From 88ec0dadc2f5ab4a2040667e6326af5685340cce Mon Sep 17 00:00:00 2001 From: Riccardo Giuntoli Date: Sat, 14 Nov 2020 17:01:48 +0100 Subject: [PATCH] Update URE_1.md --- es.telecomlobby.com/radio_aficion/URE_1.md | 7 +------ 1 file changed, 1 insertion(+), 6 deletions(-) diff --git a/es.telecomlobby.com/radio_aficion/URE_1.md b/es.telecomlobby.com/radio_aficion/URE_1.md index 4eb23bcf..ba7ff580 100644 --- a/es.telecomlobby.com/radio_aficion/URE_1.md +++ b/es.telecomlobby.com/radio_aficion/URE_1.md @@ -62,12 +62,7 @@ Siendo lambda λ un coeficiente de conductividad propio de cada materia podemos $$ \begin{align*} -y = y(x,t) &= A e^{i\theta} \\ -&= A (\cos \theta + i \sin \theta) \\ -&= A (\cos(kx - \omega t) + i \sin(kx - \omega t)) \\ -&= A\cos(kx - \omega t) + i A\sin(kx - \omega t) \\ -&= A\cos \Big(\frac{2\pi}{\lambda}x - \frac{2\pi v}{\lambda} t \Big) + i A\sin \Big(\frac{2\pi}{\lambda}x - \frac{2\pi v}{\lambda} t \Big) \\ -&= A\cos \frac{2\pi}{\lambda} (x - v t) + i A\sin \frac{2\pi}{\lambda} (x - v t) +Conductancia = \frac{λxsuperficie(cm^2)}{longitud(cm)}\\ \end{align*} $$