OpenModem/hardware/AFSK.h
Paul Kronenwetter a7a167c19b Refactoring to make explicit D-to-A and PTT pins & ports, and turning on and
off PTT. This should also help to make porting to another chip easier.
2015-10-02 17:39:33 -04:00

172 lines
6.5 KiB
C

#ifndef AFSK_H
#define AFSK_H
#include "device.h"
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include <avr/pgmspace.h>
#include "util/FIFO.h"
#include "util/time.h"
#include "protocol/HDLC.h"
#define SIN_LEN 512
static const uint8_t sin_table[] PROGMEM =
{
128, 129, 131, 132, 134, 135, 137, 138, 140, 142, 143, 145, 146, 148, 149, 151,
152, 154, 155, 157, 158, 160, 162, 163, 165, 166, 167, 169, 170, 172, 173, 175,
176, 178, 179, 181, 182, 183, 185, 186, 188, 189, 190, 192, 193, 194, 196, 197,
198, 200, 201, 202, 203, 205, 206, 207, 208, 210, 211, 212, 213, 214, 215, 217,
218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233,
234, 234, 235, 236, 237, 238, 238, 239, 240, 241, 241, 242, 243, 243, 244, 245,
245, 246, 246, 247, 248, 248, 249, 249, 250, 250, 250, 251, 251, 252, 252, 252,
253, 253, 253, 253, 254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255,
};
inline static uint8_t sinSample(uint16_t i) {
uint16_t newI = i % (SIN_LEN/2);
newI = (newI >= (SIN_LEN/4)) ? (SIN_LEN/2 - newI -1) : newI;
uint8_t sine = pgm_read_byte(&sin_table[newI]);
return (i >= (SIN_LEN/2)) ? (255 - sine) : sine;
}
#define SWITCH_TONE(inc) (((inc) == MARK_INC) ? SPACE_INC : MARK_INC)
#define BITS_DIFFER(bits1, bits2) (((bits1)^(bits2)) & 0x01)
#define DUAL_XOR(bits1, bits2) ((((bits1)^(bits2)) & 0x03) == 0x03)
#define SIGNAL_TRANSITIONED(bits) DUAL_XOR((bits), (bits) >> 2)
#define TRANSITION_FOUND(bits) BITS_DIFFER((bits), (bits) >> 1)
#define CPU_FREQ F_CPU
#define CONFIG_AFSK_RX_BUFLEN 64
#define CONFIG_AFSK_TX_BUFLEN 64
#define CONFIG_AFSK_RXTIMEOUT 0
#define CONFIG_AFSK_PREAMBLE_LEN 150UL
#define CONFIG_AFSK_TRAILER_LEN 50UL
#define BIT_STUFF_LEN 5
#define SAMPLERATE 9600
#define BITRATE 1200
#define SAMPLESPERBIT (SAMPLERATE / BITRATE)
#define PHASE_INC 1 // Nudge by an eigth of a sample each adjustment
#if BITRATE == 300
#define FILTER_CUTOFF 600
#define MARK_FREQ 1600
#define SPACE_FREQ 1800
#define PHASE_BITS 10 // How much to increment phase counter each sample
#elif BITRATE == 960
#define FILTER_CUTOFF 600
#define MARK_FREQ 960
#define SPACE_FREQ 1600
#define PHASE_BITS 10
#elif BITRATE == 1200
#define FILTER_CUTOFF 600
#define MARK_FREQ 1200
#define SPACE_FREQ 2200
#define PHASE_BITS 8
#elif BITRATE == 1600
#define FILTER_CUTOFF 800
#define MARK_FREQ 1600
#define SPACE_FREQ 2600
#define PHASE_BITS 8
#elif BITRATE == 2400
#define FILTER_CUTOFF 1600
#define MARK_FREQ 2400
#define SPACE_FREQ 4200
#define PHASE_BITS 4
#else
#error Unsupported bitrate!
#endif
#define PHASE_MAX (SAMPLESPERBIT * PHASE_BITS) // Resolution of our phase counter = 64
#define PHASE_THRESHOLD (PHASE_MAX / 2) // Target transition point of our phase window
typedef struct Hdlc
{
uint8_t demodulatedBits;
uint8_t bitIndex;
uint8_t currentByte;
bool receiving;
} Hdlc;
typedef struct Afsk
{
// Stream access to modem
FILE fd;
// General values
Hdlc hdlc; // We need a link control structure
uint16_t preambleLength; // Length of sync preamble
uint16_t tailLength; // Length of transmission tail
// Modulation values
uint8_t sampleIndex; // Current sample index for outgoing bit
uint8_t currentOutputByte; // Current byte to be modulated
uint8_t txBit; // Mask of current modulated bit
bool bitStuff; // Whether bitstuffing is allowed
uint8_t bitstuffCount; // Counter for bit-stuffing
uint16_t phaseAcc; // Phase accumulator
uint16_t phaseInc; // Phase increment per sample
FIFOBuffer txFifo; // FIFO for transmit data
uint8_t txBuf[CONFIG_AFSK_TX_BUFLEN]; // Actial data storage for said FIFO
volatile bool sending; // Set when modem is sending
// Demodulation values
FIFOBuffer delayFifo; // Delayed FIFO for frequency discrimination
int8_t delayBuf[SAMPLESPERBIT / 2 + 1]; // Actual data storage for said FIFO
FIFOBuffer rxFifo; // FIFO for received data
uint8_t rxBuf[CONFIG_AFSK_RX_BUFLEN]; // Actual data storage for said FIFO
int16_t iirX[2]; // IIR Filter X cells
int16_t iirY[2]; // IIR Filter Y cells
uint8_t sampledBits; // Bits sampled by the demodulator (at ADC speed)
int8_t currentPhase; // Current phase of the demodulator
uint8_t actualBits; // Actual found bits at correct bitrate
volatile int status; // Status of the modem, 0 means OK
} Afsk;
#define DIV_ROUND(dividend, divisor) (((dividend) + (divisor) / 2) / (divisor))
#define MARK_INC (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)MARK_FREQ, CONFIG_AFSK_DAC_SAMPLERATE))
#define SPACE_INC (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)SPACE_FREQ, CONFIG_AFSK_DAC_SAMPLERATE))
#define AFSK_DAC_IRQ_START() do { extern bool hw_afsk_dac_isr; hw_afsk_dac_isr = true; } while (0)
#define AFSK_DAC_IRQ_STOP() do { extern bool hw_afsk_dac_isr; hw_afsk_dac_isr = false; } while (0)
// DAC_PINS equals b11111000 which on port D on Arduino sets D3, D4, D5, D6, D7
// to be outputs.
#define AFSK_DAC_INIT() do { DAC_DDR |= DAC_PINS; } while (0)
// Here's some macros for controlling the RX/TX LEDs
// THE _INIT() functions writes to the DDRB register
// to configure the pins as output pins, and the _ON()
// and _OFF() functions writes to the PORT registers
// to turn the pins on or off.
#define LED_TX_INIT() do { LED_DDR |= _BV(LED_TX); } while (0)
#define LED_TX_ON() do { LED_PORT |= _BV(LED_TX); } while (0)
#define LED_TX_OFF() do { LED_PORT &= ~_BV(LED_TX); } while (0)
#define LED_RX_INIT() do { LED_DDR |= _BV(LED_RX); } while (0)
#define LED_RX_ON() do { LED_PORT |= _BV(LED_RX); } while (0)
#define LED_RX_OFF() do { LED_PORT &= ~_BV(LED_RX); } while (0)
// Along the same lines, these initialize and control the PTT signal
#define PTT_INIT() do { PTT_DDR |= _BV(PTT_TX); } while (0)
#define PTT_TX_ON() do { PTT_PORT |= _BV(PTT_TX); } while (0)
#define PTT_TX_OFF() do { PTT_PORT &= ~_BV(PTT_TX); } while (0)
void AFSK_init(Afsk *afsk);
void AFSK_transmit(char *buffer, size_t size);
void AFSK_poll(Afsk *afsk);
#endif