OpenModem/bertos/algo/ramp_test.c
2014-04-03 22:21:37 +02:00

187 lines
5.6 KiB
C

/*!
* \file
* <!--
* Copyright 2004, 2008 Develer S.r.l. (http://www.develer.com/)
* All Rights Reserved.
* -->
*
* \brief Test for compute, save and load ramps for stepper motors (implementation)
*
*
* \author Simone Zinanni <s.zinanni@develer.com>
* \author Bernie Innocenti <bernie@codewiz.org>
* \author Giovanni Bajo <rasky@develer.com>
* \author Daniele Basile <asterix@develer.com>
*
*
* The formula used by the ramp is the following:
*
* <pre>
* a * b
* f(t) = -------------
* lerp(a,b,t)
* </pre>
*
* Where <code>a</code> and <code>b</code> are the maximum and minimum speed
* respectively (minimum and maximum wavelength respectively), and <code>lerp</code>
* is a linear interpolation with a factor:
*
* <pre>
* lerp(a,b,t) = a + t * (b - a) = (a * (1 - t)) + (b * t)
* </pre>
*
* <code>t</code> must be in the [0,1] interval. It is easy to see that the
* following holds true:
*
* <pre>
* f(0) = b, f(1) = a
* </pre>
*
* And that the function is monotonic. So, the function effectively interpolates
* between the maximum and minimum speed through its domain ([0,1] -> [b,a]).
*
* The curve drawn by this function is similar to 1 / (sqrt(n)), so it is slower
* than a linear acceleration (which would be 1/n).
*
* The floating point version uses a slightly modified function which accepts
* the parameter in the domain [0, MT] (where MT is maxTime, the length of the
* ramp, which is a setup parameter for the ramp). This is done to reduce the
* number of operations per step. The formula looks like this:
*
* <pre>
* a * b * MT
* g(t) = ----------------------------
* (a * MT) + t * (b - a)
* </pre>
*
* It can be shown that this <code>g(t) = f(t * MT)</code>. The denominator
* is a linear interpolation in the range [b*MT, a*MT], as t moves in the
* interval [0, MT]. So the interpolation interval of the function is again
* [b, a]. The implementation caches the value of the numerator and parts
* of the denominator, so that the formula becomes:
*
* <pre>
* alpha = a * b * MT
* beta = a * MT
* gamma = b - a
*
* alpha
* g(t) = ----------------------
* beta + t * gamma
* </pre>
*
* and <code>t</code> is exactly the parameter that ramp_evaluate() gets,
* that is the current time (in range [0, MT]). The operations performed
* for each step are just an addition, a multiplication and a division.
*
* The fixed point version of the formula instead transforms the original
* function as follows:
*
* <pre>
* a * b a
* f(t) = ------------------------- = --------------------
* a a
* b * ( - * (1 - t) + t ) - * (1 - t) + t
* b b
* </pre>
*
* <code>t</code> must be computed by dividing the current time (24 bit integer)
* by the maximum time (24 bit integer). This is done by precomputing the
* reciprocal of the maximum time as a 0.32 fixed point number, and multiplying
* it to the current time. Multiplication is performed 8-bits a time by
* FIX_MULT32(), so that we end up with a 0.16 fixed point number for
* <code>t</code> (and <code>1-t</code> is just its twos-complement negation).
* <code>a/b</code> is in the range [0,1] (because a is always less than b,
* being the minimum wavelength), so it is precomputed as a 0.16 fixed point.
* The final step is then computing the denominator and executing the division
* (32 cycles using the 1-step division instruction in the DSP).
*
* The assembly implementation is needed for efficiency, but a C version of it
* can be easily written, in case it is needed in the future.
*
*/
#include "ramp.h"
#include <cfg/debug.h>
#include <cfg/test.h>
static bool ramp_test_single(uint32_t minFreq, uint32_t maxFreq, uint32_t length)
{
struct Ramp r;
uint16_t cur, old;
uint32_t clock;
uint32_t oldclock;
ramp_setup(&r, length, minFreq, maxFreq);
cur = old = r.clocksMaxWL;
clock = 0;
oldclock = 0;
kprintf("testing ramp: (length=%lu, min=%lu, max=%lu)\n", (unsigned long)length, (unsigned long)minFreq, (unsigned long)maxFreq);
kprintf(" [length=%lu, max=%04x, min=%04x]\n", (unsigned long)r.clocksRamp, r.clocksMaxWL, r.clocksMinWL);
int i = 0;
int nonbyte = 0;
while (clock + cur < r.clocksRamp)
{
oldclock = clock;
old = cur;
clock += cur;
cur = ramp_evaluate(&r, clock);
if (old < cur)
{
uint16_t t1 = FIX_MULT32(oldclock >> RAMP_CLOCK_SHIFT_PRECISION, r.precalc.inv_total_time);
uint16_t t2 = FIX_MULT32(clock >> RAMP_CLOCK_SHIFT_PRECISION, r.precalc.inv_total_time);
uint16_t denom1 = FIX_MULT32((uint16_t)((~t1) + 1), r.precalc.max_div_min) + t1;
uint16_t denom2 = FIX_MULT32((uint16_t)((~t2) + 1), r.precalc.max_div_min) + t2;
kprintf(" Failed: %04x @ %lu --> %04x @ %lu\n", old, (unsigned long)oldclock, cur, (unsigned long)clock);
kprintf(" T: %04x -> %04x\n", t1, t2);
kprintf(" DENOM: %04x -> %04x\n", denom1, denom2);
cur = ramp_evaluate(&r, clock);
return false;
}
i++;
if ((old-cur) >= 256)
nonbyte++;
}
kprintf("Test finished: %04x @ %lu [min=%04x, totlen=%lu, numsteps:%d, nonbyte:%d]\n", cur, (unsigned long)clock, r.clocksMinWL, (unsigned long)r.clocksRamp, i, nonbyte);
return true;
}
int ramp_testSetup(void)
{
kdbg_init();
return 0;
}
int ramp_testTearDown(void)
{
return 0;
}
int ramp_testRun(void)
{
#define TEST_RAMP(min, max, len) do { \
if (!ramp_test_single(min, max, len)) \
return -1; \
} while(0)
TEST_RAMP(200, 5000, 3000000);
TEST_RAMP(1000, 2000, 1000000);
return 0;
}
TEST_MAIN(ramp);