#ifndef AFSK_H #define AFSK_H #include "device.h" #include #include #include #include #include "util/FIFO.h" #include "util/time.h" #include "protocol/HDLC.h" #define SIN_LEN 512 static const uint8_t sin_table[] PROGMEM = { 128, 129, 131, 132, 134, 135, 137, 138, 140, 142, 143, 145, 146, 148, 149, 151, 152, 154, 155, 157, 158, 160, 162, 163, 165, 166, 167, 169, 170, 172, 173, 175, 176, 178, 179, 181, 182, 183, 185, 186, 188, 189, 190, 192, 193, 194, 196, 197, 198, 200, 201, 202, 203, 205, 206, 207, 208, 210, 211, 212, 213, 214, 215, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 234, 235, 236, 237, 238, 238, 239, 240, 241, 241, 242, 243, 243, 244, 245, 245, 246, 246, 247, 248, 248, 249, 249, 250, 250, 250, 251, 251, 252, 252, 252, 253, 253, 253, 253, 254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, }; inline static uint8_t sinSample(uint16_t i) { uint16_t newI = i % (SIN_LEN/2); newI = (newI >= (SIN_LEN/4)) ? (SIN_LEN/2 - newI -1) : newI; uint8_t sine = pgm_read_byte(&sin_table[newI]); return (i >= (SIN_LEN/2)) ? (255 - sine) : sine; } #define SWITCH_TONE(inc) (((inc) == MARK_INC) ? SPACE_INC : MARK_INC) #define BITS_DIFFER(bits1, bits2) (((bits1)^(bits2)) & 0x01) #define DUAL_XOR(bits1, bits2) ((((bits1)^(bits2)) & 0x03) == 0x03) #define SIGNAL_TRANSITIONED(bits) DUAL_XOR((bits), (bits) >> 2) #define TRANSITION_FOUND(bits) BITS_DIFFER((bits), (bits) >> 1) #define CPU_FREQ F_CPU #define CONFIG_AFSK_RX_BUFLEN 64 #define CONFIG_AFSK_TX_BUFLEN 64 #define CONFIG_AFSK_RXTIMEOUT 0 #define CONFIG_AFSK_PREAMBLE_LEN 150UL #define CONFIG_AFSK_TRAILER_LEN 50UL #define BIT_STUFF_LEN 5 #define SAMPLERATE 9600 #define BITRATE 1200 #define SAMPLESPERBIT (SAMPLERATE / BITRATE) #define PHASE_INC 1 // Nudge by an eigth of a sample each adjustment #if BITRATE == 960 #define FILTER_CUTOFF 600 #define MARK_FREQ 960 #define SPACE_FREQ 1600 #define PHASE_BITS 10 // How much to increment phase counter each sample #elif BITRATE == 1200 #define FILTER_CUTOFF 600 #define MARK_FREQ 1200 #define SPACE_FREQ 2200 #define PHASE_BITS 8 #elif BITRATE == 1600 #define FILTER_CUTOFF 800 #define MARK_FREQ 1600 #define SPACE_FREQ 2600 #define PHASE_BITS 8 #elif BITRATE == 2400 #define FILTER_CUTOFF 1600 #define MARK_FREQ 2400 #define SPACE_FREQ 4200 #define PHASE_BITS 4 #else #error Unsupported bitrate! #endif #define PHASE_MAX (SAMPLESPERBIT * PHASE_BITS) // Resolution of our phase counter = 64 #define PHASE_THRESHOLD (PHASE_MAX / 2) // Target transition point of our phase window typedef struct Hdlc { uint8_t demodulatedBits; uint8_t bitIndex; uint8_t currentByte; bool receiving; } Hdlc; typedef struct Afsk { // Stream access to modem FILE fd; // General values Hdlc hdlc; // We need a link control structure uint16_t preambleLength; // Length of sync preamble uint16_t tailLength; // Length of transmission tail // Modulation values uint8_t sampleIndex; // Current sample index for outgoing bit uint8_t currentOutputByte; // Current byte to be modulated uint8_t txBit; // Mask of current modulated bit bool bitStuff; // Whether bitstuffing is allowed uint8_t bitstuffCount; // Counter for bit-stuffing uint16_t phaseAcc; // Phase accumulator uint16_t phaseInc; // Phase increment per sample FIFOBuffer txFifo; // FIFO for transmit data uint8_t txBuf[CONFIG_AFSK_TX_BUFLEN]; // Actial data storage for said FIFO volatile bool sending; // Set when modem is sending // Demodulation values FIFOBuffer delayFifo; // Delayed FIFO for frequency discrimination int8_t delayBuf[SAMPLESPERBIT / 2 + 1]; // Actual data storage for said FIFO FIFOBuffer rxFifo; // FIFO for received data uint8_t rxBuf[CONFIG_AFSK_RX_BUFLEN]; // Actual data storage for said FIFO int16_t iirX[2]; // IIR Filter X cells int16_t iirY[2]; // IIR Filter Y cells uint8_t sampledBits; // Bits sampled by the demodulator (at ADC speed) int8_t currentPhase; // Current phase of the demodulator uint8_t actualBits; // Actual found bits at correct bitrate volatile int status; // Status of the modem, 0 means OK } Afsk; #define DIV_ROUND(dividend, divisor) (((dividend) + (divisor) / 2) / (divisor)) #define MARK_INC (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)MARK_FREQ, CONFIG_AFSK_DAC_SAMPLERATE)) #define SPACE_INC (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)SPACE_FREQ, CONFIG_AFSK_DAC_SAMPLERATE)) #define AFSK_DAC_IRQ_START() do { extern bool hw_afsk_dac_isr; hw_afsk_dac_isr = true; } while (0) #define AFSK_DAC_IRQ_STOP() do { extern bool hw_afsk_dac_isr; hw_afsk_dac_isr = false; } while (0) #define AFSK_DAC_INIT() do { DAC_DDR |= 0xF8; } while (0) // Here's some macros for controlling the RX/TX LEDs // THE _INIT() functions writes to the DDRB register // to configure the pins as output pins, and the _ON() // and _OFF() functions writes to the PORT registers // to turn the pins on or off. #define LED_TX_INIT() do { LED_DDR |= _BV(1); } while (0) #define LED_TX_ON() do { LED_PORT |= _BV(1); } while (0) #define LED_TX_OFF() do { LED_PORT &= ~_BV(1); } while (0) #define LED_RX_INIT() do { LED_DDR |= _BV(2); } while (0) #define LED_RX_ON() do { LED_PORT |= _BV(2); } while (0) #define LED_RX_OFF() do { LED_PORT &= ~_BV(2); } while (0) void AFSK_init(Afsk *afsk); void AFSK_transmit(char *buffer, size_t size); void AFSK_poll(Afsk *afsk); #endif