Ammeter to measure current into the resistor
Vx 2 1 DC OVolts

* Drive the current through Rx back into the circuit
Fx pos neg Vx 1

.ends

Xres 33 10 nlres rb=1k

*Rres 33 10 1k

Vres 10 0 DC O

.control

define check(a,b) vecmax(abs(a - b))

ac lin 10 100 1k

* some checks

print v (1) v(2) v(3)

if check(v(1l), frequency) < le-12

echo "INFO: ok"

end

plot vres#branch

.endc

.end

5.1.2 Special B-Source Variables time, temper, hertz

The special variables time and temper are available in a transient analysis, reflecting the
actual simulation time and circuit temperature. temper returns the circuit temperature,
given in degree C (see 2.12). The variable hertz is available in an AC analysis. time
is zero in the AC analysis, hertz is zero during transient analysis. Using the variable
hertz may cost some CPU time if you have a large circuit, because for each frequency
the operating point has to be determined before calculating the AC response.

5.1.3 par(’ezpression’)
The B source syntax may also be used in output lines like .plot as algebraic expressions
for output (see Chapt.15.6.6 ).

5.1.4 Piecewise Linear Function: pwl

Both B source types may contain a piece-wise linear dependency of one network variable:

Example: pwl_current

Bdio 1 0 I = pwl(v(A), 0,0, 33,10m, 100,33m, 200,50m)

v(A) is the independent variable x. Each pair of values following describes the x,y func-
tional relation: In this example at node A voltage of 0V the current of 0A is generated -
next pair gives 10mA flowing from ground to node 1 at 33V on node A and so forth.



106CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

The same is possible for voltage sources:

Example: pwl_voltage

Blimit b 0 V = pwl(v(l), -4,0, -2,2, 2,4, 4,5, 6,5)

Monotony of the independent variable in the pwl definition is checked - non-monotonic
x entries will stop the program execution. v(1) may be replaced by a controlling current
source. v(1) may also be replaced by an expression, e.g. —2 i(V;,). The value pairs may
also be parameters, and have to be predefined by a .param statement. An example for
the pwl function using all of these options is shown below.



5.1. BXXXX: NONLINEAR DEPENDENT SOURCE (ASRC) 107

Example: pwl function in B source

Demonstrates usage of the pwl function in an B source (ASRC)
* Also emulates the TABLE function with limits

.param x0=-4 y0=0
.param x1=-2 yl1=2
.param x2=2 y2=-2
.param x3=4 y3=1
.param xx0=x0-1
.param xx3=x3+1

Vin 10 DC=0V
R 10 2

* no limits outside of the tabulated x values
* (continues linearily)
Btest2 2 0 I = pwl(v(1l),’x0’,’y0’,’x1’,’y1’,°x2’,°y2’,°x37,°y3’)

* like TABLE function with limits:

Btest3 3 0 I = (v(1) < ’x0°) 7 ’y0°

(v(1) < ’x37) 7

+ pwl(v(1l),’x0’,’y0’,’x1?,°y1°,°x2° ,°y2’ ,°x3’,°y3’) : ’y3’

* more efficient and elegant TABLE function with limits
*(voltage controlled):
Btest4 4 0 I = pwl(v(l),

+ ’xx0’,’y0’, ’x0’,’y0’,

+ ’x17,’°y17,

+ ’x27,°y27,

+ ’x37,’°y37, ’xx3’,’y37)

*

* more efficient and elegant TABLE function with limits
* (controlled by current):

Btest5 5 0 I = pwl(-2%i(Vin),

+ ’xx0’,’y0’, ’x0’,’y0’,

+ 'x17,7y17,

+ 'x27,7y27,

+ 'x37,’y3’, ’xx3’,’y37)
Rint2 2 0 1

Rint3 3 0 1

Rint4 4 0 1

Rint5 5 0 1

.control

dc Vin -6 6 0.2
plot v(2) v(3) v(4)-0.5 v(5)+0.5
.endc

.end



108CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

5.2 Exxxx: non-linear voltage source

5.2.1 VOL

General form:
EXXXXXXX n+ n- vol=’expr’
Examples:

E41 4 0 vol = ’V(3)*V(3)-0ffs’

Expression may be an equation or an expression containing node voltages or branch
currents (in the form of i(vm)) and any other terms as given for the B source and described
in Chapt. 5.1. It may contain parameters (2.9.1) and the special variables time, temper,
hertz (5.1.2). > or { } may be used to delimit the function.

5.2.2 VALUE

Optional syntax:

EXXXXXXX n+ n- value={expr}
Examples:

E41 4 0 value = {V(3)*V(3)-0ffs}

The "=’ sign is optional.

5.2.3 TABLE

Data may be entered from the listings of a data table similar to the pwl B-Source (5.1.4).
Data are grouped into x, y pairs. Expression may be an equation or an expression
containing node voltages or branch currents (in the form of i(vm)) and any other terms
as given for the B source and described in Chapt. 5.1. It may contain parameters (2.9.1).
> or { } may be used to delimit the function. Expression delivers the x-value, which
is used to generate a corresponding y-value according to the tabulated value pairs, using
linear interpolation. If the x-value is below x0 , y0 is returned, above x2 y2 is returned
(limiting function). The value pairs have to be real numbers, parameters are not allowed.



5.2. EXXXX: NON-LINEAR VOLTAGE SOURCE 109

Syntax for data entry from table:

Exxx nl n2 TABLE {expression} = (x0, y0) (x1, y1) (x2, y2)
Example (simple comparator):

ECMP 11 0 TABLE {Vv(10,9)} = (-5mV, OV) (5mV, 5V)

An ’=’ sign may follow the keyword TABLE.

5.2.4 POLY

see E-Source at Chapt. 5.5.

5.2.5 LAPLACE

Currently ngspice does not offer a direct E-Source element with the LAPLACE option.
There is however a XSPICE code model equivalent called s_ xfer (see Chapt. 12.2.17),
which you may invoke manually. The XSPICE option has to be enabled (32.1). AC
(15.3.1) and transient analysis (15.3.9) is supported.

The following E-Source:

ELOPASS 4 0 LAPLACE {Vv(1)}
+ {56 x (s/100 + 1) / (8°2/42000 + s/60 + 1)}

may be replaced by:

AELOPASS 1 int_4 filterl
.model filterl s_xfer(gain=5

+ num_coeff=[{1/100} 1]
+ den _coeff=[{1/42000} {1/60} 1]
+ int_ic=[0 0])

ELOPASS 4 0 int_4 0 1

where you have the voltage of node 1 as input, an intermediate output node int_ 4 and an
E-source as buffer to keep the name ‘ELOPASS’ available if further processing is required.

If the controlling expression is more complex than just a voltage node, you may add a
B-Source (5.1) for evaluating the expression before entering the A-device.



110CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

E-Source with complex controlling expression:
ELOPASS 4 0 LAPLACE {v(1)xv(2)} {10 / (s/6800 + 1)}
may be replaced by:

BELOPASS int_1 0 V=V (1)*v(2)
AELOPASS int_1 int_4 filterl
.model filterl s_xfer(gain=10

+ num_coeff=[1]
+ den_coeff=[{1/6800} 1]
+ int_ic=[0])

ELOPASS 4 0 int_4 0 1

5.3 Gxxxx: non-linear current source

5.3.1 CUR

General form:
GXXXXXXX n+ n- cur=’expr’ <m=val>
Examples:

G51 55 225 cur = ’V(3)*xV(3)-0ffs’

Expression may be an equation or an expression containing node voltages or branch
currents (in the form of i(vm)) and any other terms as given for the B source and described
in Chapt. 5.1. It may contain parameters (2.9.1) and special variables (5.1.2). m is an
optional multiplier to the output current. val may be a numerical value or an expression
according to 2.9.5 containing only references to other parameters (no node voltages or
branch currents!), because it is evaluated before the simulation commences.

5.3.2 VALUE

Optional syntax:
GXXXXXXX n+ n- value=’expr’ <m=val>
Examples:

G51 55 225 value = ’V(3)*V(3)-0ffs”’

The "=’ sign is optional.



5.3. GXXXX: NON-LINEAR CURRENT SOURCE 111

5.3.3 TABLE

A data entry by a tabulated listing is available with syntax similar to the E-Source (see
Chapt. 5.2.3).

Syntax for data entry from table:

Gxxx nl n2 TABLE <{expression} =
+ (x0, y0) (x1, y1) (x2, y2) <m=val>

Example (simple comparator with current output and voltage control):

GCMP 0 11 TABLE {v(10,9)} = (-5MvV, OV) (5MV, 5V)
R 11 0 1k

m is an optional multiplier to the output current. val may be a numerical value or an
expression according to 2.9.5 containing only references to other parameters (no node
voltages or branch currents!), because it is evaluated before the simulation commences.
An '=’ sign may follow the keyword TABLE.

5.3.4 POLY

see E-Source at Chapt. 5.5.

5.3.5 LAPLACE

See E-Source, Chapt. 5.2.5 , for an equivalent code model replacement.

5.3.6 Example

An example file is given below.



112CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

Example input file:

VCCS, VCVS, non-linear dependency
.param Vi=1

.param Offs=’0.01%Vi’

* VCCS depending on V(3)

B21 intl 0 V = V(3)*V(3)

Gl 21 22 intl1l 0 1

* measure current through VCCS

vm 22 0 dc O

R21 21 0 1
* new VCCS depending on V(3)
G51 55 225 cur = ’V(3)*V(3)-0ffs”’

* measure current through VCCS
vmb 225 0 dc O

R51 55 0 1

* VCVS depending on V(3)

B31 int2 0 V = V(3)*V(3)

E1 1 0 int2 0 1

R1 1 0 1

* new VCVS depending on V(3)
E41 4 0 vol = ’V(3)%*V(3)-0ffs”’
R4 4 0 1

* control voltage

Vi 3 0 PWL(O 0 100u {Vi})
.control

unset askquit

tran 10n 100u uic

plot i(E1) i(E41)

plot i(vm) i(vmb)

.endc

.end

5.4 Debugging a behavioral source

The B, E, G, sources and the behavioral R, C, L elements are powerful tools to set up
user defined models. Unfortunately debugging these models is not very comfortable.



5.5. POLY SOURCES 113

Example input file with bug (log(-2)):

B source debugging

E41 4 0 vol = ’V(1)*log(V(2))”’

.control
tran 1 1
.endc

.end

The input file given above results in an error message:
Error: -2 out of range for log

In this trivial example, the reason and location for the bug is obvious. However, if you have
several equations using behavioral sources, and several occurrences of the log function,
then debugging is nearly impossible.

However, if the variable ngdebug (see 17.7) is set (e.g. in file .spiceinit), a more distinctive
error message is issued that (after some closer investigation) will reveal the location and
value of the buggy parameter.

Detailed error message for input file with bug (log(-2)):

Error: -2 out of range for log
calling PTeval, tree =
(v0) * (log (v1))
d / d v0 : log (vl)
d / d vl : (v0) * ((0.434294) / (v1))
values: var0 = 1
varl = -2

If variable strict_errorhandling (see 17.7) is set, ngspice exits after this message. If
not, gmin and source stepping may be started, typically without success.

5.5 POLY Sources

Polynomial sources are only available when the XSPICE option (see Chapt. 32) is enabled.



114CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

5.5.1 E voltage source, G current source

General form:
EXXXX N+ N- POLY(ND) NC1+ NC1- (NC2+ NC2-...) PO (P1...)
Example:

ENONLIN 100 101 POLY(2) 3 0 4 0 0.0 13.6 0.2 0.005
POLY(ND) Specifies the number of dimensions of the polynomial. The number of pairs
of controlling nodes must be equal to the number of dimensions.

(N+) and (N-) nodes are output nodes. Positive current flows from the (+) node through
the source to the (-) node.

The <NC1+> and <NC1-> are in pairs and define a set of controlling voltages. A particular
node can appear more than once, and the output and controlling nodes need not be
different.

The example yields a voltage output controlled by two input voltages v(3,0) and v(4,0).
Four polynomial coefficients are given. The equivalent function to generate the output is:

0+ 13.6 * v(3) + 0.2 x v(4) + 0.005 * v(3) * v(3)
Generally you will set the equation according to

POLY(1) y
POLY(2) y

pO + plxX1 + p2*X1xX1 + p3xX1xX1*X1 + ...

pO + plxX1 + p2*X2 +

p3*X1*X1 + p4*xX2xX1 + pb*X2xX2 +
p6*X1xX1xX1  + p7+X2*X1xX1 + p8*X2xX2*X1 +
pO*X2¥X2xX2  + ...

pl*X1 + p2*X2 + p3*X3 +

p4*X1*X1 + p5*X2%X1 + p6*X3*X1 +

p7*X2*%X2 + p8xX2*X3 + p9*X3*X3 + ...

POLY(3) y

I
o}
o

+
+
+
+
+
+

where X1 is the voltage difference of the first input node pair, X2 of the second pair and
so on. Keeping track of all polynomial coefficient is rather tedious for large polynomials.

5.5.2 F voltage source, H current source
General form:

FXXXX N+ N- POLY(ND) Vi (V2 V3 ...) PO (P1...)
Example:

FNONLIN 100 101 POLY(2) VDD Vxx 0 0.0 13.6 0.2 0.005



5.5. POLY SOURCES 115

POLY(ND) Specifies the number of dimensions of the polynomial. The number of con-
trolling sources must be equal to the number of dimensions.

(N+) and (N-) nodes are output nodes. Positive current flows from the (4) node through
the source to the (-) node.

V1 (V2 V3 ...) are the controlling voltage sources. Control variable is the current through
these sources.

PO (P1...) are the coefficients, as have been described in 5.5.1.



116CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)



Chapter 6

Transmission Lines

Ngspice implements both the original SPICE3f5 transmission lines models and the one
introduced with KSPICE. The latter provide an improved transient analysis of lossy
transmission lines. Unlike SPICE models that use the state-based approach to simulate
lossy transmission lines, KSPICE simulates lossy transmission lines and coupled multi-
conductor line systems using the recursive convolution method. The impulse response
of an arbitrary transfer function can be determined by deriving a recursive convolution
from the Pade approximations of the function. We use this approach for simulating each
transmission line’s characteristics and each multiconductor line’s modal functions. This
method of lossy transmission line simulation has been proved to give a speedup of one to
two orders of magnitude over SPICE3{f5.

6.1 Lossless Transmission Lines

General form:

TXXXXXXX N1 N2 N3 N4 ZO0=VALUE <TD=VALUE>
+ <F=FREQ <NL=NRMLEN>> <IC=V1, I1, V2, I2>

Examples:

T1 1 0 2 0 Z0=50 TD=10NS

nl and n2 are the nodes at port 1; n3 and n4 are the nodes at port 2. z0 is the char-
acteristic impedance. The length of the line may be expressed in either of two forms.
The transmission delay, td, may be specified directly (as td=10ns, for example). Alterna-
tively, a frequency £ may be given, together with nl, the normalized electrical length of
the transmission line with respect to the wavelength in the line at the frequency ‘t". If a
frequency is specified but nl is omitted, 0.25 is assumed (that is, the frequency is assumed
to be the quarter-wave frequency). Note that although both forms for expressing the line
length are indicated as optional, one of the two must be specified.

Note that this element models only one propagating mode. If all four nodes are distinct
in the actual circuit, then two modes may be excited. To simulate such a situation,

117



118 CHAPTER 6. TRANSMISSION LINES

two transmission-line elements are required. (see the example in Chapt. 21.7 for further
clarification.) The (optional) initial condition specification consists of the voltage and
current at each of the transmission line ports. Note that the initial conditions (if any)
apply only if the UIC option is specified on the .TRAN control line.

Note that a lossy transmission line (see below) with zero loss may be more accurate than
the lossless transmission line due to implementation details.

6.2 Lossy Transmission Lines

General form:
OXXXXXXX nl n2 n3 n4d mname
Examples:

023 1 0 2 0 LOSSYMOD
OCONNECT 10 5 20 5 INTERCONNECT

This is a two-port convolution model for single conductor lossy transmission lines. n1
and n2 are the nodes at port 1; n3 and n4 are the nodes at port 2. Note that a lossy
transmission line with zero loss may be more accurate than the lossless transmission line
due to implementation details.

6.2.1 Lossy Transmission Line Model (LTRA)

The uniform RLC/RC/LC/RG transmission line model (referred to as the LTRA model
henceforth) models a uniform constant-parameter distributed transmission line. The RC
and LC cases may also be modeled using the URC and TRA models; however, the newer
LTRA model is usually faster and more accurate than the others. The operation of the
LTRA model is based on the convolution of the transmission line’s impulse responses with
its inputs (see [8]). The LTRA model takes a number of parameters, some of which must
be given and some of which are optional.



6.2. LOSSY TRANSMISSION LINES

119

\ Name Parameter \ Units/Type \ Default \ Example \
R resistance/length /umit 0.0 0.2
L inductance/length H [ unit 0.0 9.13e-9
G conductance/length mhos [yt 0.0 0.0
C capacitance/length F funit 0.0 3.65e-12
LEN length of line unit no default 1.0
REL breakpoint control arbitrary unit 1 0.5
ABS breakpoint control 1 5
NOSTEPLIMIT don’t limit time-step to less flag not set set
than line delay
NO CONTROL don’t do complex time-step flag not set set
control
LININTERP use linear interpolation flag not set set
MIXEDINTERP use linear when quadratic flag not set set
seems bad
COMPACTREL special reltol for history RELTOL 1.0e-3
compaction
COMPACTABS special abstol for history ABSTOL 1.0e-9
compaction
TRUNCNR use Newton-Raphson flag not set set
method for time-step
control
TRUNCDONTCUT don’t limit time-step to flag not set set
keep impulse-response
errors low

The following types of lines have been implemented so far:

o RLC (uniform transmission line with series loss only),
e RC (uniform RC line),
o LC (lossless transmission line),

« RG (distributed series resistance and parallel conductance only).

Any other combination will yield erroneous results and should not be tried. The length
LEN of the line must be specified. NOSTEPLIMIT is a flag that will remove the default
restriction of limiting time-steps to less than the line delay in the RLC case. NO CONTROL
is a flag that prevents the default limiting of the time-step based on convolution error
criteria in the RLC and RC cases. This speeds up simulation but may in some cases
reduce the accuracy of results. LININTERP is a flag that, when specified, will use linear
interpolation instead of the default quadratic interpolation for calculating delayed signals.
MIXEDINTERP is a flag that, when specified, uses a metric for judging whether quadratic
interpolation is not applicable and if so uses linear interpolation; otherwise it uses the de-
fault quadratic interpolation. TRUNCDONTCUT is a flag that removes the default cutting of
the time-step to limit errors in the actual calculation of impulse-response related quanti-
ties. COMPACTREL and COMPACTABS are quantities that control the compaction of the past
history of values stored for convolution. Larger values of these lower accuracy but usually



120 CHAPTER 6. TRANSMISSION LINES

increase simulation speed. These are to be used with the TRYTOCOMPACT option, described
in the .OPTIONS section. TRUNCNR is a flag that turns on the use of Newton-Raphson it-
erations to determine an appropriate time-step in the time-step control routines. The
default is a trial and error procedure by cutting the previous time-step in half. REL and
ABS are quantities that control the setting of breakpoints.

The option most worth experimenting with for increasing the speed of simulation is REL.
The default value of 1 is usually safe from the point of view of accuracy but occasionally
increases computation time. A value greater than 2 eliminates all breakpoints and may
be worth trying depending on the nature of the rest of the circuit, keeping in mind that
it might not be safe from the viewpoint of accuracy.

Breakpoints may usually be entirely eliminated if it is expected the circuit will not display
sharp discontinuities. Values between 0 and 1 are usually not required but may be used
for setting many breakpoints.

COMPACTREL may also be experimented with when the option TRYTOCOMPACT is specified
in a .0PTIONS card. The legal range is between 0 and 1. Larger values usually decrease
the accuracy of the simulation but in some cases improve speed. If TRYTOCOMPACT is not
specified on a .0PTIONS card, history compaction is not attempted and accuracy is high.

NO CONTROL, TRUNCDONTCUT and NOSTEPLIMIT also tend to increase speed at the expense
of accuracy.

6.3 Uniform Distributed RC Lines

General form:
UXXXXXXX nl n2 n3 mname l=len <n=lumps>
Examples:

Ul 1 2 0 URCMOD L=50U
URC2 1 12 2 UMODL 1=1MIL N=6

nl and n2 are the two element nodes the RC line connects, while n3 is the node the
capacitances are connected to. mname is the model name, len is the length of the RC line
in meters. lumps, if specified, is the number of lumped segments to use in modeling the
RC line (see the model description for the action taken if this parameter is omitted).

6.3.1 Uniform Distributed RC Model (URC)

The URC model is derived from a model proposed by L. Gertzberg in 1974. The model
is accomplished by a subcircuit type expansion of the URC line into a network of lumped
RC segments with internally generated nodes. The RC segments are in a geometric
progression, increasing toward the middle of the URC line, with K as a proportionality
constant. The number of lumped segments used, if not specified for the URC line device,
is determined by the following formula:



6.4. KSPICE LOSSY TRANSMISSION LINES 121

2
RC (K-1)
F, CorL? =

10% 1ax T, T,

N =

‘ 6.1
log K (6.1)

The URC line is made up strictly of resistor and capacitor segments unless the ISPERL
parameter is given a nonzero value, in which case the capacitors are replaced with reverse
biased diodes with a zero-bias junction capacitance equivalent to the capacitance replaced,
and with a saturation current of ISPERL amps per meter of transmission line and an
optional series resistance equivalent to RSPERL ohms per meter.

’ Name \ Parameter \ Units \ Default \ Example \ Area ‘
K Propagation Constant - 2.0 1.2 -
FMAX Maximum Frequency of interest Hz 1.0 G | 6.5 Meg -
RPERL Resistance per unit length Ym 1000 10 -
CPERL Capacitance per unit length Ffm | 10e-15 1p -
ISPERL | Saturation Current per unit length | 4/m 0 - -
RSPERL | Diode Resistance per unit length Ym 0 - -

6.4 KSPICE Lossy Transmission Lines

Unlike SPICE3, which uses the state-based approach to simulate lossy transmission lines,
KSPICE simulates lossy transmission lines and coupled multiconductor line systems using
the recursive convolution method. The impulse response of an arbitrary transfer function
can be determined by deriving a recursive convolution from the Pade approximations
of the function. ngspice is using this approach for simulating each transmission line’s
characteristics and each multiconductor line’s modal functions. This method of lossy
transmission line simulation has shown to give a sigificant speedup. Please note that the
following two models will support only transient simulation, no ac.

Additional Documentation Available:

e S. Lin and E. S. Kuh, ‘Pade Approximation Applied to Transient Simulation of
Lossy Coupled Transmission Lines,” Proc. TEEE Multi-Chip Module Conference,
1992, pp. 52-55.

e S. Lin, M. Marek-Sadowska, and E. S. Kuh, ‘SWEC: A StepWise Equivalent Con-
ductance Timing Simulator for CMOS VLSI Circuits,” European Design Automation
Conf., February 1991, pp. 142-148.

e S. Lin and E. S. Kuh, ‘Transient Simulation of Lossy Interconnect,” Proc. Design
Automation Conference, Anaheim, CA, June 1992, pp. 81-86.



122 CHAPTER 6. TRANSMISSION LINES

6.4.1 Single Lossy Transmission Line (TXL)

General form:
YXXXXXXX N1 0 N2 O mname <LEN=LENGTH>
Example:

Y1 1 0 2 0 ymod LEN=2
.MODEL ymod tx1 R=12.45 L=8.972e-9 G=0 C=0.468e-12 length=16

nl and n2 are the nodes of the two ports. The optional instance parameter len is the
length of the line and may be expressed in multiples of [unit]. Typically unit is given in
meters. len will override the model parameter 1length for the specific instance only.

The TXL model takes a number of parameters:

’ Name ‘ Parameter ‘ Units/Type ‘ Default ‘ Example ‘
R resistance/length Y unit 0.0 0.2
L inductance/length H [ unit 0.0 9.13e-9
G conductance/length mhos [ynit 0.0 0.0
C capacitance/length F funit 0.0 3.65e-12
LENGTH length of line unit no default 1.0

Model parameter 1length must be specified as a multiple of unit. Typically unit is given
in [m|. For transient simulation only.

6.4.2 Coupled Multiconductor Line (CPL)

The CPL multiconductor line model is in theory similar to the RLGC model, but without
frequency dependent loss (neither skin effect nor frequency-dependent dielectric loss). Up
to 8 coupled lines are supported in ngspice.

General form:
PXXXXXXX NI1 NI2...NIX GND1 NO1 NO2...NOX GND2 mname <LEN=LENGTH>
Example:

P1 inl in2 O bl b2 0 PLINE

.model PLINE CPL length={Len}

+R=1 0 1

+L={L11} {L12} {L22}

+G=0 0 0

+C={C11} {c12} {cC22}

.param Len=1 Rs=0

+ C11=9.143579E-11 C12=-9.78265E-12 (C22=9.143578E-11
+ L11=3.83572E-7 L12=8.26253E-8 L22=3.83572E-7



6.4. KSPICE LOSSY TRANSMISSION LINES 123

nil ... nix are the nodes at port 1 with gndl; nol ... nox are the nodes at port 2
with gnd2. The optional instance parameter len is the length of the line and may be
expressed in multiples of [unit]. Typically unit is given in meters. len will override the
model parameter length for the specific instance only.

The CPL model takes a number of parameters:

’ Name \ Parameter \ Units/Type \ Default \ Example
R resistance/length Q/umit 0.0 0.2
L inductance/length H [unit 0.0 9.13e-9
G conductance/length mhos [yt 0.0 0.0
C capacitance/length Ffunit 0.0 3.65e-12
LENGTH length of line unit no default 1.0

All RLGC parameters are given in Maxwell matrix form. For the R and G matrices the
diagonal elements must be specified, for L and C matrices the lower or upper triangular
elements must specified. The parameter LENGTH is a scalar and is mandatory. For
transient simulation only.



124 CHAPTER 6. TRANSMISSION LINES



Chapter 7

Diodes

7.1 Junction Diodes

General form:

DXXXXXXX n+ n- mname <area=val> <m=val> <pj=val> <off>

+ <ic=vd> <temp=val> <dtemp=val>
+ <lm=val> <wm=val> <lp=val> <wp=val>
Examples:

DBRIDGE 2 10 DIODE1
DCLMP 3 7 DMOD AREA=3.0 IC=0.2

The pn junction (diode) implemented in ngspice expands the one found in SPICE3f5.
Perimeter effects and high injection level have been introduced into the original model
and temperature dependence of some parameters has been added. n+ and n- are the
positive and negative nodes, respectively. mname is the model name. Instance parameters
may follow, dedicated to only the diode described on the respective line. area is the area
scale factor, which may scale the saturation current given by the model parameters (and
others, see table below). pj is the perimeter scale factor, scaling the sidewall saturation
current and its associated capacitance. m is a multiplier of area and perimeter, and off
indicates an (optional) starting condition on the device for dc analysis. If the area factor is
omitted, a value of 1.0 is assumed. The (optional) initial condition specification using ic
is intended for use with the uic option on the .tran control line, when a transient analysis
is desired starting from other than the quiescent operating point. You should supply the
initial voltage across the diode there. The (optional) temp value is the temperature at
which this device is to operate, and overrides the temperature specification on the .option
control line. The temperature of each instance can be specified as an offset to the circuit
temperature with the dtemp option.

To fulfill requirements of modern process design kits (PDK) the basic spice3 model was
extended with the capability of modeling parasitic effects like sidewall junction currents
and capacitances, tunnel currents and metal and polysilicon overlap capacitances. Latter

125



126 CHAPTER 7. DIODES

effect can be activated by level=3 model parameter or by setting element parameters
1m, wm, 1p and wp. If both are given, element parameters have priority.

7.2 Diode Model (D)

A basic model statement using only the internal default model parameters is

Basic model statement: The

.model DMOD D

dc characteristics of the diode are determined by the parameters is and n. An ohmic
resistance, rs, is included. Charge storage effects are modeled by a transit time, tt, and
a nonlinear depletion layer capacitance that is determined by the parameters cjo, vj,
and m. The temperature dependence of the saturation current is defined by the parame-
ters eg, the energy, and xti, the saturation current temperature exponent. The nominal
temperature where these parameters were measured is tnom, which defaults to the circuit-
wide value specified on the .options control line. Reverse breakdown is modeled by an
exponential increase in the reverse diode current and is determined by the parameters bv

and ibv (both of which are positive numbers).

Junction DC parameters

’ Name Parameter \ Units \ Default \ Example \ Scale faci
IS (JS) Saturation current A 1.0e-14 1.0e-16 | area
JSW Sidewall saturation current A 0.0 1.0e-15 | perimeter
N Emission coefficient - 1 1.5
RS Ohmic resistance Q 0.0 100 area
BV Reverse breakdown voltage V 00 40
IBV Current at breakdown voltage A 1.0e-3 1.0e-4
NBV Breakdown Emission Coefficient - N 1.2
IKF (IK) | Forward knee current A 0.0 1.0e-3
IKR Reverse knee current A 0.0 1.0e-3
JTUN Tunneling saturation current A 0.0 area
JTUNSW | Tunneling sidewall saturation current A 0.0 perimeter
NTUN Tunneling emission coefficient - 30
XTITUN | Tunneling saturation current exponential - 3
KEG EG correction factor for tunneling - 1.0
ISR Recombination saturation current A le-14 1pA area
NR Recombination current emission coefficient - 1 2




7.2. DIODE MODEL (D) 127

Junction capacitance parameters

’ Name \ Parameter \ Units \ Default \ Example \ Scale factor ‘
CJO (CJo) Zero-bias junction bottom-wall F 0.0 2pF area
capacitance
CJP (CJSW) | Zero-bias junction sidewall F 0.0 ApF perimeter
capacitance
FC Coefficient for forward-bias - 0.5 -

depletion bottom-wall
capacitance formula

FCS Coefficient for forward-bias - 0.5 -
depletion sidewall capacitance
formula
M (MJ) Area junction grading coefficient - 0.5 0.5
MJSW Periphery junction grading - 0.33 0.5
coefficient
VJ (PB) Junction potential 1% 1 0.6
PHP Periphery junction potential V 1 0.6
TT Transit-time sec 0 0.1ns

Metal and Polysilicon Overlap Capacitances (level=3)

’ Name \ Parameter \ Units \ Default \ Example \ Scale factor ‘
LM Length of metal capacitor m 0.0 4um SCALE
LP Length of polysilicon capacitor m 0.0 dum SCALE
WM Width of metal capacitor m 0.0 2um SCALE
WP Width of polysilicon capacitor m 0.0 4um SCALE
XOM | Thickness of the metal to bulk m le-06 -
oxide

XOI Thickness of the polysilicon to m le-06 -
bulk oxide

XM Masking and etching effects in m 0.0 -
metal

XP Masking and etching effects in m 0.0 -
polysilicon




128 CHAPTER 7. DIODES

Temperature effects

’ Name \ Parameter \ Units \ Default \ Example ‘
.11 Si
EG Activation energy eV 1.11 0.69 Sbhd
0.67 Ge
TM1 1st order tempco for MJ /ec 0.0 -
TM2 2nd order tempco for MJ /o2 0.0 -
TNOM (TREF) | Parameter measurement temperature °C 27 50
TRS1 (TRS) Ist order tempco for RS L] 0.0 -
TRS2 2nd order tempco for RS o2 0.0 -
TM1 Ist order tempco for MJ e 0.0 -
TM2 2nd order tempco for MJ /o2 0.0 -
TTT1 1st order tempco for TT 1o 0.0 -
TTT2 2nd order tempco for TT 1/oc2 0.0 -
XTI Saturation current temperature exponent - 3.0 38 Spbnd
TLEV Diode temperature equation selector - 0
TLEVC Diode capac. temperature equation selector - 0
CTA (CTC) Area junct. cap. temperature coefficient 1o 0.0 -
CTP Perimeter junct. cap. temperature coefficient e 0.0 -
TCV Breakdown voltage temperature coefficient e 0.0 -

Noise modeling

’ Name \ Parameter \ Units \ Default \ Example \ Scale factor ‘
KF Flicker noise coefficient - 0
AF Flicker noise exponent - 1

Diode models may be described in the input file (or an file included by .inc) according to
the following example:

General form:
.model mname type(pnamel=pvall pname2=pval2 ... )
Examples:

.model DMOD D (bv=50 is=1e-13 n=1.05)

7.3 Diode Equations

The junction diode is the basic semiconductor device and the simplest one in ngspice,
but its model is quite complex, even when not all the physical phenomena affecting a pn
junction are handled. The diode is modeled in three different regions:



7.3. DIODE EQUATIONS 129

o Forward bias: the anode is more positive than the cathode, the diode is ‘on’ and
can conduct large currents. To avoid convergence problems and unrealistic high
current, it is prudent to specify a series resistance to limit current with the rs
model parameter.

e Reverse bias: the cathode is more positive than the anode and the diode is ‘off”. A
reverse bias diode conducts a small leakage current.

o Breakdown: the breakdown region is modeled only if the bv model parameter is
given. When a diode enters breakdown the current increases exponentially (remem-
ber to limit it); bv is a positive value.

Parameters Scaling

Model parameters are scaled using the unit-less parameters area and pj and the multiplier
m as depicted below:

AREA.;y = AREAm

PJesy =PJm

ISy =1SAREA.;r + JSW PJyy
IBV.;; =1IBV AREA.¢¢

IK .y =1IK AREA.yy

IKR.;; =1IKR AREA ;¢

CJeps = CIOARE A ¢y

CJP.pp = CJP Py

Diode DC, Transient and AC model equations

The diode model has certain dc currents for bottom and sidewall components. Exemplary
here is the equation for the bottom part:

I[S.s(e¥# — 1)+ Vp - GMIN, if Vp > —3NT
Ip = { ~IS.pfll+ (YY) 4 Vi - GMIN, i = BVipy < Vp < —3MT  (7.1)

—a(BVess+VD)

—IS.p(e— ™ )+ Vp-GMIN, if Vp < —BV,y;

Two secondary effects are modeled if the appropriate parameters (see table Junction DC
parameters) are given: Recombination current and bottom and sidewall tunnel current.

The breakdown region must be described with more depth since the breakdown is not
modeled physically. As written before, the breakdown modeling is based on two model
parameters: the ‘nominal breakdown voltage’ bv and the current at the onset of break-
down ibv. For the diode model to be consistent, the current value cannot be arbitrarily
chosen, since the reverse bias and breakdown regions must match. When the diode enters
breakdown region from reverse bias, the current is calculated using the formula':

Lif you look at the source code in file diotemp.c you will discover that the exponential relation is
replaced with a first order Taylor series expansion.



130 CHAPTER 7. DIODES

Algorithm 7.1 Diode breakdown current calculation

if [B‘/eff < Ipgwn then
IB‘/eff = [bdum

BV, = BV
else
BVeyy =BV — NV, In(“-22)
Lguwn = —IS.sp(e ™ — 1) (7.2)

The computed current is necessary to adjust the breakdown voltage making the two
regions match. The algorithm is a little bit convoluted and only a brief description is
given here:

Most real diodes shows a current increase that, at high current levels, does not follow
the exponential relationship given above. This behavior is due to high level of carriers
injected into the junction. High injection effects (as they are called) are modeled with ik
and ikr.

—Ibb__ ifV, > —3NAT
I+ ”ﬁfo !
Ipers = © 7.3
e/t p otherwise. (7.3)

14/t
+ IKReff
Diode capacitance is divided into two different terms:

o Depletion capacitance

« Diffusion capacitance

Depletion capacitance is composed by two different contributes, one associated to the
bottom of the junction (bottom-wall depletion capacitance) and the other to the periphery
(sidewall depletion capacitance). The basic equations are

C'Diode - Cdiffusion + Cdepletion

Where the depletion capacitance is defined as:

Cdepletion = Cdeplbw + CYdeplsw

The diffusion capacitance, due to the injected minority carriers, is modeled with the
transit time tt:

8[Deff
oVp

Cdiffusion =TT

The depletion capacitance is more complex to model, since the function used to ap-
proximate it diverges when the diode voltage become greater than the junction built-in



7.3. DIODE EQUATIONS 131

potential. To avoid function divergence, the capacitance function is approximated with
a linear extrapolation for applied voltage greater than a fraction of the junction built-in
potential.

Ceps(1=5)™, if Vp < FC'-VJ
deply 1-FC(14+MJI)+MI YR . (7.4)
ClJeyy 1-_FC)a™My) otherwise.
CJIP.ss(1 — pis) MY, if Vi, < FCS - PHP .
deplsw — 1-FCS(1+MJSW)+MJISW- 25 , .
CJP.y ((1_FCS)(11M Tswr e, otherwise.

Temperature dependence

The temperature affects many of the parameters in the equations above, and the follow-
ing equations show how. Omne of the most significant parameters that varies with the
temperature for a semiconductor is the band-gap energy:

TNOM?
_ _ —4
EG,om = 1.16 — 7.02¢ TNOM + 1108.0 (7.6)
4 T
EG(T)=1.16 — 7.02¢ TNOM £ 1108.0 (7.7)
The leakage current temperature’s dependence is:
IS(T) = IS e~ (7.8)
JSW(T) = JSW e 5" (7.9)
where ‘logfactor’ is defined as
EG EG
= — XTIl 1
log factor Vi(INOM) ~ V,(T) + n(TNOM) (7.10)
The contact potentials (bottom-wall an sidewall) temperature dependence is:
T EGom EG(T)
VJ(T)=VJ] —Viy(T) |31 — 7.11
(T) = VI(gop) — VT { TNom) t v iTNOM) ~ V(T 1 (7.11)
T EGom EG(T)
PHP(T) =PHP(——) — Vi(T -1 — 12
(T) (Txoar) ~ V) [3 MTNon’ T vNoN) T V(T ] (7.12)

The depletion capacitances temperature dependence is:



132 CHAPTER 7. DIODES

CJ(T)=CJ {1 +MJ(4.0e”(T — TNOM) — V\J/ST) - 1)} (7.13)

CJSW(T) = CISW {1 + MJISW (4.0e~4(T — TNOM) — %Pg) + 1)} (7.14)

The transit time temperature dependence is:

TT(T) = TT(1 + TTT1(T — TNOM) + TTT2(T — TNOM)?) (7.15)

The junction grading coefficient temperature dependence is:

MJ(T) = MJ(1+ TM1(T — TNOM) + TM2(T — TNOM)?) (7.16)

The series resistance temperature dependence is:
RS(T) = RS(1 + TRS(T — TNOM) + TRS2(T — TNOM)?) (7.17)

Noise model

The diode has three noise contribution, one due to the presence of the parasitic resistance
rs and the other two (shot and flicker) due to the pn junction.

The thermal noise due to the parasitic resistance is:

—— 4kTAf
2, = 7.18
'Rs RS ( )
The shot and flicker noise contributions are
— KF - [AF
i2 = 2qIpAf + ——L-Af (7.19)

f

Self Heating model

Ngspice diode model has implemented a simple self heating approach. A current equivalent
to the dissipated power is conducted to a RC parallel circuit. The connection node voltage
is so a thermal equivalent to the junction overtemperature. This temperature follows in
a electro-thermal feedback with appropriate change of the diode current and capacitance.

Compared to the standard diode we have a third node tj and a flag thermal on element
line. In the model description we have to set rthhO and cth0 model parameter.
General form element usage:

DXXXXXXX n+ n- tj mname <off> <ic=vd> thermal

Example model:

.model DPWR D (bv=16 is=1e-10 n=1.03 rth0=50 cthO=1u)



Chapter 8

BJT

8.1 Bipolar Junction Transistors (BJTs)

General form:

QXXXXXXX nc nb ne <ns> <tj> mname <area=val> <areac=val>
+ <areab=val> <m=val> <off> <ic=vbe,vce> <temp=val>
+ <dtemp=val>

Examples:

Q23 10 24 13 QMOD IC=0.6, 5.0
Q50A 11 26 4 20 MOD1

nc, nb, and ne are the collector, base, and emitter nodes, respectively. ns is the (op-
tional) substrate node. When unspecified, ground is used. tj is the (optional) junction
temperature node, available in the VBIC model (see 8.2.2). mname is the model name,
area, areab, areac are the area factors (emitter, base and collector respectively), and
off indicates an (optional) initial condition on the device for the dc analysis. If the area
factor is omitted, a value of 1.0 is assumed.

The (optional) initial condition specification using ic=vbe,vce is intended for use with the
uic option on a .tran control line, when a transient analysis is desired to start from other
than the quiescent operating point. See the .ic control line description for a better way to
set transient initial conditions. The (optional) temp value is the temperature where this
device is to operate, and overrides the temperature specification on the .option control
line. Using the dtemp option one can specify the instance’s temperature relative to the
circuit temperature.

8.2 BJT Models (NPN/PNP)

Ngspice provides three different BJT device models, which are selected by the .model
card.

133



134 CHAPTER 8. BJT

.model QMOD1 PNP
.model QMOD3 NPN level=4

These are the minimal versions, using default parameters supplied by ngspice. Further
optional parameters listed in the table below may replace the ngspice default parameters.
The 1level keyword specifies the model to be used:

o level=1: This is the original SPICE BJT model, and it is the default model if the
level keyword is not specified on the .model line. By activating certain parameter
a modified version of the original SPICE BJT that models both vertical and lateral
devices, includes temperature corrections of collector, emitter and base resistors and
allow modeling of quasi-saturation effects.

o level=4: Advanced VBIC model (see 8.2.2 and http://www.designers-guide.org/VBIC/
for details)

o level=8: HICUM/L2 model (see 8.2.4 and the official website for details)

8.2.1 Gummel-Poon Models

The bipolar junction transistor model in ngspice is an adaptation of the integral charge
control model of Gummel and Poon. This modified Gummel-Poon model extends the
original model to include several effects at high bias levels. The model automatically
simplifies to the simpler Ebers-Moll model when certain parameters are not specified.
The parameter names used in the modified Gummel-Poon model have been chosen to be
more easily understood by the user, and to reflect better both physical and circuit design
thinking.

The dc model is defined by the parameters IS, BF, NF, ISE, IKF, and NE, which determine
the forward current gain characteristics, IS, BR, NR, ISC, IKR, and NC, which determine
the reverse current gain characteristics, and VAF and VAR, which determine the output
conductance for forward and reverse regions.

A more accurate model for transport current components is possible by specification of
model parameter IBE and IBC instead of IS.

Parameter NKF (NK) was introduced for more accurate high current beta rolloff modelling.

The BJT model has among the standard temperature parameters an extension compatible
with most foundry provided process design kits (see parameter table below TLEV).

The BJT model includes the substrate saturation current ISS. Three ohmic resistances
RB, RC, and RE are included, where RB can be high current dependent. Base charge storage
is modeled by forward and reverse transit times, TF and TR, where the forward transit time
TF can be bias dependent if desired. Nonlinear depletion layer capacitances are defined
with CJE, VJE, and NJE for the B-E junction, CJC, VJC, and NJC for the B-C junction and
CJS, VJS, and MJS for the C-S (collector-substrate) junction.

The BJT model support a substrate capacitance that is connected to the device’s base
or collector, to model lateral or vertical devices dependent on the parameter SUBS. The
temperature dependence of the saturation currents, IS and ISS, is determined by the
energy-gap, EG, and the saturation current temperature exponent, XTI.


http://www.designers-guide.org/VBIC/
https://www.iee.et.tu-dresden.de/iee/eb/hic_new/hic_intro.html

8.2. BJT MODELS (NPN/PNP) 135

In the new model, additional base current temperature dependence is modeled by the beta
temperature exponent XTB. The values specified are assumed to have been measured at
the temperature TNOM, which can be specified on the .options control line or overridden
by a specification on the .model line.

The BJT parameters used in the modified Gummel-Poon model are listed below. The
parameter names used in earlier versions of SPICE2 are still accepted.

Gummel-Poon BJT Parameters (incl. model extensions)

’ Name ‘ Parameters ‘ Units ‘ Default ‘ Example ‘ Scale factor ‘
SUBS Substrate connection: 1 for 1
vertical geometry, -1 for lateral
geometry
IS Transport saturation current A 1.0e-16 | 1.0e-15 area
IBE Base-Emitter saturation current A 0.0 1.0e-16 area
IBC Base-Collector saturation current A 0.0 1.0e-16 | areab,areac
ISS Reverse saturation current, A 0.0 1.0e-15 area
substrate-to-collector for vertical
device or substrate-to-base for
lateral
BF Ideal maximum forward beta. - 100 100
NF Forward current emission - 1.0 1
coefficient
VAF (VA) Forward Early voltage Vv 00 200
IKF Corner for forward beta current A 00 0.01 area
roll-off
NKF(NK) High current Beta rolloff - 0.5 0.9
exponent
ISE B-E leakage saturation current. A 0.0 le-13 area
NE B-E leakage emission coefficient - 1.5 2
BR Ideal maximum reverse beta - 1 0.1
NR Reverse current emission - 1 1
coefficient
VAR (VB) Reverse Early voltage 1% 00 200
IKR Corner for reverse beta high A 00 0.01 area
current roll-off
ISC B-C leakage saturation current A 0.0 le-13 areab,areac
(scale is ‘areab’ for vertical
devices and ‘areac’ for lateral)
NC B-C leakage emission coefficient - 2 1.5
RB Zero bias base resistance Q 0 100 1/area
IRB Current where base resistance A 00 0.1 area
falls halfway to its min value
RBM Minimum base resistance at high | RB 10 1/area
currents
RE Emitter resistance Q 0 1 1/area




136 CHAPTER 8. BJT
RC Collector resistance Q 0 10 1/area
CJE B-E zero-bias depletion F 0 2pF area

capacitance
VIJE (PE) B-E built-in potential V 0.75 0.6
MJE (ME) B-E junction exponential factor - 0.33 0.33
TF Ideal forward transit time sec 0 0.1ns
XTF Coefficient for bias dependence - 0
of TF
VTF Voltage describing VBC V 00
dependence of TF
ITF High-current parameter for effect A 0 - area
on TF
PTF Excess phase at freq:—ZwTF Hz deg 0
CcJC B-C zero-bias depletion F 2pF areab,areac
capacitance (scale is ‘areab’ for
vertical devices and ‘areac’ for
lateral)

VIJC (PC) B-C built-in potential Vv 0.75 0.5
MJC B-C junction exponential factor - 0.33 0.5
XCJC Fraction of B-C depletion - 1

capacitance connected to
internal base node

TR Ideal reverse transit time sec 0 10ns

CJS Zero-bias collector-substrate F 0 2pF areab,areac
capacitance (scale is ‘areac’ for
vertical devices and ‘areab’ for
lateral)

VIS (PS) Substrate junction built-in 1% 0.75

potential

MJS (MS) Substrate junction exponential - 0 0.5

factor
XTB Forward and reverse beta - 0
temperature exponent
EG Energy gap for temperature eV 1.11
effect on IS
XTI Temperature exponent for effect - 3
on IS
KF Flicker-noise coefficient - 0
AF Flicker-noise exponent - 1
FC Coefficient for forward-bias - 0.5 0
depletion capacitance formula
TNOM (TREF) | Parameter measurement °C 27 50
temperature
TLEV BJT temperature equation - 0

selector




8.2. BJT MODELS (NPN/PNP)

137

TLEVC BJT capac. temperature - 0
equation selector
TRE1 Ist order temperature coefficient | 1/°c 0.0 le-3
for RE
TRE2 2nd order temperature coefficient | 1/°c2 0.0 le-5
for RE
TRC1 Ist order temperature coefficient | 1/°c 0.0 le-3
for RC
TRC2 2nd order temperature coefficient | 1/°c2 0.0 le-5
for RC
TRB1 Ist order temperature coefficient | 1/°c 0.0 le-3
for RB
TRB2 2nd order temperature coefficient | 1/°c2 0.0 le-5
for RB
TRBM1 Ist order temperature coefficient | 1/°c 0.0 le-3
for RBM
TRBM?2 2nd order temperature coefficient | 1/°¢c2 0.0 le-5
for RBM
TBF1 Ist order temperature coefficient | 1/°c 0.0 le-3
for BF
TBF2 2nd order temperature coefficient | 1/°c2 0.0 le-5
for BF
TBR1 Ist order temperature coefficient | 1/°c 0.0 le-3
for BR
TBR2 2nd order temperature coefficient | 1/°c2 0.0 le-5
for BR
TIKF1 Ist order temperature coefficient | 1/°c 0.0 le-3
for IKF
TIKF2 2nd order temperature coefficient | 1/°¢2 0.0 le-5
for IKF
TIKR1 Ist order temperature coefficient | 1/°c 0.0 le-3
for IKR
TIKR2 2nd order temperature coefficient | 1/°¢2 0.0 le-5
for IKR
TIRB1 Ist order temperature coefficient | 1/°c 0.0 le-3
for IRB
TIRB2 2nd order temperature coefficient | 1/°c2 0.0 le-5
for IRB
TNC1 Ist order temperature coefficient | 1/°c 0.0 le-3
for NC
TNC2 2nd order temperature coefficient | 1/°c2 0.0 le-5
for NC
TNE1 st order temperature coefficient | 1/°c 0.0 le-3
for NE
TNE2 2nd order temperature coefficient | 1/°c2 0.0 le-5

for NE




138 CHAPTER 8. BJT
TNF1 Ist order temperature coefficient | 1/°c 0.0 le-3
for NF
TNE2 2nd order temperature coefficient | 1/°c2 0.0 le-5
for NF
TNR1 Ist order temperature coefficient | 1/°c 0.0 le-3
for IKF
TNR2 2nd order temperature coefficient | 1/°c2 0.0 le-5
for IKF
TVAF1 Ist order temperature coefficient | 1/°c 0.0 le-3
for VAF
TVAF2 2nd order temperature coefficient | 1/°¢c2 0.0 le-5
for VAF
TVARI1 Ist order temperature coefficient | 1/°c 0.0 le-3
for VAR
TVAR?2 2nd order temperature coefficient | 1/°¢c2 0.0 le-5
for VAR
CTC Ist order temperature coefficient | 1/°c 0.0 le-3
for CJC
CTE Ist order temperature coefficient | 1/°c 0.0 le-3
for CJE
CTS Ist order temperature coefficient | 1/°c 0.0 le-3
for CJS
TVJC Ist order temperature coefficient | 1/°c? 0.0 le-5
for VJC
TVJE Lst order temperature coefficient | 1/°c 0.0 le-3
for VJE
TITF1 Ist order temperature coefficient | 1/°c 0.0 le-3
for ITF
TITF2 2nd order temperature coefficient | 1/°¢2 0.0 le-5
for ITF
TTF1 Ist order temperature coefficient | 1/°c 0.0 le-3
for TF
TTF2 2nd order temperature coefficient | 1/°¢2 0.0 le-5
for TF
TTR1 Ist order temperature coefficient | 1/°c 0.0 le-3
for TR
TTR2 2nd order temperature coefficient | 1/°c2 0.0 le-5
for TR
TMJE1 Ist order temperature coefficient | 1/°c 0.0 le-3
for MJE
TMJE2 2nd order temperature coefficient | 1/°c2 0.0 le-5
for MJE
TMJC1 st order temperature coefficient | 1/°c 0.0 le-3
for MJC
TMJC2 2nd order temperature coefficient | 1/°c2 0.0 le-5
for MJC




8.2. BJT MODELS (NPN/PNP) 139

Quasi-Saturation Model extension

By defining parameter RCO, VO, GAMMA and QCO an extension of the Gummel-
Poon model will be switched on to model bipolar junction transistors that exhibit quasi-
saturation effects. A description can be found in [24].

] Name ‘ Parameters ‘ Units ‘ Default ‘ Example ‘ Scale factor ‘
RCO Epitaxial region resistance Q 0 0.45 1/area
VO Carrier mobility knee \Y 10 4.16
voltage
GAMMA | Epitaxial region doping — le-11 1.0e-15
factor
QCO Epitaxial region charge C 0.0 3.4E-11
factor
VG Energy gap QS temp. \Y 1.206 1.2
depend.
CN Temperature exponent of 2.42 NPN 2.2 PNP
RCI
D Temperature exponent of .87 NPN .52 PNP
VO

The Collector current output characteristic shows a special moderate transition in the
BJT saturation region, see figure 8.1. Furthermore DC current gain and the unity gain
frequency fT falls sharply.

2.0

40

3.0

20

ﬁ%w“ﬂ

o O
=]
=]
(]

1.0 1.5 20 25 3.0 3.5 40 45 5.0
V-sweep \

Figure 8.1: Output characteristic with and w/o Quasi-Saturation



140 CHAPTER 8. BJT

8.2.2 VBIC Model

The VBIC model is an extended development of the Standard Gummel-Poon (SGP)
model with the focus of integrated bipolar transistors in today’s modern semiconductor
technologies. With the implemented modified Quasi-Saturation model from Kull and
Nagel it is also possible to model the special output characteristic of discrete switching
and RF transistors. It is a improved alternative to the SGP model for silicon, SiGe and

ITII-V HBT devices.
VBIC Capabilities compared to Standard Gummel-Poon Model:

o Integrated substrate transistor for parasitic devices in integrated processes
o Weak avalanche and base-emitter breakdown model

o Improved Early effect modeling

o Physical separation of Ic and Ib

e Improved depletion capacitance model

e Improved temperature modeling

o Self-heating modeling

VBIC self-heating model

This model has implemented a simple 1-pole thermal network to cover self-heating effects.
That means that the power dissipation is gathered in all branches of the device model
and is conducted as an equivalent current Ith into one model node dt. This node has a
resistor Rth and capacitor Cth parallel connection to ground. Because the resistor plays
the role of the thermal resistance from junction to case the arising voltage at node dt is
equivalent the BJT junctions temperature. The model realisizes that this temperature rise
follows in deviations for internal resistors, currents and capacitors calculations according
the temperature update equations. This process is included into the ngspice iteration
schema for all analysis.

The simple thermal network of the VBIC model is shown in Fig. 8.2.

dt

Cth
@ It —
Rt

thermaFnetwork

Figure 8.2: VBIC thermal network



8.2. BJT MODELS (NPN/PNP) 141

How to instantiate the bipolar VBIC model (only minimal version) with self-heating:

vc ¢ 0 O

vb b 0 1

ve e 0 O

vs s 0 O

Q1 ¢ b e s dt modl area=1
.model modl npn Level=4

Of course it is possible to connect an more accurate thermal network to the node dt. The
following example is showing a simplified thermal network covering the thermal resistances
and capacitors of junction-case and case-ambient transitions including a heat-sink.

Q1 ¢ b e s dt mod2

X1 dt tamb junction-ambient
VTamb tamb O 30

.subckt junction-ambient jct amb
rjc jct 1 0.4

ccs 1 0O bm

rcs 1 2 0.1

csa 2 0 30m

rsa 2 amb 1.3

.ends

8.2.3 MEXTRAM Model

MEXTRAM (Most EXquisite TRAnsistor Model)) is an advanced compact model for
bipolar transistors that contains many features that the widely-used Gummel-Poon model
lacks. The model was initiated by Philips and later co-worked by NXP Semiconductors
and different Universities.

Mextram has proven excellent for Si and SiGe processes, including analog, mixed-signal,
high speed RF as well as high voltage high power technologies. It accounts for high injec-
tion effects with a dedicated epi-layer model, self heating, avalanche, low-frequency and
high frequency noises in physical manners, and is formulated with minimal interactions
between DC and AC characteristics that simplifies parameter extraction.

For more information see MEXTRAM and MEXTRAM Definition.

Ngspice has implemented version 504.12.1 in his experimental ADMS tree. It will be
activated by the BJT model parameter level=6.

8.2.4 HICUM level 2 Model

The physics-based HIgh-CUrrent Model (HICUM) Level2 (L2) has been a standard com-
pact model for bipolar junction transistors and heterojunction bipolar transistors (HBTSs)
for many years. The model has been shown to be applicable to many process genera-
tions of SiGe HBTs and also to InP HBTS, including high-speed and high-voltage device


http://www.eng.auburn.edu/~niuguof/mextram/index.html
https://www.nxp.com/wcm_documents/models/bipolar-models/mextram/mextramdefinition.pdf

142 CHAPTER 8. BJT

Figure 8.3: The equivalent circuit of HICUM /L2 without the self-heating, NQS and noise
correlation networks.

designs. The implemented version in Ngspice is HICUML2/2.4 and can be activated by
BJT model parameter level=8.

HICUML2 captures most to all known physical effects relevant in HBTs, in example:

o substrate transistor

« avalanche effect

e physics based transfer current model

o self-heating

» accurate modeling of the temperature dependence

» excess phase between base and collector current

Note that the noise correlation network is not implemented in Ngspice. More information
regarding the model and its parameters can be found on the website.

The equivalent circuit of the model is shown in fig. 8.3. The model is employed in many
PDKs for state-of-the-art SiGe and InP HBTs and is actively developed at TU Dresden.

The HICUM model exposes the following nodes to the user:
C(ollector) B(ase) E(mitter) S(ubstrate) T(emperature)

By connecting the T and S nodes of the model to other circuit elements, the thermal
and substrate network can be modified by the user. Note that both self-heating and the
avalanche effect may cause convergency issues if the operating region is too extreme.

The HICUM/L2 model can be initiated like this example:


https://www.iee.et.tu-dresden.de/iee/eb/hic_new/hic_intro.html

8.2. BJT MODELS (NPN/PNP) 143

Ve
vb
ve
vs

Q1

Q. 0 n ®o T o0

H o O o oo

O - O

0
e s dt modl area=1
modl npn Level=8

Self-heating is activated by model parameters FLSH, RTH and connecting T node of the
device instance. FLSH = 1 will only consider main thermal contributions of IC and IB,
FLSH = 2 include all power dissipations of the transistor.

8.2.5 HICUM level 0 Model

The HIgh-CUrrent Model (HICUM) Level0 (LO) is a simplified version of the HICUM
level 2 model. Ngspice has implemented version 1.32 in his experimental ADMS tree. It
will be activated by the BJT model parameter level=7.



144 CHAPTER 8. BJT



Chapter 9

JFETSs

9.1 Junction Field-Effect Transistors (JFETs)

General form:
JXXXXXXX nd ng ns mname <area> <off> <ic=vds,vgs> <temp=t>
Examples:

Ji1 7 2 3 JM1 OFF

nd, ng, and ns are the drain, gate, and source nodes, respectively. mname is the model
name, area is the area factor, and off indicates an (optional) initial condition on the
device for dc analysis. If the area factor is omitted, a value of 1.0 is assumed. The
(optional) initial condition specification, using ic=VDS,VGS is intended for use with the
uic option on the .TRAN control line, when a transient analysis is desired starting from
other than the quiescent operating point. See the .ic control line for a better way to set
initial conditions. The (optional) temp value is the temperature where this device is to
operate, and overrides the temperature specification on the .option control line.

9.2 JFET Models (NJF/PJF)

9.2.1 Basic model statement

.model JM1 NJF level=1
.model JMOD2 PJF level=2

9.2.2 JFET level 1 model with Parker Skellern modification

The level 1 JFET model is derived from the FET model of Shichman and Hodges. The
dc characteristics are defined by the parameters VIO and BETA, which determine the

145



146 CHAPTER 9. JFETS

variation of drain current with gate voltage, LAMBDA, which determines the output con-
ductance, and IS, the saturation current of the two gate junctions. Two ohmic resistances,
RD and RS, are included.

vgst = vgs — V1O (9.1)
B, = BETA (1 + LAMBDA vds) (9.2)
1-B
vds - GMIN, if vgst <0
Iprain = § By vds (vds (bfacvds — B) vgst (2B + 3bfac (vgst — vds))) +vds - GMIN, if vgst > vds
B, vgst® (B + vgst bfac) +vds - GMIN, if vgst < vds
(9.4)

Note that in Spice3f and later, the fitting parameter B has been added by Parker and
Skellern. For details, see [9]. If parameter B is set to 1 equation above simplifies to

vds - GMIN, if vgst <0
Iprain = { Bp vds (2ugst — vds) +vds - GMIN, if vgst > vds (9.5)
B, vgst* + vds - GMIN, if vgst < vds

Charge storage is modeled by nonlinear depletion layer capacitances for both gate junc-
tions, which vary as the —1/2 power of junction voltage and are defined by the parameters

CGS, CGD, and PB.



9.2. JFET MODELS (NJF/PJF) 147

] Name \ Parameter \ Units \ Default \ Example \ Scaling factor ‘
VTO Threshold voltage Vi V -2.0 -2.0
BETA Transconductance parameter (5) | 4/v" | 1.0e-4 1.0e-3 area
LAMBDA Channel-length modulation v 0 1.0e-4
parameter (\)
RD Drain ohmic resistance Q 0 100 1/area
RS Source ohmic resistance Q 0 100 1/area
CGS Zero-bias G-S junction F 0 5pF area
capacitance Cjq
CGD Zero-bias G-D junction F 0 1pF area
capacitance Cyq
PB Gate junction potential V 1 0.6
IS Gate saturation current Ig A 1.0e-14 | 1.0e-14 area
B Doping tail parameter - 1 1.1
KF Flicker noise coefficient - 0
AF Flicker noise exponent - 1
NLEV Noise equation selector - 1 3
GDSNOI Channel noise coefficient for 1.0 2.0
nlev=3
FC Coefficient for forward-bias 0.5
depletion capacitance formula
TNOM Parameter measurement °C 27 50
temperature
TCV Threshold voltage temperature 1/oc 0.0 0.01
coefficient
VTOTC Threshold voltage temperature 1/oc 0.0 -2.5m
coefficient (alternative model)
BEX Mobility temperature exponent - 0.0 1.1
BETATCE | Mobility temperature exponent | %/°c 0.0 -0.5
(alternative model)
XTI Gate saturation current - 3.0
temperature coefficient
EG Bandgap voltage 1.11

Additional to the standard thermal and flicker noise model an alternative thermal channel
noise model is implemented and is selectable by setting NLEV parameter to 3. This leads
to a correct channel thermal noise description in the linear region.

(14 a+a?)

2
Suoise = 5 4KT - BETA - Vgst GDSNOI (9.6)

with

vgs—VTO?

(9.7)

] — —vds if vgs — VTO > vds
o =
0, else

JFET level 1 model has an alternative temperature model for main parameter VIO and
BETA.:



148 CHAPTER 9. JFETS

« VTOTC is given:

VTO(Temp) =VTO +VTOTC % (Temp — TNOM) (9.8)

e« VTOTC not given:

VTO(Temp) =VTO —TCV % (Temp — TNOM) (9.9)

o« BETATCE is given:

BETA(Temp) = BET A  1.01BFTATCE«(Temp=TNOM) (9.10)

BETATCE not given:

(9.11)

Tem BEX
BETA(Temp) = BETA * ( p )

TNOM

9.2.3 JFET level 2 Parker Skellern model

The level 2 model is an improvement to level 1. Details are available in a pdf originating
from Macquarie University. Some important items are

e The description maintains strict continuity in its high-order derivatives, which is
essential for prediction of distortion and intermodulation.

e Frequency dependence of output conductance and transconductance is described as
a function of bias.

o Both drain-gate and source-gate potentials modulate the pinch-off potential, which
is consistent with S-parameter and pulsed-bias measurements.

o Self-heating varies with frequency.

« Extreme operating regions - subthreshold, forward gate bias, controlled resistance,
and breakdown regions - are included.

o Parameters provide independent fitting to all operating regions. It is not necessary
to compromise one region in favor of another.

e Strict drain-source symmetry is maintained. The transition during drain-source
potential reversal is smooth and continuous.

The model equations are described in this pdf document and in [19)].


http://ngspice.sourceforge.net/external-documents/models/psfet.pdf
http://ngspice.sourceforge.net/external-documents/models/psfet.pdf

9.2. JFET MODELS (NJF/PJF)

] Name \ Description \ Units \ Default ‘
ID Device IDText Text PF1
ACGAM Capacitance modulation - 0
BETA Linear-region transconductance scale - 1074
CGD Zero-bias gate-source capacitance F 0
CGS Zero-bias gate-drain capacitance F 0
DELTA Thermal reduction coefficient Vw 0
FC Forward bias capacitance parameter - 0.5
HFETA | High-frequency VGS feedback parameter - 0
HFE1 HFGAM modulation by VGD Vv 0
HFE2 HFGAM modulation by VGS v 0
HFGAM | High-frequency VGD feedback parameter - 0
HFG1 HFGAM modulation by VSG v 0
HFG2 HFGAM modulation by VDG Uy 0
IBD Gate-junction breakdown current A 0
IS Gate-junction saturation current A 101
LFGAM Low-frequency feedback parameter - 0
LFG1 LFGAM modulation by VSG v 0
LFG2 LFGAM modulation by VDG 1y 0
MVST Subthreshold modulation Uy 0
N Gate-junction ideality factor - 1
P Linear-region power-law exponent - 2
Q Saturated-region power-law exponent - 2
RS Source ohmic resistance Q 0
RD Drain ohmic resistance Q 0
TAUD Relaxation time for thermal reduction S 0
TAUG Relaxation time for gamma feedback S 0
VBD Gate-junction breakdown potential V 1
VBI Gate-junction potential V 1
VST Subthreshold potential \%4 0
VTO Threshold voltage % -2.0
XC Capacitance pinch-off reduction factor - 0
XI Saturation-knee potential factor - 1000
Z Knee transition parameter - 0.5
RG Gate ohmic resistance Q 0
LG Gate inductance H 0
LS Source inductance H 0
LD Drain inductance H 0
CDSS Fixed Drain-source capacitance F 0
AFAC Gate-width scale factor - 1
NFING Number of gate fingers scale factor - 1
TNOM | Nominal Temperature (Not implemented) | K 300 K
TEMP Temperature K 300 K




150 CHAPTER 9. JFETS



Chapter 10

MESFETs

10.1 MESFETs

General form:
ZXXXXXXX ND NG NS MNAME <AREA> <OFF> <IC=VDS, VGS>
Examples:

Z1 7 2 3 ZM1 OFF

10.2 MESFET Models (NMF /PMF)

10.2.1 Basic model statements

.model ZM1 NMF level=1
.model MZMOD PMF level=4

These model statements will use the default parameters ( level 1 listed below).

10.2.2 Model by Statz e.a.

The MESFET model level 1 is derived from the GaAs FET model of Statz et al. as
described in [11]. The dc characteristics are defined by the parameters VTO, B, and
BETA, which determine the variation of drain current with gate voltage, ALPHA, which
determines saturation voltage, and LAMBDA | which determines the output conductance.
The formula are given by:

/B(VS_V )2 VS 3 3
I = Ws_qﬂvojﬂo)[l—(l—a%)](l‘l‘/\‘/ds) f0r0<‘/ds<a

) BWVes—Vro)? 5
1+BEVQSE\?T0) (1+ AVas) for Vgs > =

(10.1)

151



152 CHAPTER 10. MESFETS

Two ohmic resistances, rd and rs, are included. Charge storage is modeled by total
gate charge as a function of gate-drain and gate-source voltages and is defined by the
parameters cgs, cgd, and pb.

’ Name \ Parameter \ Units \ Default \ Example \ Area ‘
VTO Pinch-off voltage V -2.0 -2.0
BETA Transconductance parameter Afvz2 | 1.0e-4 1.0e-3 *
B Doping tail extending parameter Uy 0.3 0.3 *
ALPHA Saturation voltage parameter Uy 2 2 *
LAMBDA | Channel-length modulation parameter | 1/v 0 1.0e-4
RD Drain ohmic resistance Q 0 100 *
RS Source ohmic resistance Q 0 100 *
CGS Zero-bias G-S junction capacitance F 0 opF *
CGD Zero-bias G-D junction capacitance F 0 1pF *
PB Gate junction potential V 1 0.6
KF Flicker noise coefficient - 0
AF Flicker noise exponent - 1
FC Coefficient for forward-bias depletion - 0.5
capacitance formula

Device instance:

z1l 2 3 0 mesmod area=1.4
Model:

.model mesmod nmf level=1 rd=46 rs=46 vt0=-1.3
+ lambda=0.03 alpha=3 beta=1.4e-3

10.2.3 Model by Ytterdal e.a.

level 2 (and levels 3,4) Copyright 1993: T. Ytterdal, K. Lee, M. Shur and T. A. Fjeldly

to be written

M. Shur, T.A. Fjeldly, T. Ytterdal, K. Lee, "Unified GaAs MESFET Model for Circuit
Simulation", Int. Journal of High Speed Electronics, vol. 3, no. 2, pp. 201-233, 1992

10.2.4 hfetl

level 5
Heterostructure Field Effect Transistor model as described in section 4.6 of the book

K. Lee, M. Shur, T. A. Fjeldly and T. Ytterdal, Semiconductor Device Modeling for VLSI,
1993, Prentice Hall, New Jersey.

Model parameters, equivalent circuit diagrams and device equations are also described in
the AIM-Spice reference manual, section Device Models A.


http://www.aimspice.com/downloads/aimspiceref.2020.100.pdf

10.2. MESFET MODELS (NMF/PMF) 153

10.2.5 hfet2

level6

The HFET level 2 model is a simplified version of the level 1 model. The model is
optimized for speed and is suitable for simulation of digital circuits. To increase the
speed, some of the features included in the level 1 model is not implemented for the level
2 model.



154 CHAPTER 10. MESFETS



Chapter 11

MOSFETs

Ngspice supports all the original MOSFET models present in SPICE3f5 and almost all
the newer ones that have been published and made open-source. Both bulk and SOI
(Silicon on Insulator) models are available. When compiled with the cider option, ngspice
implements the four terminals numerical model that can be used to simulate a MOS-
FET (please refer to numerical modeling documentation for additional information and
examples).

11.1 MOSFET devices

General form:

MXXXXXXX nd ng ns nb mname <m=val> <l=val> <w=val>
+ <ad=val> <as=val> <pd=val> <ps=val> <nrd=val>
+ <nrs=val> <off> <ic=vds, vgs, vbs> <temp=t>

Examples:

M1 24 2 0 20 TYPE1
M31 2 17 6 10 MOSN L=5U0 W=2U
M1 2 9 3 0 MOSP L=10U W=5U AD=100P AS=100P PD=40U PS=40U

Note the suffixes in the example: the suffix ‘u’ specifies microns (le-6 m) and ‘p’ sq-
microns (le-12 m?).

The instance card for MOS devices starts with the letter ‘M’ nd, ng, ns, and nb are the
drain, gate, source, and bulk (substrate) nodes, respectively. mname is the model name and
m is the multiplicity parameter, which simulates ‘m’ paralleled devices. All MOS models
support the ‘m’ multiplier parameter. Instance parameters 1 and w, channel length and
width respectively, are expressed in meters. The drain and source diffusion areas are ad
and as, in square meters (m?).

If any of 1, w, ad, or as are not specified, default values are used. The use of defaults
simplifies input file preparation, as well as the editing required if device geometries are to
be changed. pd and ps are the perimeters of the drain and source junctions, in meters. nrd

155



156 CHAPTER 11. MOSFETS

and nrs designate the equivalent number of squares of the drain and source diffusions;
these values multiply the sheet resistance rsh specified on the .model control line for
an accurate representation of the parasitic series drain and source resistance of each
transistor. pd and ps default to 0.0 while nrd and nrs to 1.0. off indicates an (optional)
initial condition on the device for dc analysis. The (optional) initial condition specification
using ic=vds,vgs,vbs is intended for use with the uic option on the .tran control line,
when a transient analysis is desired starting from other than the quiescent operating
point. See the .ic control line for a better and more convenient way to specify transient
initial conditions. The (optional) temp value is the temperature at which this device is to
operate, and overrides the temperature specification on the .option control line.

The temperature specification is ONLY valid for level 1, 2, 3, and 6 MOSFETs, not for
level 4 or 5 (BSIM) devices.

BSIM3 (v3.2 and v3.3.0), BSIM4 (v4.7 and v4.8) and BSIMSOI models are also supporting
the instance parameter delvto and muluO for local mismatch and NBTI (negative bias
temperature instability) modeling:

’ Name \ Parameter \ Units \ Default \ Example ‘
delvto (delvt0) Threshold voltage shift V 0.0 0.07
mulu0 Low-field mobility multiplier (U0) - 1.0 0.9

11.2 MOSFET models (NMOS/PMOS)

MOSFET models are the central part of ngspice, probably because they are the most
widely used devices in the electronics world. Ngspice provides all the MOSFETs imple-
mented in the original Spice3f and adds several models developed by UC Berkeley’s Device
Group and other independent groups.

Each model is invoked with a .model card. A minimal version is:
.model MOSN NMOS level=8 version=3.3.0

The model name MOSN corresponds to the model name in the instance card (see 11.1).
Parameter NMOS selects an n-channel device, PMOS would point to a p-channel tran-
sistor. The level and version parameters select the specific model. Further model
parameters are optional and replace ngspice default values. Due to the large number
of parameters (more than 100 for modern models), model cards may be stored in extra
files and loaded into the netlist by the .include (2.7) command. Model cards are specific
for a an IC manufacturing process and are typically provided by the IC foundry. Some
generic parameter sets, not linked to a specific process, are made available by the model
developers, e.g. UC Berkeley’s Device Group for BSIM4 and BSIMSOI.

Ngspice provides several MOSFET device models, which differ in the formulation of the
[-V characteristic, and are of varying complexity. Models available are listed in table 11.1.
Current models for IC design are BSIM3 (11.2.10, down to channel length of 0.25 pm),
BSIM4 (11.2.11, below 0.25 pm), BSIMSOI (11.2.14; silicon-on-insulator devices), HiSIM2
and HiSIM__HV (11.2.16, surface potential models for standard and high voltage/high
power MOS devices).


http://www-device.eecs.berkeley.edu/bsim/
http://www-device.eecs.berkeley.edu/bsim/
http://www-device.eecs.berkeley.edu/bsim/

157

11.2. MOSFET MODELS (NMOS/PMOS)

SOIN'T 10] UOISIOA 95e}[OA [SIH RUIYSOIY | 0C'C/TT T AH WISH | €L
BUWISOII] 0'8'C CINISTH | 89
uojydureyinog €108 DVLS | 09
Kooy dadIosed | LS
Koroy1og adrosed | 94
Kojoy1ogg adrosed | ¢S
PoIn3yuos swpe 11R[UOPTI) 01 dsd | Sv
poIndyuod swpe TAdd 9 CAMH | ¥¥
Aopestog 187 yINISd | 7S ‘TT
Aopsg | 0LF LAYINISE | 7S ‘FT
Aoroxrog G99y 9AVINISH | 7S ‘TT
9P09 UOISIOA THNIN Aoyg | C¥-0¥ GAPINISE | 7S ‘71T
Aopostog ey 10Svd | 8¢ ‘01
[¢1] wr poquioso(] Korasy1og 0¢e SIS | 67 '8
9POD UOISIOA TN Aofoy10y | ¥'2°¢ - 7€ CEACINISY | 67 ‘8
nosodoJ ueqIog Aq SUOISUDIXD Koros{aog 1I'¢ TACINISA | 67 ‘S
o1dso[[Ir) uR[y Aq SUOISUD)XO Aofox1og 0¢ 0AEINISA | 67 ‘8
o1dsor[Iy) Uery 6SOIN | 6
[z] Tt paquioseq AooyI0g 9SOIN | 9
[g] ur paqudse(g KorosIog ¢INISH | €
[¢] a1 paquidseg Koroxrog TINISH | ¥
([1] @9s) [opowt [eoLIdwe-Tes Y AoraIog &SOIN | €
[¢] ut poquse(y Aopositog - UBTIYO1]-9A01) ¢SO | €
‘[opout o1yeIpenb [edISSe[D o) SI SIY T, Kooy - SOSPOI-UeWPIYS ISOIN | T

S9J)ON]

| seouaIRjeYy |

.ﬂwaoﬁw\w@Qi UOISIOA 7

[PPOIN |

ouwre N 7 [PA9T ;

Table 11.1: MOSFET model summary



158 CHAPTER 11. MOSFETS

11.2.1 MOS Level 1

This model is also known as the ‘Shichman-Hodges” model. This is the first model written
and the one often described in the introductory textbooks for electronics. This model is
applicable only to long channel devices. The use of Meyer’s model for the C-V part makes
it non charge conserving.

11.2.2 MOS Level 2

This model tries to overcome the limitations of the Level 1 model addressing several short-
channel effects, like velocity saturation. The implementation of this model is complicated
and this leads to many convergence problems. C-V calculations can be done with the
original Meyer model (non charge conserving).

11.2.3 MOS Level 3

This is a semi-empirical model derived from the Level 2 model. In the 80s this model
has often been used for digital design and, over the years, has proved to be robust. A
discontinuity in the model with respect to the KAPPA parameter has been detected (see
[10]). The supplied fix has been implemented in Spice3f2 and later. Since this fix may
affect parameter fitting, the option badmos3 may be set to use the old implementation (see
the section on simulation variables and the .options line). Ngspice level 3 implementation
takes into account length and width mask adjustments (x1 and xw) and device width
narrowing due to diffusion (wd).

11.2.4 MOS Level 6

This model is described in [2]. The model can express the current characteristics of short-
channel MOSFETs at least down to 0.25 um channel-length, GaAs FET, and resistance
inserted MOSFETs. The model evaluation time is about 1/3 of the evaluation time of
the SPICE3 mos level 3 model. The model also enables analytical treatments of circuits
in short-channel region and makes up for a missing link between a complicated MOSFET
current characteristics and circuit behaviors in the deep submicron region.

11.2.5 Notes on Level 1-6 models

The dc characteristics of the level 1 through level 3 MOSFETS are defined by the device
parameters vto, kp, lambda, phi and gamma. These parameters are computed by ngspice if
process parameters (nsub, tox, ...) are given, but users specified values always override.
vto is positive (negative) for enhancement mode and negative (positive) for depletion
mode N-channel (P-channel) devices.

Charge storage is modeled by three constant capacitors, cgso, cgdo, and cgbo, which
represent overlap capacitances, by the nonlinear thin-oxide capacitance that is distributed
among the gate, source, drain, and bulk regions, and by the nonlinear depletion-layer
capacitances for both substrate junctions divided into bottom and periphery, which vary



11.2. MOSFET MODELS (NMOS/PMOS) 159

as the mj and mjsw power of junction voltage respectively, and are determined by the
parameters cbd, cbs, cj, cjsw, mj, mjsw and pb.

Charge storage effects are modeled by the piecewise linear voltages-dependent capacitance
model proposed by Meyer. The thin-oxide charge-storage effects are treated slightly differ-
ent for the level 1 model. These voltage-dependent capacitances are included only if tox
is specified in the input description and they are represented using Meyer’s formulation.

There is some overlap among the parameters describing the junctions, e.g. the reverse
current can be input either as is (in A) or as js (in 4/m?). Whereas the first is an absolute
value the second is multiplied by ad and as to give the reverse current of the drain and
source junctions respectively.

This methodology has been chosen since there is no sense in relating always junction
characteristics with ad and as entered on the device line; the areas can be defaulted. The
same idea applies also to the zero-bias junction capacitances cbd and cbs (in F) on one
hand, and cj (in £/m?) on the other.

The parasitic drain and source series resistance can be expressed as either rd and rs (in
ohms) or rsh (in ohms/sq.), the latter being multiplied by the number of squares nrd
and nrs input on the device line.

MOS level 1, 2, 3 and 6 parameters

Name Parameter Units Default Example
LEVEL Model index - 1
VTO Zero-bias threshold V 0.0 1.0
voltage (Vo)
KP Transconductance Afy? 2.0e-5 3.1e-5
parameter
GAMMA | Bulk threshold parameter VV 0.0 0.37
PHI Surface potential (U) 1% 0.6 0.65
LAMBDA Channel length v 0.0 0.02
modulation (MOS1 and
MOS2 only) ())

RD Drain ohmic resistance Q 0.0 1.0
RS Source ohmic resistance Q 0.0 1.0
CBD Zero-bias B-D junction F 0.0 20fF

capacitance
CBS Zero-bias B-S junction F 0.0 20fF
capacitance
IS Bulk junction saturation A 1.0e-14 1.0e-15
current (Ig)
PB Bulk junction potential V 0.8 0.87
CGSO Gate-source overlap F/m 0.0 4.0e-11
capacitance per meter
channel width




160 CHAPTER 11. MOSFETS
Name Parameter Units Default Example
CGDO Gate-drain overlap E/m 0.0 4.0e-11

capacitance per meter
channel width
CGBO Gate-bulk overlap F/m 0.0 2.0e-11
capacitance per meter
channel width
RSH Drain and source diffusion inl 0.0 10
sheet resistance
CJ Zero-bias bulk junction F/m? 0.0 2.0e-4
bottom cap. per sq-meter
of junction area
MJ Bulk junction bottom - 0.5 0.5
grading coeff.
CJSW Zero-bias bulk junction F/m 0.0 1.0e-9
sidewall cap. per meter of
junction perimeter
MJSW Bulk junction sidewall - (levell)
) 0.33 (level2, 3)
grading coeff.
JS Bulk junction saturation
current
TOX Oxide thickness m 1.0e-7 1.0e-7
NSUB Substrate doping cm ™3 0.0 4.0el5
NSS Surface state density cm 2 0.0 1.0e10
NFS Fast surface state density cm 2 0.0 1.0e10
TPG Type of gate material: +1 - 1.0
opp. to substrate, -1 same
as substrate, 0 Al gate
XJ Metallurgical junction m 0.0 1M
depth
LD Lateral diffusion m 0.0 0.8M
§[0) Surface mobility em?® [V sec 600 700
UCRIT Critical field for mobility V/em 1.0e4 1.0e4
degradation (MOS2 only)
UEXP Critical field exponent in - 0.0 0.1
mobility degradation
(MOS2 only)
UTRA Transverse field coeff. - 0.0 0.3
(mobility) (deleted for
MOS2)
VMAX | Maximum drift velocity of m/s 0.0 5.0e4
carriers
NEFF Total channel-charge - 1.0 5.0
(fixed and mobile)
coefficient (MOS2 only)
KF Flicker noise coefficient - 0.0 1.0e-26
AF Flicker noise exponent - 1.0 1.2




11.2. MOSFET MODELS (NMOS/PMOS) 161

Name Parameter Units Default Example
FC Coefficient for - 0.5
forward-bias depletion
capacitance formula
DELTA Width effect on threshold - 0.0 1.0
voltage (MOS2 and
MOS3)
THETA Mobility modulation v 0.0 0.1
(MOS3 only)
ETA Static feedback (MOS3 - 0.0 1.0
only)
KAPPA Saturation field factor - 0.2 0.5
(MOS3 only)
TNOM Parameter measurement °C 27 50
temperature

11.2.6 MOS Level 9

Documentation is not available..

11.2.7 BSIM Models

Ngspice implements many of the BSIM models developed by Berkeley’s BSIM group.
BSIM stands for Berkeley Short-Channel IGFET Model and groups a class of models that
is continuously updated. BSIM3 (11.2.10) and BSIM4 (11.2.11) are industry standards
for CMOS processes down to 0.15 pm (BSIM3) and below (BSIM4), are very stable and
are supported by model parameter sets from foundries all over the world. BSIM1 and
BSIM2 are obsolete today.

In general, all parameters of BSIM models are obtained from process characterization,
in particular level 4 and level 5 (BSIM1 and BSIM2) parameters can be generated auto-
matically. J. Pierret [4] describes a means of generating a ‘process’ file, and the program
ngproc2mod provided with ngspice converts this file into a sequence of BSIM1 .model
lines suitable for inclusion in an ngspice input file.

Parameters marked below with an * in the 1/w column also have corresponding parameters
with a length and width dependency. For example, vfb is the basic parameter with units
of Volts, and 1vfb and wvfb also exist and have units of Volt-meter.

The formula
P Py

P=Py+ + 11.1
0 Leffective Weffective ( )

is used to evaluate the parameter for the actual device specified with

Lef‘fective = Linput - DL (].12)


http://bsim.berkeley.edu/

162 CHAPTER 11. MOSFETS

Weffective = Winput — Dw (1 1 3)

Note that unlike the other models in ngspice, the BSIM models are designed for use
with a process characterization system that provides all the parameters, thus there are no
defaults for the parameters, and leaving one out is considered an error. For an example set
of parameters and the format of a process file, see the SPICE2 implementation notes [3].
For more information on BSIM2, see reference [5]. BSIM3 (11.2.10) and BSIM4 (11.2.11)
represent state of the art for submicron and deep submicron IC design.

11.2.8 BSIM1 model (level 4)

BSIM1 model (the first is a long series) is an empirical model. Developers placed less
emphasis on device physics and based the model on parametrical polynomial equations
to model the various physical effects. This approach pays in terms of circuit simulation
behavior but the accuracy degrades in the submicron region. A known problem of this
model is the negative output conductance and the convergence problems, both related to
poor behavior of the polynomial equations.

BSIM1 (level 4) parameters

Name Parameter Units | l/w
VFB Flat-band voltage Vv *
PHI Surface inversion potential Vv *

K1 Body effect coefficient VV *
K2 Drain/source depletion charge-sharing - *
coefficient
ETA Zero-bias drain-induced barrier-lowering - *
coefficient
MUZ Zero-bias mobility em?® [y sec
DL Shortening of channel wm
DW Narrowing of channel um
U0 Zero-bias transverse-field mobility Uy *
degradation coefficient
Ul Zero-bias velocity saturation coefficient wlv *
X2MZ Sens. of mobility to substrate bias at v=0 | em*/v2.sec
X2E Sens. of drain-induced barrier lowering Vv
effect to substrate bias
X3E Sens. of drain-induced barrier lowering Vv *
effect to drain bias at V. = Vyy

X2U0 Sens. of transverse field mobility 1y *

degradation effect to substrate bias

X2U1 Sens. of velocity saturation effect to pmfy2 *

substrate bias
MUS Mobility at zero substrate bias and at em? [y 2.
‘/ds — V:id




11.2. MOSFET MODELS (NMOS/PMOS) 163

Name Parameter Units | 1/w
X2MS Sens. of mobility to substrate bias at em?fy2see | ¥
Vvds - ‘/dd
X3MS | Sens. of mobility to drain bias at Vi, = Vg | em*/v2sec
X3U1 Sens. of velocity saturation effect on drain pmfy2
bias at Vds=Vdd
TOX Gate oxide thickness wm
TEMP Temperature where parameters were °C
measured
VDD Measurement bias range V
CGDO Gate-drain overlap capacitance per meter Ffm
channel width
CGSO Gate-source overlap capacitance per meter Ffm
channel width
CGBO Gate-bulk overlap capacitance per meter Ffm

channel length
XPART | Gate-oxide capacitance-charge model flag -

NO Zero-bias subthreshold slope coefficient -
NB Sens. of subthreshold slope to substrate bias -
ND Sens. of subthreshold slope to drain bias - *
RSH Drain and source diffusion sheet resistance /g
JS Source drain junction current density Afm2
PB Built in potential of source drain junction V
MJ Grading coefficient of source drain junction -
PBSW | Built in potential of source, drain junction V
sidewall
MJSW | Grading coefficient of source drain junction -
sidewall
CJ Source drain junction capacitance per unit F/m2
area
CJSW | source drain junction sidewall capacitance Flm
per unit length
WDF Source drain junction default width m
DELL Source