/**
 * \file
 * <!--
 * This file is part of BeRTOS.
 *
 * Bertos is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 * As a special exception, you may use this file as part of a free software
 * library without restriction.  Specifically, if other files instantiate
 * templates or use macros or inline functions from this file, or you compile
 * this file and link it with other files to produce an executable, this
 * file does not by itself cause the resulting executable to be covered by
 * the GNU General Public License.  This exception does not however
 * invalidate any other reasons why the executable file might be covered by
 * the GNU General Public License.
 *
 * Copyright 2004, 2006, 2008 Develer S.r.l. (http://www.develer.com/)
 * Copyright 2004 Giovanni Bajo
 * -->
 *
 * \defgroup hashtable Hash table implementation
 * \ingroup struct
 * \{
 *
 * \brief Portable hash table
 *
 * This file implements a portable hash table, with the following features:
 *
 * \li Open double-hashing. The maximum number of elements is fixed. The double hashing
 * function improves recovery in case of collisions.
 * \li Configurable size (which is clamped to a power of two)
 * \li Visiting interface through iterator (returns the element in random order).
 * \li The key is stored within the data and a hook is used to extract it. Optionally, it
 * is possible to store a copy of the key within the hash table.
 *
 * Since the hashing is open, there is no way to remove elements from the table. Instead, a
 * function is provided to clear the table completely.
 *
 * The data stored within the table must be a pointer. The NULL pointer is used as
 * a marker for a free node, so it is invalid to store a NULL pointer in the table
 * with \c ht_insert().
 *
 * \author Giovanni Bajo <rasky@develer.com>
 *
 * $WIZ$ module_name = "hashtable"
 * $WIZ$ module_configuration = "bertos/cfg/cfg_hashtable.h"
 */

#ifndef STRUCT_HASHTABLE_H
#define STRUCT_HASHTABLE_H

#include "cfg/cfg_hashtable.h"

#include <cfg/compiler.h>
#include <cfg/macros.h>
#include <cfg/debug.h>

/// Maximum length of the internal key (use (2^n)-1 for slight speedup)
#define INTERNAL_KEY_MAX_LENGTH     15

/**
 * Hook to get the key from \a data, which is an element of the hash table. The
 * key must be returned together with \a key_length (in words).
 */
typedef const void *(*hook_get_key)(const void *data, uint8_t *key_length);


/**
 * Hash table description
 *
 * \note This structures MUST NOT be accessed directly. Its definition is
 * provided in the header file only for optimization purposes (see the rationale
 * in hashtable.c).
 *
 * \note If new elements must be added to this list, please double check
 * \c DECLARE_HASHTABLE, which requires the existing elements to be at the top.
 */
struct HashTable
{
	const void **mem;            ///< Buckets of data
	uint16_t max_elts_log2;      ///< Log2 of the size of the table
	struct {
		bool key_internal : 1;   ///< true if the key is copied internally
	} flags;
	union {
		hook_get_key hook;       ///< Hook to get the key
		uint8_t *mem;            ///< Pointer to the key memory
	} key_data;
};


/// Iterator to walk the hash table
typedef struct
{
	const void** pos;
	const void** end;
} HashIterator;


/**
 * Declare a hash table in the current scope
 *
 * \param name Variable name
 * \param size Number of elements
 * \param hook_gk Hook to be used to extract the key from the node
 *
 * \note The number of elements will be rounded down to the nearest
 * power of two.
 *
 */
#define DECLARE_HASHTABLE(name, size, hook_gk) \
	static const void* name##_nodes[1 << UINT32_LOG2(size)]; \
	struct HashTable name = \
		{ \
			.mem = name##_nodes, \
			.max_elts_log2 = UINT32_LOG2(size), \
			.flags = { .key_internal = false }, \
			.key_data.hook = hook_gk \
		}


/** Exactly like \c DECLARE_HASHTABLE, but the variable will be declared as static. */
#define DECLARE_HASHTABLE_STATIC(name, size, hook_gk) \
	enum { name##_SIZE = (1 << UINT32_LOG2(size)), }; \
	static const void* name##_nodes[name##_SIZE]; \
	static struct HashTable name = \
		{ \
			.mem = name##_nodes, \
			.max_elts_log2 = UINT32_LOG2(size), \
			.flags = { .key_internal = false }, \
			.key_data.hook = hook_gk \
		}

#if CONFIG_HT_OPTIONAL_INTERNAL_KEY
	/** Declare a hash table with internal copies of the keys. This version does not
	 *  require a hook, nor it requires the user to allocate static memory for the keys.
	 *  It is mostly suggested for tables whose keys are computed on the fly and need
	 *  to be stored somewhere.
	 */
	#define DECLARE_HASHTABLE_INTERNALKEY(name, size) \
		static uint8_t name##_keys[(1 << UINT32_LOG2(size)) * (INTERNAL_KEY_MAX_LENGTH + 1)]; \
		static const void* name##_nodes[1 << UINT32_LOG2(size)]; \
		struct HashTable name = { name##_nodes, UINT32_LOG2(size), { true }, name##_keys }

	/** Exactly like \c DECLARE_HASHTABLE_INTERNALKEY, but the variable will be declared as static. */
	#define DECLARE_HASHTABLE_INTERNALKEY_STATIC(name, size) \
		enum { name##_KEYS = ((1 << UINT32_LOG2(size)) * (INTERNAL_KEY_MAX_LENGTH + 1)), \
			name##_SIZE = (1 << UINT32_LOG2(size)), }; \
		static uint8_t name##_keys[name##_KEYS]; \
		static const void* name##_nodes[name##_SIZE]; \
		static struct HashTable name = \
			{ \
				.mem = name##_nodes, \
				.max_elts_log2 = UINT32_LOG2(size), \
				.flags = { .key_internal = true }, \
				.key_data.mem = name##_keys \
			}
#endif

/**
 * Initialize (and clear) a hash table in a memory buffer.
 *
 * \param ht Hash table declared with \c DECLARE_HASHTABLE
 *
 * \note This function must be called before using the hash table. Optionally,
 * it can be called later in the program to clear the hash table,
 * removing all its elements.
 */
void ht_init(struct HashTable* ht);

/**
 * Insert an element into the hash table
 *
 * \param ht Handle of the hash table
 * \param data Data to be inserted into the table
 * \return true if insertion was successful, false otherwise (table is full)
 *
 * \note The key for the element to insert is extract from the data with
 * the hook. This means that this function cannot be called for hashtables
 * with internal keys.
 *
 * \note If an element with the same key already exists in the table,
 * it will be overwritten.
 *
 * \note It is not allowed to store NULL in the table. If you pass NULL as data,
 * the function call will fail.
 */
bool ht_insert(struct HashTable* ht, const void* data);

/**
 * Insert an element into the hash table
 *
 * \param ht Handle of the hash table
 * \param key Key of the element
 * \param key_length Length of the key in characters
 * \param data Data to be inserted into the table
 * \return true if insertion was successful, false otherwise (table is full)
 *
 * \note If this function is called for hash table with external keys,
 * the key provided must be match the key that would be extracted with the
 * hook, otherwise the function will fail.
 *
 * \note If an element with the same key already exists in the table,
 * it will be overwritten.
 *
 * \note It is not allowed to store NULL in the table. If you pass NULL as data,
 * the function call will fail.
 */
bool ht_insert_with_key(struct HashTable* ht, const void* key, uint8_t key_length, const void* data);

/**
 * Find an element in the hash table
 *
 * \param ht Handle of the hash table
 * \param key Key of the element
 * \param key_length Length of the key in characters
 * \return Data of the element, or NULL if no element was found for the given key.
 */
const void* ht_find(struct HashTable* ht, const void* key, uint8_t key_length);

/** Similar to \c ht_insert_with_key() but \a key is an ASCIIZ string */
#define ht_insert_str(ht, key, data)         ht_insert_with_key(ht, key, strlen(key), data)

/** Similar to \c ht_find() but \a key is an ASCIIZ string */
#define ht_find_str(ht, key)                 ht_find(ht, key, strlen(key))

/// Get an iterator to the begin of the hash table \a ht
INLINE HashIterator ht_iter_begin(struct HashTable* ht)
{
	HashIterator h;

	h.pos = &ht->mem[0];
	h.end = &ht->mem[1 << ht->max_elts_log2];

	while (h.pos != h.end && !*h.pos)
		++h.pos;

	return h;
}

/**
 * Get an iterator to the (exclusive) end of the hash table \a ht
 *
 * \note Like in STL, the end iterator is not a valid iterator (you
 *       cannot call \c ht_iter_get() on it), and it must be used only to
 *       detect if we reached the end of the iteration (through \c ht_iter_cmp()).
 */
INLINE HashIterator ht_iter_end(struct HashTable* ht)
{
	HashIterator h;

	h.pos = h.end = &ht->mem[1 << ht->max_elts_log2];

	return h;
}

/// Compare \a it1 and \a it2 for equality
INLINE bool ht_iter_cmp(HashIterator it1, HashIterator it2)
{
	ASSERT(it1.end == it2.end);
	return it1.pos == it2.pos;
}

/// Get the element within the hash table \a ht pointed by the iterator \a iter
INLINE const void* ht_iter_get(HashIterator iter)
{ return *iter.pos; }

/** Return an iterator pointing to the element following \a h
 *
 * \note The order of the elements visited during the iteration is casual,
 * and depends on the implementation.
 *
 */
INLINE HashIterator ht_iter_next(HashIterator h)
{
	++h.pos;
	while (h.pos != h.end && !(*h.pos))
		++h.pos;

	return h;
}

int hashtable_testSetup(void);
int hashtable_testRun(void);
int hashtable_testTearDown(void);

/** \} */ // \defgroup hashtable

#endif /* STRUCT_HASHTABLE_H */