
OpenModem User Manual
Thank you very much for buying this product! If you have any questions,
suggestions, criticisms or good ideas, I’d love to hear from you! This guide
provides a few pointers on getting started with OpenModem, how to connect
a radio or other device to the modem, and how to configure it.

Device Overview
Please have a look at the following chart of the internals of OpenModem and
familiarise yourself with the different ports, connectors and indicators. 

Revision 1 - April 2020

External Reset

External Power

MicroSD Slot

USB Connector
(Mini-B)

Bluetooth
Expansion Port

UART0
UART1

Analog I/O
and PTT

User I/O 1-4

SPI Port

5V and Ground

Multi-purpose
LEDs

GPS Module
Expansion Port

Cautions
• Always ensure a proper power supply to the device. The device can be

powered from the USB-connector, or from an external power supply on
the External Power port. The device can be powered from a DC voltage
between 5V and 16V. Always ensure that the polarity and voltage is
correct! An incorrect supply voltage or polarity will damage the device.

• Always observe your local laws and regulations regarding RF emissions.
If this device is connected to a radio, it may be capable of generating
emission modes that are illegal in your jurisdiction. It is your responsibility
to ensure that you are operating radio equipment in a lawful way.

Specifications
• AFSK modem supporting 300, 1200 or 2400 baud operation.

• Default mode is 1200 baud AFSK.

• Powered by an ATmega1284p MCU clocked at 20 MHz

• 128 kilobytes of flash

• 16 kilobytes of RAM

• Large packet MTU of 576 bytes

• Mini-USB connector

• Fully programmable

• Arduino compatible

• Open source firmware and configuration program

• 4 multi-purpose IO ports available

• Operating temperature range: -20°C to 60°C (in non-condensing humidity)

Connecting OpenModem to Host Equipment
OpenModem can be connected to any host supporting USB or serial UART
connections. The board uses an FTDI USB-to-serial converter, so drivers
should already be included in most operating systems. You can use either
the USB port, or connect directly to the UART0 RX and UART0 TX pins.

By default, the serial settings are 115200 baud, 8N1. No UART flow control
is used. The serial settings can be changed with the configuration program.

If the UPDATE_ENABLE jumper on the board is connected, the RTS line is
connected to External Reset. In that case, toggling RTS will trigger a reboot
of the modem.

The UPDATE_ENABLE jumper must be connected in order to update the
firmware of the device, or to program the device from the Arduino IDE. It is
recommended to keep the jumper disconnected in all other cases, and
during normal operation. 

Operating Modes
OpenModem can operate in a variety of modes, and since the modulator and
demodulator is completely software-defined, new modes can be added via
firmware updates in the future. The default mode is 1200-baud AFSK, which
is the most widely used on standard packet radio networks. If you wish to
use 300 or 2400 baud modes, please download the corresponding firmware
from https://unsigned.io/openmodem and install it on the modem.

Configuring OpenModem
The device is useable out of the box, but can be further configured to your
needs by using the OpenModem Configuration Utility. Please visit the
OpenModem page at https://unsigned.io/openmodem to download the
latest version of the configuration program for Mac, Linux or Windows.

OpenModem also allows host applications to directly configure the modem
via the standard KISS command set for changing modem and CSMA
parameters. In addition, OpenModem implements extended KISS
commands to control additional functionality, such as input and output gain,
packet logging and peripherals.

Multi-purpose LEDs
The modem is equipped with four multi-purpose LEDs at the front of the
device. The LEDs are used to signify a variety of device states and events.

Pattern Description

After powering the device: 
Green LED is constantly lit

Device is ready and all health checks and
device verification succeeded.

When device is on: 
Green LED blinks quickly 4 times

SD-card was inserted and mounted correctly.

When device is on:
Green LED blinks slowly 2 times

SD-card was removed and unmounted.

When device is on:
Red LED lights up

Device is transmitting data to the host device
or receiving data from the host device.

When device is on:
Blue LED lights up

Modem has detected a valid signal, and is
receiving and demodulating data.

When device is on:
Orange LED lights up

Modem is modulating and transmitting data. 
PTT is keyed.

All LEDs flash in sequence 2 times Encryption key loaded, and AES-128
encryption is now enabled.

Green and red LEDs blink slowly in
an alternating pattern

Warning indicator, modem operation halted. 
Check error codes sent over serial connection.

https://unsigned.io/openmodem
https://unsigned.io/openmodem

Connecting a Radio
To connect the modem to your radio, or other transmission device, use the
4-pole 3.5mm TRRS jack connector on the back of the modem. Any 4-pole
3.5mm jack with a normal cable will do. The pinout of the port is as follows:

 
 

Or alternatively, use the pin connectors broken out directly on the modem
board, right next to the jack connector. The board pin connectors are labeled
G, AI, P and AO for Ground, Analog Input, PTT and Analog Output.

If your radio does not have a dedicated DATA , TNC or MODEM connector, you
can often get away with connecting the modem directly to the radio’s
microphone input, speaker output, and PTT line.

The input and output gain levels of OpenModem are set to sensible defaults,
but radios vary a lot, so you might need to change the levels using the
configuration program. When the configuration program is connected to the
modem, go to the Audio part of the program, and tune your radio to a
frequency with AFSK packet activity. You should be able to see the incoming
packets as peaks on the rolling audio meter. A blue bar means that an
incoming packet was successfully decoded. Red means the audio is
clipping. Tune the audio levels until you get satisfactory results.

By connecting one of the PTT jumpers on the OpenModem board, various
PTT styles can be configured. The available options are: Positive,
Negative, MOSFET and In-line. Using Positive will set the PTT line to 5V
when PTT should be keyed. Using Negative will set it to 0V. Using MOSFET
will pull the PTT line from the radio to the radio’s ground using a transistor.
Using In-line will work for radios where the PTT signal is sent in-line with
the microphone signal. Some handhelds, specifically some Yaesu models,
use this style. The most common option would be to use the Negative or
MOSFET style, but your radio may need one of the other options.

Updating the Firmware
The firmware of the device can be updated with standard AVR utilities. If you
prefer to work from a command-line, the standard avrdude program will
work fine for updating the firmware. If you’d rather use a graphical interface,
the XLoader or AVRDUDESS programs are two possibilities. 

Ground

Analog OutputPTT

Analog Input

Tip Input to modem

Ring 1 PTT

Ring 2 Output from modem

Shield Ground

Programming
The easiest way to program OpenModem is probably from within the Arduino
IDE. For adding OpenModem to your Arduino IDE, please see the page at
https://unsigned.io/board-support-in-arduino-ide/. It is also possible to work
with any other toolchain that supports the ATmega1284p that powers
OpenModem, like avr-gcc or similar.

If you want to make your own firmware for OpenModem, it can be a good
idea to use the default firmware as a starting point, since a lot of the setup
required to use OpenModem, and all the hardware drivers, are already
written for you. The source code for the firmware is available under GPL-3.0
and can be found at https://github.com/markqvist/OpenModem.

Interfacing with OpenModem
OpenModem communicates with host devices using the KISS protocol,
which is standard for most packet radio hardware. Practically any relevant
software should be able to connect to the modem via KISS.

If you want to interface directly with the modem from your own programs or
a serial console, please refer to the protocol reference specified later in this
manual.

Flow Control and Packet Buffer
OpenModem employs a large packet buffer, that should be sufficient for
even the most complex packet applications, and also to run IP-based
programs using SLIP or kissattach on Linux. When the device receives
data frames for transmission from the host, they will be placed in the packet
buffer, and transmitted in the order they were received, as soon as the
channel is clear, and according to the configured CSMA parameters.

Packet Format and MTU
OpenModem allows large packets with a size of up to 576 bytes. It uses the
standard HDLC framing that is commonly in use on packet radio networks.
Any kind of data can be carried inside the HDLC frames, including AX.25,
which most amateur radio packet programs utilise.

As such, OpenModem is directly compatible with most packet radio software
in existence, but can also be used to transport any other kind of data, such
as Ethernet or Reticulum frames.

Getting Help
If you have any questions regarding OpenModem, please do not hesitate to
send me an email at mark@unsigned.io. You can also register for the forums
at unsigned.io where other users might offer pointers and advice. 

https://unsigned.io/board-support-in-arduino-ide/
https://github.com/markqvist/OpenModem
mailto:mark@unsigned.io
http://unsigned.io

USB and Serial Protocol
Communications to and from the device uses KISS framing with the default
KISS command set, plus some extra commands to control things that were
not in the original KISS command set.

OpenModem also does not use HDLC ports in the command byte, and as
such uses the full 8 bits of the command byte is available for command
specification. Please see table below for supported commands.

Command Byte Description

Data frame 0x00 A data frame to or from the device

Preamble 0x01 Get or set the transmission preamble

CSMA Persistence 0x02 Get or set the CSMA Persistence parameter

CSMA Slot Time 0x03 Get or set the CSMA Slot Time parameter

TX Tail 0x04 Get or set the transmission tail

Full-duplex 0x05 Get or set full-duplex mode

Set hardware 0x06 KISS Set-hardware command

Save configuration 0x07 Save running configuration to EEPROM

LED Intensity 0x08 Get or set LED intensity

Output gain 0x09 Get or set output gain

Input gain 0x0A Get or set input gain

Passall 0x0B Skip checksum on packets and pass all data

Log packets 0x0C Enable or disable logging packets to SD card

GPS Mode 0x0D Get or set the GPS mode

Bluetooth Mode 0x0E Get or set the Bluetooth mode

Serial Baudrate 0x10 Get or set the serial baudrate

Reboot 0x11 Reboot the modem

Audio peak 0x12 Audio peak level data from modem

Enable diagnostics 0x13 Enable or disable diagnostic output to serial port

Mode 0x14 Control operating mode

NMEA output 0x40 Control NMEA GPS output

Output configuration 0xF0 Dump EEPROM configuration to serial port

Return 0xFF KISS Return command

AES-128 Encryption
OpenModem supports strong AES-128 encryption directly in-modem. When
enabled, the encryption layer is completely transparent to the host and any
user applications. This makes it possible to run any legacy application with a
layer of strong encryption, even though the application was not originally
designed to encrypt any transmitted data, or to encrypt IP traffic.

To enable encryption on OpenModem, you will need a MicroSD card of at
least 64 megabytes. The card should ideally be formatted as exFAT, but
FAT32 is also supported.

Insert the card into your computer, and run the OpenModem Configuration
program. Select the Cryptography tab, and select the SD-card from the
drop-down box. Press the Generate button in the Private Key section to
generate a new AES-128 key and install it onto the card.

If the key is successfully installed, the AES-128 Encryption toggle will switch
on, and the Private Key section will show AES-128 Key Installed.

You can now insert the SD card into the modem. If the modem can read the
SD card, it will immediately load the key and start encrypting all outgoing
traffic, and automatically decrypt all incoming traffic. To signal that
encryption is enabled, the modem will flash all LEDs sequentially two times.
This will happen every time the modem is started, to verify encryption is on.

When encryption has been enabled, an encryption lock will be set in the
EEPROM of the modem. If the modem is not able to load the encryption key
from the SD card at startup, or if the SD card is removed during operation,
the modem will stop operating, and flash an error signal.

To disable encryption, you must insert the SD card into a computer, run the
configuration program and manually disable the encryption checkbox. You
can then insert the SD card back into the modem, which will unlock and
disable encryption. 

Sincere thanks to
 

You, for supporting OpenModem,
and through that all of my 

open-source work

ChaN for the FatFS driver

Andrew Carter for his 8-bit AES
implementation (MIT License)

Daniel Otte for the 
AVR-Crypto-Lib MD5 and 

MD5-HMAC implementations

Everyone who has supported me
through the years, and made

OpenModem possible.

	OpenModem User Manual
	Device Overview
	Cautions
	Specifications
	Connecting OpenModem to Host Equipment
	Operating Modes
	Configuring OpenModem
	Multi-purpose LEDs
	Connecting a Radio
	Updating the Firmware
	Programming
	Interfacing with OpenModem
	Flow Control and Packet Buffer
	Packet Format and MTU
	Getting Help
	USB and Serial Protocol
	AES-128 Encryption
	Sincere thanks to

