PushshiftDumps/scripts/combine_folder_multiprocess.py
2023-01-28 11:39:27 -08:00

468 lines
19 KiB
Python

# this script iterates through zst compressed ndjson files, like the pushshift reddit dumps, loads each line
# and if it matches the criteria in the command line arguments, it's written out into a separate file for
# that month. After all the ndjson files are processed, it iterates through the resulting files and combines
# them into a final file.
# this script assumes the files are named in chronological order and prefixed with RS_ or RC_, like the pushshift dumps
# features:
# - multiple processes in parallel to maximize drive read and decompression
# - saves state as it completes each file and picks up where it stopped
# - detailed progress indicators
# examples:
# - get all comments that have a subreddit field (subreddit is the default) of "wallstreetbets". This will create a single output file "wallstreetbets_comments.zst" in the folder the script is run in
# python3 combine_folder_multiprocess.py reddit/comments --value wallstreetbets
# - get all comments and submissions (assuming both types of dump files are under the reddit folder) that have an author field of Watchful1 or spez and output the results to a folder called pushshift.
# This will result in four files, pushshift/Watchful1_comments, pushshift/Watchful1_submissions, pushshift/spez_comments, pushshift/spez_submissions
# python3 combine_folder_multiprocess.py reddit --field author --value Watchful1,spez --output pushshift
import zstandard
import os
import json
import sys
import time
import argparse
import re
from datetime import datetime
import logging.handlers
import multiprocessing
# sets up logging to the console as well as a file
log = logging.getLogger("bot")
log.setLevel(logging.INFO)
log_formatter = logging.Formatter('%(asctime)s - %(levelname)s: %(message)s')
log_stderr_handler = logging.StreamHandler()
log_stderr_handler.setFormatter(log_formatter)
log.addHandler(log_stderr_handler)
if not os.path.exists("logs"):
os.makedirs("logs")
log_file_handler = logging.handlers.RotatingFileHandler(
os.path.join("logs", "bot.log"), maxBytes=1024*1024*16, backupCount=5)
log_file_handler.setFormatter(log_formatter)
log.addHandler(log_file_handler)
# convenience object used to pass status information between processes
class FileConfig:
def __init__(self, input_path, output_path=None, complete=False, lines_processed=0, error_lines=0):
self.input_path = input_path
self.output_path = output_path
self.file_size = os.stat(input_path).st_size
self.complete = complete
self.bytes_processed = self.file_size if complete else 0
self.lines_processed = lines_processed if complete else 0
self.error_message = None
self.error_lines = error_lines
def __str__(self):
return f"{self.input_path} : {self.output_path} : {self.file_size} : {self.complete} : {self.bytes_processed} : {self.lines_processed}"
# another convenience object to read and write from both zst files and ndjson files
class FileHandle:
def __init__(self, path):
self.path = path
if self.path.endswith(".zst"):
self.is_compressed = True
elif self.path.endswith(".ndjson"):
self.is_compressed = False
else:
raise TypeError(f"File type not supported for writing {self.path}")
self.write_handle = None
self.other_handle = None
self.newline_encoded = "\n".encode('utf-8')
# recursively decompress and decode a chunk of bytes. If there's a decode error then read another chunk and try with that, up to a limit of max_window_size bytes
@staticmethod
def read_and_decode(reader, chunk_size, max_window_size, previous_chunk=None, bytes_read=0):
chunk = reader.read(chunk_size)
bytes_read += chunk_size
if previous_chunk is not None:
chunk = previous_chunk + chunk
try:
return chunk.decode()
except UnicodeDecodeError:
if bytes_read > max_window_size:
raise UnicodeError(f"Unable to decode frame after reading {bytes_read:,} bytes")
return FileHandle.read_and_decode(reader, chunk_size, max_window_size, chunk, bytes_read)
# open a zst compressed ndjson file, or a regular uncompressed ndjson file and yield lines one at a time
# also passes back file progress
def yield_lines(self):
if self.is_compressed:
with open(self.path, 'rb') as file_handle:
buffer = ''
reader = zstandard.ZstdDecompressor(max_window_size=2**31).stream_reader(file_handle)
while True:
chunk = FileHandle.read_and_decode(reader, 2**27, (2**29) * 2)
if not chunk:
break
lines = (buffer + chunk).split("\n")
for line in lines[:-1]:
yield line, file_handle.tell()
buffer = lines[-1]
reader.close()
else:
with open(self.path, 'r') as file_handle:
line = file_handle.readline()
while line:
yield line.rstrip('\n'), file_handle.tell()
line = file_handle.readline()
# write a line, opening the appropriate handle
def write_line(self, line):
if self.write_handle is None:
if self.is_compressed:
self.other_handle = open(self.path, 'wb')
self.write_handle = zstandard.ZstdCompressor().stream_writer(self.other_handle)
else:
self.write_handle = open(self.path, 'w', encoding="utf-8")
if self.is_compressed:
self.write_handle.write(line.encode('utf-8'))
self.write_handle.write(self.newline_encoded)
else:
self.write_handle.write(line)
self.write_handle.write("\n")
def close(self):
if self.write_handle:
self.write_handle.close()
if self.other_handle:
self.other_handle.close()
# used for calculating running average of read speed
class Queue:
def __init__(self, max_size):
self.list = []
self.max_size = max_size
def put(self, item):
if len(self.list) >= self.max_size:
self.list.pop(0)
self.list.append(item)
def peek(self):
return self.list[0] if len(self.list) > 0 else None
# save file information and progress to a json file
# we don't want to save the whole FileConfig object, since some info resets if we restart
def save_file_list(input_files, working_folder, status_json, arg_string, script_type):
if not os.path.exists(working_folder):
os.makedirs(working_folder)
simple_file_list = []
for file in input_files:
simple_file_list.append([file.input_path, file.output_path, file.complete, file.lines_processed, file.error_lines])
with open(status_json, 'w') as status_json_file:
output_dict = {
"args": arg_string,
"type": script_type,
"files": simple_file_list,
}
status_json_file.write(json.dumps(output_dict, indent=4))
# load file information from the json file and recalculate file sizes
def load_file_list(status_json):
if os.path.exists(status_json):
with open(status_json, 'r') as status_json_file:
output_dict = json.load(status_json_file)
input_files = []
for simple_file in output_dict["files"]:
input_files.append(
FileConfig(simple_file[0], simple_file[1], simple_file[2], simple_file[3], simple_file[4])
)
return input_files, output_dict["args"], output_dict["type"]
else:
return None, None, None
# base of each separate process. Loads a file, iterates through lines and writes out
# the ones where the `field` of the object matches `value`. Also passes status
# information back to the parent via a queue
def process_file(file, queue, field, value, values):
queue.put(file)
input_handle = FileHandle(file.input_path)
output_handle = FileHandle(file.output_path)
try:
for line, file_bytes_processed in input_handle.yield_lines():
try:
obj = json.loads(line)
matched = False
observed = obj[field].lower()
if value is not None:
if observed == value:
matched = True
elif observed in values:
matched = True
if matched:
output_handle.write_line(line)
except (KeyError, json.JSONDecodeError) as err:
file.error_lines += 1
file.lines_processed += 1
if file.lines_processed % 1000000 == 0:
file.bytes_processed = file_bytes_processed
queue.put(file)
output_handle.close()
file.complete = True
file.bytes_processed = file.file_size
except Exception as err:
file.error_message = str(err)
queue.put(file)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Use multiple processes to decompress and iterate over pushshift dump files")
parser.add_argument("input", help="The input folder to recursively read files from")
parser.add_argument("--split", help="Split the output into separate files by the filter fields, only applies if there's multiple fields", action='store_const', const=True, default=True)
parser.add_argument("--output", help="Put the output files in this folder", default="")
parser.add_argument("--working", help="The folder to store temporary files in", default="pushshift_working")
parser.add_argument("--field", help="When deciding what lines to keep, use this field for comparisons", default="subreddit")
parser.add_argument("--value", help="When deciding what lines to keep, compare the field to this value. Supports a comma separated list. This is case sensitive", default="pushshift")
parser.add_argument("--value_list", help="A file of newline separated values to use. Overrides the value param if it is set", default=None)
parser.add_argument("--processes", help="Number of processes to use", default=10, type=int)
parser.add_argument("--file_filter", help="Regex filenames have to match to be processed", default="^rc_|rs_")
parser.add_argument("--compress_intermediate", help="Compress the intermediate files, use if the filter will result in a very large amount of data", action="store_true")
parser.add_argument(
"--error_rate", help=
"Percentage as an integer from 0 to 100 of the lines where the field can be missing. For the subreddit field especially, "
"there are a number of posts that simply don't have a subreddit attached", default=1, type=int)
parser.add_argument("--debug", help="Enable debug logging", action='store_const', const=True, default=False)
script_type = "split"
args = parser.parse_args()
arg_string = f"{args.field}:{(args.value if args.value else args.value_list)}"
if args.debug:
log.setLevel(logging.DEBUG)
log.info(f"Loading files from: {args.input}")
if args.output:
log.info(f"Writing output to: {args.output}")
else:
log.info(f"Writing output to working folder")
value = None
values = None
if args.value_list:
log.info(f"Reading {args.value_list} for values to compare")
with open(args.value_list, 'r') as value_list_handle:
values = set()
for line in value_list_handle:
values.add(line.strip().lower())
log.info(f"Comparing {args.field} against {len(values)} values")
else:
value_strings = args.value.split(",")
if len(value_strings) > 1:
values = set()
for value_inner in value_strings:
values.add(value_inner.lower())
log.info(f"Checking field {args.field} for values {(', '.join(value_strings))}")
elif len(value_strings) == 1:
value = value_strings[0].lower()
log.info(f"Checking field {args.field} for value {value}")
else:
log.info(f"Invalid value specified, aborting: {args.value}")
sys.exit()
multiprocessing.set_start_method('spawn')
queue = multiprocessing.Manager().Queue()
status_json = os.path.join(args.working, "status.json")
input_files, saved_arg_string, saved_type = load_file_list(status_json)
if saved_arg_string and saved_arg_string != arg_string:
log.warning(f"Args don't match args from json file. Delete working folder")
sys.exit(0)
if saved_type and saved_type != script_type:
log.warning(f"Script type doesn't match type from json file. Delete working folder")
sys.exit(0)
# if the file list wasn't loaded from the json, this is the first run, find what files we need to process
if input_files is None:
input_files = []
for subdir, dirs, files in os.walk(args.input):
files.sort()
for file_name in files:
if file_name.endswith(".zst") and re.search(args.file_filter, file_name, re.IGNORECASE) is not None:
input_path = os.path.join(subdir, file_name)
output_path = os.path.join(args.working, f"{file_name[:-4]}.{('zst' if args.compress_intermediate else 'ndjson')}")
input_files.append(FileConfig(input_path, output_path=output_path))
save_file_list(input_files, args.working, status_json, arg_string, script_type)
else:
log.info(f"Existing input file was read, if this is not correct you should delete the {args.working} folder and run this script again")
files_processed = 0
total_bytes = 0
total_bytes_processed = 0
total_lines_processed = 0
total_lines_errored = 0
files_to_process = []
# calculate the total file size for progress reports, build a list of incomplete files to process
# do this largest to smallest by file size so that we aren't processing a few really big files with only a few threads at the end
for file in sorted(input_files, key=lambda item: item.file_size, reverse=True):
total_bytes += file.file_size
if file.complete:
files_processed += 1
total_lines_processed += file.lines_processed
total_bytes_processed += file.file_size
total_lines_errored += file.error_lines
else:
files_to_process.append(file)
log.info(f"Processed {files_processed} of {len(input_files)} files with {(total_bytes_processed / (2**30)):.2f} of {(total_bytes / (2**30)):.2f} gigabytes")
start_time = time.time()
if len(files_to_process):
progress_queue = Queue(40)
progress_queue.put([start_time, total_lines_processed, total_bytes_processed])
speed_queue = Queue(40)
for file in files_to_process:
log.info(f"Processing file: {file.input_path}")
# start the workers
with multiprocessing.Pool(processes=min(args.processes, len(files_to_process))) as pool:
workers = pool.starmap_async(process_file, [(file, queue, args.field, value, values) for file in files_to_process], chunksize=1, error_callback=log.info)
while not workers.ready():
# loop until the workers are all done, pulling in status messages as they are sent
file_update = queue.get()
if file_update.error_message is not None:
log.warning(f"File failed {file_update.input_path}: {file_update.error_message}")
# this is the workers telling us they are starting a new file, print the debug message but nothing else
if file_update.lines_processed == 0:
log.debug(f"Starting file: {file_update.input_path} : {file_update.file_size:,}")
continue
# I'm going to assume that the list of files is short enough that it's no
# big deal to just iterate each time since that saves a bunch of work
total_lines_processed = 0
total_bytes_processed = 0
total_lines_errored = 0
files_processed = 0
files_errored = 0
i = 0
for file in input_files:
if file.input_path == file_update.input_path:
input_files[i] = file_update
file = file_update
total_lines_processed += file.lines_processed
total_bytes_processed += file.bytes_processed
total_lines_errored += file.error_lines
files_processed += 1 if file.complete or file.error_message is not None else 0
files_errored += 1 if file.error_message is not None else 0
i += 1
if file_update.complete or file_update.error_message is not None:
save_file_list(input_files, args.working, status_json, arg_string, script_type)
log.debug(f"Finished file: {file_update.input_path} : {file_update.file_size:,}")
current_time = time.time()
progress_queue.put([current_time, total_lines_processed, total_bytes_processed])
first_time, first_lines, first_bytes = progress_queue.peek()
bytes_per_second = int((total_bytes_processed - first_bytes)/(current_time - first_time))
speed_queue.put(bytes_per_second)
seconds_left = int((total_bytes - total_bytes_processed) / int(sum(speed_queue.list) / len(speed_queue.list)))
minutes_left = int(seconds_left / 60)
hours_left = int(minutes_left / 60)
days_left = int(hours_left / 24)
log.info(
f"{total_lines_processed:,} lines at {(total_lines_processed - first_lines)/(current_time - first_time):,.0f}/s, {total_lines_errored:,} errored : "
f"{(total_bytes_processed / (2**30)):.2f} gb at {(bytes_per_second / (2**20)):,.0f} mb/s, {(total_bytes_processed / total_bytes) * 100:.0f}% : "
f"{files_processed}({files_errored})/{len(input_files)} files : "
f"{(str(days_left) + 'd ' if days_left > 0 else '')}{hours_left - (days_left * 24)}:{minutes_left - (hours_left * 60):02}:{seconds_left - (minutes_left * 60):02} remaining")
log.info(f"{total_lines_processed:,}, {total_lines_errored} errored : {(total_bytes_processed / (2**30)):.2f} gb, {(total_bytes_processed / total_bytes) * 100:.0f}% : {files_processed}/{len(input_files)}")
working_file_paths = []
count_incomplete = 0
# build a list of output files to combine
for file in sorted(input_files, key=lambda item: os.path.split(item.output_path)[1]):
if not file.complete:
if file.error_message is not None:
log.info(f"File {file.input_path} errored {file.error_message}")
else:
log.info(f"File {file.input_path} is not marked as complete")
count_incomplete += 1
else:
if file.error_lines > file.lines_processed * (args.error_rate * 0.01):
log.info(
f"File {file.input_path} has {file.error_lines:,} errored lines out of {file.lines_processed:,}, "
f"{(file.error_lines / file.lines_processed) * (args.error_rate * 0.01):.2f}% which is above the limit of {args.error_rate}%")
count_incomplete += 1
elif file.output_path is not None:
if os.path.exists(file.output_path):
working_file_paths.append(file.output_path)
if count_incomplete > 0:
log.info(f"{count_incomplete} files were not completed, errored or don't exist, something went wrong. Aborting")
sys.exit()
log.info(f"Processing complete, combining {len(working_file_paths)} result files")
output_lines = 0
all_handles = []
output_handles = {}
files_combined = 0
if args.split and values:
split = True
else:
split = False
for working_file_path in working_file_paths:
files_combined += 1
log.info(f"From {files_combined}/{len(working_file_paths)} files to {len(all_handles):,} output handles : {output_lines:,} lines : {os.path.split(working_file_path)[1]}")
working_file_name = os.path.split(working_file_path)[1]
if working_file_name.startswith("RS"):
file_type = "submissions"
elif working_file_name.startswith("RC"):
file_type = "comments"
else:
log.warning(f"Unknown working file type, skipping: {working_file_name}")
continue
input_handle = FileHandle(working_file_path)
if file_type not in output_handles:
output_handles[file_type] = {}
file_type_handles = output_handles[file_type]
for line, file_bytes_processed in input_handle.yield_lines():
output_lines += 1
if split:
obj = json.loads(line)
observed_case = obj[args.field]
else:
observed_case = value
observed = observed_case.lower()
if observed not in file_type_handles:
if args.output:
if not os.path.exists(args.output):
os.makedirs(args.output)
output_file_path = os.path.join(args.output, f"{observed_case}_{file_type}.zst")
else:
output_file_path = f"{observed_case}_{file_type}.zst"
log.debug(f"Writing to file {output_file_path}")
output_handle = FileHandle(output_file_path)
file_type_handles[observed] = output_handle
all_handles.append(output_handle)
else:
output_handle = file_type_handles[observed]
output_handle.write_line(line)
if output_lines % 100000 == 0:
log.info(f"From {files_combined}/{len(working_file_paths)} files to {len(all_handles):,} output handles : {output_lines:,} lines : {os.path.split(working_file_path)[1]}")
log.info(f"From {files_combined}/{len(working_file_paths)} files to {len(all_handles):,} output handles : {output_lines:,} lines")
for handle in all_handles:
handle.close()
log.info(f"Finished combining files, {output_lines:,} lines written")