#include "mp1.h" #include "hardware.h" #include "config.h" #include #include #include "compression/heatshrink_encoder.h" #include "compression/heatshrink_decoder.h" // We need an indicator to tell us whether we // should send a parity byte. This happens // whenever two normal bytes of data has been // sent. We also keep the last sent byte in // memory because we need it to calculate the // parity byte. static bool sendParityBlock = false; static uint8_t lastByte = 0x00; // We also need a buffer for compressing and // decompressing packet data. static uint8_t compressionBuffer[MP1_MAX_FRAME_LENGTH+10]; // An int to hold amount of free RAM updated // by the FREE_RAM function; static int FREE_RAM; // The GET_BIT macro is used in the interleaver // and deinterleaver to access single bits of a // byte. INLINE bool GET_BIT(uint8_t byte, int n) { return (byte & (1 << (8-n))) == (1 << (8-n)); } // This function calculates and returns a parity // byte for two input bytes. The parity byte is // used for correcting errors in the transmission. // The error correction algorithm is a standard // (12,8) Hamming code. INLINE bool BIT(uint8_t byte, int n) { return ((byte & BV(n-1))>>(n-1)); } static uint8_t mp1ParityBlock(uint8_t first, uint8_t other) { uint8_t parity = 0x00; parity = ((BIT(first, 1) ^ BIT(first, 2) ^ BIT(first, 4) ^ BIT(first, 5) ^ BIT(first, 7))) + ((BIT(first, 1) ^ BIT(first, 3) ^ BIT(first, 4) ^ BIT(first, 6) ^ BIT(first, 7))<<1) + ((BIT(first, 2) ^ BIT(first, 3) ^ BIT(first, 4) ^ BIT(first, 8))<<2) + ((BIT(first, 5) ^ BIT(first, 6) ^ BIT(first, 7) ^ BIT(first, 8))<<3) + ((BIT(other, 1) ^ BIT(other, 2) ^ BIT(other, 4) ^ BIT(other, 5) ^ BIT(other, 7))<<4) + ((BIT(other, 1) ^ BIT(other, 3) ^ BIT(other, 4) ^ BIT(other, 6) ^ BIT(other, 7))<<5) + ((BIT(other, 2) ^ BIT(other, 3) ^ BIT(other, 4) ^ BIT(other, 8))<<6) + ((BIT(other, 5) ^ BIT(other, 6) ^ BIT(other, 7) ^ BIT(other, 8))<<7); return parity; } // This deode function retrieves the buffer of // received, deinterleaved and error-corrected // bytes, inspects the header and determines // whether there is padding to be removed, and // whether the packet is compressed. If it is // it is decompressed before being passed to // the registered callback. static void mp1Decode(MP1 *mp1) { MP1Packet packet; // A decoded packet struct uint8_t *buffer = mp1->buffer; // Get the buffer from the protocol context // Get the header and "remove" it from the buffer uint8_t header = buffer[0]; buffer++; // If header indicates a padded packet, remove // padding if (header & MP1_HEADER_PADDED) { buffer++; } if (SERIAL_DEBUG) kprintf("[TS=%d] ", mp1->packetLength); // Set the payload length of the packet to the counted // length minus 1, so we remove the checksum packet.dataLength = mp1->packetLength - 2 - (header & 0x01); // Check if we have received a compressed packet if (header & MP1_HEADER_COMPRESSION) { // If we have, we decompress it and use the // decompressed data for the packet if (SERIAL_DEBUG) kprintf("[CS=%d] ", packet.dataLength); size_t decompressedSize = decompress(buffer, packet.dataLength); if (SERIAL_DEBUG) kprintf("[DS=%d]", decompressedSize); packet.dataLength = decompressedSize; memcpy(buffer, compressionBuffer, decompressedSize); } // Set the data field of the packet to our buffer packet.data = buffer; // If a callback have been specified, let's // call it and pass the decoded packet if (mp1->callback) mp1->callback(&packet); } //////////////////////////////////////////////////////////// // The Poll function reads data from the modem, handles // // frame recognition and passes data on to higher layers // // if valid packets are found // //////////////////////////////////////////////////////////// void mp1Poll(MP1 *mp1) { int byte; // A place to store our read byte sendParityBlock = false; // Reset our parity tx indicator // Read bytes from the modem until we reach EOF while ((byte = kfile_getc(mp1->modem)) != EOF) { // We have a byte, increment our read counter ///////////////////////////////////////////// // This following block handles forward // // error correction using an interleaved // // (12,8) Hamming code // ///////////////////////////////////////////// // If we have started reading (received an // HDLC_FLAG), we will start looking at the // incoming data and perform forward error // correction on it. if ((mp1->reading && (byte != AX25_ESC )) || (mp1->reading && (mp1->escape && byte == AX25_ESC))) { mp1->readLength++; // Check if we have read three bytes. If we // have, we should now have a block of two // data bytes and a parity byte. This block if (mp1->readLength % 3 == 0) { // The block is interleaved, so we will // first put the received bytes in the // deinterleaving buffer mp1->interleaveIn[0] = mp1->buffer[mp1->packetLength-2]; mp1->interleaveIn[1] = mp1->buffer[mp1->packetLength-1]; mp1->interleaveIn[2] = byte; // We then deinterleave the block mp1Deinterleave(mp1); // And write the deinterleaved data // back into the buffer mp1->buffer[mp1->packetLength-2] = mp1->interleaveIn[0]; mp1->buffer[mp1->packetLength-1] = mp1->interleaveIn[1]; // We now calculate a parity byte on the // received data. mp1->calculatedParity = mp1ParityBlock(mp1->buffer[mp1->packetLength-2], mp1->buffer[mp1->packetLength-1]); // By XORing the calculated parity byte // with the received parity byte, we get // what is called the "syndrome". This // number will tell us if we had any // errors during transmission, and if so // where they are. Using Hamming code, we // can only detect single bit errors in a // byte though, which is why we interleave // the data, since most errors will usually // occur in bursts of more than one bit. // With 2 data byte interleaving we can // correct 2 consecutive bit errors. uint8_t syndrome = mp1->calculatedParity ^ mp1->interleaveIn[2]; if (syndrome == 0x00) { // If the syndrome equals 0, we either // don't have any errors, or the error // is unrecoverable, so we don't do // anything } else { // If the syndrome is not equal to 0, // there is a problem, and we will try // to correct it. We first need to split // the syndrome byte up into the two // actual syndrome numbers, one for // each data byte. uint8_t syndromes[2]; syndromes[0] = syndrome & 0x0f; syndromes[1] = (syndrome & 0xf0) >> 4; // Then we look at each syndrome number // to determine what bit in the data // bytes to correct. for (int i = 0; i < 2; i++) { uint8_t s = syndromes[i]; uint8_t correction = 0x00; if (s == 1 || s == 2 || s == 4 || s == 8) { // This signifies an error in the // parity block, so we actually // don't need any correction continue; } // The following determines what // bit to correct according to // the syndrome value. if (s == 3) correction = 0x01; if (s == 5) correction = 0x02; if (s == 6) correction = 0x04; if (s == 7) correction = 0x08; if (s == 9) correction = 0x10; if (s == 10) correction = 0x20; if (s == 11) correction = 0x40; if (s == 12) correction = 0x80; // And finally we apply the correction mp1->buffer[mp1->packetLength-(2-i)] ^= correction; // This is just for testing purposes. // Nice to know when corrections were // actually made. if (s != 0) mp1->correctionsMade += 1; } } // We now update the checksum of the packet // with the deinterleaved and possibly // corrected bytes. mp1->checksum_in ^= mp1->buffer[mp1->packetLength-2]; mp1->checksum_in ^= mp1->buffer[mp1->packetLength-1]; continue; } } ///////////////////////////////////////////// // End of forward error correction block // ///////////////////////////////////////////// // This next part of the poll function handles // the reading from the modem, and looks for // starts and ends of transmissions. It also // handles escape characters by discarding them // so they don't get put into the output data. // Let's first check if we have read an HDLC_FLAG. if (!mp1->escape && byte == HDLC_FLAG) { // We are not in an escape sequence and we // found a HDLC_FLAG. This can mean two things: if (mp1->packetLength >= MP1_MIN_FRAME_LENGTH) { // We already have more data than the minimum // frame length, which means the flag signifies // the end of the packet. Pass control to the // decoder. if ((mp1->checksum_in & 0xff) == 0x00) { if (SERIAL_DEBUG) kprintf("[CHK-OK] [C=%d] ", mp1->correctionsMade); mp1Decode(mp1); } else { // Checksum was incorrect, we don't do anything, // but you can enable the decode anyway, if you // need it for testing or debugging if (PASSALL) { if (SERIAL_DEBUG) kprintf("[CHK-ER] [C=%d] ", mp1->correctionsMade); mp1Decode(mp1); } } } // If the above is not the case, this must be the // beginning of a frame mp1->reading = true; mp1->packetLength = 0; mp1->readLength = 0; mp1->checksum_in = MP1_CHECKSUM_INIT; mp1->correctionsMade = 0; // We have indicated that we are reading, // and reset the length counter. Now we'll // continue to the next byte. continue; } if (!mp1->escape && byte == HDLC_RESET) { // Not good, we got a reset. The transmitting // party may have encountered an error. We'll // stop receiving this packet immediately. mp1->reading = false; continue; } if (!mp1->escape && byte == AX25_ESC) { // We found an escape character. We'll set // the escape seqeunce indicator so we don't // interpret the next byte as a reset or flag mp1->escape = true; // We then continue reading the next byte. continue; } // Now let's get to the actual reading of the data if (mp1->reading) { if (mp1->packetLength < MP1_MAX_FRAME_LENGTH) { // If the length of the current incoming frame is // still less than our max length, put the incoming // byte in the buffer. When we have collected 3 // bytes, they will be processed by the error // correction part above. mp1->buffer[mp1->packetLength++] = byte; } else { // If not, we have a problem: The buffer has overrun // We need to stop receiving, and the packet will be // dropped :( mp1->reading = false; } } // We need to set the escape sequence indicator back // to false after each byte. mp1->escape = false; } if (kfile_error(mp1->modem)) { // If there was an error from the modem, we'll be rude // and just reset it. No error handling is done for now. kfile_clearerr(mp1->modem); } } // This is called to actually send the bytes // after they have been interleaved static void mp1WriteByte(MP1 *mp1, uint8_t byte) { // If we are sending something that looks // like an HDLC special byte, send an escape // character first if (byte == HDLC_FLAG || byte == HDLC_RESET || byte == AX25_ESC) { kfile_putc(AX25_ESC, mp1->modem); } kfile_putc(byte, mp1->modem); } // This is an intermediary function that // receives outgoing bytes, and adds // interleaving and a parity byte to the // outgoing data in blocks of two data // bytes. The actual transmitted block will // be 3 bytes long due to the added parity // byte. static void mp1Putbyte(MP1 *mp1, uint8_t byte) { mp1Interleave(mp1, byte); if (sendParityBlock) { uint8_t p = mp1ParityBlock(lastByte, byte); mp1Interleave(mp1, p); } lastByte = byte; sendParityBlock ^= true; } // This function accepts a buffer with data // to be transmitted, and structures it into // a valid packet. void mp1Send(MP1 *mp1, void *_buffer, size_t length) { // Get the transmit data buffer uint8_t *buffer = (uint8_t *)_buffer; uint8_t *compressed = (uint8_t *)compressionBuffer; // Initialize checksum to zero mp1->checksum_out = MP1_CHECKSUM_INIT; // We also reset the interleave counter to zero mp1->interleaveCounter = 0; // We start out assuming we should not use // compression. bool packetCompression = false; // We then try to compress the data to see // if we can save some space with compression. size_t compressedSize = compress(buffer, length); if (compressedSize != 0 && compressedSize < length) { // Compression saved us some space, we'll // send the paket compressed packetCompression = true; // Write the compressed data into the // outgoing data buffer memcpy(buffer, compressionBuffer, compressedSize); // Make sure to set the length of the // data to the new (compressed) length length = compressedSize; } else { // We are not going to use compression, // so we don't do anything. } // Transmit the HDLC_FLAG to signify start of TX kfile_putc(HDLC_FLAG, mp1->modem); // We now need to construct a header, that // can tell the receiving end whether the // packet is compressed. Since a packet must // have an even number of total payload bytes // (including the header), we check the length // of the outgoing data, and if it is not even, // we add a single byte of padding to the // packet. Remember that we also send a single // byte checksum at the end of the packet, so // the header and checksum bytes together don't // change whether the payload length is even // or not. The payload length needs to be even // since we are sending a parity byte for every // two data bytes sent, and because interleaving // happens in blocks of three bytes. uint8_t header = 0xf0; // If we are using compression, set the // appropriate header flag to true. if (packetCompression) header ^= MP1_HEADER_COMPRESSION; // We check if the data length is even if (length % 2 != 0) { // If it is not, we set the appropriate // header flag to indicate that we are // padding this packet with one byte. header ^= MP1_HEADER_PADDED; // We then update the checksum with the // header byte and queue it for transmit mp1->checksum_out = mp1->checksum_out ^ header; mp1Putbyte(mp1, header); // We now update the checksum with the // padding byte, and queue that for // transmission as well. At this point, // we will have pushed out two bytes of // data. The output function will detect // this, and a parity byte will be // calculated. The 3-byte block is then // actually transmitted. mp1->checksum_out = mp1->checksum_out ^ MP1_PADDING; mp1Putbyte(mp1, MP1_PADDING); } else { // If the length was already even, we // just update the checksum with the // header byte and queue it. mp1->checksum_out = mp1->checksum_out ^ header; mp1Putbyte(mp1, header); } // Now we'll transmit the actual data of // the packet. We continously increment the // pointer address of the buffer while // passing it to the intermediary output // function. Everytime the interleaving // counter reaches 3, a block will be // transmitted. while (length--) { mp1->checksum_out = mp1->checksum_out ^ *buffer; mp1Putbyte(mp1, *buffer++); } // Finally we write the checksum to the // end of the packet. mp1Putbyte(mp1, mp1->checksum_out); // And transmit a HDLC_FLAG to signify // end of the transmission. kfile_putc(HDLC_FLAG, mp1->modem); } // This function will simply initialize // the protocol context and allocate the // needed memory. void mp1Init(MP1 *mp1, KFile *modem, mp1_callback_t callback) { // Allocate memory for our protocol "object" memset(mp1, 0, sizeof(*mp1)); // Set references to our modem "object" and // a callback for when a packet has been decoded mp1->modem = modem; mp1->callback = callback; } // A handy debug function that can determine // how much available memory we have left. int freeRam(void) { extern int __heap_start, *__brkval; int v; FREE_RAM = (int) &v - (__brkval == 0 ? (int) &__heap_start : (int) __brkval); return FREE_RAM; } // Following is the functions responsible // for interleaving and deinterleaving // blocks of data. The interleaving table // is also included. /////////////////////////////// // Interleave-table // /////////////////////////////// // // Non-interleaved: // aaaaaaaa bbbbbbbb cccccccc // 12345678 12345678 12345678 // M L // S S // B B // // Interleaved: // abcabcab cabcabca bcabcabc // 11144477 22255578 63336688 // // // 3bit burst error patterns: // X||||||| X||||||| X||||||| // |||X|||| X||||||| X||||||| // |||X|||| |||X|||| X||||||| // |||X|||| |||X|||| |||X|||| // ||||||X| |||X|||| |||X|||| // ||||||X| ||||||X| |||X|||| // ||||||X| ||||||X| |X|||||| // |X|||||| ||||||X| |X|||||| // |X|||||| |X|||||| |X|||||| // |X|||||| |X|||||| ||||X||| // ||||X||| |X|||||| ||||X||| // ||||X||| ||||X||| ||||X||| // ||||X||| ||||X||| ||||||X| // |||||||X ||||X||| ||||||X| // |||||||X |||||X|| ||||||X| // |||||||X |||||X|| ||X||||| // ||X||||| |||||X|| ||X||||| // ||X||||| ||X||||| ||X||||| // ||X||||| ||X||||| |||||X|| // |||||X|| ||X||||| |||||X|| // |||||X|| |||||||X |||||X|| // |||||X|| |||||||X |||||||X // /////////////////////////////// void mp1Interleave(MP1 *mp1, uint8_t byte) { mp1->interleaveOut[mp1->interleaveCounter] = byte; mp1->interleaveCounter++; if (mp1->interleaveCounter == 3) { // We have three bytes in the buffer and // are ready to interleave them. uint8_t a = (GET_BIT(mp1->interleaveOut[0], 1) << 7) + (GET_BIT(mp1->interleaveOut[1], 1) << 6) + (GET_BIT(mp1->interleaveOut[2], 1) << 5) + (GET_BIT(mp1->interleaveOut[0], 4) << 4) + (GET_BIT(mp1->interleaveOut[1], 4) << 3) + (GET_BIT(mp1->interleaveOut[2], 4) << 2) + (GET_BIT(mp1->interleaveOut[0], 7) << 1) + (GET_BIT(mp1->interleaveOut[1], 7)); mp1WriteByte(mp1, a); uint8_t b = (GET_BIT(mp1->interleaveOut[2], 2) << 7) + (GET_BIT(mp1->interleaveOut[0], 2) << 6) + (GET_BIT(mp1->interleaveOut[1], 2) << 5) + (GET_BIT(mp1->interleaveOut[2], 5) << 4) + (GET_BIT(mp1->interleaveOut[0], 5) << 3) + (GET_BIT(mp1->interleaveOut[1], 5) << 2) + (GET_BIT(mp1->interleaveOut[2], 7) << 1) + (GET_BIT(mp1->interleaveOut[0], 8)); mp1WriteByte(mp1, b); uint8_t c = (GET_BIT(mp1->interleaveOut[1], 6) << 7) + (GET_BIT(mp1->interleaveOut[2], 3) << 6) + (GET_BIT(mp1->interleaveOut[0], 3) << 5) + (GET_BIT(mp1->interleaveOut[1], 3) << 4) + (GET_BIT(mp1->interleaveOut[2], 6) << 3) + (GET_BIT(mp1->interleaveOut[0], 6) << 2) + (GET_BIT(mp1->interleaveOut[1], 8) << 1) + (GET_BIT(mp1->interleaveOut[2], 8)); mp1WriteByte(mp1, c); // mp1WriteByte(mp1, a); // mp1WriteByte(mp1, b); // mp1WriteByte(mp1, c); mp1->interleaveCounter = 0; } } void mp1Deinterleave(MP1 *mp1) { uint8_t a = (GET_BIT(mp1->interleaveIn[0], 1) << 7) + (GET_BIT(mp1->interleaveIn[1], 2) << 6) + (GET_BIT(mp1->interleaveIn[2], 3) << 5) + (GET_BIT(mp1->interleaveIn[0], 4) << 4) + (GET_BIT(mp1->interleaveIn[1], 5) << 3) + (GET_BIT(mp1->interleaveIn[2], 6) << 2) + (GET_BIT(mp1->interleaveIn[0], 7) << 1) + (GET_BIT(mp1->interleaveIn[1], 8)); uint8_t b = (GET_BIT(mp1->interleaveIn[0], 2) << 7) + (GET_BIT(mp1->interleaveIn[1], 3) << 6) + (GET_BIT(mp1->interleaveIn[2], 4) << 5) + (GET_BIT(mp1->interleaveIn[0], 5) << 4) + (GET_BIT(mp1->interleaveIn[1], 6) << 3) + (GET_BIT(mp1->interleaveIn[2], 1) << 2) + (GET_BIT(mp1->interleaveIn[0], 8) << 1) + (GET_BIT(mp1->interleaveIn[2], 7)); uint8_t c = (GET_BIT(mp1->interleaveIn[0], 3) << 7) + (GET_BIT(mp1->interleaveIn[1], 1) << 6) + (GET_BIT(mp1->interleaveIn[2], 2) << 5) + (GET_BIT(mp1->interleaveIn[0], 6) << 4) + (GET_BIT(mp1->interleaveIn[1], 4) << 3) + (GET_BIT(mp1->interleaveIn[2], 5) << 2) + (GET_BIT(mp1->interleaveIn[1], 7) << 1) + (GET_BIT(mp1->interleaveIn[2], 8)); mp1->interleaveIn[0] = a; mp1->interleaveIn[1] = b; mp1->interleaveIn[2] = c; } // This function compresses data using // the Heatshrink library size_t compress(uint8_t *input, size_t length) { heatshrink_encoder *hse = heatshrink_encoder_alloc(8, 4); if (hse == NULL) { if (SERIAL_DEBUG) kprintf("Could not allocate compressor\n"); return 0; } size_t written = 0; size_t sunk = 0; heatshrink_encoder_sink(hse, input, length, &sunk); int status = heatshrink_encoder_finish(hse); if (sunk < length) { heatshrink_encoder_free(hse); return 0; } else { if (status == HSER_FINISH_MORE) { heatshrink_encoder_poll(hse, compressionBuffer, MP1_MAX_FRAME_LENGTH, &written); } } heatshrink_encoder_free(hse); return written; } // This function decompresses data using // the Heatshrink library size_t decompress(uint8_t *input, size_t length) { heatshrink_decoder *hsd = heatshrink_decoder_alloc(MP1_MAX_FRAME_LENGTH, 8, 4); if (hsd == NULL) { if (SERIAL_DEBUG) kprintf("Could not allocate decompressor\n"); return 0; } size_t written = 0; size_t sunk = 0; heatshrink_decoder_sink(hsd, input, length, &sunk); int status = heatshrink_decoder_finish(hsd); if (sunk < length) { heatshrink_decoder_free(hsd); return 0; } else { if (status == HSER_FINISH_MORE) { heatshrink_decoder_poll(hsd, compressionBuffer, MP1_MAX_FRAME_LENGTH, &written); } } heatshrink_decoder_free(hsd); return written; }