OpenModem/bertos/cpu/arm/drv/eth_at91.c
2014-04-03 22:21:37 +02:00

474 lines
11 KiB
C

/**
* \file
* <!--
* This file is part of BeRTOS.
*
* Bertos is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* As a special exception, you may use this file as part of a free software
* library without restriction. Specifically, if other files instantiate
* templates or use macros or inline functions from this file, or you compile
* this file and link it with other files to produce an executable, this
* file does not by itself cause the resulting executable to be covered by
* the GNU General Public License. This exception does not however
* invalidate any other reasons why the executable file might be covered by
* the GNU General Public License.
*
* Copyright 2010 Develer S.r.l. (http://www.develer.com/)
* All Rights Reserved.
* -->
*
* \brief EMAC driver for AT91SAM7X Family.
*
* \author Daniele Basile <asterix@develer.com>
* \author Andrea Righi <arighi@develer.com>
*/
#include "cfg/cfg_eth.h"
#define LOG_LEVEL ETH_LOG_LEVEL
#define LOG_FORMAT ETH_LOG_FORMAT
#include <cfg/log.h>
#include <cfg/debug.h>
#include <cfg/log.h>
#include <cfg/macros.h>
#include <cfg/compiler.h>
#include <io/at91sam7.h>
#include <io/arm.h>
#include <cpu/power.h>
#include <cpu/types.h>
#include <cpu/irq.h>
#include <drv/timer.h>
#include <drv/eth.h>
#include <mware/event.h>
#include <string.h>
#include "eth_at91.h"
#define EMAC_RX_INTS (BV(EMAC_RCOMP) | BV(EMAC_ROVR) | BV(EMAC_RXUBR))
#define EMAC_TX_INTS (BV(EMAC_TCOMP) | BV(EMAC_TXUBR) | BV(EMAC_RLEX))
/* Silent Doxygen bug... */
#ifndef __doxygen__
/*
* NOTE: this buffer should be declared as 'volatile' because it is read by the
* hardware. However, this is accessed only via memcpy() that should guarantee
* coherency when copying from/to buffers.
*/
static uint8_t tx_buf[EMAC_TX_BUFFERS * EMAC_TX_BUFSIZ] ALIGNED(8);
static volatile BufDescriptor tx_buf_tab[EMAC_TX_DESCRIPTORS] ALIGNED(8);
/*
* NOTE: this buffer should be declared as 'volatile' because it is wrote by
* the hardware. However, this is accessed only via memcpy() that should
* guarantee coherency when copying from/to buffers.
*/
static uint8_t rx_buf[EMAC_RX_BUFFERS * EMAC_RX_BUFSIZ] ALIGNED(8);
static volatile BufDescriptor rx_buf_tab[EMAC_RX_DESCRIPTORS] ALIGNED(8);
#endif
static int tx_buf_idx;
static int tx_buf_offset;
static int rx_buf_idx;
static Event recv_wait, send_wait;
static DECLARE_ISR(emac_irqHandler)
{
/* Read interrupt status and disable interrupts. */
uint32_t isr = EMAC_ISR;
/* Receiver interrupt */
if ((isr & EMAC_RX_INTS))
{
if (isr & BV(EMAC_RCOMP))
event_do(&recv_wait);
EMAC_RSR = EMAC_RX_INTS;
}
/* Transmitter interrupt */
if (isr & EMAC_TX_INTS)
{
if (isr & BV(EMAC_TCOMP))
event_do(&send_wait);
EMAC_TSR = EMAC_TX_INTS;
}
AIC_EOICR = 0;
}
/*
* \brief Read contents of PHY register.
*
* \param reg PHY register number.
*
* \return Contents of the specified register.
*/
static uint16_t phy_hw_read(reg8_t reg)
{
// PHY read command.
EMAC_MAN = EMAC_SOF | EMAC_RW_READ | (NIC_PHY_ADDR << EMAC_PHYA_SHIFT)
| ((reg << EMAC_REGA_SHIFT) & EMAC_REGA) | EMAC_CODE;
// Wait until PHY logic completed.
while (!(EMAC_NSR & BV(EMAC_IDLE)))
cpu_relax();
// Get data from PHY maintenance register.
return (uint16_t)(EMAC_MAN & EMAC_DATA);
}
/*
* \brief Write value to PHY register.
*
* \param reg PHY register number.
* \param val Value to write.
*/
static void phy_hw_write(reg8_t reg, uint16_t val)
{
// PHY write command.
EMAC_MAN = EMAC_SOF | EMAC_RW_WRITE | (NIC_PHY_ADDR << EMAC_PHYA_SHIFT)
| ((reg << EMAC_REGA_SHIFT) & EMAC_REGA) | EMAC_CODE | val;
// Wait until PHY logic completed.
while (!(EMAC_NSR & BV(EMAC_IDLE)))
cpu_relax();
}
static int emac_reset(void)
{
uint16_t phy_cr;
// Enable devices
PMC_PCER = BV(PIOA_ID);
PMC_PCER = BV(PIOB_ID);
PMC_PCER = BV(EMAC_ID);
// Disable RMII and TESTMODE by disabling pull-ups.
PIOB_PUDR = BV(PHY_COL_RMII_BIT) | BV(PHY_RXDV_TESTMODE_BIT);
// Disable PHY power down.
PIOB_PER = BV(PHY_PWRDN_BIT);
PIOB_OER = BV(PHY_PWRDN_BIT);
PIOB_CODR = BV(PHY_PWRDN_BIT);
// Toggle external hardware reset pin.
RSTC_MR = RSTC_KEY | (1 << RSTC_ERSTL_SHIFT) | BV(RSTC_URSTEN);
RSTC_CR = RSTC_KEY | BV(RSTC_EXTRST);
while ((RSTC_SR & BV(RSTC_NRSTL)) == 0)
cpu_relax();
// Configure MII port.
PIOB_ASR = PHY_MII_PINS;
PIOB_BSR = 0;
PIOB_PDR = PHY_MII_PINS;
// Enable receive and transmit clocks.
EMAC_USRIO = BV(EMAC_CLKEN);
// Enable management port.
EMAC_NCR |= BV(EMAC_MPE);
EMAC_NCFGR |= EMAC_CLK_HCLK_32;
// Set local MAC address.
EMAC_SA1L = (mac_addr[3] << 24) | (mac_addr[2] << 16) |
(mac_addr[1] << 8) | mac_addr[0];
EMAC_SA1H = (mac_addr[5] << 8) | mac_addr[4];
// Wait for PHY ready
timer_delay(255);
// Clear MII isolate.
phy_hw_read(NIC_PHY_BMCR);
phy_cr = phy_hw_read(NIC_PHY_BMCR);
phy_cr &= ~NIC_PHY_BMCR_ISOLATE;
phy_hw_write(NIC_PHY_BMCR, phy_cr);
phy_cr = phy_hw_read(NIC_PHY_BMCR);
LOG_INFO("%s: PHY ID %#04x %#04x\n",
__func__,
phy_hw_read(NIC_PHY_ID1), phy_hw_read(NIC_PHY_ID2));
// Wait for auto negotiation completed.
phy_hw_read(NIC_PHY_BMSR);
for (;;)
{
if (phy_hw_read(NIC_PHY_BMSR) & NIC_PHY_BMSR_ANCOMPL)
break;
cpu_relax();
}
// Disable management port.
EMAC_NCR &= ~BV(EMAC_MPE);
return 0;
}
static int emac_start(void)
{
uint32_t addr;
int i;
for (i = 0; i < EMAC_RX_DESCRIPTORS; i++)
{
addr = (uint32_t)(rx_buf + (i * EMAC_RX_BUFSIZ));
rx_buf_tab[i].addr = addr & BUF_ADDRMASK;
}
rx_buf_tab[EMAC_RX_DESCRIPTORS - 1].addr |= RXBUF_WRAP;
for (i = 0; i < EMAC_TX_DESCRIPTORS; i++)
{
addr = (uint32_t)(tx_buf + (i * EMAC_TX_BUFSIZ));
tx_buf_tab[i].addr = addr & BUF_ADDRMASK;
tx_buf_tab[i].stat = TXS_USED;
}
tx_buf_tab[EMAC_TX_DESCRIPTORS - 1].stat = TXS_USED | TXS_WRAP;
/* Tell the EMAC where to find the descriptors. */
EMAC_RBQP = (uint32_t)rx_buf_tab;
EMAC_TBQP = (uint32_t)tx_buf_tab;
/* Clear receiver status. */
EMAC_RSR = BV(EMAC_OVR) | BV(EMAC_REC) | BV(EMAC_BNA);
/* Copy all frames and discard FCS. */
EMAC_NCFGR |= BV(EMAC_CAF) | BV(EMAC_DRFCS);
/* Enable receiver, transmitter and statistics. */
EMAC_NCR |= BV(EMAC_TE) | BV(EMAC_RE) | BV(EMAC_WESTAT);
return 0;
}
ssize_t eth_putFrame(const uint8_t *buf, size_t len)
{
size_t wr_len;
if (UNLIKELY(!len))
return -1;
ASSERT(len <= sizeof(tx_buf));
/* Check if the transmit buffer is available */
while (!(tx_buf_tab[tx_buf_idx].stat & TXS_USED))
event_wait(&send_wait);
/* Copy the data into the buffer and prepare descriptor */
wr_len = MIN(len, (size_t)EMAC_TX_BUFSIZ - tx_buf_offset);
memcpy((uint8_t *)tx_buf_tab[tx_buf_idx].addr + tx_buf_offset,
buf, wr_len);
tx_buf_offset += wr_len;
return wr_len;
}
void eth_sendFrame(void)
{
tx_buf_tab[tx_buf_idx].stat = (tx_buf_offset & TXS_LENGTH_FRAME) |
TXS_LAST_BUFF |
((tx_buf_idx == EMAC_TX_DESCRIPTORS - 1) ? TXS_WRAP : 0);
EMAC_NCR |= BV(EMAC_TSTART);
tx_buf_offset = 0;
if (++tx_buf_idx >= EMAC_TX_DESCRIPTORS)
tx_buf_idx = 0;
}
ssize_t eth_send(const uint8_t *buf, size_t len)
{
if (UNLIKELY(!len))
return -1;
len = eth_putFrame(buf, len);
eth_sendFrame();
return len;
}
static void eth_buf_realign(int idx)
{
/* Empty buffer found. Realign. */
do {
rx_buf_tab[rx_buf_idx].addr &= ~RXBUF_OWNERSHIP;
if (++rx_buf_idx >= EMAC_RX_BUFFERS)
rx_buf_idx = 0;
} while (idx != rx_buf_idx);
}
static size_t __eth_getFrameLen(void)
{
int idx, n = EMAC_RX_BUFFERS;
skip:
/* Skip empty buffers */
while ((n > 0) && !(rx_buf_tab[rx_buf_idx].addr & RXBUF_OWNERSHIP))
{
if (++rx_buf_idx >= EMAC_RX_BUFFERS)
rx_buf_idx = 0;
n--;
}
if (UNLIKELY(!n))
{
LOG_INFO("no frame found\n");
return 0;
}
/* Search the start of frame and cleanup fragments */
while ((n > 0) && (rx_buf_tab[rx_buf_idx].addr & RXBUF_OWNERSHIP) &&
!(rx_buf_tab[rx_buf_idx].stat & RXS_SOF))
{
rx_buf_tab[rx_buf_idx].addr &= ~RXBUF_OWNERSHIP;
if (++rx_buf_idx >= EMAC_RX_BUFFERS)
rx_buf_idx = 0;
n--;
}
if (UNLIKELY(!n))
{
LOG_INFO("no SOF found\n");
return 0;
}
/* Search end of frame to evaluate the total frame size */
idx = rx_buf_idx;
restart:
while (n > 0)
{
if (UNLIKELY(!(rx_buf_tab[idx].addr & RXBUF_OWNERSHIP)))
{
/* Empty buffer found. Realign. */
eth_buf_realign(idx);
goto skip;
}
if (rx_buf_tab[idx].stat & RXS_EOF)
return rx_buf_tab[idx].stat & RXS_LENGTH_FRAME;
if (UNLIKELY((idx != rx_buf_idx) &&
(rx_buf_tab[idx].stat & RXS_SOF)))
{
/* Another start of frame found. Realign. */
eth_buf_realign(idx);
goto restart;
}
if (++idx >= EMAC_RX_BUFFERS)
idx = 0;
n--;
}
LOG_INFO("no EOF found\n");
return 0;
}
size_t eth_getFrameLen(void)
{
size_t len;
/* Check if there is at least one available frame in the buffer */
while (1)
{
len = __eth_getFrameLen();
if (LIKELY(len))
break;
/* Wait for RX interrupt */
event_wait(&recv_wait);
}
return len;
}
ssize_t eth_getFrame(uint8_t *buf, size_t len)
{
uint8_t *addr;
size_t rd_len = 0;
if (UNLIKELY(!len))
return -1;
ASSERT(len <= sizeof(rx_buf));
/* Copy data from the RX buffer */
addr = (uint8_t *)(rx_buf_tab[rx_buf_idx].addr & BUF_ADDRMASK);
if (addr + len > &rx_buf[countof(rx_buf)])
{
size_t count = &rx_buf[countof(rx_buf)] - addr;
memcpy(buf, addr, count);
memcpy(buf + count, rx_buf, len - count);
}
else
{
memcpy(buf, addr, len);
}
/* Update descriptors */
while (rd_len < len)
{
if (len - rd_len >= EMAC_RX_BUFSIZ)
rd_len += EMAC_RX_BUFSIZ;
else
rd_len += len - rd_len;
if (UNLIKELY(!(rx_buf_tab[rx_buf_idx].addr & RXBUF_OWNERSHIP)))
{
LOG_INFO("bad frame found\n");
return 0;
}
rx_buf_tab[rx_buf_idx].addr &= ~RXBUF_OWNERSHIP;
if (++rx_buf_idx >= EMAC_RX_DESCRIPTORS)
rx_buf_idx = 0;
}
return rd_len;
}
ssize_t eth_recv(uint8_t *buf, size_t len)
{
if (UNLIKELY(!len))
return -1;
len = MIN(len, eth_getFrameLen());
return len ? eth_getFrame(buf, len) : 0;
}
int eth_init()
{
cpu_flags_t flags;
emac_reset();
emac_start();
event_initGeneric(&recv_wait);
event_initGeneric(&send_wait);
// Register interrupt vector
IRQ_SAVE_DISABLE(flags);
/* Disable all emac interrupts */
EMAC_IDR = 0xFFFFFFFF;
/* Set the vector. */
AIC_SVR(EMAC_ID) = emac_irqHandler;
/* Initialize to edge triggered with defined priority. */
AIC_SMR(EMAC_ID) = AIC_SRCTYPE_INT_EDGE_TRIGGERED;
/* Clear pending interrupt */
AIC_ICCR = BV(EMAC_ID);
/* Enable the system IRQ */
AIC_IECR = BV(EMAC_ID);
/* Enable interrupts */
EMAC_IER = EMAC_RX_INTS | EMAC_TX_INTS;
IRQ_RESTORE(flags);
return 0;
}