mirror of
https://github.com/markqvist/OpenModem.git
synced 2025-01-20 19:52:03 -05:00
419 lines
12 KiB
C
419 lines
12 KiB
C
#include "afsk.h"
|
|
#include "config.h"
|
|
#include "hardware.h"
|
|
|
|
#include <drv/timer.h>
|
|
#include <cfg/module.h>
|
|
|
|
#include <cpu/power.h>
|
|
#include <cpu/pgm.h>
|
|
#include <struct/fifobuf.h>
|
|
#include <string.h>
|
|
|
|
// Sine table for DAC DDS
|
|
#define SIN_LEN 512 // Length of a full wave. Table is 1/4 wave.
|
|
static const uint8_t PROGMEM sin_table[] =
|
|
{
|
|
128, 129, 131, 132, 134, 135, 137, 138, 140, 142, 143, 145, 146, 148, 149, 151,
|
|
152, 154, 155, 157, 158, 160, 162, 163, 165, 166, 167, 169, 170, 172, 173, 175,
|
|
176, 178, 179, 181, 182, 183, 185, 186, 188, 189, 190, 192, 193, 194, 196, 197,
|
|
198, 200, 201, 202, 203, 205, 206, 207, 208, 210, 211, 212, 213, 214, 215, 217,
|
|
218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233,
|
|
234, 234, 235, 236, 237, 238, 238, 239, 240, 241, 241, 242, 243, 243, 244, 245,
|
|
245, 246, 246, 247, 248, 248, 249, 249, 250, 250, 250, 251, 251, 252, 252, 252,
|
|
253, 253, 253, 253, 254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255,
|
|
}; STATIC_ASSERT(sizeof(sin_table) == SIN_LEN / 4);
|
|
|
|
|
|
// Calculate any sine value from quarter wave sine table
|
|
INLINE uint8_t sinSample(uint16_t i) {
|
|
ASSERT(i < SIN_LEN);
|
|
uint16_t newI = i % (SIN_LEN/2);
|
|
newI = (newI >= (SIN_LEN/4)) ? (SIN_LEN/2 - newI -1) : newI;
|
|
uint8_t sine = pgm_read8(&sin_table[newI]);
|
|
return (i >= (SIN_LEN/2)) ? (255 - sine) : sine;
|
|
}
|
|
|
|
// Look for signal transition. Used for phase sync.
|
|
#define BITS_DIFFER(bits1, bits2) (((bits1)^(bits2)) & 0x01)
|
|
#define EDGE_FOUND(bits) BITS_DIFFER((bits), (bits) >> 1)
|
|
|
|
// Phase sync constants
|
|
#define PHASE_BITS 8
|
|
#define PHASE_INC 1
|
|
#define PHASE_MAX (SAMPLESPERBIT * PHASE_BITS)
|
|
#define PHASE_THRESHOLD (PHASE_MAX / 2)
|
|
|
|
// Modulation constants
|
|
#define MARK_FREQ 1200
|
|
#define MARK_INC (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)MARK_FREQ, CONFIG_AFSK_DAC_SAMPLERATE))
|
|
#define SPACE_FREQ 2200
|
|
#define SPACE_INC (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)SPACE_FREQ, CONFIG_AFSK_DAC_SAMPLERATE))
|
|
|
|
// HDLC flag bytes
|
|
#define HDLC_FLAG 0x7E
|
|
#define HDLC_RESET 0x7F
|
|
#define AX25_ESC 0x1B
|
|
|
|
// Check that sample rate is divisible by bitrate
|
|
STATIC_ASSERT(!(CONFIG_AFSK_DAC_SAMPLERATE % BITRATE));
|
|
|
|
#define DAC_SAMPLESPERBIT (CONFIG_AFSK_DAC_SAMPLERATE / BITRATE)
|
|
|
|
//////////////////////////////////////////////////////
|
|
// Link Layer Control and Demodulation //
|
|
//////////////////////////////////////////////////////
|
|
|
|
static bool hdlcParse(Hdlc *hdlc, bool bit, FIFOBuffer *fifo) {
|
|
bool ret = true;
|
|
|
|
hdlc->demodulatedBits <<= 1;
|
|
hdlc->demodulatedBits |= bit ? 1 : 0;
|
|
|
|
// Check if we have received a HDLC flag (01111110)
|
|
if (hdlc->demodulatedBits == HDLC_FLAG) {
|
|
if (!fifo_isfull(fifo)) {
|
|
fifo_push(fifo, HDLC_FLAG);
|
|
hdlc->receiving = true;
|
|
} else {
|
|
ret = false;
|
|
hdlc->receiving = false;
|
|
}
|
|
|
|
hdlc->currentByte = 0;
|
|
hdlc->bitIndex = 0;
|
|
return ret;
|
|
}
|
|
|
|
// Check if we have received a RESET flag (01111111)
|
|
if ((hdlc->demodulatedBits & HDLC_RESET) == HDLC_RESET) {
|
|
hdlc->receiving = false;
|
|
return ret;
|
|
}
|
|
|
|
// If we are just receiving noise, don't bother with anything
|
|
if (!hdlc->receiving)
|
|
return ret;
|
|
|
|
// First check if what we are seeing is a stuffed bit
|
|
if ((hdlc->demodulatedBits & 0x3f) == 0x3e)
|
|
return ret;
|
|
|
|
// If we have an actual 1 bit, push this to the current byte
|
|
if (hdlc->demodulatedBits & 0x01)
|
|
hdlc->currentByte |= 0x80;
|
|
|
|
// Increment the bitIndex and check if we have a complete byte
|
|
if (++hdlc->bitIndex >= 8) {
|
|
// If we have a HDLC control character,
|
|
// put a AX.25 escape in the received data
|
|
if ((hdlc->currentByte == HDLC_FLAG ||
|
|
hdlc->currentByte == HDLC_RESET ||
|
|
hdlc->currentByte == AX25_ESC)) {
|
|
if (!fifo_isfull(fifo)) {
|
|
fifo_push(fifo, AX25_ESC);
|
|
} else {
|
|
hdlc->receiving = false;
|
|
ret = false;
|
|
}
|
|
}
|
|
|
|
// Push the actual byte to the received data FIFO
|
|
if (!fifo_isfull(fifo)) {
|
|
fifo_push(fifo, hdlc->currentByte);
|
|
} else {
|
|
hdlc->receiving = false;
|
|
ret = false;
|
|
}
|
|
|
|
// Wipe received byte and reset bit index to 0
|
|
hdlc->currentByte = 0;
|
|
hdlc->bitIndex = 0;
|
|
|
|
} else {
|
|
// We don't have a full byte yet, bitshift the byte
|
|
// to make room for the next bit
|
|
hdlc->currentByte >>= 1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void afsk_adc_isr(Afsk *afsk, int8_t currentSample) {
|
|
// To determine the received frequency, and thereby
|
|
// the bit of the sample, we multiply the sample by
|
|
// a sample delayed by (samples per bit / 2).
|
|
// We then lowpass-filter the sample with a first
|
|
// order 600Hz filter. This is a Chebyshev filter.
|
|
|
|
afsk->iirX[0] = afsk->iirX[1];
|
|
afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) >> 2;
|
|
|
|
afsk->iirY[0] = afsk->iirY[1];
|
|
afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] >> 1);
|
|
|
|
// Put the sampled bit in a delay-line
|
|
afsk->sampledBits <<= 1; // Bitshift everything 1 left
|
|
afsk->sampledBits |= (afsk->iirY[1] > 0) ? 1 : 0;
|
|
|
|
// Put the current raw sample in the delay FIFO
|
|
fifo_push(&afsk->delayFifo, currentSample);
|
|
|
|
// If there is a signal transition, recalibrate
|
|
// sampling phase
|
|
|
|
if (EDGE_FOUND(afsk->sampledBits)) {
|
|
if (afsk->currentPhase < PHASE_THRESHOLD) {
|
|
afsk->currentPhase += PHASE_INC;
|
|
} else {
|
|
afsk->currentPhase -= PHASE_INC;
|
|
}
|
|
}
|
|
afsk->currentPhase += PHASE_BITS;
|
|
|
|
// Look at the raw samples to determine the transmitted bit
|
|
if (afsk->currentPhase >= PHASE_MAX) {
|
|
afsk->currentPhase %= PHASE_MAX;
|
|
|
|
// Bitshift to make room for next bit
|
|
afsk->actualBits <<= 1;
|
|
|
|
// Determine the actual bit value by reading the last
|
|
// 3 sampled bits. If there is two ore more 1's, the
|
|
// actual bit is a 1, otherwise a 0.
|
|
uint8_t bits = afsk->sampledBits & 0x07;
|
|
if (bits == 0x07 || // 111
|
|
bits == 0x06 || // 110
|
|
bits == 0x05 || // 101
|
|
bits == 0x03 // 011
|
|
) {
|
|
afsk->actualBits |= 1;
|
|
}
|
|
|
|
// Now we can pass the actual bit to the HDLC parser.
|
|
// We are using NRZI coding, so if 2 consecutive bits
|
|
// have the same value, we have a 1, otherwise a 0.
|
|
// We use the EDGE_FOUND function to determine this.
|
|
// We also check the return of the Link Control parser
|
|
// to check if an error occured.
|
|
if (!hdlcParse(&afsk->hdlc, !EDGE_FOUND(afsk->actualBits), &afsk->rxFifo)) {
|
|
afsk->status |= RX_OVERRUN;
|
|
}
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////
|
|
// Signal modulation and DAC //
|
|
//////////////////////////////////////////////////////
|
|
|
|
#define BIT_STUFF_LEN 5
|
|
#define SWITCH_TONE(inc) (((inc) == MARK_INC) ? SPACE_INC : MARK_INC)
|
|
|
|
static void afsk_txStart(Afsk *afsk) {
|
|
if (!afsk->sending) {
|
|
afsk->phaseInc = MARK_INC;
|
|
afsk->phaseAcc = 0;
|
|
afsk->bitstuffCount = 0;
|
|
afsk->sending = true;
|
|
afsk->preambleLength = DIV_ROUND(CONFIG_AFSK_PREAMBLE_LEN * BITRATE, 8000);
|
|
AFSK_DAC_IRQ_START(afsk->dacPin);
|
|
}
|
|
ATOMIC(afsk->tailLength = DIV_ROUND(CONFIG_AFSK_TRAILER_LEN * BITRATE, 8000));
|
|
}
|
|
|
|
// This is the DAC ISR, called at sampling ratewhenever the DAC IRQ is on.
|
|
// It modulates the data to be transmitted and returns a value directly
|
|
// for output on the DAC
|
|
uint8_t afsk_dac_isr(Afsk *afsk) {
|
|
// Check whether we are at the beginning of a sample
|
|
if (afsk->sampleIndex == 0) {
|
|
if (afsk->txBit == 0) {
|
|
// If TX FIFO is empty and tail-length has decremented to 0
|
|
// we are done, stop the IRQ and reset
|
|
if (fifo_isempty(&afsk->txFifo) && afsk->tailLength == 0) {
|
|
AFSK_DAC_IRQ_STOP(afsk->dacPin);
|
|
afsk->sending = false;
|
|
return 0;
|
|
} else {
|
|
// Reset the bitstuff counter if we have just sent
|
|
// a bitstuffed byte
|
|
if (!afsk->bitStuff) afsk->bitstuffCount = 0;
|
|
// Reset bitstuff indicator to true
|
|
afsk->bitStuff = true;
|
|
|
|
// Check if we are in preamble or tail
|
|
if (afsk->preambleLength == 0) {
|
|
if (fifo_isempty(&afsk->txFifo)) {
|
|
afsk->tailLength--;
|
|
afsk->currentOutputByte = HDLC_FLAG;
|
|
} else {
|
|
// If preamble is already transmitted and TX
|
|
// buffer is not empty, we should get a byte
|
|
// for transmission
|
|
afsk->currentOutputByte = fifo_pop(&afsk->txFifo);
|
|
}
|
|
} else {
|
|
afsk->preambleLength--;
|
|
afsk->currentOutputByte = HDLC_FLAG;
|
|
}
|
|
|
|
// Handle escape sequences
|
|
if (afsk->currentOutputByte == AX25_ESC) {
|
|
if (fifo_isempty(&afsk->txFifo)) {
|
|
AFSK_DAC_IRQ_STOP(afsk->dacPin);
|
|
afsk->sending = false;
|
|
return 0;
|
|
} else {
|
|
afsk->currentOutputByte = fifo_pop(&afsk->txFifo);
|
|
}
|
|
} else if (afsk->currentOutputByte == HDLC_FLAG || afsk->currentOutputByte == HDLC_RESET) {
|
|
afsk->bitStuff = false;
|
|
}
|
|
}
|
|
// Start with LSB mask
|
|
afsk->txBit = 0x01;
|
|
}
|
|
|
|
// Check for bit stuffing
|
|
if (afsk->bitStuff && afsk->bitstuffCount >= BIT_STUFF_LEN) {
|
|
afsk->bitstuffCount = 0;
|
|
afsk->phaseInc = SWITCH_TONE(afsk->phaseInc);
|
|
} else {
|
|
// We are using NRZI so if we want to transmit a 1
|
|
// the modulated signal will stay the same. For a 0
|
|
// we make the signal transition
|
|
if (afsk->currentOutputByte & afsk->txBit) {
|
|
// We don't do anything, aka stay on the same
|
|
// tone as before. We have sent one 1, so we
|
|
// increment the bitstuff counter.
|
|
afsk->bitstuffCount++;
|
|
} else {
|
|
// We switch the tone, and reset the bitstuff
|
|
// counter, since we have now transmitted a
|
|
// zero
|
|
afsk->bitstuffCount = 0;
|
|
afsk->phaseInc = SWITCH_TONE(afsk->phaseInc);
|
|
}
|
|
|
|
// Move on to the next bit
|
|
afsk->txBit <<= 1;
|
|
}
|
|
|
|
afsk->sampleIndex = DAC_SAMPLESPERBIT;
|
|
}
|
|
|
|
// Retrieve af new sample index and DAC it
|
|
afsk->phaseAcc += afsk->phaseInc;
|
|
afsk->phaseAcc %= SIN_LEN;
|
|
afsk->sampleIndex--;
|
|
return sinSample(afsk->phaseAcc);
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////
|
|
// File operation overwrites for read/write //
|
|
// These functions make the "class" act like a file //
|
|
// pointer, which can be read from or written to. //
|
|
// Handy for sending and receiving data :) //
|
|
//////////////////////////////////////////////////////
|
|
|
|
static size_t afsk_read(KFile *fd, void *_buf, size_t size) {
|
|
Afsk *afsk = AFSK_CAST(fd);
|
|
uint8_t *buffer = (uint8_t *)_buf;
|
|
|
|
#if CONFIG_AFSK_RXTIMEOUT == 0
|
|
while (size-- && !fifo_isempty_locked(&afsk->rxFifo))
|
|
#else
|
|
while (size--)
|
|
#endif
|
|
{
|
|
#if CONFIG_AFSK_RXTIMEOUT != -1
|
|
ticks_t start = timer_clock();
|
|
#endif
|
|
|
|
while (fifo_isempty_locked(&afsk->rxFifo)) {
|
|
cpu_relax();
|
|
#if CONFIG_AFSK_RXTIMEOUT != -1
|
|
if (timer_clock() - start > ms_to_ticks(CONFIG_AFSK_RXTIMEOUT)) {
|
|
return buffer - (uint8_t *)_buf;
|
|
}
|
|
#endif
|
|
}
|
|
*buffer++ = fifo_pop_locked(&afsk->rxFifo);
|
|
}
|
|
|
|
return buffer - (uint8_t *)_buf;
|
|
}
|
|
|
|
static size_t afsk_write(KFile *fd, const void *_buf, size_t size) {
|
|
Afsk *afsk = AFSK_CAST(fd);
|
|
const uint8_t *buf = (const uint8_t *)_buf;
|
|
|
|
while (size--) {
|
|
while (fifo_isfull_locked(&afsk->txFifo)) {
|
|
cpu_relax();
|
|
}
|
|
|
|
fifo_push_locked(&afsk->txFifo, *buf++);
|
|
afsk_txStart(afsk);
|
|
}
|
|
|
|
return buf - (const uint8_t *)_buf;
|
|
}
|
|
|
|
static int afsk_flush(KFile *fd) {
|
|
Afsk *afsk = AFSK_CAST(fd);
|
|
while (afsk->sending) {
|
|
cpu_relax();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int afsk_error(KFile *fd) {
|
|
Afsk *afsk = AFSK_CAST(fd);
|
|
int err;
|
|
ATOMIC(err = afsk->status);
|
|
return err;
|
|
}
|
|
|
|
static void afsk_clearerr(KFile *fd) {
|
|
Afsk *afsk = AFSK_CAST(fd);
|
|
ATOMIC(afsk->status = 0);
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////
|
|
// Modem Initialization //
|
|
//////////////////////////////////////////////////////
|
|
|
|
void afsk_init(Afsk *afsk, int _adcPin, int _dacPin) {
|
|
// Allocate memory for struct
|
|
memset(afsk, 0, sizeof(*afsk));
|
|
|
|
// Configure pins
|
|
afsk->adcPin = _adcPin;
|
|
afsk->dacPin = _dacPin;
|
|
afsk->phaseInc = MARK_INC;
|
|
|
|
// Init FIFO buffers
|
|
fifo_init(&afsk->delayFifo, (uint8_t *)afsk->delayBuf, sizeof(afsk->delayBuf));
|
|
fifo_init(&afsk->rxFifo, afsk->rxBuf, sizeof(afsk->rxBuf));
|
|
fifo_init(&afsk->txFifo, afsk->txBuf, sizeof(afsk->txBuf));
|
|
|
|
// Fill delay FIFO with zeroes
|
|
for (int i = 0; i<SAMPLESPERBIT / 2; i++) {
|
|
fifo_push(&afsk->delayFifo, 0);
|
|
}
|
|
|
|
// Init DAC & ADC
|
|
AFSK_ADC_INIT(_adcPin, afsk);
|
|
AFSK_DAC_INIT(_dacPin, afsk);
|
|
AFSK_STROBE_INIT();
|
|
|
|
DB(afsk->fd._type = KFT_AFSK);
|
|
afsk->fd.write = afsk_write;
|
|
afsk->fd.read = afsk_read;
|
|
afsk->fd.flush = afsk_flush;
|
|
afsk->fd.error = afsk_error;
|
|
afsk->fd.clearerr = afsk_clearerr;
|
|
} |