# this script iterates through zst compressed ndjson files, like the pushshift reddit dumps, loads each line # and if it matches the criteria in the command line arguments, it's written out into a separate file for # that month. After all the ndjson files are processed, it iterates through the resulting files and combines # them into a final file. # this script assumes the files are named in chronological order and prefixed with RS_ or RC_, like the pushshift dumps # features: # - multiple processes in parallel to maximize drive read and decompression # - saves state as it completes each file and picks up where it stopped # - detailed progress indicators # examples: # - get all comments that have a subreddit field (subreddit is the default) of "wallstreetbets". This will create a single output file "wallstreetbets_comments.zst" in the folder the script is run in # python3 combine_folder_multiprocess.py reddit/comments --value wallstreetbets # - get all comments and submissions (assuming both types of dump files are under the reddit folder) that have an author field of Watchful1 or spez and output the results to a folder called pushshift. # This will result in four files, pushshift/Watchful1_comments, pushshift/Watchful1_submissions, pushshift/spez_comments, pushshift/spez_submissions # python3 combine_folder_multiprocess.py reddit --field author --value Watchful1,spez --output pushshift import zstandard import os import json import sys import time import argparse from datetime import datetime import logging.handlers import multiprocessing # sets up logging to the console as well as a file log = logging.getLogger("bot") log.setLevel(logging.INFO) log_formatter = logging.Formatter('%(asctime)s - %(levelname)s: %(message)s') log_stderr_handler = logging.StreamHandler() log_stderr_handler.setFormatter(log_formatter) log.addHandler(log_stderr_handler) if not os.path.exists("logs"): os.makedirs("logs") log_file_handler = logging.handlers.RotatingFileHandler( os.path.join("logs", "bot.log"), maxBytes=1024*1024*16, backupCount=5) log_file_handler.setFormatter(log_formatter) log.addHandler(log_file_handler) # convenience object used to pass status information between processes class FileConfig: def __init__(self, input_path, output_path=None, complete=False, lines_processed=0, error_lines=0): self.input_path = input_path self.output_path = output_path self.file_size = os.stat(input_path).st_size self.complete = complete self.bytes_processed = self.file_size if complete else 0 self.lines_processed = lines_processed if complete else 0 self.error_message = None self.error_lines = error_lines def __str__(self): return f"{self.input_path} : {self.output_path} : {self.file_size} : {self.complete} : {self.bytes_processed} : {self.lines_processed}" # used for calculating running average of read speed class Queue: def __init__(self, max_size): self.list = [] self.max_size = max_size def put(self, item): if len(self.list) >= self.max_size: self.list.pop(0) self.list.append(item) def peek(self): return self.list[0] if len(self.list) > 0 else None # save file information and progress to a json file # we don't want to save the whole FileConfig object, since some info resets if we restart def save_file_list(input_files, working_folder, status_json, arg_string): if not os.path.exists(working_folder): os.makedirs(working_folder) simple_file_list = [] for file in input_files: simple_file_list.append([file.input_path, file.output_path, file.complete, file.lines_processed, file.error_lines]) with open(status_json, 'w') as status_json_file: output_dict = { "args": arg_string, "files": simple_file_list } status_json_file.write(json.dumps(output_dict, indent=4)) # load file information from the json file and recalculate file sizes def load_file_list(status_json): if os.path.exists(status_json): with open(status_json, 'r') as status_json_file: output_dict = json.load(status_json_file) input_files = [] for simple_file in output_dict["files"]: input_files.append( FileConfig(simple_file[0], simple_file[1], simple_file[2], simple_file[3], simple_file[4]) ) return input_files, output_dict["args"] else: return None, None # recursively decompress and decode a chunk of bytes. If there's a decode error then read another chunk and try with that, up to a limit of max_window_size bytes def read_and_decode(reader, chunk_size, max_window_size, previous_chunk=None, bytes_read=0): chunk = reader.read(chunk_size) bytes_read += chunk_size if previous_chunk is not None: chunk = previous_chunk + chunk try: return chunk.decode() except UnicodeDecodeError: if bytes_read > max_window_size: raise UnicodeError(f"Unable to decode frame after reading {bytes_read:,} bytes") return read_and_decode(reader, chunk_size, max_window_size, chunk, bytes_read) # open a zst compressed ndjson file and yield lines one at a time # also passes back file progress def read_lines_zst(file_name): with open(file_name, 'rb') as file_handle: buffer = '' reader = zstandard.ZstdDecompressor(max_window_size=2**31).stream_reader(file_handle) while True: chunk = read_and_decode(reader, 2**27, (2**29) * 2) if not chunk: break lines = (buffer + chunk).split("\n") for line in lines[:-1]: yield line, file_handle.tell() buffer = lines[-1] reader.close() # base of each separate process. Loads a file, iterates through lines and writes out # the ones where the `field` of the object matches `value`. Also passes status # information back to the parent via a queue def process_file(file, queue, field, value, values, case_sensitive): output_file = None log.debug(f"Starting file: {file.input_path}") try: for line, file_bytes_processed in read_lines_zst(file.input_path): try: obj = json.loads(line) matched = False observed = obj[field] if case_sensitive else obj[field].lower() if value is not None: if observed == value: matched = True elif observed in values: matched = True if matched: if output_file is None: output_file = open(file.output_path, 'w', encoding="utf-8") output_file.write(line) output_file.write("\n") except (KeyError, json.JSONDecodeError) as err: file.error_lines += 1 file.lines_processed += 1 if file.lines_processed % 1000000 == 0: file.bytes_processed = file_bytes_processed queue.put(file) if output_file is not None: output_file.close() file.complete = True file.bytes_processed = file.file_size log.debug(f"Finished file: {file.input_path}") except Exception as err: file.error_message = str(err) queue.put(file) if __name__ == '__main__': parser = argparse.ArgumentParser(description="Use multiple processes to decompress and iterate over pushshift dump files") parser.add_argument("input", help="The input folder to recursively read files from") parser.add_argument("--split", help="Split the output into separate files by the filter fields, only applies if there's multiple fields", action='store_const', const=True, default=True) parser.add_argument("--output", help="Put the output files in this folder", default="") parser.add_argument("--working", help="The folder to store temporary files in", default="pushshift_working") parser.add_argument("--field", help="When deciding what lines to keep, use this field for comparisons", default="subreddit") parser.add_argument("--value", help="When deciding what lines to keep, compare the field to this value. Supports a comma separated list. This is case sensitive", default="pushshift") parser.add_argument("--processes", help="Number of processes to use", default=10, type=int) parser.add_argument("--case-sensitive", help="Matching should be case sensitive", action="store_true") parser.add_argument( "--error_rate", help= "Percentage as an integer from 0 to 100 of the lines where the field can be missing. For the subreddit field especially, " "there are a number of posts that simply don't have a subreddit attached", default=1, type=int) parser.add_argument("--debug", help="Enable debug logging", action='store_const', const=True, default=False) args = parser.parse_args() arg_string = f"{args.field}:{args.value}:{args.case_sensitive}" if args.debug: log.setLevel(logging.DEBUG) log.info(f"Loading files from: {args.input}") if args.output: log.info(f"Writing output to: {args.output}") else: log.info(f"Writing output to working folder") if not args.case_sensitive: args.value = args.value.lower() value_strings = args.value.split(",") value = None values = None if len(value_strings) > 1: values = set() for value_inner in value_strings: values.add(value_inner) log.info(f"Checking field {args.field} for values {(', '.join(value_strings))}") elif len(value_strings) == 1: value = value_strings[0] log.info(f"Checking field {args.field} for value {value}") else: log.info(f"Invalid value specified, aborting: {args.value}") sys.exit() multiprocessing.set_start_method('spawn') queue = multiprocessing.Manager().Queue() status_json = os.path.join(args.working, "status.json") input_files, saved_arg_string = load_file_list(status_json) if saved_arg_string and saved_arg_string != arg_string: log.warning(f"Args don't match args from json file. Delete working folder") sys.exit(0) # if the file list wasn't loaded from the json, this is the first run, find what files we need to process if input_files is None: input_files = [] for subdir, dirs, files in os.walk(args.input): files.sort() for file_name in files: if file_name.endswith(".zst"): input_path = os.path.join(subdir, file_name) output_path = os.path.join(args.working, file_name[:-4]) input_files.append(FileConfig(input_path, output_path=output_path)) save_file_list(input_files, args.working, status_json, arg_string) else: log.info(f"Existing input file was read, if this is not correct you should delete the {args.working} folder and run this script again") files_processed = 0 total_bytes = 0 total_bytes_processed = 0 total_lines_processed = 0 total_lines_errored = 0 files_to_process = [] # calculate the total file size for progress reports, build a list of incomplete files to process # do this largest to smallest by file size so that we aren't processing a few really big files with only a few threads at the end for file in sorted(input_files, key=lambda item: item.file_size, reverse=True): total_bytes += file.file_size if file.complete: files_processed += 1 total_lines_processed += file.lines_processed total_bytes_processed += file.file_size total_lines_errored += file.error_lines else: files_to_process.append(file) log.info(f"Processed {files_processed} of {len(input_files)} files with {(total_bytes_processed / (2**30)):.2f} of {(total_bytes / (2**30)):.2f} gigabytes") start_time = time.time() if len(files_to_process): progress_queue = Queue(40) progress_queue.put([start_time, total_lines_processed, total_bytes_processed]) speed_queue = Queue(40) for file in files_to_process: log.info(f"Processing file: {file.input_path}") # start the workers with multiprocessing.Pool(processes=min(args.processes, len(files_to_process))) as pool: workers = pool.starmap_async(process_file, [(file, queue, args.field, value, values, args.case_sensitive) for file in files_to_process], error_callback=log.info) while not workers.ready(): # loop until the workers are all done, pulling in status messages as they are sent file_update = queue.get() if file_update.error_message is not None: log.warning(f"File failed {file_update.input_path}: {file_update.error_message}") # I'm going to assume that the list of files is short enough that it's no # big deal to just iterate each time since that saves a bunch of work total_lines_processed = 0 total_bytes_processed = 0 total_lines_errored = 0 files_processed = 0 files_errored = 0 i = 0 for file in input_files: if file.input_path == file_update.input_path: input_files[i] = file_update file = file_update total_lines_processed += file.lines_processed total_bytes_processed += file.bytes_processed total_lines_errored += file.error_lines files_processed += 1 if file.complete or file.error_message is not None else 0 files_errored += 1 if file.error_message is not None else 0 i += 1 if file_update.complete or file_update.error_message is not None: save_file_list(input_files, args.working, status_json, arg_string) current_time = time.time() progress_queue.put([current_time, total_lines_processed, total_bytes_processed]) first_time, first_lines, first_bytes = progress_queue.peek() bytes_per_second = int((total_bytes_processed - first_bytes)/(current_time - first_time)) speed_queue.put(bytes_per_second) seconds_left = int((total_bytes - total_bytes_processed) / int(sum(speed_queue.list) / len(speed_queue.list))) minutes_left = int(seconds_left / 60) hours_left = int(minutes_left / 60) days_left = int(hours_left / 24) log.info( f"{total_lines_processed:,} lines at {(total_lines_processed - first_lines)/(current_time - first_time):,.0f}/s, {total_lines_errored:,} errored : " f"{(total_bytes_processed / (2**30)):.2f} gb at {(bytes_per_second / (2**20)):,.0f} mb/s, {(total_bytes_processed / total_bytes) * 100:.0f}% : " f"{files_processed}({files_errored})/{len(input_files)} files : " f"{(str(days_left) + 'd ' if days_left > 0 else '')}{hours_left - (days_left * 24)}:{minutes_left - (hours_left * 60):02}:{seconds_left - (minutes_left * 60):02} remaining") log.info(f"{total_lines_processed:,}, {total_lines_errored} errored : {(total_bytes_processed / (2**30)):.2f} gb, {(total_bytes_processed / total_bytes) * 100:.0f}% : {files_processed}/{len(input_files)}") working_file_paths = [] count_incomplete = 0 # build a list of output files to combine for file in sorted(input_files, key=lambda item: os.path.split(item.output_path)[1]): if not file.complete: if file.error_message is not None: log.info(f"File {file.input_path} errored {file.error_message}") else: log.info(f"File {file.input_path} is not marked as complete") count_incomplete += 1 else: if file.error_lines > file.lines_processed * (args.error_rate * 0.01): log.info( f"File {file.input_path} has {file.error_lines:,} errored lines out of {file.lines_processed:,}, " f"{(file.error_lines / file.lines_processed) * (args.error_rate * 0.01):.2f}% which is above the limit of {args.error_rate}%") count_incomplete += 1 elif file.output_path is not None: if os.path.exists(file.output_path): working_file_paths.append(file.output_path) if count_incomplete > 0: log.info(f"{count_incomplete} files were not completed, errored or don't exist, something went wrong. Aborting") sys.exit() log.info(f"Processing complete, combining {len(working_file_paths)} result files") output_lines = 0 all_handles = [] output_handles = {} files_combined = 0 if args.split and values: split = True else: split = False for working_file_path in working_file_paths: files_combined += 1 log.info(f"Reading {files_combined}/{len(working_file_paths)} : {os.path.split(working_file_path)[1]}") working_file_name = os.path.split(working_file_path)[1] if working_file_name.startswith("RS"): file_type = "submissions" elif working_file_name.startswith("RC"): file_type = "comments" else: log.warning(f"Unknown working file type, skipping: {working_file_name}") continue if file_type not in output_handles: output_handles[file_type] = {} file_type_handles = output_handles[file_type] with open(working_file_path, 'r') as input_file: for line in input_file: output_lines += 1 if split: obj = json.loads(line) observed_case = obj[args.field] else: observed_case = value observed = observed_case if args.case_sensitive else observed_case.lower() if observed not in file_type_handles: if args.output: if not os.path.exists(args.output): os.makedirs(args.output) output_file_path = os.path.join(args.output, f"{observed_case}_{file_type}.zst") else: output_file_path = f"{observed_case}_{file_type}.zst" log.info(f"Writing to file {output_file_path}") file_handle = open(output_file_path, 'wb') writer = zstandard.ZstdCompressor().stream_writer(file_handle) file_type_handles[observed] = writer all_handles.append(writer) all_handles.append(file_handle) else: writer = file_type_handles[observed] encoded_line = line.encode('utf-8') writer.write(encoded_line) for handle in all_handles: handle.close() log.info(f"Finished combining files, {output_lines:,} lines written")