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AMPLIFIERS AND ACTIVE
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1.1 From electric to electronic

This third volume of the book series Lessons In Electric Circuits makes a departure from the
former two in that the transition between eleciric circuits and electronic circuits is formally
crossed. Electric circuits are connections of conductive wires and other devices whereby the
uniform flow of electrons occurs. Electronic circuits add a new dimension to electric circuits
in that some means of control is exerted over the flow of electrons by another electrical signal,
either a voltage or a current.



2 CHAPTER 1. AMPLIFIERS AND ACTIVE DEVICES

In and of itself, the control of electron flow is nothing new to the student of electric cir-
cuits. Switches control the flow of electrons, as do potentiometers, especially when connected
as variable resistors (rheostats). Neither the switch nor the potentiometer should be new to
your experience by this point in your study. The threshold marking the transition from electric
to electronic, then, is defined by how the flow of electrons is controlled rather than whether or
not any form of control exists in a circuit. Switches and rheostats control the flow of electrons
according to the positioning of a mechanical device, which is actuated by some physical force
external to the circuit. In electronics, however, we are dealing with special devices able to con-
trol the flow of electrons according to another flow of electrons, or by the application of a static
voltage. In other words, in an electronic circuit, electricity is able to control electricity.

The historic precursor to the modern electronics era was invented by Thomas Edison in
1880 while developing the electric incandescent lamp. Edison found that a small current
passed from the heated lamp filament to a metal plate mounted inside the vacuum envelop.
(Figure 1.1 (a)) Today this is known as the “Edison effect”. Note that the battery is only neces-
sary to heat the filament. Electrons would still flow if a non-electrical heat source was used.

control

Figure 1.1: (a) Edison effect, (b) Fleming valve or vacuum diode, (c) DeForest audion triode
vacuum tube amplifier.

By 1904 Marconi Wireless Company adviser John Flemming found that an externally ap-
plied current (plate battery) only passed in one direction from filament to plate (Figure 1.1 (b)),
but not the reverse direction (not shown). This invention was the vacuum diode, used to con-
vert alternating currents to DC. The addition of a third electrode by Lee DeForest (Figure 1.1
(c)) allowed a small signal to control the larger electron flow from filament to plate.

Historically, the era of electronics began with the invention of the Audion tube, a device
controlling the flow of an electron stream through a vacuum by the application of a small
voltage between two metal structures within the tube. A more detailed summary of so-called
electron tube or vacuum tube technology is available in the last chapter of this volume for those
who are interested.

Electronics technology experienced a revolution in 1948 with the invention of the tran-
sistor. This tiny device achieved approximately the same effect as the Audion tube, but in
a vastly smaller amount of space and with less material. Transistors control the flow of elec-
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trons through solid semiconductor substances rather than through a vacuum, and so transistor
technology is often referred to as solid-state electronics.

1.2 Active versus passive devices

An active device is any type of circuit component with the ability to electrically control electron
flow (electricity controlling electricity). In order for a circuit to be properly called electronic,
it must contain at least one active device. Components incapable of controlling current by
means of another electrical signal are called passive devices. Resistors, capacitors, inductors,
transformers, and even diodes are all considered passive devices. Active devices include, but
are not limited to, vacuum tubes, transistors, silicon-controlled rectifiers (SCRs), and TRIACs.
A case might be made for the saturable reactor to be defined as an active device, since it is able
to control an AC current with a DC current, but I’'ve never heard it referred to as such. The
operation of each of these active devices will be explored in later chapters of this volume.

All active devices control the flow of electrons through them. Some active devices allow a
voltage to control this current while other active devices allow another current to do the job.
Devices utilizing a static voltage as the controlling signal are, not surprisingly, called voltage-
controlled devices. Devices working on the principle of one current controlling another current
are known as current-controlled devices. For the record, vacuum tubes are voltage-controlled
devices while transistors are made as either voltage-controlled or current controlled types. The
first type of transistor successfully demonstrated was a current-controlled device.

1.3 Amplifiers

The practical benefit of active devices is their amplifying ability. Whether the device in ques-
tion be voltage-controlled or current-controlled, the amount of power required of the control-
ling signal is typically far less than the amount of power available in the controlled current.
In other words, an active device doesn’t just allow electricity to control electricity; it allows a
small amount of electricity to control a large amount of electricity.

Because of this disparity between controlling and controlled powers, active devices may be
employed to govern a large amount of power (controlled) by the application of a small amount
of power (controlling). This behavior is known as amplification.

It is a fundamental rule of physics that energy can neither be created nor destroyed. Stated
formally, this rule is known as the Law of Conservation of Energy, and no exceptions to it have
been discovered to date. If this Law is true — and an overwhelming mass of experimental data
suggests that it is — then it is impossible to build a device capable of taking a small amount of
energy and magically transforming it into a large amount of energy. All machines, electric and
electronic circuits included, have an upper efficiency limit of 100 percent. At best, power out
equals power in as in Figure 1.2.

Usually, machines fail even to meet this limit, losing some of their input energy in the form
of heat which is radiated into surrounding space and therefore not part of the output energy
stream. (Figure 1.3)

Many people have attempted, without success, to design and build machines that output
more power than they take in. Not only would such a perpetual motion machine prove that the
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Pinput :{> Perfect machine :{> Poutput

P
Efficiency = — ™ =1 = 100%

input

Figure 1.2: The power output of a machine can approach, but never exceed, the power input
for 100% efficiency as an upper limit.

Pioput :{> Realistic machine |:{> Poutput

ﬂ={> P (Usually waste heat)

Poutput

Efficiency = <1 =less than 100%

input

Figure 1.3: A realistic machine most often loses some of its input energy as heat in transform-
ing it into the output energy stream.
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Law of Conservation of Energy was not a Law after all, but it would usher in a technological
revolution such as the world has never seen, for it could power itself in a circular loop and
generate excess power for “free”. (Figure 1.4)

|:||> Perpetual-motion
Pinput Pnachine :{> Poutput

output

P
Efficiency = ——— > 1 = more than 100%

input

= & <& =
e e

Poutput

Figure 1.4: Hypothetical “perpetual motion machine” powers itself?

Despite much effort and many unscrupulous claims of “free energy” or over-unity machines,
not one has ever passed the simple test of powering itself with its own energy output and
generating energy to spare.

There does exist, however, a class of machines known as amplifiers, which are able to take in
small-power signals and output signals of much greater power. The key to understanding how
amplifiers can exist without violating the Law of Conservation of Energy lies in the behavior
of active devices.

Because active devices have the ability to control a large amount of electrical power with a
small amount of electrical power, they may be arranged in circuit so as to duplicate the form
of the input signal power from a larger amount of power supplied by an external power source.
The result is a device that appears to magically magnify the power of a small electrical signal
(usually an AC voltage waveform) into an identically-shaped waveform of larger magnitude.
The Law of Conservation of Energy is not violated because the additional power is supplied
by an external source, usually a DC battery or equivalent. The amplifier neither creates nor
destroys energy, but merely reshapes it into the waveform desired as shown in Figure 1.5.

In other words, the current-controlling behavior of active devices is employed to shape DC
power from the external power source into the same waveform as the input signal, producing
an output signal of like shape but different (greater) power magnitude. The transistor or other
active device within an amplifier merely forms a larger copy of the input signal waveform out
of the “raw” DC power provided by a battery or other power source.

Amplifiers, like all machines, are limited in efficiency to a maximum of 100 percent. Usu-
ally, electronic amplifiers are far less efficient than that, dissipating considerable amounts of
energy in the form of waste heat. Because the efficiency of an amplifier is always 100 percent
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External L

power source ——
n
Props = Amplifier I::> Poutput

~~ AVAV

Figure 1.5: While an amplifier can scale a small input signal to large output, its energy source
is an external power supply.

or less, one can never be made to function as a “perpetual motion” device.

The requirement of an external source of power is common to all types of amplifiers, elec-
trical and non-electrical. A common example of a non-electrical amplification system would
be power steering in an automobile, amplifying the power of the driver’s arms in turning the
steering wheel to move the front wheels of the car. The source of power necessary for the am-
plification comes from the engine. The active device controlling the driver’s “input signal” is a
hydraulic valve shuttling fluid power from a pump attached to the engine to a hydraulic piston
assisting wheel motion. If the engine stops running, the amplification system fails to amplify
the driver’s arm power and the car becomes very difficult to turn.

1.4 Amplifier gain

Because amplifiers have the ability to increase the magnitude of an input signal, it is useful to
be able to rate an amplifier’s amplifying ability in terms of an output/input ratio. The technical
term for an amplifier’s output/input magnitude ratio is gain. As a ratio of equal units (power
out / power in, voltage out / voltage in, or current out / current in), gain is naturally a unitless
measurement. Mathematically, gain is symbolized by the capital letter “A”.

For example, if an amplifier takes in an AC voltage signal measuring 2 volts RMS and
outputs an AC voltage of 30 volts RMS, it has an AC voltage gain of 30 divided by 2, or 15:

\%

Av — output
Vinput
_ 30V
Vo ov
A, =15

Correspondingly, if we know the gain of an amplifier and the magnitude of the input signal,
we can calculate the magnitude of the output. For example, if an amplifier with an AC current
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gain of 3.5 is given an AC input signal of 28 mA RMS, the output will be 3.5 times 28 mA, or
98 mA:

Ioutput = (AI)(Iinput)
loutput = (3.5)(28 MA)

loutpur = 98 MA

In the last two examples I specifically identified the gains and signal magnitudes in terms
of “AC.” This was intentional, and illustrates an important concept: electronic amplifiers often
respond differently to AC and DC input signals, and may amplify them to different extents.
Another way of saying this is that amplifiers often amplify changes or variations in input
signal magnitude (AC) at a different ratio than steady input signal magnitudes (DC). The
specific reasons for this are too complex to explain at this time, but the fact of the matter is
worth mentioning. If gain calculations are to be carried out, it must first be understood what
type of signals and gains are being dealt with, AC or DC.

Electrical amplifier gains may be expressed in terms of voltage, current, and/or power, in
both AC and DC. A summary of gain definitions is as follows. The triangle-shaped “delta”
symbol (A) represents change in mathematics, so “AV 10t / AVinput” means “change in output
voltage divided by change in input voltage,” or more simply, “AC output voltage divided by AC
input voltage”:

DC gains AC gains
V AV
Voltage | A, = 2 | A, =
Vinput AVinput
I Al
Current A| — output A| — output
I input Al input
AP: Poutput Ap: (Avoutput)(Aloutput)
Powel’ PI nput (Avinput) (AI input)
Ap=(AV)A)

A="changein..."

If multiple amplifiers are staged, their respective gains form an overall gain equal to the
product (multiplication) of the individual gains. (Figure 1.6) If a 1 V signal were applied to the
input of the gain of 3 amplifier in Figure 1.6 a 3 V signal out of the first amplifier would be
further amplified by a gain of 5 at the second stage yielding 15 V at the final output.
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Input signal =—=> Amplifier > Amplifier :> Output signal

gan=3 gan=5

Overall gain = (3)(5) = 15

Figure 1.6: The gain of a chain of cascaded amplifiers is the product of the individual gains.

1.5 Decibels

In its simplest form, an amplifier’s gain is a ratio of output over input. Like all ratios, this
form of gain is unitless. However, there is an actual unit intended to represent gain, and it is
called the bel.

As a unit, the bel was actually devised as a convenient way to represent power loss in tele-
phone system wiring rather than gain in amplifiers. The unit’s name is derived from Alexan-
der Graham Bell, the famous Scottish inventor whose work was instrumental in developing
telephone systems. Originally, the bel represented the amount of signal power loss due to re-
sistance over a standard length of electrical cable. Now, it is defined in terms of the common
(base 10) logarithm of a power ratio (output power divided by input power):

P
AP(r atio) = ﬂ
I:)input
I:)output
Apge) = 109
input

Because the bel is a logarithmic unit, it is nonlinear. To give you an idea of how this works,
consider the following table of figures, comparing power losses and gains in bels versus simple
ratios:

Table: Gain / loss in bels

Loss/gain as Loss/gain Loss/gain as Loss/gain
a ratio in bels a ratio in bels
Poutput |Og Poutput I:)output |0g I:)output

I:)i nput input PI nput input
1000 3B 0.1 -1B
100 2B 0.01 -2B
10 1B 0.001 -3B
1
(no loss or gain) 0B 0.0001 4B

It was later decided that the bel was too large of a unit to be used directly, and so it became
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customary to apply the metric prefix deci (meaning 1/10) to it, making it decibels, or dB. Now,
the expression “dB” is so common that many people do not realize it is a combination of “deci-”
and “-bel,” or that there even is such a unit as the “bel.” To put this into perspective, here is
another table contrasting power gain/loss ratios against decibels:

Table: Gain / loss in decibels

Loss/gain as Loss/gain Loss/gain as Loss/gain
a ratio in decibels a ratio in decibels
Poutput 10 Iog Poutput Poutput 10 Iog Poutput

Pinput Pinput Pinput input
1000 30dB 0.1 -10dB
100 20dB 0.01 -20dB
10 10 dB 0.001 -30dB
1
(no loss or gain) 0dB 0.0001 -40 dB

As a logarithmic unit, this mode of power gain expression covers a wide range of ratios with
a minimal span in figures. It is reasonable to ask, “why did anyone feel the need to invent a
logarithmic unit for electrical signal power loss in a telephone system?” The answer is related
to the dynamics of human hearing, the perceptive intensity of which is logarithmic in nature.

Human hearing is highly nonlinear: in order to double the perceived intensity of a sound,
the actual sound power must be multiplied by a factor of ten. Relating telephone signal power
loss in terms of the logarithmic “bel” scale makes perfect sense in this context: a power loss of
1 bel translates to a perceived sound loss of 50 percent, or 1/2. A power gain of 1 bel translates
to a doubling in the perceived intensity of the sound.

An almost perfect analogy to the bel scale is the Richter scale used to describe earthquake
intensity: a 6.0 Richter earthquake is 10 times more powerful than a 5.0 Richter earthquake; a
7.0 Richter earthquake 100 times more powerful than a 5.0 Richter earthquake; a 4.0 Richter
earthquake is 1/10 as powerful as a 5.0 Richter earthquake, and so on. The measurement
scale for chemical pH is likewise logarithmic, a difference of 1 on the scale is equivalent to
a tenfold difference in hydrogen ion concentration of a chemical solution. An advantage of
using a logarithmic measurement scale is the tremendous range of expression afforded by a
relatively small span of numerical values, and it is this advantage which secures the use of
Richter numbers for earthquakes and pH for hydrogen ion activity.

Another reason for the adoption of the bel as a unit for gain is for simple expression of sys-
tem gains and losses. Consider the last system example (Figure 1.6) where two amplifiers were
connected tandem to amplify a signal. The respective gain for each amplifier was expressed as
a ratio, and the overall gain for the system was the product (multiplication) of those two ratios:

Overall gain = (3) (5) = 15

If these figures represented power gains, we could directly apply the unit of bels to the task
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of representing the gain of each amplifier, and of the system altogether. (Figure 1.7)

Apge) = 109 Apgaio)

Apga) =10g3 Apga) =109 5
. Amplifier Amplifier
Input signal =——> gain=3 |:{> gain=5 |:|'> Output signal
gain =0.477B gain = 0.699B

Overall gain = (3)(5) = 15
Overall gainge, = log 15=1.176 B

Figure 1.7: Power gain in bels is additive: 0.477 B + 0.699 B =1.176 B.

Close inspection of these gain figures in the unit of “bel” yields a discovery: they’re additive.

Ratio gain figures are multiplicative for staged amplifiers, but gains expressed in bels add
rather than multiply to equal the overall system gain. The first amplifier with its power gain
0f 0.477 B adds to the second amplifier’s power gain of 0.699 B to make a system with an overall
power gain of 1.176 B.

Recalculating for decibels rather than bels, we notice the same phenomenon. (Figure 1.8)

Apg) = 10109 Apaio)

Ape) = 1010g 3 Apas) = 101095
) Amplifier Amplifier
Input signal —> gain=3 |:"> gain =5 |:|,> Output signal
gain =4.77dB gain = 6.99 dB

Overall gain = (3)(5) = 15
Overall gaingg, = 101og 15=11.76 dB

Figure 1.8: Gain of amplifier stages in decibels is additive: 4.77 dB + 6.99 dB = 11.76 dB.

To those already familiar with the arithmetic properties of logarithms, this is no surprise.
It is an elementary rule of algebra that the antilogarithm of the sum of two numbers’ logarithm
values equals the product of the two original numbers. In other words, if we take two numbers
and determine the logarithm of each, then add those two logarithm figures together, then
determine the “antilogarithm” of that sum (elevate the base number of the logarithm — in this
case, 10 — to the power of that sum), the result will be the same as if we had simply multiplied
the two original numbers together. This algebraic rule forms the heart of a device called a
slide rule, an analog computer which could, among other things, determine the products and
quotients of numbers by addition (adding together physical lengths marked on sliding wood,
metal, or plastic scales). Given a table of logarithm figures, the same mathematical trick
could be used to perform otherwise complex multiplications and divisions by only having to
do additions and subtractions, respectively. With the advent of high-speed, handheld, digital
calculator devices, this elegant calculation technique virtually disappeared from popular use.
However, it is still important to understand when working with measurement scales that are
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logarithmic in nature, such as the bel (decibel) and Richter scales.
When converting a power gain from units of bels or decibels to a unitless ratio, the mathe-
matical inverse function of common logarithms is used: powers of 10, or the antilog.

If:
Apga) = 109 Apgaio)

Then:
Apgaio) = 10°wee

Converting decibels into unitless ratios for power gain is much the same, only a division
factor of 10 is included in the exponent term:

If:
Apge) = 10109 Apaio)

Then:

Arcs)
_1n 10
AP(ratio) =10
Example: Power into an amplifier is 1 Watt, the power out is 10 Watts. Find the power
gain in dB.

AP(dB) =10 loglo(Po /P]) =10 10g10 (10 /1) =10 10g10 (10)=10(1)=10 dB
Example: Find the power gain ratio Ap (i) = (Po / Pr) for a 20 dB Power gain.

AP(dB) =20 = 10 logio AP(ratio)

20/10 = 10g10 AP(TatiO)

1020/10 = {logio(Ap(ratio))
100 = Ap(ratioy = Po / Pr)

Because the bel is fundamentally a unit of power gain or loss in a system, voltage or current
gains and losses don’t convert to bels or dB in quite the same way. When using bels or decibels
to express a gain other than power, be it voltage or current, we must perform the calculation
in terms of how much power gain there would be for that amount of voltage or current gain.
For a constant load impedance, a voltage or current gain of 2 equates to a power gain of 4 (22);
a voltage or current gain of 3 equates to a power gain of 9 (32). If we multiply either voltage
or current by a given factor, then the power gain incurred by that multiplication will be the
square of that factor. This relates back to the forms of Joule’s Law where power was calculated
from either voltage or current, and resistance:
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2
P:E_

R

P=I°R

Power is proportional to the square
of either voltage or current

Thus, when translating a voltage or current gain ratio into a respective gain in terms of the
bel unit, we must include this exponent in the equation(s):

Apge) =109 Apgaic)

Avee) = 100 Ay aio) Exponent required

A ge) =109 A aic)

The same exponent requirement holds true when expressing voltage or current gains in
terms of decibels:

Ap) = 10109 Apgaio)

Avas) = 10109 Ay ai). = Exponent required

Ay =101log Al(ratio)

However, thanks to another interesting property of logarithms, we can simplify these equa-
tions to eliminate the exponent by including the “2” as a multiplying factor for the logarithm
function. In other words, instead of taking the logarithm of the square of the voltage or current
gain, we just multiply the voltage or current gain’s logarithm figure by 2 and the final result
in bels or decibels will be the same:

For bels:
_ 2 _ 2
Ay e =109 Ay raio) A ge) =109 A raic)
. is the same as . ...Iisthe same as .
AV(BeI) 2log AV(ratlo) AI(BeI) 2log Al(ratlo)

For decibels:

Ay = 101og AV(raIlo) Aigs) =101log Al(ratlo)
. is the same as . . is the same as .
AV(dB) 20log AV(raIlo) AI(dB) 201log Al(ratlo)

The process of converting voltage or current gains from bels or decibels into unitless ratios
is much the same as it is for power gains:
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If:

Avga) = 2109 Ay raic) A ey = 2109 A raic)
Then: Av(ge) A ge)

Ay (raio) = 10 2 A\ (raiic = 10 2

Here are the equations used for converting voltage or current gains in decibels into unitless
ratios:

If:
Ays) = 20109 Ay raic) Aas) = 20109 A raic)
Then: Av(ds) A\ds)
Ayaio) = 10 A(atio) = 107

While the bel is a unit naturally scaled for power, another logarithmic unit has been in-
vented to directly express voltage or current gains/losses, and it is based on the natural loga-
rithm rather than the common logarithm as bels and decibels are. Called the neper, its unit
symbol is “N,,; though, lower-case “n” may be encountered.

_ Voutput _ Ioutput
AV(raﬁio) - Vv Al(ratio) _I—
input input
AV(neper) =In AV(ratio) Al(neper) =In Al(ratio)

For better or for worse, neither the neper nor its attenuated cousin, the decineper, is popu-
larly used as a unit in American engineering applications.
Example: The voltage into a 600 2 audio line amplifier is 10 mV, the voltage across a 600
2 load is 1 V. Find the power gain in dB.
Aap) =20 log10(Vo / Vi) = 20 logio (1 /0.01) = 20 logy (100) = 20 (2) = 40 dB

Example: Find the voltage gain ratio Ay (.40 = (Vo / V) for a 20 dB gain amplifier
having a 50 Q input and out impedance.

Ay apy = 20 logio Ay (ratio)
20 = 20 logi0 Av (ratio)
20/20 = log1o Ap(ratio)
1020/20 = {logio(Av (ratio))
10 = Ay (ratio) = (Vo / V1)

e REVIEW:
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e Gains and losses may be expressed in terms of a unitless ratio, or in the unit of bels (B)
or decibels (dB). A decibel is literally a deci-bel: one-tenth of a bel.

e The bel is fundamentally a unit for expressing power gain or loss. To convert a power
ratio to either bels or decibels, use one of these equations:

o Areey= 109 Apaio) Apr) = 10109 Apai)

e When using the unit of the bel or decibel to express a voltage or current ratio, it must be
cast in terms of an equivalent power ratio. Practically, this means the use of different
equations, with a multiplication factor of 2 for the logarithm value corresponding to an
exponent of 2 for the voltage or current gain ratio:

Avge) = 2109 Ay o) Ave) = 20109 Ay i)

o Aiee)= 2109 A(aio) Ajag) = 20109 A raic)

e To convert a decibel gain into a unitless ratio gain, use one of these equations:
Avis)
Ay aiio) = 10 »

Aias)

A aio) = 10 »

Apas)

Ap(raio) = 10 10

e A gain (amplification) is expressed as a positive bel or decibel figure. A loss (attenuation)
is expressed as a negative bel or decibel figure. Unity gain (no gain or loss; ratio = 1) is
expressed as zero bels or zero decibels.

e When calculating overall gain for an amplifier system composed of multiple amplifier
stages, individual gain ratios are multiplied to find the overall gain ratio. Bel or deci-
bel figures for each amplifier stage, on the other hand, are added together to determine
overall gain.

1.6 Absolute dB scales

It is also possible to use the decibel as a unit of absolute power, in addition to using it as an
expression of power gain or loss. A common example of this is the use of decibels as a measure-
ment of sound pressure intensity. In cases like these, the measurement is made in reference to
some standardized power level defined as 0 dB. For measurements of sound pressure, 0 dB is
loosely defined as the lower threshold of human hearing, objectively quantified as 1 picowatt
of sound power per square meter of area.

A sound measuring 40 dB on the decibel sound scale would be 10* times greater than the
threshold of hearing. A 100 dB sound would be 10'° (ten billion) times greater than the thresh-
old of hearing.
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Because the human ear is not equally sensitive to all frequencies of sound, variations of the
decibel sound-power scale have been developed to represent physiologically equivalent sound
intensities at different frequencies. Some sound intensity instruments were equipped with
filter networks to give disproportionate indications across the frequency scale, the intent of
which to better represent the effects of sound on the human body. Three filtered scales became
commonly known as the “A,” “B,” and “C” weighted scales. Decibel sound intensity indications
measured through these respective filtering networks were given in units of dBA, dBB, and
dBC. Today, the “A-weighted scale” is most commonly used for expressing the equivalent phys-
iological impact on the human body, and is especially useful for rating dangerously loud noise
sources.

Another standard-referenced system of power measurement in the unit of decibels has been
established for use in telecommunications systems. This is called the dBm scale. (Figure 1.9)
The reference point, 0 dBm, is defined as 1 milliwatt of electrical power dissipated by a 600 2
load. According to this scale, 10 dBm is equal to 10 times the reference power, or 10 milliwatts;
20 dBm is equal to 100 times the reference power, or 100 milliwatts. Some AC voltmeters come
equipped with a dBm range or scale (sometimes labeled “DB”) intended for use in measuring
AC signal power across a 600 2 load. 0 dBm on this scale is, of course, elevated above zero
because it represents something greater than 0 (actually, it represents 0.7746 volts across a
600 2 load, voltage being equal to the square root of power times resistance; the square root
of 0.001 multiplied by 600). When viewed on the face of an analog meter movement, this dBm
scale appears compressed on the left side and expanded on the right in a manner not unlike a
resistance scale, owing to its logarithmic nature.

Radio frequency power measurements for low level signals encountered in radio receivers
use dBm measurements referenced to a 50 2 load. Signal generators for the evaluation of radio
receivers may output an adjustable dBm rated signal. The signal level is selected by a device
called an attenuator, described in the next section.

Table: Absolute power levels in dBm (decibel milliwatt)

Power in Power in Power in | Power in Power in
watts milliwatts dBm milliwatts dBm
1 1000 30dB 1 0dB
0.1 100 20dB 0.1 -10dB
0.01 10 10dB 0.01 -20 dB
0.004 4 6 dB 0.001 -30dB
0.002 2 3dB 0.0001 -40dB

Figure 1.9: Absolute power levels in dBm (decibels referenced to 1 milliwatt).



16 CHAPTER 1. AMPLIFIERS AND ACTIVE DEVICES

An adaptation of the dBm scale for audio signal strength is used in studio recording and
broadcast engineering for standardizing volume levels, and is called the VU scale. VU meters
are frequently seen on electronic recording instruments to indicate whether or not the recorded
signal exceeds the maximum signal level limit of the device, where significant distortion will
occur. This “volume indicator” scale is calibrated in according to the dBm scale, but does not
directly indicate dBm for any signal other than steady sine-wave tones. The proper unit of
measurement for a VU meter is volume units.

When relatively large signals are dealt with, and an absolute dB scale would be useful for
representing signal level, specialized decibel scales are sometimes used with reference points
greater than the 1 mW used in dBm. Such is the case for the dBW scale, with a reference
point of 0 dBW established at 1 Watt. Another absolute measure of power called the dBk scale
references 0 dBk at 1 kW, or 1000 Watts.

e REVIEW:

e The unit of the bel or decibel may also be used to represent an absolute measurement of
power rather than just a relative gain or loss. For sound power measurements, 0 dB is
defined as a standardized reference point of power equal to 1 picowatt per square meter.
Another dB scale suited for sound intensity measurements is normalized to the same
physiological effects as a 1000 Hz tone, and is called the dBA scale. In this system, 0
dBA is defined as any frequency sound having the same physiological equivalence as a 1
picowatt-per-square-meter tone at 1000 Hz.

e An electrical dB scale with an absolute reference point has been made for use in telecom-
munications systems. Called the dBm scale, its reference point of 0 dBm is defined as 1
milliwatt of AC signal power dissipated by a 600 €2 load.

e A VU meter reads audio signal level according to the dBm for sine-wave signals. Because
its response to signals other than steady sine waves is not the same as true dBm, its unit
of measurement is volume units.

e dB scales with greater absolute reference points than the dBm scale have been invented
for high-power signals. The dBW scale has its reference point of 0 dBW defined as 1 Watt
of power. The dBk scale sets 1 kW (1000 Watts) as the zero-point reference.

1.7 Attenuators

Attenuators are passive devices. It is convenient to discuss them along with decibels. Attenu-
ators weaken or attenuate the high level output of a signal generator, for example, to provide
a lower level signal for something like the antenna input of a sensitive radio receiver. (Fig-
ure 1.10) The attenuator could be built into the signal generator, or be a stand-alone device.
It could provide a fixed or adjustable amount of attenuation. An attenuator section can also
provide isolation between a source and a troublesome load.

In the case of a stand-alone attenuator, it must be placed in series between the signal
source and the load by breaking open the signal path as shown in Figure 1.10. In addition,
it must match both the source impedance Z; and the load impedance Zy, while providing a
specified amount of attenuation. In this section we will only consider the special, and most
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Z | Z,
' Attenuator
ORNES 2
L

Figure 1.10: Constant impedance attenuator is matched to source impedance Z; and load
impedance Zy. For radio frequency equipment Z is 50 €.

common, case where the source and load impedances are equal. Not considered in this section,
unequal source and load impedances may be matched by an attenuator section. However, the
formulation is more complex.

o VWA o

[ °J [ °J

T attenuator 1 attenuator

Figure 1.11: T section and Il section attenuators are common forms.

Common configurations are the T and IT networks shown in Figure 1.11 Multiple attenuator
sections may be cascaded when even weaker signals are needed as in Figure 1.19.

1.7.1 Decibels

Voltage ratios, as used in the design of attenuators are often expressed in terms of decibels.
The voltage ratio (K below) must be derived from the attenuation in decibels. Power ratios ex-
pressed as decibels are additive. For example, a 10 dB attenuator followed by a 6 dB attenuator
provides 16dB of attenuation overall.

10dB+6db=16dB

Changing sound levels are perceptible roughly proportional to the logarithm of the power
ratio (P; / Pp).

sound level = logo(P; / Pp)

A change of 1 dB in sound level is barely perceptible to a listener, while 2 db is readily
perceptible. An attenuation of 3 dB corresponds to cutting power in half, while a gain of 3 db
corresponds to a doubling of the power level. A gain of -3 dB is the same as an attenuation of
+3 dB, corresponding to half the original power level.

The power change in decibels in terms of power ratio is:
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dB =10 logo(P; / Po)

Assuming that the load R; at P; is the same as the load resistor Rp at Pp (R; = Rp), the
decibels may be derived from the voltage ratio (V; / V) or current ratio (I; / Ip):

Po=VolIlpo=Vp?2/R=1p%2R

P;=V;I;=V;2/R=1;2R

dB =10 logw(PI / Po) =10 loglo(VIQ /VOQ) =20 loglo(V]/Vo)
dB =10 loglo(P] / Po) =10 10g10(112 / 102) =20 loglo(I]/Io)

The two most often used forms of the decibel equation are:

dB =101log((P;/Pp) or dB =201ogo(V;/ Vo)

We will use the latter form, since we need the voltage ratio. Once again, the voltage ratio
form of equation is only applicable where the two corresponding resistors are equal. That is,
the source and load resistance need to be equal.

Example: Power into an attenuator is 10 Watts, the power out is 1 Watt. Find the
attenuation in dB.
dB =10 log,0(P; / Pp) = 10 logyo (10 /1) = 10 logyo (10) = 10 (1) = 10 dB
Example: Find the voltage attenuation ratio (K= (V;/Vy)) for a 10 dB attenuator.
dB =10=20 loglo(V[ /Vo)
10/20 = 10g10(V[ /VO)
1010/20 = 1glegro(Vi/Vo)

3.16 = (VI /VO) = AP(ratio)

Example: Power into an attenuator is 100 milliwatts, the power out is 1 milliwatt. Find
the attenuation in dB.

dB = 10 log;o(P; / Pp) = 10 log; (100 /1) = 10 logyo (100) = 10 (2) = 20 dB
Example: Find the voltage attenuation ratio (K= (V;/Vy)) for a 20 dB attenuator.
dB =20= 20 IOglo(V] /VO )

1020/20 = {(logio(V1/Vo)

10=(V;/Vp)=K
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1.7.2 T-section attenuator

The T and II attenuators must be connected to a Z source and Z load impedance. The Z-
(arrows) pointing away from the attenuator in the figure below indicate this. The Z-(arrows)
pointing toward the attenuator indicates that the impedance seen looking into the attenuator
with a load Z on the opposite end is Z, Z=50 () for our case. This impedance is a constant (50
) with respect to attenuation— impedance does not change when attenuation is changed.

The table in Figure 1.12 lists resistor values for the T and II attenuators to match a 50
source/ load, as is the usual requirement in radio frequency work.

Telephone utility and other audio work often requires matching to 600 2. Multiply all R
values by the ratio (600/50) to correct for 600 2 matching. Multiplying by 75/50 would convert
table values to match a 75 Q source and load.

dB = attenuation in decibels

Z = source/load impedance (resistive) Resistors for T-section
K>1 Z = 50
R R Att enuati on
Vo /20 1 1 dB__ [ K=Vi/Vo RL RC
K=y =1 1.0 | 1.12 | 2.88 | 433.34
o V, v 2.0 1.26 | 5.73 | 215.24
R =7 K-1 R, -° 3.0 1.41 | 8.55| 141.93
1= 4\ K+1 (Z0 zOo 4.0 1.58 |11.31 | 104.83
2K . . 6.0 2.00 |16.61 | 66.93
R.,=7 <_ > 10.0 3.16 [25.97 | 35.14
2 K21 T attenuator 20.0 | 10.00 |40.91 | 10.10

Figure 1.12: Formulas for T-section attenuator resistors, given K, the voltage attenuation ratio,
and Z; = Zp = 50 Q.

The amount of attenuation is customarily specified in dB (decibels). Though, we need the
voltage (or current) ratio K to find the resistor values from equations. See the dB/20 term in
the power of 10 term for computing the voltage ratio K from dB, above.

The T (and below IT) configurations are most commonly used as they provide bidirectional
matching. That is, the attenuator input and output may be swapped end for end and still
match the source and load impedances while supplying the same attenuation.

Disconnecting the source and looking in to the right at V;, we need to see a series parallel
combination of R, Ro, R, and Z looking like an equivalent resistance of Z;, the same as the
source/load impedance Z: (a load of Z is connected to the output.)

Zin =R + Ry ||(R1 + 7))

For example, substitute the 10 dB values from the 50 2 attenuator table for R; and R, as
shown in Figure 1.13.

Zin = 25.97 + (35.14 [|(25.97 + 50))
Zin =25.97 +(35.14 || 75.97)

Ziny =25.97 + 24.03 =50
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This shows us that we see 50 (2 looking right into the example attenuator (Figure 1.13) with
a 50  load.

Replacing the source generator, disconnecting load Z at Vo, and looking in to the left, should
give us the same equation as above for the impedance at V, due to symmetry. Moreover, the
three resistors must be values which supply the required attenuation from input to output.
This is accomplished by the equations for R; and R, above as applied to the T-attenuator
below.

Z R1:26.0 Rl
o— M —4— M0 ——
Vi R= Vo
v4n 351 70 % Z
=50 =50
O _ O

T attenuator

10 dB attenuators for matching input/output to Z= 50 Q.

Figure 1.13: 10 dB T-section attenuator for insertion between a 50 €2 source and load.

1.7.3 Pl-section attenuator

The table in Figure 1.14 lists resistor values for the IT attenuator matching a 50 2 source/ load
at some common attenuation levels. The resistors corresponding to other attenuation levels
may be calculated from the equations.

dB = attenuation in decibels

Z = source/load impedance (resistive) Resistors for M-section
Attenuation

V, Rs dB K=Vi/Vo| R3 R4
K = — =109/ o WA o 1.0 | 1.12 5.77 | 869.55
Vo 2.0 | 1.26 11.61 | 436.21
) \ Vo 3.0 | 1.41 17.61 | 292. 40
R =Z<K -1> 2o SR, R,2z0 4.0 | 1.8 | 23.85| 220 97
s 2K 6.0 | 2.00 37.35 | 150. 48
K+l o o [10.0 | 3.16 71.15| 96.25
R,=Z <K_1 > M attenuator 20.0 |10.00 [247.50| 61.11

Figure 1.14: Formulas for II-section attenuator resistors, given K, the voltage attenuation
ratio, and Z; = Zo = 50 Q).

The above apply to the m-attenuator below.
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Z Rs=71.2
o —/ A . o
V| R4= Vo Z
z0O 9%.2 R,;< [ZO
=50 =50
o : : )

1 attenuator

Figure 1.15: 10 dB II-section attenuator example for matching a 50 ) source and load.

What resistor values would be required for both the I attenuators for 10 dB of attenuation
matching a 50 2 source and load?

The 10 dB corresponds to a voltage attenuation ratio of K=3.16 in the next to last line of the
above table. Transfer the resistor values in that line to the resistors on the schematic diagram
in Figure 1.15.

1.7.4 L-section attenuator
The table in Figure 1.16 lists resistor values for the L attenuators to match a 50 Q source/

load. The table in Figure 1.17 lists resistor values for an alternate form. Note that the resistor
values are not the same.

dB = attenuation in decibels

Z = source/load impedance (resistive) ERES;;St 868 for L-section
K>1 Attenuation L
v Rs dB K=Vi / Vo R5 R6
— Y1 _1pndBi20 1.0 1.12] 5.44] 409.77
K Vo 10 ° W ° 2.0 1.26| 10.28]| 193.11
K-1 Vv, Vo 3.0 1.41| 14.60| 121.20
R.=7 <_> 0 R 4.0 1.58| 18.45| 85.49
5 K 6% 20 6.0 2.00| 24.94| 50.24
R= Z o o 10.0 3.16| 34.19| 23.12
6= (K-1) L attenuat or 20.0 10. 00| 45.00 5.56

Figure 1.16: L-section attenuator table for 50 Q) source and load impedance.

The above apply to the L attenuator below.

1.7.5 Bridged T attenuator

The table in Figure 1.18 lists resistor values for the bridged T attenuators to match a 50
source and load. The bridged-T attenuator is not often used. Why not?
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dB = attenuation in decibels
Z = source/load impedance (resistive)
K>1

R,
= ﬁ :1OdB/20 < AVAVAY o
VO VI VO
R, = Z(K-1) 70 Re 0
_ K
Rg=Z <T(:1> o o

L attenuator
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Resistors for L-section
Z=50. 00
Att enuation
dB [K=Vi/ Vo R7 R8
1.0 1.12 6.10 | 459. 77
2.0 1.26| 12.95| 243.11
3.0 1.41| 20.63 | 171.20
4.0 1.58| 29.24 | 135.49
6.0 2.00| 49.76 | 100. 24
10.0 3.16(108. 11 73.12
20.0 10. 00 [450. 00 55. 56

Figure 1.17: Alternate form L-section attenuator table for 50 Q) source and load impedance.

dB = attenuation in decibels

Z = source/load impedance (resistive) Resistors for bridged T
K>1 Z=50. 00
Attenuation
dB [K=Vi/Vo R7 R6
K = Vi 104B/20 1.0 1.12] 6.10 | 409.77
o 2.0 1.26| 12.95| 193.11
7 3.0 1.41| 20.63| 121.20
Re = 4.0 1.58| 29.24 | 85.49
(K-1) 6.0 2.00| 49.76| 50.24
- 10.0 3.16(108.11 | 23.12
Ry =Z(K-1) Bridged T attenuator 20.0 10.001450. 00 5. 56

Figure 1.18: Formulas and abbreviated table for bridged-T attenuator section, Z = 50 ().
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1.7.6 Cascaded sections

Attenuator sections can be cascaded as in Figure 1.19 for more attenuation than may be avail-
able from a single section. For example two 10 db attenuators may be cascaded to provide 20
dB of attenuation, the dB values being additive. The voltage attenuation ratio K or V;/Vo for
a 10 dB attenuator section is 3.16. The voltage attenuation ratio for the two cascaded sections
is the product of the two Ks or 3.16x3.16=10 for the two cascaded sections.

section 1 section 2

Figure 1.19: Cascaded attenuator sections: dB attenuation is additive.

Variable attenuation can be provided in discrete steps by a switched attenuator. The ex-
ample Figure 1.20, shown in the 0 dB position, is capable of 0 through 7 dB of attenuation by
additive switching of none, one or more sections.

4dB 2dB 1dB

Figure 1.20: Switched attenuator: attenuation is variable in discrete steps.

The typical multi section attenuator has more sections than the above figure shows. The
addition of a 3 or 8 dB section above enables the unit to cover to 10 dB and beyond. Lower
signal levels are achieved by the addition of 10 dB and 20 dB sections, or a binary multiple 16
dB section.

1.7.7 RF attenuators

For radio frequency (RF) work (<1000 Mhz), the individual sections must be mounted in
shielded compartments to thwart capacitive coupling if lower signal levels are to be achieved
at the highest frequencies. The individual sections of the switched attenuators in the previous
section are mounted in shielded sections. Additional measures may be taken to extend the
frequency range to beyond 1000 Mhz. This involves construction from special shaped lead-less
resistive elements.

A coaxial T-section attenuator consisting of resistive rods and a resistive disk is shown in
Figure 1.21. This construction is usable to a few gigahertz. The coaxial II version would have
one resistive rod between two resistive disks in the coaxial line as in Figure 1.22.
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metalic conductor

J\/
) |

resistive disc
resistive rod
Coaxial T-attenuator for radio frequency work

Figure 1.21: Coaxial T-attenuator for radio frequency work.
metalic conductor

iy

resistive rod
resistive disc

Coaxial M-attenuator for radio frequency work

Figure 1.22: Coaxial I1-attenuator for radio frequency work.
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RF connectors, not shown, are attached to the ends of the above T and II attenuators.
The connectors allow individual attenuators to be cascaded, in addition to connecting between
a source and load. For example, a 10 dB attenuator may be placed between a troublesome
signal source and an expensive spectrum analyzer input. Even though we may not need the
attenuation, the expensive test equipment is protected from the source by attenuating any
overvoltage.

Summary: Attenuators

e An attenuator reduces an input signal to a lower level.

e The amount of attenuation is specified in decibels (dB). Decibel values are additive for
cascaded attenuator sections.

dB from power ratio:  dB =10 logo(P;/ Po)

dB from voltage ratio: dB =20 logo(V;/ Vo)

T and II section attenuators are the most common circuit configurations.

Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most
recent to first. See Appendix 2 (Contributor List) for dates and contact information.

Colin Barnard (November 2003): Correction regarding Alexander Graham Bell’s country
of origin (Scotland, not the United States).
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2.1 Introduction

This chapter will cover the physics behind the operation of semiconductor devices and show
how these principles are applied in several different types of semiconductor devices. Subse-
quent chapters will deal primarily with the practical aspects of these devices in circuits and
omit theory as much as possible.
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2.2 Quantum physics
“I think it is safe to say that no one understands quantum mechanics.”
Physicist Richard P. Feynman

To say that the invention of semiconductor devices was a revolution would not be an ex-
aggeration. Not only was this an impressive technological accomplishment, but it paved the
way for developments that would indelibly alter modern society. Semiconductor devices made
possible miniaturized electronics, including computers, certain types of medical diagnostic and
treatment equipment, and popular telecommunication devices, to name a few applications of
this technology.

But behind this revolution in technology stands an even greater revolution in general sci-
ence: the field of quantum physics. Without this leap in understanding the natural world, the
development of semiconductor devices (and more advanced electronic devices still under devel-
opment) would never have been possible. Quantum physics is an incredibly complicated realm
of science. This chapter is but a brief overview. When scientists of Feynman’s caliber say that
“no one understands [it],” you can be sure it is a complex subject. Without a basic understand-
ing of quantum physics, or at least an understanding of the scientific discoveries that led to its
formulation, though, it is impossible to understand how and why semiconductor electronic de-
vices function. Most introductory electronics textbooks I've read try to explain semiconductors
in terms of “classical” physics, resulting in more confusion than comprehension.

Many of us have seen diagrams of atoms that look something like Figure 2.1.

e @ """ @ = electron
R @ = proton
@ = neutron

Figure 2.1: Rutherford atom: negative electrons orbit a small positive nucleus.

Tiny particles of matter called protons and neutrons make up the center of the atom; elec-
trons orbit like planets around a star. The nucleus carries a positive electrical charge, owing to
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the presence of protons (the neutrons have no electrical charge whatsoever), while the atom’s
balancing negative charge resides in the orbiting electrons. The negative electrons are at-
tracted to the positive protons just as planets are gravitationally attracted by the Sun, yet the
orbits are stable because of the electrons’ motion. We owe this popular model of the atom to the
work of Ernest Rutherford, who around the year 1911 experimentally determined that atoms’
positive charges were concentrated in a tiny, dense core rather than being spread evenly about
the diameter as was proposed by an earlier researcher, J.J. Thompson.

Rutherford’s scattering experiment involved bombarding a thin gold foil with positively
charged alpha particles as in Figure 2.2. Young graduate students H. Geiger and E. Marsden
experienced unexpected results. A few Alpha particles were deflected at large angles. A few
Alpha particles were back-scattering, recoiling at nearly 180°. Most of the particles passed
through the gold foil undeflected, indicating that the foil was mostly empty space. The fact
that a few alpha particles experienced large deflections indicated the presence of a minuscule
positively charged nucleus.

Figure 2.2: Rutherford scattering: a beam of alpha particles is scattered by a thin gold foil.

Although Rutherford’s atomic model accounted for experimental data better than Thomp-
son’s, it still wasn’t perfect. Further attempts at defining atomic structure were undertaken,
and these efforts helped pave the way for the bizarre discoveries of quantum physics. Today our
understanding of the atom is quite a bit more complex. Nevertheless, despite the revolution of
quantum physics and its contribution to our understanding of atomic structure, Rutherford’s
solar-system picture of the atom embedded itself in the popular consciousness to such a degree
that it persists in some areas of study even when inappropriate.

Consider this short description of electrons in an atom, taken from a popular electronics
textbook:

Orbiting negative electrons are therefore attracted toward the positive nucleus,
which leads us to the question of why the electrons do not fly into the atom’s nucleus.
The answer is that the orbiting electrons remain in their stable orbit because of two
equal but opposite forces. The centrifugal outward force exerted on the electrons
because of the orbit counteracts the attractive inward force (centripetal) trying to
pull the electrons toward the nucleus because of the unlike charges.

In keeping with the Rutherford model, this author casts the electrons as solid chunks of
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matter engaged in circular orbits, their inward attraction to the oppositely charged nucleus
balanced by their motion. The reference to “centrifugal force” is technically incorrect (even
for orbiting planets), but is easily forgiven because of its popular acceptance: in reality, there
is no such thing as a force pushing any orbiting body away from its center of orbit. It seems
that way because a body’s inertia tends to keep it traveling in a straight line, and since an
orbit is a constant deviation (acceleration) from straight-line travel, there is constant inertial
opposition to whatever force is attracting the body toward the orbit center (centripetal), be it
gravity, electrostatic attraction, or even the tension of a mechanical link.

The real problem with this explanation, however, is the idea of electrons traveling in cir-
cular orbits in the first place. It is a verifiable fact that accelerating electric charges emit
electromagnetic radiation, and this fact was known even in Rutherford’s time. Since orbiting
motion is a form of acceleration (the orbiting object in constant acceleration away from normal,
straight-line motion), electrons in an orbiting state should be throwing off radiation like mud
from a spinning tire. Electrons accelerated around circular paths in particle accelerators called
synchrotrons are known to do this, and the result is called synchrotron radiation. If electrons
were losing energy in this way, their orbits would eventually decay, resulting in collisions with
the positively charged nucleus. Nevertheless, this doesn’t ordinarily happen within atoms.
Indeed, electron “orbits” are remarkably stable over a wide range of conditions.

Furthermore, experiments with “excited” atoms demonstrated that electromagnetic energy
emitted by an atom only occurs at certain, definite frequencies. Atoms that are “excited” by
outside influences such as light are known to absorb that energy and return it as electromag-
netic waves of specific frequencies, like a tuning fork that rings at a fixed pitch no matter how
it is struck. When the light emitted by an excited atom is divided into its constituent frequen-
cies (colors) by a prism, distinct lines of color appear in the spectrum, the pattern of spectral
lines being unique to that element. This phenomenon is commonly used to identify atomic ele-
ments, and even measure the proportions of each element in a compound or chemical mixture.
According to Rutherford’s solar-system atomic model (regarding electrons as chunks of matter
free to orbit at any radius) and the laws of classical physics, excited atoms should return en-
ergy over a virtually limitless range of frequencies rather than a select few. In other words, if
Rutherford’s model were correct, there would be no “tuning fork” effect, and the light spectrum
emitted by any atom would appear as a continuous band of colors rather than as a few distinct
lines.

A pioneering researcher by the name of Niels Bohr attempted to improve upon Ruther-
ford’s model after studying in Rutherford’s laboratory for several months in 1912. Trying to
harmonize the findings of other physicists (most notably, Max Planck and Albert Einstein),
Bohr suggested that each electron had a certain, specific amount of energy, and that their or-
bits were quantized such that each may occupy certain places around the nucleus, as marbles
fixed in circular tracks around the nucleus rather than the free-ranging satellites each were
formerly imagined to be. (Figure 2.3) In deference to the laws of electromagnetics and acceler-
ating charges, Bohr alluded to these “orbits” as stationary states to escape the implication that
they were in motion.

Although Bohr’s ambitious attempt at re-framing the structure of the atom in terms that
agreed closer to experimental results was a milestone in physics, it was not complete. His
mathematical analysis produced better predictions of experimental events than analyses be-
longing to previous models, but there were still some unanswered questions about why elec-
trons should behave in such strange ways. The assertion that electrons existed in stationary,
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Figure 2.3: Bohr hydrogen atom (with orbits drawn to scale) only allows electrons to inhabit
discrete orbitals. Electrons falling from n=3,4,5, or 6 to n=2 accounts for Balmer series of
spectral lines.

quantized states around the nucleus accounted for experimental data better than Rutherford’s
model, but he had no idea what would force electrons to manifest those particular states. The
answer to that question had to come from another physicist, Louis de Broglie, about a decade
later.

De Broglie proposed that electrons, as photons (particles of light) manifested both particle-
like and wave-like properties. Building on this proposal, he suggested that an analysis of
orbiting electrons from a wave perspective rather than a particle perspective might make more
sense of their quantized nature. Indeed, another breakthrough in understanding was reached.

node node T node

%Kl/

antinode antinode

Figure 2.4: String vibrating at resonant frequency between two fixed points forms standing
wave.

The atom according to de Broglie consisted of electrons existing as standing waves, a phe-
nomenon well known to physicists in a variety of forms. As the plucked string of a musical
instrument (Figure 2.4) vibrating at a resonant frequency, with “nodes” and “antinodes” at sta-
ble positions along its length. De Broglie envisioned electrons around atoms standing as waves
bent around a circle as in Figure 2.5.

Electrons only could exist in certain, definite “orbits” around the nucleus because those
were the only distances where the wave ends would match. In any other radius, the wave
should destructively interfere with itself and thus cease to exist.
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Figure 2.5: “Orbiting” electron as standing wave around the nucleus, (a) two cycles per orbit,
(b) three cycles per orbit.

De Broglie’s hypothesis gave both mathematical support and a convenient physical analogy
to account for the quantized states of electrons within an atom, but his atomic model was still
incomplete. Within a few years, though, physicists Werner Heisenberg and Erwin Schrodinger,
working independently of each other, built upon de Broglie’s concept of a matter-wave duality
to create more mathematically rigorous models of subatomic particles.

This theoretical advance from de Broglie’s primitive standing wave model to Heisenberg’s
matrix and Schrodinger’s differential equation models was given the name quantum mechan-
ics, and it introduced a rather shocking characteristic to the world of subatomic particles: the
trait of probability, or uncertainty. According to the new quantum theory, it was impossible
to determine the exact position and exact momentum of a particle at the same time. The
popular explanation of this “uncertainty principle” was that it was a measurement error (i.e.
by attempting to precisely measure the position of an electron, you interfere with its momen-
tum and thus cannot know what it was before the position measurement was taken, and vice
versa). The startling implication of quantum mechanics is that particles do not actually have
precise positions and momenta, but rather balance the two quantities in a such way that their
combined uncertainties never diminish below a certain minimum value.

This form of “uncertainty” relationship exists in areas other than quantum mechanics. As
discussed in the “Mixed-Frequency AC Signals” chapter in volume II of this book series, there
is a mutually exclusive relationship between the certainty of a waveform’s time-domain data
and its frequency-domain data. In simple terms, the more precisely we know its constituent
frequency(ies), the less precisely we know its amplitude in time, and vice versa. To quote
myself:

A waveform of infinite duration (infinite number of cycles) can be analyzed with
absolute precision, but the less cycles available to the computer for analysis, the less
precise the analysis. The fewer times that a wave cycles, the less certain its
frequency is. Taking this concept to its logical extreme, a short pulse — a waveform
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that doesn’t even complete a cycle — actually has no frequency, but rather acts as an
infinite range of frequencies. This principle is common to all wave-based phenomena,
not just AC voltages and currents.

In order to precisely determine the amplitude of a varying signal, we must sample it over
a very narrow span of time. However, doing this limits our view of the wave’s frequency.
Conversely, to determine a wave’s frequency with great precision, we must sample it over
many cycles, which means we lose view of its amplitude at any given moment. Thus, we cannot
simultaneously know the instantaneous amplitude and the overall frequency of any wave with
unlimited precision. Stranger yet, this uncertainty is much more than observer imprecision; it
resides in the very nature of the wave. It is not as though it would be possible, given the proper
technology, to obtain precise measurements of both instantaneous amplitude and frequency at
once. Quite literally, a wave cannot have both a precise, instantaneous amplitude, and a precise
frequency at the same time.

The minimum uncertainty of a particle’s position and momentum expressed by Heisenberg
and Schrodinger has nothing to do with limitation in measurement; rather it is an intrinsic
property of the particle’s matter-wave dual nature. Electrons, therefore, do not really exist in
their “orbits” as precisely defined bits of matter, or even as precisely defined waveshapes, but
rather as “clouds” — the technical term is wavefunction — of probability distribution, as if each
electron were “spread” or “smeared” over a range of positions and momenta.

This radical view of electrons as imprecise clouds at first seems to contradict the original
principle of quantized electron states: that electrons exist in discrete, defined “orbits” around
atomic nuclei. It was, after all, this discovery that led to the formation of quantum theory
to explain it. How odd it seems that a theory developed to explain the discrete behavior of
electrons ends up declaring that electrons exist as “clouds” rather than as discrete pieces of
matter. However, the quantized behavior of electrons does not depend on electrons having def-
inite position and momentum values, but rather on other properties called quantum numbers.
In essence, quantum mechanics dispenses with commonly held notions of absolute position and
absolute momentum, and replaces them with absolute notions of a sort having no analogue in
common experience.

Even though electrons are known to exist in ethereal, “cloud-like” forms of distributed prob-
ability rather than as discrete chunks of matter, those “clouds” have other characteristics that
are discrete. Any electron in an atom can be described by four numerical measures (the previ-
ously mentioned quantum numbers), called the Principal, Angular Momentum, Magnetic,
and Spin numbers. The following is a synopsis of each of these numbers’ meanings:

Principal Quantum Number: Symbolized by the letter n, this number describes the shell
that an electron resides in. An electron “shell” is a region of space around an atom’s nucleus
that electrons are allowed to exist in, corresponding to the stable “standing wave” patterns of
de Broglie and Bohr. Electrons may “leap” from shell to shell, but cannot exist between the
shell regions.

The principal quantum number must be a positive integer (a whole number, greater than
or equal to 1). In other words, principal quantum number for an electron cannot be 1/2 or
-3. These integer values were not arrived at arbitrarily, but rather through experimental ev-
idence of light spectra: the differing frequencies (colors) of light emitted by excited hydrogen
atoms follow a sequence mathematically dependent on specific, integer values as illustrated in
Figure 2.3.
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Each shell has the capacity to hold multiple electrons. An analogy for electron shells is the
concentric rows of seats of an amphitheater. Just as a person seated in an amphitheater must
choose a row to sit in (one cannot sit between rows), electrons must “choose” a particular shell
to “sit” in. As in amphitheater rows, the outermost shells hold more electrons than the inner
shells. Also, electrons tend to seek the lowest available shell, as people in an amphitheater
seek the closest seat to the center stage. The higher the shell number, the greater the energy
of the electrons in it.

The maximum number of electrons that any shell may hold is described by the equation 2n?,
where “n” is the principal quantum number. Thus, the first shell (n=1) can hold 2 electrons;
the second shell (n=2) 8 electrons, and the third shell (n=3) 18 electrons. (Figure 2.6)

(K L M N 0 P Q
n= 1 2 3
oan’= 2 8 18

4
32
observed fill = 2 8 18 32 18 18 2

Figure 2.6: Principal quantum number n and maximum number of electrons per shell both
predicted by 2(n?), and observed. Orbitals not to scale.

Electron shells in an atom were formerly designated by letter rather than by number. The
first shell (n=1) was labeled K, the second shell (n=2) L, the third shell (n=3) M, the fourth
shell (n=4) N, the fifth shell (n=5) O, the sixth shell (n=6) P, and the seventh shell (n=7) Q.

Angular Momentum Quantum Number: A shell, is composed of subshells. One might
be inclined to think of subshells as simple subdivisions of shells, as lanes dividing a road.
The subshells are much stranger. Subshells are regions of space where electron “clouds” are
allowed to exist, and different subshells actually have different shapes. The first subshell
is shaped like a sphere, (Figure 2.7(s) ) which makes sense when visualized as a cloud of
electrons surrounding the atomic nucleus in three dimensions. The second subshell, however,
resembles a dumbbell, comprised of two “lobes” joined together at a single point near the atom’s
center. (Figure 2.7(p) ) The third subshell typically resembles a set of four “lobes” clustered
around the atom’s nucleus. These subshell shapes are reminiscent of graphical depictions of
radio antenna signal strength, with bulbous lobe-shaped regions extending from the antenna
in various directions. (Figure 2.7(d) )

Valid angular momentum quantum numbers are positive integers like principal quantum
numbers, but also include zero. These quantum numbers for electrons are symbolized by the
letter 1. The number of subshells in a shell is equal to the shell’s principal quantum num-
ber. Thus, the first shell (n=1) has one subshell, numbered 0; the second shell (n=2) has two
subshells, numbered 0 and 1; the third shell (n=3) has three subshells, numbered 0, 1, and 2.

An older convention for subshell description used letters rather than numbers. In this nota-
tion, the first subshell (1=0) was designated s, the second subshell (1=1) designated p, the third
subshell (1=2) designated d, and the fourth subshell (1=3) designated f. The letters come from
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Possible d-orbital orientations: five.

the words sharp, principal (not to be confused with the principal quantum number, n), diffuse,
and fundamental. You will still see this notational convention in many periodic tables, used to
designate the electron configuration of the atoms’ outermost, or valence, shells. (Figure 2.8)
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Figure 2.8: (a) Bohr representation of Silver atom, (b) Subshell representation of Ag with
division of shells into subshells (angular quantum number 1). This diagram implies nothing
about the actual position of electrons, but represents energy levels.

Magnetic Quantum Number: The magnetic quantum number for an electron classifies
which orientation its subshell shape is pointed. The “lobes” for subshells point in multiple
directions. These different orientations are called orbitals. For the first subshell (s; 1=0), which
resembles a sphere pointing in no “direction”, so there is only one orbital. For the second
(p; 1=1) subshell in each shell, which resembles dumbbells point in three possible directions.
Think of three dumbbells intersecting at the origin, each oriented along a different axis in a
three-axis coordinate space.

Valid numerical values for this quantum number consist of integers ranging from -1 to 1, and
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are symbolized as m; in atomic physics and 1. in nuclear physics. To calculate the number of
orbitals in any given subshell, double the subshell number and add 1, (21 + 1). For example, the
first subshell (I=0) in any shell contains a single orbital, numbered 0; the second subshell (1=1)
in any shell contains three orbitals, numbered -1, 0, and 1; the third subshell (1=2) contains
five orbitals, numbered -2, -1, 0, 1, and 2; and so on.

Like principal quantum numbers, the magnetic quantum number arose directly from ex-
perimental evidence: The Zeeman effect, the division of spectral lines by exposing an ionized
gas to a magnetic field, hence the name “magnetic” quantum number.

Spin Quantum Number: Like the magnetic quantum number, this property of atomic
electrons was discovered through experimentation. Close observation of spectral lines revealed
that each line was actually a pair of very closely-spaced lines, and this so-called fine structure
was hypothesized to result from each electron “spinning” on an axis as if a planet. Electrons
with different “spins” would give off slightly different frequencies of light when excited. The
name “spin” was assigned to this quantum number. The concept of a spinning electron is now
obsolete, being better suited to the (incorrect) view of electrons as discrete chunks of matter
rather than as “clouds”; but, the name remains.

Spin quantum numbers are symbolized as m, in atomic physics and s. in nuclear physics.
For each orbital in each subshell in each shell, there may be two electrons, one with a spin of
+1/2 and the other with a spin of -1/2.

The physicist Wolfgang Pauli developed a principle explaining the ordering of electrons
in an atom according to these quantum numbers. His principle, called the Pauli exclusion
principle, states that no two electrons in the same atom may occupy the exact same quantum
states. That is, each electron in an atom has a unique set of quantum numbers. This limits the
number of electrons that may occupy any given orbital, subshell, and shell.

Shown here is the electron arrangement for a hydrogen atom:

subshell orbital  spin
0 (m)  (my)
K shell

(n=1) 0 0 ', =<— One electron

Hydrogen
Atomic number (2) = 1
(one proton in nucleus)

Spectroscopic notation: 1s*

With one proton in the nucleus, it takes one electron to electrostatically balance the atom
(the proton’s positive electric charge exactly balanced by the electron’s negative electric charge).
This one electron resides in the lowest shell (n=1), the first subshell (1=0), in the only orbital
(spatial orientation) of that subshell (m;=0), with a spin value of 1/2. A common method of
describing this organization is by listing the electrons according to their shells and subshells
in a convention called spectroscopic notation. In this notation, the shell number is shown as an
integer, the subshell as a letter (s,p,d,f), and the total number of electrons in the subshell (all
orbitals, all spins) as a superscript. Thus, hydrogen, with its lone electron residing in the base
level, is described as 1s'.
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Proceeding to the next atom (in order of atomic number), we have the element helium:

subshell orbital  spin

() (m)  (my)
K shell 0 0 -, =<— electron
(n=1) 0 0 1, —<— electron
Helium

Atomic number (Z2) = 2
(two protons in nucleus)

Spectroscopic notation: 1s?

A helium atom has two protons in the nucleus, and this necessitates two electrons to bal-
ance the double-positive electric charge. Since two electrons — one with spin=1/2 and the other
with spin=-1/2 — fit into one orbital, the electron configuration of helium requires no additional
subshells or shells to hold the second electron.

However, an atom requiring three or more electrons will require additional subshells to

hold all electrons, since only two electrons will fit into the lowest shell (n=1). Consider the next
atom in the sequence of increasing atomic numbers, lithium:

subshell orbital  spin

() (m)  (my)
L shell 0 0 11, <— electron
(n=2) 2
K shell 0 0 -1, =<— electron
(n=1) 0 0 1, <— electron
2
Lithium

Atomic number (Z2) = 3

Spectroscopic notation: 1s°2s’

An atom of lithium uses a fraction of the L shell’s (n=2) capacity. This shell actually has a
total capacity of eight electrons (maximum shell capacity = 2n? electrons). If we examine the
organization of the atom with a completely filled L shell, we will see how all combinations of
subshells, orbitals, and spins are occupied by electrons:
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subshell orbital  spin

(1 (my) (my)
1 1 1,
1 1 A
1 0 A, p subshell
=1
L shell 1 0 A 6 e(lectr)ons
(n=2) 1 1 _1/2
1 -1 1/2
0 0 1, s subshell
=0
0 0 A 2 (glectr)ons
1
K shell 0 0 A, s ?qub%r)]ell
(h=1) 0 0 A 2 electrons
Neon

Atomic number (Z) = 10

Spectroscopic notation: 1s?2s%2p°®

Often, when the spectroscopic notation is given for an atom, any shells that are completely
filled are omitted, and the unfilled, or the highest-level filled shell, is denoted. For example,
the element neon (shown in the previous illustration), which has two completely filled shells,
may be spectroscopically described simply as 2p® rather than 1s22s?2p®. Lithium, with its K
shell completely filled and a solitary electron in the L shell, may be described simply as 2s'
rather than 1s22s'.

The omission of completely filled, lower-level shells is not just a notational convenience. It
also illustrates a basic principle of chemistry: that the chemical behavior of an element is pri-
marily determined by its unfilled shells. Both hydrogen and lithium have a single electron in
their outermost shells (1s' and 2s', respectively), giving the two elements some similar proper-
ties. Both are highly reactive, and reactive in much the same way (bonding to similar elements
in similar modes). It matters little that lithium has a completely filled K shell underneath its
almost-vacant L shell: the unfilled L shell is the shell that determines its chemical behavior.

Elements having completely filled outer shells are 