Imported new MicroAPRS source version

This commit is contained in:
Mark Qvist 2014-12-19 01:19:07 +01:00
commit bf2f013623
28 changed files with 6719 additions and 0 deletions

9
.gitignore vendored Normal file
View File

@ -0,0 +1,9 @@
obj
*.project
*.workspace
*.o
*.d
resources
images/*.bin
images/*.s19
images/*.map

677
LICENSE Normal file
View File

@ -0,0 +1,677 @@
(This project uses BertOS for some functionality. BertOS is licensed under GPLv2. Please see http://www.bertos.org for details. All files in the "bertos" directory originates from BertOS.)
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
{one line to give the program's name and a brief idea of what it does.}
Copyright (C) {year} {name of author}
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
{project} Copyright (C) {year} {fullname}
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

379
Makefile Normal file
View File

@ -0,0 +1,379 @@
# AVR Sample makefile written by Eric B. Weddington, Jörg Wunsch, et al.
# Modified (bringing often-changed options to the top) by Elliot Williams
# make all = Make software and program
# make clean = Clean out built project files.
# make program = Download the hex file to the device, using avrdude. Please
# customize the avrdude settings below first!
# Microcontroller Type
#MCU = atmega1284p
#MCU = atmega644p
MCU = atmega328p
# Target file name (without extension).
TARGET = images/MicroAPRS
# Programming hardware: type avrdude -c ?
# to get a full listing.
AVRDUDE_PROGRAMMER = arduino
AVRDUDE_PORT = /dev/usb # not really needed for usb
#AVRDUDE_PORT = /dev/parport0 # linux
# AVRDUDE_PORT = lpt1 # windows
############# Don't need to change below here for most purposes (Elliot)
# Optimization level, can be [0, 1, 2, 3, s]. 0 turns off optimization.
# (Note: 3 is not always the best optimization level. See avr-libc FAQ.)
OPT = s
# Output format. (can be srec, ihex, binary)
FORMAT = ihex
# List C source files here. (C dependencies are automatically generated.)
#SRC = $(TARGET).c
SRC = main.c hardware/Serial.c hardware/AFSK.c util/CRC-CCIT.c protocol/AX25.c protocol/KISS.c protocol/SimpleSerial.c
# If there is more than one source file, append them above, or modify and
# uncomment the following:
#SRC += foo.c bar.c
# You can also wrap lines by appending a backslash to the end of the line:
#SRC += baz.c \
#xyzzy.c
# List Assembler source files here.
# Make them always end in a capital .S. Files ending in a lowercase .s
# will not be considered source files but generated files (assembler
# output from the compiler), and will be deleted upon "make clean"!
# Even though the DOS/Win* filesystem matches both .s and .S the same,
# it will preserve the spelling of the filenames, and gcc itself does
# care about how the name is spelled on its command-line.
ASRC =
# List any extra directories to look for include files here.
# Each directory must be seperated by a space.
EXTRAINCDIRS =
# Optional compiler flags.
# -g: generate debugging information (for GDB, or for COFF conversion)
# -O*: optimization level
# -f...: tuning, see gcc manual and avr-libc documentation
# -Wall...: warning level
# -Wa,...: tell GCC to pass this to the assembler.
# -ahlms: create assembler listing
CFLAGS = -g -O$(OPT) \
-funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums \
-Wall -Wstrict-prototypes \
-Wa,-adhlns=$(<:.c=.lst) \
$(patsubst %,-I%,$(EXTRAINCDIRS))
# Set a "language standard" compiler flag.
# Unremark just one line below to set the language standard to use.
# gnu99 = C99 + GNU extensions. See GCC manual for more information.
#CFLAGS += -std=c89
#CFLAGS += -std=gnu89
#CFLAGS += -std=c99
CFLAGS += -std=gnu99
# Optional assembler flags.
# -Wa,...: tell GCC to pass this to the assembler.
# -ahlms: create listing
# -gstabs: have the assembler create line number information; note that
# for use in COFF files, additional information about filenames
# and function names needs to be present in the assembler source
# files -- see avr-libc docs [FIXME: not yet described there]
ASFLAGS = -Wa,-adhlns=$(<:.S=.lst),-gstabs
# Optional linker flags.
# -Wl,...: tell GCC to pass this to linker.
# -Map: create map file
# --cref: add cross reference to map file
LDFLAGS = -Wl,-Map=$(TARGET).map,--cref
# Additional libraries
# Minimalistic printf version
#LDFLAGS += -Wl,-u,vfprintf -lprintf_min
# Floating point printf version (requires -lm below)
#LDFLAGS += -Wl,-u,vfprintf -lprintf_flt
# -lm = math library
LDFLAGS += -lm
# Programming support using avrdude. Settings and variables.
AVRDUDE_WRITE_FLASH = -U flash:w:$(TARGET).hex
#AVRDUDE_WRITE_EEPROM = -U eeprom:w:$(TARGET).eep
AVRDUDE_FLAGS = -p $(MCU) -P $(AVRDUDE_PORT) -c $(AVRDUDE_PROGRAMMER)
# Uncomment the following if you want avrdude's erase cycle counter.
# Note that this counter needs to be initialized first using -Yn,
# see avrdude manual.
#AVRDUDE_ERASE += -y
# Uncomment the following if you do /not/ wish a verification to be
# performed after programming the device.
#AVRDUDE_FLAGS += -V
# Increase verbosity level. Please use this when submitting bug
# reports about avrdude. See <http://savannah.nongnu.org/projects/avrdude>
# to submit bug reports.
#AVRDUDE_FLAGS += -v -v
#Run while cable attached or don't
AVRDUDE_FLAGS += -E reset #keep chip disabled while cable attached
#AVRDUDE_FLAGS += -E noreset
#AVRDUDE_WRITE_FLASH = -U lfuse:w:0x04:m #run with 8 Mhz clock
#AVRDUDE_WRITE_FLASH = -U lfuse:w:0x21:m #run with 1 Mhz clock #default clock mode
#AVRDUDE_WRITE_FLASH = -U lfuse:w:0x01:m #run with 1 Mhz clock no start up time
# ---------------------------------------------------------------------------
# Define programs and commands.
SHELL = sh
CC = avr-gcc
OBJCOPY = avr-objcopy
OBJDUMP = avr-objdump
SIZE = avr-size
# Programming support using avrdude.
AVRDUDE = avrdude
REMOVE = rm -f
COPY = cp
HEXSIZE = $(SIZE) --target=$(FORMAT) $(TARGET).hex
ELFSIZE = $(SIZE) -C $(TARGET).elf
# Define Messages
# English
MSG_ERRORS_NONE = Firmware compiled successfully!
MSG_BEGIN = Starting build...
MSG_END = -------- Done --------
MSG_SIZE_BEFORE = Size before:
MSG_SIZE_AFTER = Size after:
MSG_COFF = Converting to AVR COFF:
MSG_EXTENDED_COFF = Converting to AVR Extended COFF:
MSG_FLASH = Creating load file for Flash:
MSG_EEPROM = Creating load file for EEPROM:
MSG_EXTENDED_LISTING = Creating Extended Listing:
MSG_SYMBOL_TABLE = Creating Symbol Table:
MSG_LINKING = Linking:
MSG_COMPILING = Compiling:
MSG_ASSEMBLING = Assembling:
MSG_CLEANING = Cleaning project:
# Define all object files.
OBJ = $(SRC:.c=.o) $(ASRC:.S=.o)
# Define all listing files.
LST = $(ASRC:.S=.lst) $(SRC:.c=.lst)
# Combine all necessary flags and optional flags.
# Add target processor to flags.
ALL_CFLAGS = -mmcu=$(MCU) -I. $(CFLAGS)
ALL_ASFLAGS = -mmcu=$(MCU) -I. -x assembler-with-cpp $(ASFLAGS)
# Default target: make program!
#all: begin gccversion sizebefore $(TARGET).elf $(TARGET).hex $(TARGET).eep \
# $(TARGET).lss $(TARGET).sym sizeafter finished end
all: begin $(TARGET).elf $(TARGET).hex $(TARGET).eep \
$(TARGET).lss $(TARGET).sym cleanup sizeafter finished
# $(AVRDUDE) $(AVRDUDE_FLAGS) $(AVRDUDE_WRITE_FLASH) $(AVRDUDE_WRITE_EEPROM)
# Eye candy.
# AVR Studio 3.x does not check make's exit code but relies on
# the following magic strings to be generated by the compile job.
begin:
@echo
@echo $(MSG_BEGIN)
finished:
@echo $(MSG_ERRORS_NONE)
end:
@echo $(MSG_END)
@echo
# Display size of file.
sizebefore:
@if [ -f $(TARGET).elf ]; then echo; echo $(MSG_SIZE_BEFORE); $(ELFSIZE); echo; fi
sizeafter:
@if [ -f $(TARGET).elf ]; then echo; $(ELFSIZE); echo; fi
# Display compiler version information.
gccversion :
@$(CC) --version
# Convert ELF to COFF for use in debugging / simulating in
# AVR Studio or VMLAB.
COFFCONVERT=$(OBJCOPY) --debugging \
--change-section-address .data-0x800000 \
--change-section-address .bss-0x800000 \
--change-section-address .noinit-0x800000 \
--change-section-address .eeprom-0x810000
coff: $(TARGET).elf
# @echo
# @echo $(MSG_COFF) $(TARGET).cof
@$(COFFCONVERT) -O coff-avr $< $(TARGET).cof
extcoff: $(TARGET).elf
# @echo
# @echo $(MSG_EXTENDED_COFF) $(TARGET).cof
@$(COFFCONVERT) -O coff-ext-avr $< $(TARGET).cof
# Program the device.
program: $(TARGET).hex $(TARGET).eep
@$(AVRDUDE) $(AVRDUDE_FLAGS) $(AVRDUDE_WRITE_FLASH) $(AVRDUDE_WRITE_EEPROM)
# Create final output files (.hex, .eep) from ELF output file.
%.hex: %.elf
# @echo
# @echo $(MSG_FLASH) $@
@$(OBJCOPY) -O $(FORMAT) -R .eeprom $< $@
%.eep: %.elf
# @echo
# @echo $(MSG_EEPROM) $@
# @echo Not generating any EEPROM images
@-$(OBJCOPY) -j .eeprom --set-section-flags=.eeprom="alloc,load" --change-section-lma .eeprom=0 -O $(FORMAT) $< $@
# Create extended listing file from ELF output file.
%.lss: %.elf
# @echo
# @echo $(MSG_EXTENDED_LISTING) $@
@$(OBJDUMP) -h -S $< > $@
# Create a symbol table from ELF output file.
%.sym: %.elf
# @echo
# @echo $(MSG_SYMBOL_TABLE) $@
@avr-nm -n $< > $@
# Link: create ELF output file from object files.
.SECONDARY : $(TARGET).elf
.PRECIOUS : $(OBJ)
%.elf: $(OBJ)
@echo $(MSG_LINKING) $@
@$(CC) $(ALL_CFLAGS) $(OBJ) --output $@ $(LDFLAGS)
# Compile: create object files from C source files.
%.o : %.c
@echo $(MSG_COMPILING) $<
@$(CC) -c $(ALL_CFLAGS) $< -o $@
# Compile: create assembler files from C source files.
%.s : %.c
@$(CC) -S $(ALL_CFLAGS) $< -o $@
# Assemble: create object files from assembler source files.
%.o : %.S
@echo
@echo $(MSG_ASSEMBLING) $<
@$(CC) -c $(ALL_ASFLAGS) $< -o $@
# Target: clean project.
clean: clean_list finished
clean_list :
@echo
@echo $(MSG_CLEANING)
$(REMOVE) $(TARGET).hex
$(REMOVE) $(TARGET).eep
$(REMOVE) $(TARGET).obj
$(REMOVE) $(TARGET).cof
$(REMOVE) $(TARGET).elf
$(REMOVE) $(TARGET).map
$(REMOVE) $(TARGET).obj
$(REMOVE) $(TARGET).a90
$(REMOVE) $(TARGET).sym
$(REMOVE) $(TARGET).lnk
$(REMOVE) $(TARGET).lss
$(REMOVE) $(OBJ)
$(REMOVE) $(LST)
$(REMOVE) $(SRC:.c=.s)
$(REMOVE) $(SRC:.c=.d)
$(REMOVE) *~
cleanup:
@$(REMOVE) $(SRC:.c=.s)
@$(REMOVE) $(SRC:.c=.d)
@$(REMOVE) $(LST)
# Automatically generate C source code dependencies.
# (Code originally taken from the GNU make user manual and modified
# (See README.txt Credits).)
#
# Note that this will work with sh (bash) and sed that is shipped with WinAVR
# (see the SHELL variable defined above).
# This may not work with other shells or other seds.
#
%.d: %.c
@set -e; $(CC) -MM $(ALL_CFLAGS) $< \
| sed 's,\(.*\)\.o[ :]*,\1.o \1.d : ,g' > $@; \
[ -s $@ ] || rm -f $@
# Remove the '-' if you want to see the dependency files generated.
-include $(SRC:.c=.d)
# Listing of phony targets.
.PHONY : all begin finish end sizebefore sizeafter gccversion coff extcoff \
clean clean_list program

124
README.md Normal file
View File

@ -0,0 +1,124 @@
MicroAPRS
==========
MicroAPRS is an APRS firmware for MicroModem. It supports both normal KISS mode, and a simple serial protocol for easy communication with an Arduino, or other MCU.
You can buy a complete modem from [my shop](http://unsigned.io/shop), or you can build one yourself pretty easily. Take a look at the documentation in the [MicroModem](https://github.com/markqvist/MicroModem) repository for information and getting started guides!
## Some features
- Send and receive AX.25 APRS packets
- Full modulation and demodulation in software
- Easy configuration of callsign and path settings
- Flexibility in how received packets are output over serial connection
- Persistent configuration stored in EEPROM
- Shorthand functions for sending location updates and messages, so you don't need to manually create the packets
- Ability to send raw packets
- Support for settings APRS symbols
- Support for power/height/gain info in location updates
- Ability to automatically ACK messages adressed to the modem
- Can run with open squelch
- Supports KISS mode for use with programs on a host computer
## KISS mode
When the modem is running in KISS mode, there's really not much more to it than connecting the modem to a computer, opening whatever program you want to use with it, and off you go.
## Modem control - SimpleSerial
If you want to use the SimpleSerial protocol, here's how to control the APRS modem over a serial connection. The modem accepts a variety of commands for setting options and sending packets. Generally a command starts with one or more characters defining the command, and then whatever data is needed to set the options for that command. Here's a list of the currently available commands:
##Serial commands
Command | Description
--- | :---
__!\<data>__ | Send raw packet
__@\<cmt>__ | Send location update (cmt = optional comment)
__#\<msg>__ | Send APRS message
&nbsp; | &nbsp;
__c\<call>__ | Set your callsign
__d\<call>__ | Set destination callsign
__1\<call>__ | Set PATH1 callsign
__2\<call>__ | Set PATH2 callsign
&nbsp; | &nbsp;
__sc\<ssid>__ | Set your SSID
__sd\<ssid>__ | Set destination SSID
__s1\<ssid>__ | Set PATH1 SSID
__s2\<ssid>__ | Set PATH2 SSID
&nbsp; | &nbsp;
__lla\<LAT>__ | Set latitude (NMEA-format, eg 4903.50N)
__llo\<LON>__ | Set latitude (NMEA-format, eg 07201.75W)
__lp\<0-9>__ | Set TX power info
__lh\<0-9>__ | Set antenna height info
__lg\<0-9>__ | Set antenna gain info
__ld\<0-9>__ | Set antenna directivity info
__ls\<sym>__ | Select symbol
__lt\<s/a>__ | Select symbol table (standard/alternate)
&nbsp; | &nbsp;
__mc\<call>__ | Set message recipient callsign
__ms\<ssid>__ | Set message recipient SSID
__mr\<ssid>__ | Retry last message
__ma\<1/0>__ | Automatic message ACK on/off
&nbsp; |&nbsp;
__ps\<1/0>__ | Print SRC on/off
__pd\<1/0>__ | Print DST on/off
__pp\<1/0>__ | Print PATH on/off
__pm\<1/0>__ | Print DATA on/off
__pi\<1/0>__ | Print INFO on/off
__v\<1/0>__ | Verbose mode on/off
__V\<1/0>__ | Silent mode on/off
&nbsp; | &nbsp;
__w\<XXX>__ | Set preamble in ms
__W\<XXX>__ | Set TX tail in ms
&nbsp; | &nbsp;
__S__ | Save configuration
__L__ | Load configuration
__C__ | Clear configuration
__H__ | Print configuration
### Examples
__To set your callsign to XX1YYY-5, and then save the configuration, send these three commands:__
```
cXX1YYY
sc5
S
```
__To send an APRS message to ZZ5ABC-1 with the content "Hi there!", send these commands:__
```
mcZZ5ABC
ms1
#Hi there!
```
__To send a location update, with the comment "MicroAPRS", you can do something like this:__
```
lla5230.70N
llo01043.70E
@MicroAPRS
```
__To send an APRS message to ZZ5ABC-1 with the content "Hi there!", using a raw packet, send this command:__
```
!:ZZ5ABC-1 :Hi there!{01
```
__Here's an example of how to send a location update with power, height and gain information, using a raw packet:__
```
!=5230.70N/01043.70E-PHG2410MicroAPRS
```
### EEPROM Settings
When saving the configuration, it is written to EEPROM, so it will persist between poweroffs. If a configuration has been stored, it will automatically be loaded when the modem powers up. The configuration can be cleared by sending the "clear configuration" command (`C`).
### Serial Connection
To connect to the modem use __9600 baud, 8N1__ serial. By default, the firmware uses time-sensitive input, which means that it will buffer serial data as it comes in, and when it has received no data for a few milliseconds, it will start interpreting whatever it has received. This means you need to set your serial terminal program to not send data for every keystroke, but only on new-line, or pressing send or whatever. If you do not want this behaviour, you can compile the firmware with the DEBUG flag set, which will make the modem wait for a new-line character before interpreting the received data. I would generally advise against this though, since it means that you cannot have newline characters in whatever data you want to send!
![MicroModem](https://raw.githubusercontent.com/markqvist/MicroModem/master/Design/Images/1.jpg)
The project has been implemented in your normal C with makefile style, and uses AVR Libc. The firmware is compatible with Arduino-based products, although it was not written in the Arduino IDE.
Visit [my site](http://unsigned.io) for questions, comments and other details.

4
config.h Normal file
View File

@ -0,0 +1,4 @@
#ifndef CONFIG_H
#define CONFIG_H
#endif

45
device.h Normal file
View File

@ -0,0 +1,45 @@
#include "util/constants.h"
#ifndef DEVICE_CONFIGURATION
#define DEVICE_CONFIGURATION
// CPU settings
#define TARGET_CPU m328p
#define F_CPU 16000000
#define FREQUENCY_CORRECTION 0
// ADC settings
#define OPEN_SQUELCH false
#define ADC_REFERENCE REF_3V3
// OR
//#define ADC_REFERENCE REF_5V
// Sampling & timer setup
#define CONFIG_AFSK_DAC_SAMPLERATE 9600
// Serial protocol settings
#define SERIAL_PROTOCOL PROTOCOL_KISS
// OR
//#define SERIAL_PROTOCOL PROTOCOL_SIMPLE_SERIAL
// AX25 settings
#if SERIAL_PROTOCOL == PROTOCOL_SIMPLE_SERIAL
#define CUSTOM_FRAME_SIZE 330
#endif
// Serial settings
#define BAUD 9600
#define SERIAL_DEBUG false
#define TX_MAXWAIT 2UL
// Port settings
#if TARGET_CPU == m328p
#define DAC_PORT PORTD
#define DAC_DDR DDRD
#define LED_PORT PORTB
#define LED_DDR DDRB
#define ADC_PORT PORTC
#define ADC_DDR DDRC
#endif
#endif

2
flash Executable file
View File

@ -0,0 +1,2 @@
#!/bin/bash
avrdude -p $2 -c arduino -P /dev/tty$1 -b 115200 -F -U flash:w:images/OpenAPRS.hex

470
hardware/AFSK.c Normal file
View File

@ -0,0 +1,470 @@
#include <string.h>
#include "AFSK.h"
#include "util/time.h"
extern volatile ticks_t _clock;
extern unsigned long custom_preamble;
extern unsigned long custom_tail;
bool hw_afsk_dac_isr = false;
bool hw_5v_ref = false;
Afsk *AFSK_modem;
// Forward declerations
int afsk_getchar(void);
void afsk_putchar(char c);
void AFSK_hw_refDetect(void) {
// This is manual for now
#if ADC_REFERENCE == REF_5V
hw_5v_ref = true;
#else
hw_5v_ref = false;
#endif
}
void AFSK_hw_init(void) {
// Set up ADC
AFSK_hw_refDetect();
TCCR1A = 0;
TCCR1B = _BV(CS10) | _BV(WGM13) | _BV(WGM12);
ICR1 = (((CPU_FREQ+FREQUENCY_CORRECTION)) / 9600) - 1;
if (hw_5v_ref) {
ADMUX = _BV(REFS0) | 0;
} else {
ADMUX = 0;
}
ADC_DDR &= ~_BV(0);
ADC_PORT &= ~_BV(0);
DIDR0 |= _BV(0);
ADCSRB = _BV(ADTS2) |
_BV(ADTS1) |
_BV(ADTS0);
ADCSRA = _BV(ADEN) |
_BV(ADSC) |
_BV(ADATE)|
_BV(ADIE) |
_BV(ADPS2);
AFSK_DAC_INIT();
LED_TX_INIT();
LED_RX_INIT();
}
void AFSK_init(Afsk *afsk) {
// Allocate modem struct memory
memset(afsk, 0, sizeof(*afsk));
AFSK_modem = afsk;
// Set phase increment
afsk->phaseInc = MARK_INC;
// Initialise FIFO buffers
fifo_init(&afsk->delayFifo, (uint8_t *)afsk->delayBuf, sizeof(afsk->delayBuf));
fifo_init(&afsk->rxFifo, afsk->rxBuf, sizeof(afsk->rxBuf));
fifo_init(&afsk->txFifo, afsk->txBuf, sizeof(afsk->txBuf));
// Fill delay FIFO with zeroes
for (int i = 0; i<SAMPLESPERBIT / 2; i++) {
fifo_push(&afsk->delayFifo, 0);
}
AFSK_hw_init();
// Set up streams
FILE afsk_fd = FDEV_SETUP_STREAM(afsk_putchar, afsk_getchar, _FDEV_SETUP_RW);
afsk->fd = afsk_fd;
}
static void AFSK_txStart(Afsk *afsk) {
if (!afsk->sending) {
afsk->phaseInc = MARK_INC;
afsk->phaseAcc = 0;
afsk->bitstuffCount = 0;
afsk->sending = true;
LED_TX_ON();
afsk->preambleLength = DIV_ROUND(custom_preamble * BITRATE, 8000);
AFSK_DAC_IRQ_START();
}
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
afsk->tailLength = DIV_ROUND(custom_tail * BITRATE, 8000);
}
}
void afsk_putchar(char c) {
AFSK_txStart(AFSK_modem);
while(fifo_isfull_locked(&AFSK_modem->txFifo)) { /* Wait */ }
fifo_push_locked(&AFSK_modem->txFifo, c);
}
int afsk_getchar(void) {
if (fifo_isempty_locked(&AFSK_modem->rxFifo)) {
return EOF;
} else {
return fifo_pop_locked(&AFSK_modem->rxFifo);
}
}
void AFSK_transmit(char *buffer, size_t size) {
fifo_flush(&AFSK_modem->txFifo);
int i = 0;
while (size--) {
afsk_putchar(buffer[i++]);
}
}
uint8_t AFSK_dac_isr(Afsk *afsk) {
if (afsk->sampleIndex == 0) {
if (afsk->txBit == 0) {
if (fifo_isempty(&afsk->txFifo) && afsk->tailLength == 0) {
AFSK_DAC_IRQ_STOP();
afsk->sending = false;
LED_TX_OFF();
return 0;
} else {
if (!afsk->bitStuff) afsk->bitstuffCount = 0;
afsk->bitStuff = true;
if (afsk->preambleLength == 0) {
if (fifo_isempty(&afsk->txFifo)) {
afsk->tailLength--;
afsk->currentOutputByte = HDLC_FLAG;
} else {
afsk->currentOutputByte = fifo_pop(&afsk->txFifo);
}
} else {
afsk->preambleLength--;
afsk->currentOutputByte = HDLC_FLAG;
}
if (afsk->currentOutputByte == AX25_ESC) {
if (fifo_isempty(&afsk->txFifo)) {
AFSK_DAC_IRQ_STOP();
afsk->sending = false;
LED_TX_OFF();
return 0;
} else {
afsk->currentOutputByte = fifo_pop(&afsk->txFifo);
}
} else if (afsk->currentOutputByte == HDLC_FLAG || afsk->currentOutputByte == HDLC_RESET) {
afsk->bitStuff = false;
}
}
afsk->txBit = 0x01;
}
if (afsk->bitStuff && afsk->bitstuffCount >= BIT_STUFF_LEN) {
afsk->bitstuffCount = 0;
afsk->phaseInc = SWITCH_TONE(afsk->phaseInc);
} else {
if (afsk->currentOutputByte & afsk->txBit) {
afsk->bitstuffCount++;
} else {
afsk->bitstuffCount = 0;
afsk->phaseInc = SWITCH_TONE(afsk->phaseInc);
}
afsk->txBit <<= 1;
}
afsk->sampleIndex = SAMPLESPERBIT;
}
afsk->phaseAcc += afsk->phaseInc;
afsk->phaseAcc %= SIN_LEN;
afsk->sampleIndex--;
return sinSample(afsk->phaseAcc);
}
static bool hdlcParse(Hdlc *hdlc, bool bit, FIFOBuffer *fifo) {
// Initialise a return value. We start with the
// assumption that all is going to end well :)
bool ret = true;
// Bitshift our byte of demodulated bits to
// the left by one bit, to make room for the
// next incoming bit
hdlc->demodulatedBits <<= 1;
// And then put the newest bit from the
// demodulator into the byte.
hdlc->demodulatedBits |= bit ? 1 : 0;
// Now we'll look at the last 8 received bits, and
// check if we have received a HDLC flag (01111110)
if (hdlc->demodulatedBits == HDLC_FLAG) {
// If we have, check that our output buffer is
// not full.
if (!fifo_isfull(fifo)) {
// If it isn't, we'll push the HDLC_FLAG into
// the buffer and indicate that we are now
// receiving data. For bling we also turn
// on the RX LED.
fifo_push(fifo, HDLC_FLAG);
hdlc->receiving = true;
#if OPEN_SQUELCH == false
LED_RX_ON();
#endif
} else {
// If the buffer is full, we have a problem
// and abort by setting the return value to
// false and stopping the here.
ret = false;
hdlc->receiving = false;
LED_RX_OFF();
}
// Everytime we receive a HDLC_FLAG, we reset the
// storage for our current incoming byte and bit
// position in that byte. This effectively
// synchronises our parsing to the start and end
// of the received bytes.
hdlc->currentByte = 0;
hdlc->bitIndex = 0;
return ret;
}
// Check if we have received a RESET flag (01111111)
// In this comparison we also detect when no transmission
// (or silence) is taking place, and the demodulator
// returns an endless stream of zeroes. Due to the NRZ
// coding, the actual bits send to this function will
// be an endless stream of ones, which this AND operation
// will also detect.
if ((hdlc->demodulatedBits & HDLC_RESET) == HDLC_RESET) {
// If we have, something probably went wrong at the
// transmitting end, and we abort the reception.
hdlc->receiving = false;
LED_RX_OFF();
return ret;
}
// If we have not yet seen a HDLC_FLAG indicating that
// a transmission is actually taking place, don't bother
// with anything.
if (!hdlc->receiving)
return ret;
// First check if what we are seeing is a stuffed bit.
// Since the different HDLC control characters like
// HDLC_FLAG, HDLC_RESET and such could also occur in
// a normal data stream, we employ a method known as
// "bit stuffing". All control characters have more than
// 5 ones in a row, so if the transmitting party detects
// this sequence in the _data_ to be transmitted, it inserts
// a zero to avoid the receiving party interpreting it as
// a control character. Therefore, if we detect such a
// "stuffed bit", we simply ignore it and wait for the
// next bit to come in.
//
// We do the detection by applying an AND bit-mask to the
// stream of demodulated bits. This mask is 00111111 (0x3f)
// if the result of the operation is 00111110 (0x3e), we
// have detected a stuffed bit.
if ((hdlc->demodulatedBits & 0x3f) == 0x3e)
return ret;
// If we have an actual 1 bit, push this to the current byte
// If it's a zero, we don't need to do anything, since the
// bit is initialized to zero when we bitshifted earlier.
if (hdlc->demodulatedBits & 0x01)
hdlc->currentByte |= 0x80;
// Increment the bitIndex and check if we have a complete byte
if (++hdlc->bitIndex >= 8) {
// If we have a HDLC control character, put a AX.25 escape
// in the received data. We know we need to do this,
// because at this point we must have already seen a HDLC
// flag, meaning that this control character is the result
// of a bitstuffed byte that is equal to said control
// character, but is actually part of the data stream.
// By inserting the escape character, we tell the protocol
// layer that this is not an actual control character, but
// data.
if ((hdlc->currentByte == HDLC_FLAG ||
hdlc->currentByte == HDLC_RESET ||
hdlc->currentByte == AX25_ESC)) {
// We also need to check that our received data buffer
// is not full before putting more data in
if (!fifo_isfull(fifo)) {
fifo_push(fifo, AX25_ESC);
} else {
// If it is, abort and return false
hdlc->receiving = false;
LED_RX_OFF();
ret = false;
}
}
// Push the actual byte to the received data FIFO,
// if it isn't full.
if (!fifo_isfull(fifo)) {
fifo_push(fifo, hdlc->currentByte);
} else {
// If it is, well, you know by now!
hdlc->receiving = false;
LED_RX_OFF();
ret = false;
}
// Wipe received byte and reset bit index to 0
hdlc->currentByte = 0;
hdlc->bitIndex = 0;
} else {
// We don't have a full byte yet, bitshift the byte
// to make room for the next bit
hdlc->currentByte >>= 1;
}
//digitalWrite(13, LOW);
return ret;
}
void AFSK_adc_isr(Afsk *afsk, int8_t currentSample) {
// To determine the received frequency, and thereby
// the bit of the sample, we multiply the sample by
// a sample delayed by (samples per bit / 2).
// We then lowpass-filter the samples with a
// Chebyshev filter. The lowpass filtering serves
// to "smooth out" the variations in the samples.
afsk->iirX[0] = afsk->iirX[1];
afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) >> 2;
afsk->iirY[0] = afsk->iirY[1];
afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] >> 1); // Chebyshev filter
// We put the sampled bit in a delay-line:
// First we bitshift everything 1 left
afsk->sampledBits <<= 1;
// And then add the sampled bit to our delay line
afsk->sampledBits |= (afsk->iirY[1] > 0) ? 1 : 0;
// Put the current raw sample in the delay FIFO
fifo_push(&afsk->delayFifo, currentSample);
// We need to check whether there is a signal transition.
// If there is, we can recalibrate the phase of our
// sampler to stay in sync with the transmitter. A bit of
// explanation is required to understand how this works.
// Since we have PHASE_MAX/PHASE_BITS = 8 samples per bit,
// we employ a phase counter (currentPhase), that increments
// by PHASE_BITS everytime a sample is captured. When this
// counter reaches PHASE_MAX, it wraps around by modulus
// PHASE_MAX. We then look at the last three samples we
// captured and determine if the bit was a one or a zero.
//
// This gives us a "window" looking into the stream of
// samples coming from the ADC. Sort of like this:
//
// Past Future
// 0000000011111111000000001111111100000000
// |________|
// ||
// Window
//
// Every time we detect a signal transition, we adjust
// where this window is positioned little. How much we
// adjust it is defined by PHASE_INC. If our current phase
// phase counter value is less than half of PHASE_MAX (ie,
// the window size) when a signal transition is detected,
// add PHASE_INC to our phase counter, effectively moving
// the window a little bit backward (to the left in the
// illustration), inversely, if the phase counter is greater
// than half of PHASE_MAX, we move it forward a little.
// This way, our "window" is constantly seeking to position
// it's center at the bit transitions. Thus, we synchronise
// our timing to the transmitter, even if it's timing is
// a little off compared to our own.
if (SIGNAL_TRANSITIONED(afsk->sampledBits)) {
if (afsk->currentPhase < PHASE_THRESHOLD) {
afsk->currentPhase += PHASE_INC;
} else {
afsk->currentPhase -= PHASE_INC;
}
}
// We increment our phase counter
afsk->currentPhase += PHASE_BITS;
// Check if we have reached the end of
// our sampling window.
if (afsk->currentPhase >= PHASE_MAX) {
// If we have, wrap around our phase
// counter by modulus
afsk->currentPhase %= PHASE_MAX;
// Bitshift to make room for the next
// bit in our stream of demodulated bits
afsk->actualBits <<= 1;
// We determine the actual bit value by reading
// the last 3 sampled bits. If there is three or
// more 1's, we will assume that the transmitter
// sent us a one, otherwise we assume a zero
uint8_t bits = afsk->sampledBits & 0x07;
if (bits == 0x07 || // 111
bits == 0x06 || // 110
bits == 0x05 || // 101
bits == 0x03 // 011
) {
afsk->actualBits |= 1;
}
//// Alternative using five bits ////////////////
// uint8_t bits = afsk->sampledBits & 0x0f;
// uint8_t c = 0;
// c += bits & BV(1);
// c += bits & BV(2);
// c += bits & BV(3);
// c += bits & BV(4);
// c += bits & BV(5);
// if (c >= 3) afsk->actualBits |= 1;
/////////////////////////////////////////////////
// Now we can pass the actual bit to the HDLC parser.
// We are using NRZ coding, so if 2 consecutive bits
// have the same value, we have a 1, otherwise a 0.
// We use the TRANSITION_FOUND function to determine this.
//
// This is smart in combination with bit stuffing,
// since it ensures a transmitter will never send more
// than five consecutive 1's. When sending consecutive
// ones, the signal stays at the same level, and if
// this happens for longer periods of time, we would
// not be able to synchronize our phase to the transmitter
// and would start experiencing "bit slip".
//
// By combining bit-stuffing with NRZ coding, we ensure
// that the signal will regularly make transitions
// that we can use to synchronize our phase.
//
// We also check the return of the Link Control parser
// to check if an error occured.
if (!hdlcParse(&afsk->hdlc, !TRANSITION_FOUND(afsk->actualBits), &afsk->rxFifo)) {
afsk->status |= 1;
if (fifo_isfull(&afsk->rxFifo)) {
fifo_flush(&afsk->rxFifo);
afsk->status = 0;
}
}
}
}
ISR(ADC_vect) {
TIFR1 = _BV(ICF1);
AFSK_adc_isr(AFSK_modem, ((int16_t)((ADC) >> 2) - 128));
if (hw_afsk_dac_isr) {
DAC_PORT = (AFSK_dac_isr(AFSK_modem) & 0xF0) | _BV(3);
} else {
DAC_PORT = 128;
}
++_clock;
}

136
hardware/AFSK.h Normal file
View File

@ -0,0 +1,136 @@
#ifndef AFSK_H
#define AFSK_H
#include "device.h"
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include <avr/pgmspace.h>
#include "util/FIFO.h"
#include "util/time.h"
#include "protocol/HDLC.h"
#define SIN_LEN 512
static const uint8_t sin_table[] PROGMEM =
{
128, 129, 131, 132, 134, 135, 137, 138, 140, 142, 143, 145, 146, 148, 149, 151,
152, 154, 155, 157, 158, 160, 162, 163, 165, 166, 167, 169, 170, 172, 173, 175,
176, 178, 179, 181, 182, 183, 185, 186, 188, 189, 190, 192, 193, 194, 196, 197,
198, 200, 201, 202, 203, 205, 206, 207, 208, 210, 211, 212, 213, 214, 215, 217,
218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233,
234, 234, 235, 236, 237, 238, 238, 239, 240, 241, 241, 242, 243, 243, 244, 245,
245, 246, 246, 247, 248, 248, 249, 249, 250, 250, 250, 251, 251, 252, 252, 252,
253, 253, 253, 253, 254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255,
};
inline static uint8_t sinSample(uint16_t i) {
uint16_t newI = i % (SIN_LEN/2);
newI = (newI >= (SIN_LEN/4)) ? (SIN_LEN/2 - newI -1) : newI;
uint8_t sine = pgm_read_byte(&sin_table[newI]);
return (i >= (SIN_LEN/2)) ? (255 - sine) : sine;
}
#define SWITCH_TONE(inc) (((inc) == MARK_INC) ? SPACE_INC : MARK_INC)
#define BITS_DIFFER(bits1, bits2) (((bits1)^(bits2)) & 0x01)
#define DUAL_XOR(bits1, bits2) ((((bits1)^(bits2)) & 0x03) == 0x03)
#define SIGNAL_TRANSITIONED(bits) DUAL_XOR((bits), (bits) >> 2)
#define TRANSITION_FOUND(bits) BITS_DIFFER((bits), (bits) >> 1)
#define CPU_FREQ F_CPU
#define CONFIG_AFSK_RX_BUFLEN 64
#define CONFIG_AFSK_TX_BUFLEN 64
#define CONFIG_AFSK_RXTIMEOUT 0
#define CONFIG_AFSK_PREAMBLE_LEN 150UL
#define CONFIG_AFSK_TRAILER_LEN 50UL
#define SAMPLERATE 9600
#define BITRATE 1200
#define SAMPLESPERBIT (SAMPLERATE / BITRATE)
#define BIT_STUFF_LEN 5
#define MARK_FREQ 1200
#define SPACE_FREQ 2200
#define PHASE_BITS 8 // How much to increment phase counter each sample
#define PHASE_INC 1 // Nudge by an eigth of a sample each adjustment
#define PHASE_MAX (SAMPLESPERBIT * PHASE_BITS) // Resolution of our phase counter = 64
#define PHASE_THRESHOLD (PHASE_MAX / 2) // Target transition point of our phase window
typedef struct Hdlc
{
uint8_t demodulatedBits;
uint8_t bitIndex;
uint8_t currentByte;
bool receiving;
} Hdlc;
typedef struct Afsk
{
// Stream access to modem
FILE fd;
// General values
Hdlc hdlc; // We need a link control structure
uint16_t preambleLength; // Length of sync preamble
uint16_t tailLength; // Length of transmission tail
// Modulation values
uint8_t sampleIndex; // Current sample index for outgoing bit
uint8_t currentOutputByte; // Current byte to be modulated
uint8_t txBit; // Mask of current modulated bit
bool bitStuff; // Whether bitstuffing is allowed
uint8_t bitstuffCount; // Counter for bit-stuffing
uint16_t phaseAcc; // Phase accumulator
uint16_t phaseInc; // Phase increment per sample
FIFOBuffer txFifo; // FIFO for transmit data
uint8_t txBuf[CONFIG_AFSK_TX_BUFLEN]; // Actial data storage for said FIFO
volatile bool sending; // Set when modem is sending
// Demodulation values
FIFOBuffer delayFifo; // Delayed FIFO for frequency discrimination
int8_t delayBuf[SAMPLESPERBIT / 2 + 1]; // Actual data storage for said FIFO
FIFOBuffer rxFifo; // FIFO for received data
uint8_t rxBuf[CONFIG_AFSK_RX_BUFLEN]; // Actual data storage for said FIFO
int16_t iirX[2]; // IIR Filter X cells
int16_t iirY[2]; // IIR Filter Y cells
uint8_t sampledBits; // Bits sampled by the demodulator (at ADC speed)
int8_t currentPhase; // Current phase of the demodulator
uint8_t actualBits; // Actual found bits at correct bitrate
volatile int status; // Status of the modem, 0 means OK
} Afsk;
#define DIV_ROUND(dividend, divisor) (((dividend) + (divisor) / 2) / (divisor))
#define MARK_INC (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)MARK_FREQ, CONFIG_AFSK_DAC_SAMPLERATE))
#define SPACE_INC (uint16_t)(DIV_ROUND(SIN_LEN * (uint32_t)SPACE_FREQ, CONFIG_AFSK_DAC_SAMPLERATE))
#define AFSK_DAC_IRQ_START() do { extern bool hw_afsk_dac_isr; hw_afsk_dac_isr = true; } while (0)
#define AFSK_DAC_IRQ_STOP() do { extern bool hw_afsk_dac_isr; hw_afsk_dac_isr = false; } while (0)
#define AFSK_DAC_INIT() do { DAC_DDR |= 0xF8; } while (0)
// Here's some macros for controlling the RX/TX LEDs
// THE _INIT() functions writes to the DDRB register
// to configure the pins as output pins, and the _ON()
// and _OFF() functions writes to the PORT registers
// to turn the pins on or off.
#define LED_TX_INIT() do { LED_DDR |= _BV(1); } while (0)
#define LED_TX_ON() do { LED_PORT |= _BV(1); } while (0)
#define LED_TX_OFF() do { LED_PORT &= ~_BV(1); } while (0)
#define LED_RX_INIT() do { LED_DDR |= _BV(2); } while (0)
#define LED_RX_ON() do { LED_PORT |= _BV(2); } while (0)
#define LED_RX_OFF() do { LED_PORT &= ~_BV(2); } while (0)
void AFSK_init(Afsk *afsk);
void AFSK_transmit(char *buffer, size_t size);
void AFSK_poll(Afsk *afsk);
#endif

47
hardware/Serial.c Normal file
View File

@ -0,0 +1,47 @@
#include "Serial.h"
#include <util/setbaud.h>
#include <stdio.h>
#include <string.h>
void serial_init(Serial *serial) {
memset(serial, 0, sizeof(*serial));
UBRR0H = UBRRH_VALUE;
UBRR0L = UBRRL_VALUE;
#if USE_2X
UCSR0A |= _BV(U2X0);
#else
UCSR0A &= ~(_BV(U2X0));
#endif
// Set to 8-bit data, enable RX and TX
UCSR0C = _BV(UCSZ01) | _BV(UCSZ00);
UCSR0B = _BV(RXEN0) | _BV(TXEN0);
FILE uart0_fd = FDEV_SETUP_STREAM(uart0_putchar, uart0_getchar, _FDEV_SETUP_RW);
serial->uart0 = uart0_fd;
}
bool serial_available(uint8_t index) {
if (index == 0) {
if (UCSR0A & _BV(RXC0)) return true;
}
return false;
}
void uart0_putchar(char c) {
loop_until_bit_is_set(UCSR0A, UDRE0);
UDR0 = c;
}
char uart0_getchar(void) {
loop_until_bit_is_set(UCSR0A, RXC0);
return UDR0;
}
char uart0_getchar_nowait(void) {
if (!(UCSR0A & _BV(RXC0))) return EOF;
return UDR0;
}

20
hardware/Serial.h Normal file
View File

@ -0,0 +1,20 @@
#ifndef SERIAL_H
#define SERIAL_H
#include "device.h"
#include <stdio.h>
#include <stdbool.h>
#include <avr/io.h>
typedef struct Serial {
FILE uart0;
} Serial;
void serial_init(Serial *serial);
bool serial_available(uint8_t index);
void uart0_putchar(char c);
char uart0_getchar(void);
char uart0_getchar_nowait(void);
#endif

116
main.c Normal file
View File

@ -0,0 +1,116 @@
#include <stdbool.h>
#include <avr/io.h>
#include "device.h"
#include "util/FIFO.h"
#include "util/time.h"
#include "hardware/AFSK.h"
#include "hardware/Serial.h"
#include "protocol/AX25.h"
#if SERIAL_PROTOCOL == PROTOCOL_KISS
#include "protocol/KISS.h"
#endif
#if SERIAL_PROTOCOL == PROTOCOL_SIMPLE_SERIAL
#include "protocol/SimpleSerial.h"
#endif
Serial serial;
Afsk modem;
AX25Ctx AX25;
#if SERIAL_PROTOCOL == PROTOCOL_KISS
static void ax25_callback(struct AX25Ctx *ctx) {
kiss_messageCallback(ctx);
}
#endif
#if SERIAL_PROTOCOL == PROTOCOL_SIMPLE_SERIAL
static uint8_t serialBuffer[AX25_MAX_FRAME_LEN+1];
static int sbyte;
static size_t serialLen = 0;
static bool sertx = false;
static void ax25_callback(struct AX25Msg *msg) {
ss_messageCallback(msg);
}
#endif
void init(void) {
sei();
AFSK_init(&modem);
ax25_init(&AX25, &modem.fd, ax25_callback);
serial_init(&serial);
stdout = &serial.uart0;
stdin = &serial.uart0;
#if SERIAL_PROTOCOL == PROTOCOL_KISS
kiss_init(&AX25, &modem, &serial);
#endif
#if SERIAL_PROTOCOL == PROTOCOL_SIMPLE_SERIAL
ss_init(&AX25);
#endif
}
int main (void) {
init();
#if SERIAL_PROTOCOL == PROTOCOL_KISS
while (true) {
ax25_poll(&AX25);
if (serial_available(0)) {
char sbyte = uart0_getchar_nowait();
kiss_serialCallback(sbyte);
}
}
#endif
#if SERIAL_PROTOCOL == PROTOCOL_SIMPLE_SERIAL
ticks_t start = timer_clock();
while (1) {
ax25_poll(&AX25);
if (!sertx && serial_available(0)) {
sbyte = uart0_getchar_nowait();
#if SERIAL_DEBUG
if ((serialLen < AX25_MAX_FRAME_LEN) && (sbyte != 10)) {
serialBuffer[serialLen] = sbyte;
serialLen++;
} else {
sertx = true;
}
#else
if (serialLen < AX25_MAX_FRAME_LEN-1) {
serialBuffer[serialLen] = sbyte;
serialLen++;
} else {
serialBuffer[serialLen] = sbyte;
serialLen++;
sertx = true;
}
start = timer_clock();
#endif
} else {
if (!SERIAL_DEBUG && serialLen > 0 && timer_clock() - start > ms_to_ticks(TX_MAXWAIT)) {
sertx = true;
}
}
if (sertx) {
ss_serialCallback(serialBuffer, serialLen, &AX25);
sertx = false;
serialLen = 0;
}
}
#endif
return(0);
}

View File

@ -0,0 +1,362 @@
:100000000C9474010C9491010C9491010C94910145
:100010000C9491010C9491010C9491010C94910118
:100020000C9491010C9491010C9491010C94910108
:100030000C9491010C9491010C9491010C949101F8
:100040000C9491010C9491010C9491010C949101E8
:100050000C9491010C94C9060C9491010C9491019B
:100060000C9491010C949101808183848687898A04
:100070008C8E8F9192949597989A9B9D9EA0A2A307
:10008000A5A6A7A9AAACADAFB0B2B3B5B6B7B9BA79
:10009000BCBDBEC0C1C2C4C5C6C8C9CACBCDCECF07
:1000A000D0D2D3D4D5D6D7D9DADBDCDDDEDFE0E1C0
:1000B000E2E3E4E5E6E7E8E9EAEAEBECEDEEEEEFB1
:1000C000F0F1F1F2F3F3F4F5F5F6F6F7F8F8F9F9E3
:1000D000FAFAFAFBFBFCFCFCFDFDFDFDFEFEFEFE5C
:1000E000FEFFFFFFFFFFFFFF0000891112239B327D
:1000F0002446AD573665BF74488CC19D5AAFD3BEF8
:100100006CCAE5DB7EE9F7F88110080193331A2207
:10011000A5562C47B7753E64C99C408DDBBF52AED7
:10012000EDDA64CBFFF976E802218B3010029913E7
:100130002667AF763444BD554AADC3BC588ED19FB7
:100140006EEBE7FA7CC8F5D983310A2091121803C7
:10015000A7772E66B5543C45CBBD42ACD99E508F97
:10016000EFFB66EAFDD874C904428D5316619F7097
:100170002004A9153227BB364CCEC5DF5EEDD7FC77
:100180006888E1997AABF3BA85520C4397711E6087
:10019000A1142805B3373A26CDDE44CFDFFD56EC57
:1001A000E9986089FBBB72AA06638F7214409D5167
:1001B0002225AB343006B9174EEFC7FE5CCCD5DD37
:1001C0006AA9E3B8788AF19B87730E6295501C4147
:1001D000A3352A24B1163807CFFF46EEDDDC54CD17
:1001E000EBB962A8F99A708B088481951AA793B627
:1001F0002CC2A5D33EE1B7F04008C919522BDB3A17
:10020000644EED5F766DFF7C899400859BB712A6E6
:10021000ADD224C3BFF136E0C1184809D33B5A2AF6
:10022000E55E6C4FF77D7E6C0AA583B418869197C6
:100230002EE3A7F23CC0B5D14229CB38500AD91BD6
:10024000666FEF7E744CFD5D8BB502A499961087A6
:10025000AFF326E2BDD034C1C3394A28D11A580BB6
:10026000E77F6E6EF55C7C4D0CC685D71EE597F476
:100270002880A1913AA3B3B2444ACD5B5669DF7896
:10028000600CE91D722FFB3E8DD604C79FF516E466
:10029000A9902081BBB332A2C55A4C4BD7795E6876
:1002A000E11C680DF33F7A2E0EE787F61CC495D546
:1002B0002AA1A3B03882B193466BCF7A5448DD5956
:1002C000622DEB3C700EF91F8FF706E69DD414C526
:1002D000ABB122A0B9923083C77B4E6AD5585C4936
:1002E000E33D6A2CF11E780F11241FBECFEFD8E03A
:1002F000DEBFCDBF11E0A0E0B1E0E2E6F6E102C072
:1003000005900D92A231B107D9F716E0A2E1B1E054
:1003100001C01D92A43EB107E1F70E94EE090C94C2
:100320002F0B0C9400000C948208789480E893E0E2
:100330000E94050343E951E060E873E08CE594E036
:100340000E9463078EE494E00E94C5018EE494E06D
:100350009093E1068093E0069093DF068093DE069B
:10036000AC0160E873E08CE594E00C947508909122
:10037000C00095FFFCCF8093C60008958091C00017
:1003800087FFFCCF8091C6000895CF93DF93CDB750
:10039000DEB72E970FB6F894DEBF0FBECDBFDC01DF
:1003A0009EE0FD01892F11928A95E9F71092C50010
:1003B00087E68093C400E0ECF0E080818D7F80834D
:1003C00086E08093C20088E18093C1009E012F5F88
:1003D0003F4FF90111929A95E9F783E08C8387EBFF
:1003E00091E09A8789878EEB91E09C878B878EE0DE
:1003F000F90101900D928A95E1F72E960FB6F894C7
:10040000DEBF0FBECDBFDF91CF910895811106C031
:100410008091C000881F8827881F089580E0089574
:100420008091C00087FF03C08091C60008958FEFC0
:100430000895E091D406F091D5064FB7F894EB58A3
:10044000FF4F24813581868197814FBF2817390757
:10045000E1F0E091D406F091D5062FB7F894EB586F
:10046000FF4FA481B58182819381A817B90719F440
:100470008081918104C0A481B581CD0101969583CD
:1004800084838C912FBF90E008958FEF9FEF0895A4
:100490000F931F93CF93DF93182FC091D406D09161
:1004A000D506FE01E959FF4F8081811124C080E407
:1004B00090E09E8F8D8F1C8E1B8E1A8E01E0008324
:1004C000299A2091090130910A0140910B01509124
:1004D0000C01A0EBB4E00E940D0A6056704F8F4FE4
:1004E0009F4F20E43FE140E050E00E94180A3B8B20
:1004F0002A8B009313010FB7F894209105013091D6
:1005000006014091070150910801A0EBB4E00E9460
:100510000D0A6056704F8F4F9F4F20E43FE140E03F
:1005200050E00E94180A3D8B2C8B0FBFE091D4063F
:10053000F091D5065FB7F89423A134A1878D90A1DF
:100540002817390739F425A136A181A192A12817CE
:10055000390761F025A136A183A194A1019741E05B
:100560002817390709F040E0842F01C081E05FBF00
:1005700080FDDCCFE091D406F091D5064FB7F8941A
:10058000A5A1B6A11C9325A136A181A192A12817EE
:10059000390719F4878D90A103C085A196A1019612
:1005A00096A385A34FBFDF91CF911F910F9108951F
:1005B000109212010895109212011092800089E1A8
:1005C0008093810081E896E0909387008093860075
:1005D00080911201882321F080E480937C0002C086
:1005E00010927C003898409880917E0081608093C2
:1005F0007E0087E080937B008CEE80937A008AB146
:10060000886F8AB9219A229A08950F931F93CF93E6
:10061000DF93CDB7DEB72E970FB6F894DEBF0FBECF
:10062000CDBF8C018AECD8011D928A95E9F7109311
:10063000D5060093D40680E490E0F801968F858F6C
:10064000C80180599F4FE859FF4F9183808397835A
:10065000868395838483C8018C589F4F93838283BC
:10066000C80183589F4FD801AB58BF4F11969C9338
:100670008E9317969C938E93169715969C938E93B4
:100680001497C80184549F4F13969C938E9312978E
:10069000C8018796D80190969C938E935F97969603
:1006A0009C938E93959794969C938E939397C80161
:1006B0008A599F4F92969C938E93919784E090E0F5
:1006C000A681B7811C9246815781228133814217CE
:1006D000530719F42081318104C0268137812F5FAF
:1006E0003F4F378326830197009751F70E94DB0223
:1006F0002EE0FE013196DF01822F1D928A95E9F7E7
:1007000083E08C8388E492E09A87898789E192E08C
:100710009C878B87D80101900D922A95E1F72E9640
:100720000FB6F894DEBF0FBECDBFDF91CF911F9102
:100730000F9108950F931F93CF93DF938B01E09157
:10074000D406F091D50625A136A134A323A3EC014C
:10075000080F191FC017D10721F089910E94480284
:10076000F9CFDF91CF911F910F910895DC0156963B
:100770008C9156978111E9C058968C9158978111A8
:100780009FC093962D913C91949795968D919C91B5
:1007900096972817390739F454968D919C9155975F
:1007A000892B09F45CC059968C915997811103C02B
:1007B0005A961C925A9781E059968C935997529663
:1007C0008D919C915397009789F593962D913C912B
:1007D000949795968D919C9196972817390751F487
:1007E00054968D919C915597019755969C938E9315
:1007F000549721C09396ED91FC91949791968D9189
:100800009C919297E817F90729F45F968D919C9136
:10081000909706C09396ED91FC919497CF01019625
:1008200094969C938E939397808106C001975396DC
:100830009C938E9352978EE757968C935797579623
:100840008C9157978B3191F593962D913C9194977C
:1008500095968D919C9196972817390741F410929F
:100860001301A959BF4F1C92299880E008959396CF
:10087000ED91FC91949791968D919C919297E817A8
:10088000F90729F45F968D919C91909706C09396F5
:10089000ED91FC919497CF01019694969C938E9341
:1008A0009397808157968C93579706C08E578230C6
:1008B00018F459961C92599781E058968C93589742
:1008C00059962C9159975D968D919C915E97222314
:1008D000A9F05A962C915A97253080F05A961C927E
:1008E0005A978034910519F485E790E002C080E4BE
:1008F00090E05E969C938E935D9723C058963C91B2
:10090000589757962C915797232341F05A968C91DC
:100910005A978F5F5A968C935A970FC05A961C928B
:100920005A978034910519F485E790E002C080E47D
:1009300090E05E969C938E935D97330F58963C9310
:10094000589788E056968C9356975D96ED91FC915A
:100950005E975B968D919C915C97E80FF91F9F01C4
:1009600031705C963C932E935B9756968C9156977C
:10097000815056968C93FF27E038F10530F08FEFC9
:1009800090E0AC014E1B5F0BFA01E859FF4F8491D8
:100990002F3F310511F008F080950895EF92FF92F6
:1009A0000F931F93CF93DF93FC018C0101541F4FD2
:1009B000D8014D915C91DC01A354BF4F4D935C93E2
:1009C000DC01A859BF4F14968D919C9115971296F2
:1009D0002D913C9113978217930721F42D913C910F
:1009E000119707C014968D919C9115979C012F5FCC
:1009F0003F4F15963C932E931497EC018881860205
:100A0000C00111249595879595958795E80199835F
:100A100088837F01D3ECED0EF11CE7012881398139
:100A20008F010F531F4FE80139832883840F951FCF
:100A300035952795820F931FE70199838883AF012E
:100A40004B535F4F21E0181619060CF020E0EA0125
:100A50008881880F822B888316968D919C91179799
:100A6000EC01688316962D913C91179712968D9103
:100A70009C9113972817390721F48D919C91119718
:100A800005C016968D919C911797019617969C9389
:100A90008E931697DA019C91892F869586958927E2
:100AA0008370DF01AA53BF4F833039F48C918032B9
:100AB00014F48F5F01C081508C938C91885F8C936C
:100AC00080340CF45FC18F738C93DF01A953BF4F47
:100AD0008C91880F97702BEF290F233010F09330F3
:100AE00009F481608C939C91892F86958927809544
:100AF00081709685990F892B86878E3709F04EC0B5
:100B0000DF01AB58BF4F14962D913C9115978D91F5
:100B10009C9111972817390759F416962D913C91FD
:100B2000179712968D919C9113972817390781F08A
:100B300016962D913C91179714968D919C9115972F
:100B4000019741E02817390709F040E0842F01C0E0
:100B500081E080FDDCC01696CD91DC9117978EE781
:100B6000888316962D913C91179712968D919C91A2
:100B700013972817390721F48D919C91119705C07F
:100B800016968D919C911797019617969C938E932C
:100B9000169781E0818B2A9A41E0BCC0982F9F77FD
:100BA0009F3719F4118A2A98EDC09189992309F485
:100BB000E9C0982F9F739E3309F4E4C080FF03C0FF
:100BC00080898068808B87858F5F87879089883050
:100BD00008F4A5C0DF01AB58BF4F82E8890F82300F
:100BE00018F09B3109F04BC014962D913C9115974C
:100BF0008D919C9111972817390759F416962D91CC
:100C00003C91179712968D919C911397281739074D
:100C100081F016962D913C91179714968D919C9189
:100C20001597019741E02817390709F040E0842F14
:100C300001C081E080FD1FC01696CD91DC91179711
:100C40008BE1888316962D913C91179712968D9182
:100C50009C9113972817390721F48D919C91119736
:100C600005C016968D919C911797019617969C93A7
:100C70008E93169704C0118A2A9840E001C041E083
:100C800014962D913C9115978D919C911197281751
:100C9000390759F416962D913C91179712968D911C
:100CA0009C9113972817390781F016962D913C9146
:100CB000179714968D919C911597019751E02817DD
:100CC000390709F050E0852F01C081E080FD1FC089
:100CD00080891696CD91DC911797888316962D9171
:100CE0003C91179712968D919C911397281739076D
:100CF00021F48D919C91119705C016968D919C9130
:100D00001797019617969C938E93169703C0118A96
:100D10002A9840E0108A1786442321F033C0969524
:100D2000908B30C0DF01A853BF4F8D919C911197DC
:100D3000816011969C938E93EB58FF4F24813581EF
:100D4000808191812817390739F426813781828182
:100D500093812817390761F0268137818481958135
:100D6000019741E02817390709F040E0842F01C0BE
:100D700081E080FF07C086819781958384831196E7
:100D80001C921E92DF91CF911F910F91FF90EF90D7
:100D900008951F920F920FB60F9211242F933F9335
:100DA0004F935F936F937F938F939F93AF93BF9373
:100DB000EF93FF9380E286BB609178007091790099
:100DC000769567957695679560588091D406909151
:100DD000D5060E94CE0480911301882349F08091AA
:100DE000D4069091D5060E94B603807F886001C02A
:100DF00080E88BB980914A0490914B04A0914C04F7
:100E0000B0914D040196A11DB11D80934A049093A9
:100E10004B04A0934C04B0934D04FF91EF91BF910C
:100E2000AF919F918F917F916F915F914F913F9182
:100E30002F910F900FBE0F901F901895CF92DF92B9
:100E4000EF92FF920F931F93CF93DF931F92CDB733
:100E5000DEB77C01462F82E8860F970124593D4F6B
:100E60006901823010F06B3149F4F60160817181C3
:100E70008BE190E049830E94D60A4981D701AE58A0
:100E8000BD4F2C9111965C911197842F90E0FC013D
:100E9000E227EE0FFF1FE851FF4F25913491052FF8
:100EA00010E0202731272D933C93F601608171815A
:100EB0000F90DF91CF911F910F91FF90EF90DF90F6
:100EC000CF900C94D60A28E732E0DC01F9011D929C
:100ED0003197E9F7FC01E459FD4F71836083FC0110
:100EE000EC58FD4F51834083FC01EE58FD4F2FEF2E
:100EF0003FEF31832083FC01E059FD4F3183208394
:100F000008953F924F925F926F927F928F929F923D
:100F1000AF92BF92CF92DF92EF92FF920F931F9307
:100F2000CF93DF932C013C0124E9621A2DEF720A62
:100F30006C0149E8C41A4DEFD40AEC01CA58DD4FE0
:100F40008C0102591D4F7C0180E9E81A8DEFF80AE7
:100F500033243394AA24AA94BA2C4201ACE88A1A06
:100F6000ADEF9A0AF301808191810E94980A8F3F28
:100F7000FFEF9F0709F458C0D6012C91211128C01A
:100F80008E379105D1F4F80180819181429768F004
:100F9000D7018D919C91883B904F39F4D401ED910C
:100FA000FC91309711F0C20109953882F701B182A6
:100FB000A082D8011D921C92D5CF8F37910511F4D4
:100FC0001882D0CF8B31910519F4F6013082CACF47
:100FD0002881222331F1D8012D913C912C36B2E0A9
:100FE0003B07F0F4A9014F5F5F4FF8015183408345
:100FF000F201E20FF31F8083D7012D913C911197ED
:10100000F901E827FF27EE0FFF1FE851FF4F8591F9
:101010009491232F3327822793278D939C9301C08C
:101020001882F60110829ECFDF91CF911F910F9110
:10103000FF90EF90DF90CF90BF90AF909F908F90F8
:101040007F906F905F904F903F9008958F929F9206
:10105000AF92BF92CF92DF92EF92FF920F931F93C6
:10106000CF93DF938C014B016A017C018EE8E81A73
:101070008DEFF80A8FEF9FEFF7019183808358017E
:10108000F4E9AF1AFDEFBF0AF501608171818EE7C7
:1010900090E00E94D60AE401C80CD91CCC15DD05ED
:1010A00029F06991C8010E941E07F8CFF7016081FD
:1010B000C1816095C8010E941E076C2F6095C80110
:1010C0000E941E07F501608171818EE790E0DF913B
:1010D000CF911F910F91FF90EF90DF90CF90BF9035
:1010E000AF909F908F900C94D60A9093D8068093DF
:1010F000D70650934F0440934E047093DA066093E2
:10110000D9060895EF92FF920F931F93CF93DF9329
:10111000EC0160914E0470914F0480EC90E00E94CD
:10112000D60A60914E0470914F0480E090E00E94D6
:10113000D60A8E017E0182E9E81A8DEFF80AF701DE
:101140008081918160914E0470914F0498012C1B15
:101150003D0B2817390708F5F80181918F01803C74
:1011600059F48BED90E00E94D60A60914E04709184
:101170004F048CED90E00EC08B3D59F48BED90E068
:101180000E94D60A60914E0470914F048DED90E05C
:1011900001C090E00E94D60AD2CF80EC90E0DF91AF
:1011A000CF911F910F91FF90EF900C94D60A8F92E0
:1011B0009F92AF92BF92CF92DF92EF92FF920F93E6
:1011C0001F93CF93DF93EC017B016A01E091D90675
:1011D000F091DA068189811144C00E94880A9091B9
:1011E0000001891788F4A601B701CE01DF91CF91E4
:1011F0001F910F91FF90EF90DF90CF90BF90AF9035
:101200009F908F900C9426088FB7F89480904A0492
:1012100090904B04A0904C04B0904D048FBF20914F
:101220000101309102014091030150910401AAE0B3
:10123000B0E00E940D0A4FB7F89400914A04109153
:101240004B0420914C0430914D044FBF08191909EB
:101250002A093B0906171707280739070CF0B6CFEC
:10126000EACFE091D906F091DA068189882309F462
:10127000ADCF8091D7069091D8060E948107E0916A
:10128000D906F091DA06E853FF4F80819181892BCE
:1012900041F311821082DF91CF911F910F91FF9046
:1012A000EF90DF90CF90BF90AF909F908F90089578
:1012B000282F8091DB068823A1F0203C01F5809146
:1012C0000D01811111C01092DB064091DC06509196
:1012D000DD0664E171E08091D7069091D8060C9408
:1012E000D708203C09F079C081E08093DB068EEFBF
:1012F00080930D011092DD061092DC060895809116
:10130000DC069091DD068C3632E0930708F065C06C
:1013100030910D01009731F43E3F21F42F7020935E
:101320000D01089531111FC02B3D21F481E0809300
:10133000D60608953091D606332349F02C3D21F08E
:101340002D3D19F42BED01C020EC1092D606AC0116
:101350004F5F5F4F5093DD064093DC06FC01EC5E6F
:10136000FE4F20830895313071F430E0AAE0B0E000
:101370000E94FE096093090170930A0180930B019A
:1013800090930C010895343089F43AE0239FC00112
:101390001124AA2797FDA095BA2F80930501909359
:1013A0000601A0930701B09308010895333089F432
:1013B0003AE0239FC0011124AA2797FDA095BA2FD8
:1013C0008093010190930201A0930301B093040163
:1013D0000895323011F42093000108950E94950180
:1013E0008CE594E00E94810780E00E940602882339
:1013F000B9F30E9410020E945809F2CFA29FB001D7
:10140000B39FC001A39F700D811D1124911DB29F38
:10141000700D811D1124911D08950E94FE09A59F44
:10142000900DB49F900DA49F800D911D11240895DF
:10143000A1E21A2EAA1BBB1BFD010DC0AA1FBB1FD8
:10144000EE1FFF1FA217B307E407F50720F0A21B4A
:10145000B30BE40BF50B661F771F881F991F1A94B7
:1014600069F760957095809590959B01AC01BD01E1
:10147000CF0108958F929F92AF92BF92CF92DF9249
:10148000EF92FF92CF93DF93EC01688179818A819B
:101490009B81611571058105910521F464E279ED67
:1014A0008BE597E02DE133EF41E050E00E94100B17
:1014B00049015A019B01AC01A7EAB1E40E940D0A5F
:1014C0006B017C01ACEEB4EFA50194010E940B0B03
:1014D000C60ED71EE81EF91EF7FE06C081E0C81A28
:1014E000D108E10880E8F80AC882D982EA82FB8242
:1014F000C6019F77DF91CF91FF90EF90DF90CF9063
:10150000BF90AF909F908F9008950E943A0A0895DF
:101510008EE091E00E943A0A0895A0E0B0E0809346
:101520000E0190930F01A0931001B0931101089543
:10153000CF93DF93EC012B8120FF33C026FF0AC03D
:101540002F7B2B838E819F8101969F838E838A813F
:1015500090E029C022FF0FC0E881F981808199279E
:1015600087FD9095009719F420622B831AC031965D
:10157000F983E8830EC0EA85FB85099597FF09C0CA
:101580002B81019611F480E101C080E2822B8B83D4
:1015900008C02E813F812F5F3F4F3F832E839927C5
:1015A00002C08FEF9FEFDF91CF9108950F931F93AC
:1015B000CF93DF93182F092FEB018B8181FD03C09F
:1015C0008FEF9FEF20C082FF10C04E815F812C8182
:1015D0003D81421753077CF4E881F9819F012F5F19
:1015E0003F4F39832883108306C0E885F985812F12
:1015F0000995892B29F72E813F812F5F3F4F3F832C
:101600002E83812F902FDF91CF911F910F910895FD
:10161000B7FF0C940D0A0E940D0A821B930B0895CC
:10162000052E97FB1EF400940E94270B57FD07D050
:101630000E94180A07FC03D04EF40C94270B509517
:101640004095309521953F4F4F4F5F4F08959095AE
:101650008095709561957F4F8F4F9F4F0895F894B7
:02166000FFCFBA
:101662003FC80000003200000096000000FE0100AA
:02167200000076
:00000001FF

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,362 @@
:100000000C9474010C9491010C9491010C94910145
:100010000C9491010C9491010C9491010C94910118
:100020000C9491010C9491010C9491010C94910108
:100030000C9491010C9491010C9491010C949101F8
:100040000C9491010C9491010C9491010C949101E8
:100050000C9491010C94CB060C9491010C94910199
:100060000C9491010C949101808183848687898A04
:100070008C8E8F9192949597989A9B9D9EA0A2A307
:10008000A5A6A7A9AAACADAFB0B2B3B5B6B7B9BA79
:10009000BCBDBEC0C1C2C4C5C6C8C9CACBCDCECF07
:1000A000D0D2D3D4D5D6D7D9DADBDCDDDEDFE0E1C0
:1000B000E2E3E4E5E6E7E8E9EAEAEBECEDEEEEEFB1
:1000C000F0F1F1F2F3F3F4F5F5F6F6F7F8F8F9F9E3
:1000D000FAFAFAFBFBFCFCFCFDFDFDFDFEFEFEFE5C
:1000E000FEFFFFFFFFFFFFFF0000891112239B327D
:1000F0002446AD573665BF74488CC19D5AAFD3BEF8
:100100006CCAE5DB7EE9F7F88110080193331A2207
:10011000A5562C47B7753E64C99C408DDBBF52AED7
:10012000EDDA64CBFFF976E802218B3010029913E7
:100130002667AF763444BD554AADC3BC588ED19FB7
:100140006EEBE7FA7CC8F5D983310A2091121803C7
:10015000A7772E66B5543C45CBBD42ACD99E508F97
:10016000EFFB66EAFDD874C904428D5316619F7097
:100170002004A9153227BB364CCEC5DF5EEDD7FC77
:100180006888E1997AABF3BA85520C4397711E6087
:10019000A1142805B3373A26CDDE44CFDFFD56EC57
:1001A000E9986089FBBB72AA06638F7214409D5167
:1001B0002225AB343006B9174EEFC7FE5CCCD5DD37
:1001C0006AA9E3B8788AF19B87730E6295501C4147
:1001D000A3352A24B1163807CFFF46EEDDDC54CD17
:1001E000EBB962A8F99A708B088481951AA793B627
:1001F0002CC2A5D33EE1B7F04008C919522BDB3A17
:10020000644EED5F766DFF7C899400859BB712A6E6
:10021000ADD224C3BFF136E0C1184809D33B5A2AF6
:10022000E55E6C4FF77D7E6C0AA583B418869197C6
:100230002EE3A7F23CC0B5D14229CB38500AD91BD6
:10024000666FEF7E744CFD5D8BB502A499961087A6
:10025000AFF326E2BDD034C1C3394A28D11A580BB6
:10026000E77F6E6EF55C7C4D0CC685D71EE597F476
:100270002880A1913AA3B3B2444ACD5B5669DF7896
:10028000600CE91D722FFB3E8DD604C79FF516E466
:10029000A9902081BBB332A2C55A4C4BD7795E6876
:1002A000E11C680DF33F7A2E0EE787F61CC495D546
:1002B0002AA1A3B03882B193466BCF7A5448DD5956
:1002C000622DEB3C700EF91F8FF706E69DD414C526
:1002D000ABB122A0B9923083C77B4E6AD5585C4936
:1002E000E33D6A2CF11E780F11241FBECFEFD8E03A
:1002F000DEBFCDBF11E0A0E0B1E0E6E6F6E102C06E
:1003000005900D92A231B107D9F716E0A2E1B1E054
:1003100001C01D92A43EB107E1F70E94F0090C94C0
:10032000310B0C9400000C948408789480E893E0DE
:100330000E94070343E951E060E873E08CE594E034
:100340000E9465078EE494E00E94C5018EE494E06B
:100350009093E1068093E0069093DF068093DE069B
:10036000AC0160E873E08CE594E00C947708909120
:10037000C00095FFFCCF8093C60008958091C00017
:1003800087FFFCCF8091C6000895CF93DF93CDB750
:10039000DEB72E970FB6F894DEBF0FBECDBFDC01DF
:1003A0009EE0FD01892F11928A95E9F71092C50010
:1003B00087E68093C400E0ECF0E080818D7F80834D
:1003C00086E08093C20088E18093C1009E012F5F88
:1003D0003F4FF90111929A95E9F783E08C8387EBFF
:1003E00091E09A8789878EEB91E09C878B878EE0DE
:1003F000F90101900D928A95E1F72E960FB6F894C7
:10040000DEBF0FBECDBFDF91CF910895811106C031
:100410008091C000881F8827881F089580E0089574
:100420008091C00087FF03C08091C60008958FEFC0
:100430000895E091D406F091D5064FB7F894EB58A3
:10044000FF4F24813581868197814FBF2817390757
:10045000E1F0E091D406F091D5062FB7F894EB586F
:10046000FF4FA481B58182819381A817B90719F440
:100470008081918104C0A481B581CD0101969583CD
:1004800084838C912FBF90E008958FEF9FEF0895A4
:100490000F931F93CF93DF93182FC091D406D09161
:1004A000D506FE01E959FF4F8081811124C080E407
:1004B00090E09E8F8D8F1C8E1B8E1A8E01E0008324
:1004C000299A2091090130910A0140910B01509124
:1004D0000C01A0EBB4E00E940F0A6056704F8F4FE2
:1004E0009F4F20E43FE140E050E00E941A0A3B8B1E
:1004F0002A8B009313010FB7F894209105013091D6
:1005000006014091070150910801A0EBB4E00E9460
:100510000F0A6056704F8F4F9F4F20E43FE140E03D
:1005200050E00E941A0A3D8B2C8B0FBFE091D4063D
:10053000F091D5065FB7F89423A134A1878D90A1DF
:100540002817390739F425A136A181A192A12817CE
:10055000390761F025A136A183A194A1019741E05B
:100560002817390709F040E0842F01C081E05FBF00
:1005700080FDDCCFE091D406F091D5064FB7F8941A
:10058000A5A1B6A11C9325A136A181A192A12817EE
:10059000390719F4878D90A103C085A196A1019612
:1005A00096A385A34FBFDF91CF911F910F9108951F
:1005B00081E080931201089581E0809312011092EE
:1005C000800089E18093810081E896E09093870024
:1005D0008093860080911201882321F080E480932B
:1005E0007C0002C010927C003898409880917E0078
:1005F000816080937E0087E080937B008CEE809307
:100600007A008AB1886F8AB9219A229A08950F9345
:100610001F93CF93DF93CDB7DEB72E970FB6F89425
:10062000DEBF0FBECDBF8C018AECD8011D928A952A
:10063000E9F71093D5060093D40680E490E0F80122
:10064000968F858FC80180599F4FE859FF4F91833E
:1006500080839783868395838483C8018C589F4FBA
:1006600093838283C80183589F4FD801AB58BF4FF3
:1006700011969C938E9317969C938E93169715962E
:100680009C938E931497C80184549F4F13969C9308
:100690008E931297C8018796D80190969C938E935B
:1006A0005F9796969C938E93959794969C938E9332
:1006B0009397C8018A599F4F92969C938E939197D6
:1006C00084E090E0A681B7811C9246815781228107
:1006D00033814217530719F42081318104C02681E8
:1006E00037812F5F3F4F378326830197009751F75C
:1006F0000E94DC022EE0FE013196DF01822F1D9266
:100700008A95E9F783E08C8388E492E09A87898769
:1007100089E192E09C878B87D80101900D922A9500
:10072000E1F72E960FB6F894DEBF0FBECDBFDF9176
:10073000CF911F910F9108950F931F93CF93DF9344
:100740008B01E091D406F091D50625A136A134A302
:1007500023A3EC01080F191FC017D10721F08991BD
:100760000E944802F9CFDF91CF911F910F91089518
:10077000DC0156968C9156978111E9C058968C9160
:10078000589781119FC093962D913C91949795967F
:100790008D919C9196972817390739F454968D912D
:1007A0009C915597892B09F45CC059968C91599767
:1007B000811103C05A961C925A9781E059968C93E6
:1007C000599752968D919C915397009789F59396DE
:1007D0002D913C91949795968D919C919697281781
:1007E000390751F454968D919C91559701975596E0
:1007F0009C938E93549721C09396ED91FC9194977E
:1008000091968D919C919297E817F90729F45F963C
:100810008D919C91909706C09396ED91FC91949741
:10082000CF01019694969C938E939397808106C0F6
:10083000019753969C938E9352978EE757968C937D
:10084000579757968C9157978B3191F593962D9199
:100850003C91949795968D919C919697281739077E
:1008600041F410921301A959BF4F1C92299880E0BE
:1008700008959396ED91FC91949791968D919C910A
:100880009297E817F90729F45F968D919C919097BC
:1008900006C09396ED91FC919497CF0101969496A2
:1008A0009C938E939397808157968C93579706C00D
:1008B0008E57823018F459961C92599781E05896B9
:1008C0008C93589759962C9159975D968D919C9140
:1008D0005E972223A9F05A962C915A97253080F0E2
:1008E0005A961C925A978034910519F485E790E046
:1008F00002C080E490E05E969C938E935D9723C047
:1009000058963C91589757962C915797232341F02E
:100910005A968C915A978F5F5A968C935A970FC01C
:100920005A961C925A978034910519F485E790E005
:1009300002C080E490E05E969C938E935D97330FA7
:1009400058963C93589788E056968C9356975D96A8
:10095000ED91FC915E975B968D919C915C97E80F71
:10096000F91F9F0131705C963C932E935B975696CE
:100970008C915697815056968C93FF27E038F1055D
:1009800030F08FEF90E0AC014E1B5F0BFA01E8599D
:10099000FF4F84912F3F310511F008F080950895A5
:1009A000EF92FF920F931F93CF93DF93FC018C0183
:1009B00001541F4FD8014D915C91DC01A354BF4FEE
:1009C0004D935C93DC01A859BF4F14968D919C9177
:1009D000159712962D913C9113978217930721F446
:1009E0002D913C91119707C014968D919C9115976C
:1009F0009C012F5F3F4F15963C932E931497EC016B
:100A000088818602C00111249595879595958795D3
:100A1000E801998388837F01D3ECED0EF11CE70197
:100A2000288139818F010F531F4FE80139832883B3
:100A3000840F951F35952795820F931FE7019983A2
:100A40008883AF014B535F4F21E0181619060CF055
:100A500020E0EA018881880F822B888316968D9189
:100A60009C911797EC01688316962D913C911797EE
:100A700012968D919C9113972817390721F48D9127
:100A80009C91119705C016968D919C911797019690
:100A900017969C938E931697DA019C91892F8695D1
:100AA000869589278370DF01AA53BF4F833039F4BD
:100AB0008C91803214F48F5F01C081508C938C91A3
:100AC000885F8C9380340CF45FC18F738C93DF014B
:100AD000A953BF4F8C91880F97702BEF290F2330AC
:100AE00010F0933009F481608C939C91892F869546
:100AF0008927809581709685990F892B86878E37F7
:100B000009F04EC0DF01AB58BF4F14962D913C91B8
:100B100015978D919C9111972817390759F41696BE
:100B20002D913C91179712968D919C9113972817B0
:100B3000390781F016962D913C91179714968D9157
:100B40009C911597019741E02817390709F040E07B
:100B5000842F01C081E080FDDCC01696CD91DC9130
:100B600017978EE7888316962D913C9117971296CA
:100B70008D919C9113972817390721F48D919C91A1
:100B8000119705C016968D919C911797019617960F
:100B90009C938E93169781E0818B2A9A41E0BCC08A
:100BA000982F9F779F3719F4118A2A98EDC0918961
:100BB000992309F4E9C0982F9F739E3309F4E4C088
:100BC00080FF03C080898068808B87858F5F8787DF
:100BD0009089883008F4A5C0DF01AB58BF4F82E888
:100BE000890F823018F09B3109F04BC014962D917B
:100BF0003C9115978D919C9111972817390759F4BD
:100C000016962D913C91179712968D919C91139762
:100C10002817390781F016962D913C911797149655
:100C20008D919C911597019741E02817390709F09C
:100C300040E0842F01C081E080FD1FC01696CD9159
:100C4000DC9117978BE1888316962D913C9117972D
:100C500012968D919C9113972817390721F48D9145
:100C60009C91119705C016968D919C9117970196AE
:100C700017969C938E93169704C0118A2A9840E089
:100C800001C041E014962D913C9115978D919C9156
:100C900011972817390759F416962D913C911797FB
:100CA00012968D919C9113972817390781F016960B
:100CB0002D913C91179714968D919C9115970197C2
:100CC00051E02817390709F050E0852F01C081E075
:100CD00080FD1FC080891696CD91DC91179788837F
:100CE00016962D913C91179712968D919C91139782
:100CF0002817390721F48D919C91119705C01696FC
:100D00008D919C911797019617969C938E931697A9
:100D100003C0118A2A9840E0108A1786442321F0E4
:100D200033C09695908B30C0DF01A853BF4F8D9193
:100D30009C911197816011969C938E93EB58FF4F75
:100D400024813581808191812817390739F42681E2
:100D50003781828193812817390761F02681378195
:100D600084819581019741E02817390709F040E017
:100D7000842F01C081E080FF07C086819781958321
:100D8000848311961C921E92DF91CF911F910F9137
:100D9000FF90EF9008951F920F920FB60F921124BB
:100DA0002F933F934F935F936F937F938F939F9373
:100DB000AF93BF93EF93FF9380E286BB609178007F
:100DC00070917900769567957695679560588091D2
:100DD000D4069091D5060E94D004809113018823F7
:100DE00049F08091D4069091D5060E94B803807F87
:100DF000886001C080E88BB980914A0490914B04CF
:100E0000A0914C04B0914D040196A11DB11D809399
:100E10004A0490934B04A0934C04B0934D04FF916B
:100E2000EF91BF91AF919F918F917F916F915F9162
:100E30004F913F912F910F900FBE0F901F901895DB
:100E4000CF92DF92EF92FF920F931F93CF93DF9396
:100E50001F92CDB7DEB77C01462F82E8860F97013F
:100E600024593D4F6901823010F06B3149F4F6018D
:100E7000608171818BE190E049830E94D80A4981A9
:100E8000D701AE58BD4F2C9111965C911197842FCC
:100E900090E0FC01E227EE0FFF1FE851FF4F259184
:100EA0003491052F10E0202731272D933C93F60134
:100EB000608171810F90DF91CF911F910F91FF9011
:100EC000EF90DF90CF900C94D80A28E732E0DC0155
:100ED000F9011D923197E9F7FC01E459FD4F718347
:100EE0006083FC01EC58FD4F51834083FC01EE58B8
:100EF000FD4F2FEF3FEF31832083FC01E059FD4F81
:100F00003183208308953F924F925F926F927F9238
:100F10008F929F92AF92BF92CF92DF92EF92FF9209
:100F20000F931F93CF93DF932C013C0124E9621AA6
:100F30002DEF720A6C0149E8C41A4DEFD40AEC0196
:100F4000CA58DD4F8C0102591D4F7C0180E9E81A17
:100F50008DEFF80A33243394AA24AA94BA2C4201C0
:100F6000ACE88A1AADEF9A0AF301808191810E9460
:100F70009A0A8F3FFFEF9F0709F458C0D6012C91C2
:100F8000211128C08E379105D1F4F801808191811B
:100F9000429768F0D7018D919C91883B904F39F42E
:100FA000D401ED91FC91309711F0C201099538827E
:100FB000F701B182A082D8011D921C92D5CF8F3744
:100FC000910511F41882D0CF8B31910519F4F601F7
:100FD0003082CACF2881222331F1D8012D913C9152
:100FE0002C36B2E03B07F0F4A9014F5F5F4FF801E8
:100FF00051834083F201E20FF31F8083D7012D91CB
:101000003C911197F901E827FF27EE0FFF1FE851E8
:10101000FF4F85919491232F3327822793278D9318
:101020009C9301C01882F60110829ECFDF91CF9170
:101030001F910F91FF90EF90DF90CF90BF90AF90F6
:101040009F908F907F906F905F904F903F9008950A
:101050008F929F92AF92BF92CF92DF92EF92FF92C8
:101060000F931F93CF93DF938C014B016A017C0197
:101070008EE8E81A8DEFF80A8FEF9FEFF701918362
:1010800080835801F4E9AF1AFDEFBF0AF5016081D2
:1010900071818EE790E00E94D80AE401C80CD91C47
:1010A000CC15DD0529F06991C8010E942007F8CF11
:1010B000F7016081C1816095C8010E9420076C2FF3
:1010C0006095C8010E942007F501608171818EE75B
:1010D00090E0DF91CF911F910F91FF90EF90DF9003
:1010E000CF90BF90AF909F908F900C94D80A909320
:1010F000D8068093D70650934F0440934E047093C4
:10110000DA066093D9060895EF92FF920F931F932A
:10111000CF93DF93EC0160914E0470914F0480EC0B
:1011200090E00E94D80A60914E0470914F0480E0D4
:1011300090E00E94D80A8E017E0182E9E81A8DEFC4
:10114000F80AF7018081918160914E0470914F04FB
:1011500098012C1B3D0B2817390708F5F8018191E0
:101160008F01803C59F48BED90E00E94D80A609189
:101170004E0470914F048CED90E00EC08B3D59F4FD
:101180008BED90E00E94D80A60914E0470914F045C
:101190008DED90E001C090E00E94D80AD2CF80ECA3
:1011A00090E0DF91CF911F910F91FF90EF900C9401
:1011B000D80A8F929F92AF92BF92CF92DF92EF9216
:1011C000FF920F931F93CF93DF93EC017B016A0192
:1011D000E091D906F091DA068189811144C00E941C
:1011E0008A0A90910001891788F4A601B701CE01FF
:1011F000DF91CF911F910F91FF90EF90DF90CF90F3
:10120000BF90AF909F908F900C9428088FB7F89460
:1012100080904A0490904B04A0904C04B0904D04F0
:101220008FBF209101013091020140910301509143
:101230000401AAE0B0E00E940F0A4FB7F8940091B1
:101240004A0410914B0420914C0430914D044FBF3F
:10125000081919092A093B0906171707280739072A
:101260000CF0B6CFEACFE091D906F091DA06818989
:10127000882309F4ADCF8091D7069091D8060E94BB
:101280008307E091D906F091DA06E853FF4F808199
:101290009181892B41F311821082DF91CF911F91AF
:1012A0000F91FF90EF90DF90CF90BF90AF909F9005
:1012B0008F900895282F8091DB068823A1F0203C91
:1012C00001F580910D01811111C01092DB06409152
:1012D000DC065091DD0664E171E08091D7069091C3
:1012E000D8060C94D908203C09F079C081E080939D
:1012F000DB068EEF80930D011092DD061092DC0666
:1013000008958091DC069091DD068C3632E09307DB
:1013100008F065C030910D01009731F43E3F21F493
:101320002F7020930D01089531111FC02B3D21F422
:1013300081E08093D60608953091D606332349F094
:101340002C3D21F02D3D19F42BED01C020EC109225
:10135000D606AC014F5F5F4F5093DD064093DC062D
:10136000FC01EC5EFE4F20830895313071F430E0D3
:10137000AAE0B0E00E94000A6093090170930A019C
:1013800080930B0190930C010895343089F43AE076
:10139000239FC0011124AA2797FDA095BA2F8093FF
:1013A000050190930601A0930701B09308010895E9
:1013B000333089F43AE0239FC0011124AA2797FD16
:1013C000A095BA2F8093010190930201A09303018D
:1013D000B09304010895323011F420930001089570
:1013E0000E9495018CE594E00E94830780E00E94B2
:1013F00006028823B9F30E9410020E945A09F2CF14
:10140000A29FB001B39FC001A39F700D811D112445
:10141000911DB29F700D811D1124911D08950E9490
:10142000000AA59F900DB49F900DA49F800D911D63
:1014300011240895A1E21A2EAA1BBB1BFD010DC0A9
:10144000AA1FBB1FEE1FFF1FA217B307E407F50774
:1014500020F0A21BB30BE40BF50B661F771F881F50
:10146000991F1A9469F760957095809590959B01E6
:10147000AC01BD01CF0108958F929F92AF92BF92B0
:10148000CF92DF92EF92FF92CF93DF93EC016881CE
:1014900079818A819B81611571058105910521F40E
:1014A00064E279ED8BE597E02DE133EF41E050E028
:1014B0000E94120B49015A019B01AC01A7EAB1E459
:1014C0000E940F0A6B017C01ACEEB4EFA501940100
:1014D0000E940D0BC60ED71EE81EF91EF7FE06C0B1
:1014E00081E0C81AD108E10880E8F80AC882D982E8
:1014F000EA82FB82C6019F77DF91CF91FF90EF9048
:10150000DF90CF90BF90AF909F908F9008950E94F2
:101510003C0A08958EE091E00E943C0A0895A0E004
:10152000B0E080930E0190930F01A0931001B0934F
:1015300011010895CF93DF93EC012B8120FF33C07D
:1015400026FF0AC02F7B2B838E819F8101969F836C
:101550008E838A8190E029C022FF0FC0E881F98143
:101560008081992787FD9095009719F420622B833D
:101570001AC03196F983E8830EC0EA85FB85099588
:1015800097FF09C02B81019611F480E101C080E230
:10159000822B8B8308C02E813F812F5F3F4F3F837B
:1015A0002E83992702C08FEF9FEFDF91CF9108958F
:1015B0000F931F93CF93DF93182F092FEB018B818C
:1015C00081FD03C08FEF9FEF20C082FF10C04E81CE
:1015D0005F812C813D81421753077CF4E881F981BA
:1015E0009F012F5F3F4F39832883108306C0E88512
:1015F000F985812F0995892B29F72E813F812F5F4E
:101600003F4F3F832E83812F902FDF91CF911F91EA
:101610000F910895B7FF0C940F0A0E940F0A821BC6
:10162000930B0895052E97FB1EF400940E94290B3E
:1016300057FD07D00E941A0A07FC03D04EF40C9401
:10164000290B50954095309521953F4F4F4F5F4F57
:10165000089590958095709561957F4F8F4F9F4F1E
:061660000895F894FFCF8D
:101666003FC80000003200000096000000FE0100A6
:02167600000072
:00000001FF

File diff suppressed because it is too large Load Diff

163
protocol/AX25.c Normal file
View File

@ -0,0 +1,163 @@
// Based on work by Francesco Sacchi
#include <string.h>
#include <ctype.h>
#include "AX25.h"
#include "protocol/HDLC.h"
#include "util/CRC-CCIT.h"
#include "../hardware/AFSK.h"
#define countof(a) sizeof(a)/sizeof(a[0])
#define MIN(a,b) ({ typeof(a) _a = (a); typeof(b) _b = (b); ((typeof(_a))((_a < _b) ? _a : _b)); })
#define DECODE_CALL(buf, addr) for (unsigned i = 0; i < sizeof((addr)); i++) { char c = (*(buf)++ >> 1); (addr)[i] = (c == ' ') ? '\x0' : c; }
#define AX25_SET_REPEATED(msg, idx, val) do { if (val) { (msg)->rpt_flags |= _BV(idx); } else { (msg)->rpt_flags &= ~_BV(idx) ; } } while(0)
void ax25_init(AX25Ctx *ctx, FILE *channel, ax25_callback_t hook) {
memset(ctx, 0, sizeof(*ctx));
ctx->ch = channel;
ctx->hook = hook;
ctx->crc_in = ctx->crc_out = CRC_CCIT_INIT_VAL;
}
static void ax25_decode(AX25Ctx *ctx) {
#if SERIAL_PROTOCOL == PROTOCOL_KISS
if (ctx->hook) ctx->hook(ctx);
#endif
#if SERIAL_PROTOCOL == PROTOCOL_SIMPLE_SERIAL
AX25Msg msg;
uint8_t *buf = ctx->buf;
DECODE_CALL(buf, msg.dst.call);
msg.dst.ssid = (*buf++ >> 1) & 0x0F;
DECODE_CALL(buf, msg.src.call);
msg.src.ssid = (*buf >> 1) & 0x0F;
for (msg.rpt_count = 0; !(*buf++ & 0x01) && (msg.rpt_count < countof(msg.rpt_list)); msg.rpt_count++) {
DECODE_CALL(buf, msg.rpt_list[msg.rpt_count].call);
msg.rpt_list[msg.rpt_count].ssid = (*buf >> 1) & 0x0F;
AX25_SET_REPEATED(&msg, msg.rpt_count, (*buf & 0x80));
}
msg.ctrl = *buf++;
if (msg.ctrl != AX25_CTRL_UI) { return; }
msg.pid = *buf++;
if (msg.pid != AX25_PID_NOLAYER3) { return; }
msg.len = ctx->frame_len - 2 - (buf - ctx->buf);
msg.info = buf;
if (ctx->hook) ctx->hook(&msg);
#endif
}
void ax25_poll(AX25Ctx *ctx) {
int c;
while ((c = fgetc(ctx->ch)) != EOF) {
if (!ctx->escape && c == HDLC_FLAG) {
if (ctx->frame_len >= AX25_MIN_FRAME_LEN) {
if (ctx->crc_in == AX25_CRC_CORRECT) {
#if OPEN_SQUELCH == true
LED_RX_ON();
#endif
ax25_decode(ctx);
}
}
ctx->sync = true;
ctx->crc_in = CRC_CCIT_INIT_VAL;
ctx->frame_len = 0;
continue;
}
if (!ctx->escape && c == HDLC_RESET) {
ctx->sync = false;
continue;
}
if (!ctx->escape && c == AX25_ESC) {
ctx->escape = true;
continue;
}
if (ctx->sync) {
if (ctx->frame_len < AX25_MAX_FRAME_LEN) {
ctx->buf[ctx->frame_len++] = c;
ctx->crc_in = update_crc_ccit(c, ctx->crc_in);
} else {
ctx->sync = false;
}
}
ctx->escape = false;
}
}
static void ax25_putchar(AX25Ctx *ctx, uint8_t c)
{
if (c == HDLC_FLAG || c == HDLC_RESET || c == AX25_ESC) fputc(AX25_ESC, ctx->ch);
ctx->crc_out = update_crc_ccit(c, ctx->crc_out);
fputc(c, ctx->ch);
}
void ax25_sendRaw(AX25Ctx *ctx, void *_buf, size_t len) {
ctx->crc_out = CRC_CCIT_INIT_VAL;
fputc(HDLC_FLAG, ctx->ch);
const uint8_t *buf = (const uint8_t *)_buf;
while (len--) ax25_putchar(ctx, *buf++);
uint8_t crcl = (ctx->crc_out & 0xff) ^ 0xff;
uint8_t crch = (ctx->crc_out >> 8) ^ 0xff;
ax25_putchar(ctx, crcl);
ax25_putchar(ctx, crch);
fputc(HDLC_FLAG, ctx->ch);
}
#if SERIAL_PROTOCOL == PROTOCOL_SIMPLE_SERIAL
static void ax25_sendCall(AX25Ctx *ctx, const AX25Call *addr, bool last){
unsigned len = MIN(sizeof(addr->call), strlen(addr->call));
for (unsigned i = 0; i < len; i++) {
uint8_t c = addr->call[i];
c = toupper(c);
ax25_putchar(ctx, c << 1);
}
if (len < sizeof(addr->call)) {
for (unsigned i = 0; i < sizeof(addr->call) - len; i++) {
ax25_putchar(ctx, ' ' << 1);
}
}
uint8_t ssid = 0x60 | (addr->ssid << 1) | (last ? 0x01 : 0);
ax25_putchar(ctx, ssid);
}
void ax25_sendVia(AX25Ctx *ctx, const AX25Call *path, size_t path_len, const void *_buf, size_t len) {
const uint8_t *buf = (const uint8_t *)_buf;
ctx->crc_out = CRC_CCIT_INIT_VAL;
fputc(HDLC_FLAG, ctx->ch);
for (size_t i = 0; i < path_len; i++) {
ax25_sendCall(ctx, &path[i], (i == path_len - 1));
}
ax25_putchar(ctx, AX25_CTRL_UI);
ax25_putchar(ctx, AX25_PID_NOLAYER3);
while (len--) {
ax25_putchar(ctx, *buf++);
}
uint8_t crcl = (ctx->crc_out & 0xff) ^ 0xff;
uint8_t crch = (ctx->crc_out >> 8) ^ 0xff;
ax25_putchar(ctx, crcl);
ax25_putchar(ctx, crch);
fputc(HDLC_FLAG, ctx->ch);
}
#endif

73
protocol/AX25.h Normal file
View File

@ -0,0 +1,73 @@
#ifndef PROTOCOL_AX25_H
#define PROTOCOL_AX25_H
#include <stdio.h>
#include <stdbool.h>
#include "device.h"
#define AX25_MIN_FRAME_LEN 18
#ifndef CUSTOM_FRAME_SIZE
#define AX25_MAX_FRAME_LEN 620
#else
#define AX25_MAX_FRAME_LEN CUSTOM_FRAME_SIZE
#endif
#define AX25_CRC_CORRECT 0xF0B8
#define AX25_CTRL_UI 0x03
#define AX25_PID_NOLAYER3 0xF0
struct AX25Ctx; // Forward declarations
struct AX25Msg;
#if SERIAL_PROTOCOL == PROTOCOL_KISS
typedef void (*ax25_callback_t)(struct AX25Ctx *ctx);
#endif
#if SERIAL_PROTOCOL == PROTOCOL_SIMPLE_SERIAL
typedef void (*ax25_callback_t)(struct AX25Msg *msg);
#endif
typedef struct AX25Ctx {
uint8_t buf[AX25_MAX_FRAME_LEN];
FILE *ch;
size_t frame_len;
uint16_t crc_in;
uint16_t crc_out;
ax25_callback_t hook;
bool sync;
bool escape;
} AX25Ctx;
#if SERIAL_PROTOCOL == PROTOCOL_SIMPLE_SERIAL
#define AX25_CALL(str, id) {.call = (str), .ssid = (id) }
#define AX25_MAX_RPT 8
#define AX25_REPEATED(msg, n) ((msg)->rpt_flags & BV(n))
typedef struct AX25Call {
char call[6];
uint8_t ssid;
} AX25Call;
typedef struct AX25Msg {
AX25Call src;
AX25Call dst;
AX25Call rpt_list[AX25_MAX_RPT];
uint8_t rpt_count;
uint8_t rpt_flags;
uint16_t ctrl;
uint8_t pid;
const uint8_t *info;
size_t len;
} AX25Msg;
void ax25_sendVia(AX25Ctx *ctx, const AX25Call *path, size_t path_len, const void *_buf, size_t len);
#define ax25_send(ctx, dst, src, buf, len) ax25_sendVia(ctx, ({static AX25Call __path[]={dst, src}; __path;}), 2, buf, len)
#endif
void ax25_poll(AX25Ctx *ctx);
void ax25_sendRaw(AX25Ctx *ctx, void *_buf, size_t len);
void ax25_init(AX25Ctx *ctx, FILE *channel, ax25_callback_t hook);
#endif

8
protocol/HDLC.h Normal file
View File

@ -0,0 +1,8 @@
#ifndef PROTOCOL_HDLC_H
#define PROTOCOL_HDLC_H
#define HDLC_FLAG 0x7E
#define HDLC_RESET 0x7F
#define AX25_ESC 0x1B
#endif

120
protocol/KISS.c Normal file
View File

@ -0,0 +1,120 @@
#include <stdlib.h>
#include <string.h>
#include "device.h"
#include "KISS.h"
static uint8_t serialBuffer[AX25_MAX_FRAME_LEN]; // Buffer for holding incoming serial data
AX25Ctx *ax25ctx;
Afsk *channel;
Serial *serial;
size_t frame_len;
bool IN_FRAME;
bool ESCAPE;
uint8_t command = CMD_UNKNOWN;
unsigned long custom_preamble = CONFIG_AFSK_PREAMBLE_LEN;
unsigned long custom_tail = CONFIG_AFSK_TRAILER_LEN;
unsigned long slotTime = 200;
uint8_t p = 63;
void kiss_init(AX25Ctx *ax25, Afsk *afsk, Serial *ser) {
ax25ctx = ax25;
serial = ser;
channel = afsk;
}
void kiss_messageCallback(AX25Ctx *ctx) {
fputc(FEND, &serial->uart0);
fputc(0x00, &serial->uart0);
for (unsigned i = 0; i < ctx->frame_len; i++) {
uint8_t b = ctx->buf[i];
if (b == FEND) {
fputc(FESC, &serial->uart0);
fputc(TFEND, &serial->uart0);
} else if (b == FESC) {
fputc(FESC, &serial->uart0);
fputc(TFESC, &serial->uart0);
} else {
fputc(b, &serial->uart0);
}
}
fputc(FEND, &serial->uart0);
}
void kiss_csma(AX25Ctx *ctx, uint8_t *buf, size_t len) {
bool sent = false;
while (!sent) {
//puts("Waiting in CSMA");
if(!channel->hdlc.receiving) {
uint8_t tp = rand() & 0xFF;
if (tp < p) {
ax25_sendRaw(ctx, buf, len);
sent = true;
} else {
ticks_t start = timer_clock();
long slot_ticks = ms_to_ticks(slotTime);
while (timer_clock() - start < slot_ticks) {
cpu_relax();
}
}
} else {
while (!sent && channel->hdlc.receiving) {
// Continously poll the modem for data
// while waiting, so we don't overrun
// receive buffers
ax25_poll(ax25ctx);
if (channel->status != 0) {
// If an overflow or other error
// occurs, we'll back off and drop
// this packet silently.
channel->status = 0;
sent = true;
}
}
}
}
}
void kiss_serialCallback(uint8_t sbyte) {
if (IN_FRAME && sbyte == FEND && command == CMD_DATA) {
IN_FRAME = false;
kiss_csma(ax25ctx, serialBuffer, frame_len);
} else if (sbyte == FEND) {
IN_FRAME = true;
command = CMD_UNKNOWN;
frame_len = 0;
} else if (IN_FRAME && frame_len < AX25_MAX_FRAME_LEN) {
// Have a look at the command byte first
if (frame_len == 0 && command == CMD_UNKNOWN) {
// MicroModem supports only one HDLC port, so we
// strip off the port nibble of the command byte
sbyte = sbyte & 0x0F;
command = sbyte;
} else if (command == CMD_DATA) {
if (sbyte == FESC) {
ESCAPE = true;
} else {
if (ESCAPE) {
if (sbyte == TFEND) sbyte = FEND;
if (sbyte == TFESC) sbyte = FESC;
ESCAPE = false;
}
serialBuffer[frame_len++] = sbyte;
}
} else if (command == CMD_TXDELAY) {
custom_preamble = sbyte * 10UL;
} else if (command == CMD_TXTAIL) {
custom_tail = sbyte * 10;
} else if (command == CMD_SLOTTIME) {
slotTime = sbyte * 10;
} else if (command == CMD_P) {
p = sbyte;
}
}
}

29
protocol/KISS.h Normal file
View File

@ -0,0 +1,29 @@
#ifndef _PROTOCOL_KISS
#define _PROTOCOL_KISS 0x02
#include "../hardware/AFSK.h"
#include "../hardware/Serial.h"
#include "../util/time.h"
#include "AX25.h"
#define FEND 0xC0
#define FESC 0xDB
#define TFEND 0xDC
#define TFESC 0xDD
#define CMD_UNKNOWN 0xFE
#define CMD_DATA 0x00
#define CMD_TXDELAY 0x01
#define CMD_P 0x02
#define CMD_SLOTTIME 0x03
#define CMD_TXTAIL 0x04
#define CMD_FULLDUPLEX 0x05
#define CMD_SETHARDWARE 0x06
#define CMD_RETURN 0xFF
void kiss_init(AX25Ctx *ax25, Afsk *afsk, Serial *ser);
void kiss_csma(AX25Ctx *ctx, uint8_t *buf, size_t len);
void kiss_messageCallback(AX25Ctx *ctx);
void kiss_serialCallback(uint8_t sbyte);
#endif

857
protocol/SimpleSerial.c Normal file
View File

@ -0,0 +1,857 @@
#include "device.h"
#if SERIAL_PROTOCOL == PROTOCOL_SIMPLE_SERIAL
#define ENABLE_HELP true
#include <stdlib.h>
#include <string.h>
#include <avr/eeprom.h>
#include <avr/pgmspace.h>
#include "hardware/Serial.h"
#include "SimpleSerial.h"
#include "util/time.h"
#define countof(a) sizeof(a)/sizeof(a[0])
bool PRINT_SRC = true;
bool PRINT_DST = true;
bool PRINT_PATH = true;
bool PRINT_DATA = true;
bool PRINT_INFO = true;
bool VERBOSE = true;
bool SILENT = false;
bool SS_INIT = false;
bool SS_DEFAULT_CONF = false;
AX25Call src;
AX25Call dst;
AX25Call path1;
AX25Call path2;
char CALL[6] = DEFAULT_CALLSIGN;
int CALL_SSID = 0;
char DST[6] = DEFAULT_DESTINATION_CALL;
int DST_SSID = 0;
char PATH1[6] = "WIDE1";
int PATH1_SSID = 1;
char PATH2[6] = "WIDE2";
int PATH2_SSID = 2;
AX25Call path[4];
AX25Ctx *ax25ctx;
#define NV_MAGIC_BYTE 0x69
uint8_t EEMEM nvMagicByte;
uint8_t EEMEM nvCALL[6];
uint8_t EEMEM nvDST[6];
uint8_t EEMEM nvPATH1[6];
uint8_t EEMEM nvPATH2[6];
uint8_t EEMEM nvCALL_SSID;
uint8_t EEMEM nvDST_SSID;
uint8_t EEMEM nvPATH1_SSID;
uint8_t EEMEM nvPATH2_SSID;
bool EEMEM nvPRINT_SRC;
bool EEMEM nvPRINT_DST;
bool EEMEM nvPRINT_PATH;
bool EEMEM nvPRINT_DATA;
bool EEMEM nvPRINT_INFO;
bool EEMEM nvVERBOSE;
bool EEMEM nvSILENT;
uint8_t EEMEM nvPOWER;
uint8_t EEMEM nvHEIGHT;
uint8_t EEMEM nvGAIN;
uint8_t EEMEM nvDIRECTIVITY;
uint8_t EEMEM nvSYMBOL_TABLE;
uint8_t EEMEM nvSYMBOL;
uint8_t EEMEM nvAUTOACK;
int EEMEM nvPREAMBLE;
int EEMEM nvTAIL;
// Location packet assembly fields
char latitude[8];
char longtitude[9];
char symbolTable = '/';
char symbol = 'n';
uint8_t power = 10;
uint8_t height = 10;
uint8_t gain = 10;
uint8_t directivity = 10;
/////////////////////////
// Message packet assembly fields
char message_recip[6];
int message_recip_ssid = -1;
int message_seq = 0;
char lastMessage[67];
size_t lastMessageLen;
bool message_autoAck = false;
/////////////////////////
extern unsigned long custom_preamble;
extern unsigned long custom_tail;
void ss_init(AX25Ctx *ax25) {
ax25ctx = ax25;
ss_loadSettings();
SS_INIT = true;
if (VERBOSE) {
printf_P(PSTR("---------------\n"));
printf_P(PSTR("MicroAPRS v1.0b\n"));
printf_P(PSTR("unsigned.io/microaprs\n"));
if (SS_DEFAULT_CONF) printf_P(PSTR("Default configuration loaded!\n"));
printf_P(PSTR("Modem ready\n"));
printf_P(PSTR("---------------\n"));
}
}
void ss_clearSettings(void) {
eeprom_update_byte((void*)&nvMagicByte, 0xFF);
if (VERBOSE) printf_P(PSTR("Configuration cleared. Restart to load defaults.\n"));
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
}
void ss_loadSettings(void) {
uint8_t verification = eeprom_read_byte((void*)&nvMagicByte);
if (verification == NV_MAGIC_BYTE) {
eeprom_read_block((void*)CALL, (void*)nvCALL, 6);
eeprom_read_block((void*)DST, (void*)nvDST, 6);
eeprom_read_block((void*)PATH1, (void*)nvPATH1, 6);
eeprom_read_block((void*)PATH2, (void*)nvPATH2, 6);
CALL_SSID = eeprom_read_byte((void*)&nvCALL_SSID);
DST_SSID = eeprom_read_byte((void*)&nvDST_SSID);
PATH1_SSID = eeprom_read_byte((void*)&nvPATH1_SSID);
PATH2_SSID = eeprom_read_byte((void*)&nvPATH2_SSID);
PRINT_SRC = eeprom_read_byte((void*)&nvPRINT_SRC);
PRINT_DST = eeprom_read_byte((void*)&nvPRINT_DST);
PRINT_PATH = eeprom_read_byte((void*)&nvPRINT_PATH);
PRINT_DATA = eeprom_read_byte((void*)&nvPRINT_DATA);
PRINT_INFO = eeprom_read_byte((void*)&nvPRINT_INFO);
VERBOSE = eeprom_read_byte((void*)&nvVERBOSE);
SILENT = eeprom_read_byte((void*)&nvSILENT);
power = eeprom_read_byte((void*)&nvPOWER);
height = eeprom_read_byte((void*)&nvHEIGHT);
gain = eeprom_read_byte((void*)&nvGAIN);
directivity = eeprom_read_byte((void*)&nvDIRECTIVITY);
symbolTable = eeprom_read_byte((void*)&nvSYMBOL_TABLE);
symbol = eeprom_read_byte((void*)&nvSYMBOL);
message_autoAck = eeprom_read_byte((void*)&nvAUTOACK);
custom_preamble = eeprom_read_word((void*)&nvPREAMBLE);
custom_tail = eeprom_read_word((void*)&nvTAIL);
if (VERBOSE && SS_INIT) printf_P(PSTR("Configuration loaded\n"));
} else {
if (SS_INIT && !SILENT && VERBOSE) printf_P(PSTR("Error: No stored configuration to load!\n"));
if (SS_INIT && !SILENT && !VERBOSE) printf_P(PSTR("0\n"));
SS_DEFAULT_CONF = true;
}
}
void ss_saveSettings(void) {
eeprom_update_block((void*)CALL, (void*)nvCALL, 6);
eeprom_update_block((void*)DST, (void*)nvDST, 6);
eeprom_update_block((void*)PATH1, (void*)nvPATH1, 6);
eeprom_update_block((void*)PATH2, (void*)nvPATH2, 6);
eeprom_update_byte((void*)&nvCALL_SSID, CALL_SSID);
eeprom_update_byte((void*)&nvDST_SSID, DST_SSID);
eeprom_update_byte((void*)&nvPATH1_SSID, PATH1_SSID);
eeprom_update_byte((void*)&nvPATH2_SSID, PATH2_SSID);
eeprom_update_byte((void*)&nvPRINT_SRC, PRINT_SRC);
eeprom_update_byte((void*)&nvPRINT_DST, PRINT_DST);
eeprom_update_byte((void*)&nvPRINT_PATH, PRINT_PATH);
eeprom_update_byte((void*)&nvPRINT_DATA, PRINT_DATA);
eeprom_update_byte((void*)&nvPRINT_INFO, PRINT_INFO);
eeprom_update_byte((void*)&nvVERBOSE, VERBOSE);
eeprom_update_byte((void*)&nvSILENT, SILENT);
eeprom_update_byte((void*)&nvPOWER, power);
eeprom_update_byte((void*)&nvHEIGHT, height);
eeprom_update_byte((void*)&nvGAIN, gain);
eeprom_update_byte((void*)&nvDIRECTIVITY, directivity);
eeprom_update_byte((void*)&nvSYMBOL_TABLE, symbolTable);
eeprom_update_byte((void*)&nvSYMBOL, symbol);
eeprom_update_byte((void*)&nvAUTOACK, message_autoAck);
eeprom_update_word((void*)&nvPREAMBLE, custom_preamble);
eeprom_update_word((void*)&nvTAIL, custom_tail);
eeprom_update_byte((void*)&nvMagicByte, NV_MAGIC_BYTE);
if (VERBOSE) printf_P(PSTR("Configuration saved\n"));
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
}
void ss_messageCallback(struct AX25Msg *msg) {
if (PRINT_SRC) {
if (PRINT_INFO) printf_P(PSTR("SRC: "));
printf_P(PSTR("[%.6s-%d] "), msg->src.call, msg->src.ssid);
}
if (PRINT_DST) {
if (PRINT_INFO) printf_P(PSTR("DST: "));
printf_P(PSTR("[%.6s-%d] "), msg->dst.call, msg->dst.ssid);
}
if (PRINT_PATH) {
if (PRINT_INFO) printf_P(PSTR("PATH: "));
for (int i = 0; i < msg->rpt_count; i++)
printf_P(PSTR("[%.6s-%d] "), msg->rpt_list[i].call, msg->rpt_list[i].ssid);
}
if (PRINT_DATA) {
if (PRINT_INFO) printf_P(PSTR("DATA: "), msg->len);
for (int i = 0; i < msg->len; i++) {
putchar(msg->info[i]);
}
}
printf_P(PSTR("\r\n"));
if (message_autoAck && msg->len > 11) {
char mseq[6];
bool shouldAck = true;
int msl = 0;
int loc = msg->len - 1;
size_t i = 0;
while (i<7 && i < msg->len) {
if (msg->info[loc-i] == '{') {
size_t p;
for (p = 0; p <= i; p++) {
mseq[p] = msg->info[loc-i+p];
msl = i;
}
}
i++;
}
if (msl != 0) {
int pos = 1;
int ssidPos = 0;
while (pos < 7) {
if (msg->info[pos] != CALL[pos-1]) {
shouldAck = false;
pos = 7;
}
pos++;
}
while (pos < 10) {
if (msg->info[pos] == '-') ssidPos = pos;
pos++;
}
if (ssidPos != 0) {
if (msg->info[ssidPos+2] == ' ') {
if (msg->info[ssidPos+1]-48 != CALL_SSID) {
shouldAck = false;
}
} else {
int assid = 10+(msg->info[ssidPos+2]-48);
if (assid != CALL_SSID) {
shouldAck = false;
}
}
}
if (msl != 0 && shouldAck) {
int ii = 0;
char *ack = malloc(14+msl);
for (ii = 0; ii < 9; ii++) {
ack[1+ii] = ' ';
}
int calllen = 0;
for (ii = 0; ii < 6; ii++) {
if (msg->src.call[ii] != 0) {
ack[1+ii] = msg->src.call[ii];
calllen++;
}
}
if (msg->src.ssid != 0) {
ack[1+calllen] = '-';
if (msg->src.ssid < 10) {
ack[2+calllen] = msg->src.ssid+48;
} else {
ack[2+calllen] = 49;
ack[3+calllen] = msg->src.ssid-10+48;
}
}
ack[0] = ':';
ack[10] = ':';
ack[11] = 'a';
ack[12] = 'c';
ack[13] = 'k';
for (ii = 0; ii < msl; ii++) {
ack[14+ii] = mseq[ii+1];
}
delay_ms(1750);
ss_sendPkt(ack, 14+msl, ax25ctx);
free(ack);
}
}
}
}
void ss_serialCallback(void *_buffer, size_t length, AX25Ctx *ctx) {
uint8_t *buffer = (uint8_t *)_buffer;
if (length > 0) {
// ! as first char to send packet
if (buffer[0] == '!' && length > 1) {
buffer++; length--;
ss_sendPkt(buffer, length, ctx);
if (VERBOSE) printf_P(PSTR("Packet sent\n"));
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
} else if (buffer[0] == '@') {
buffer++; length--;
ss_sendLoc(buffer, length, ctx);
if (VERBOSE) printf_P(PSTR("Location update sent\n"));
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
} else if (buffer[0] == '#') {
buffer++; length--;
ss_sendMsg(buffer, length, ctx);
if (VERBOSE) printf_P(PSTR("Message sent\n"));
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
}
#if ENABLE_HELP
else if (buffer[0] == 'h') {
ss_printHelp();
}
#endif
else if (buffer[0] == 'H') {
ss_printSettings();
} else if (buffer[0] == 'S') {
ss_saveSettings();
} else if (buffer[0] == 'C') {
ss_clearSettings();
} else if (buffer[0] == 'L') {
ss_loadSettings();
} else if (buffer[0] == 'c' && length > 3) {
buffer++; length--;
int count = 0;
while (length-- && count < 6) {
char c = buffer[count];
if (c != 0 && c != 10 && c != 13) {
CALL[count] = c;
} else {
CALL[count] = 0x00;
}
count++;
}
while (count < 6) {
CALL[count] = 0x00;
count++;
}
if (VERBOSE) printf_P(PSTR("Callsign: %.6s-%d\n"), CALL, CALL_SSID);
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
} else if (buffer[0] == 'd' && length > 3) {
buffer++; length--;
int count = 0;
while (length-- && count < 6) {
char c = buffer[count];
if (c != 0 && c != 10 && c != 13) {
DST[count] = c;
} else {
DST[count] = 0;
}
count++;
}
while (count < 6) {
DST[count] = 0x00;
count++;
}
if (VERBOSE) printf_P(PSTR("Destination: %.6s-%d\n"), DST, DST_SSID);
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
} else if (buffer[0] == '1' && length > 1) {
buffer++; length--;
int count = 0;
while (length-- && count < 6) {
char c = buffer[count];
if (c != 0 && c != 10 && c != 13) {
PATH1[count] = c;
} else {
PATH1[count] = 0;
}
count++;
}
while (count < 6) {
PATH1[count] = 0x00;
count++;
}
if (VERBOSE) printf_P(PSTR("Path1: %.6s-%d\n"), PATH1, PATH1_SSID);
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
} else if (buffer[0] == '2' && length > 1) {
buffer++; length--;
int count = 0;
while (length-- && count < 6) {
char c = buffer[count];
if (c != 0 && c != 10 && c != 13) {
PATH2[count] = c;
} else {
PATH2[count] = 0;
}
count++;
}
while (count < 6) {
PATH2[count] = 0x00;
count++;
}
if (VERBOSE) printf_P(PSTR("Path2: %.6s-%d\n"), PATH2, PATH2_SSID);
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
} else if (buffer[0] == 's' && length > 2) {
buffer++; length--;
if (buffer[0] == 'c') {
if (length > 2 && buffer[2] > 48 && buffer[2] < 58) {
CALL_SSID = 10+buffer[2]-48;
} else {
CALL_SSID = buffer[1]-48;
}
if (VERBOSE) printf_P(PSTR("Callsign: %.6s-%d\n"), CALL, CALL_SSID);
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
}
if (buffer[0] == 'd') {
if (length > 2 && buffer[2] > 48 && buffer[2] < 58) {
DST_SSID = 10+buffer[2]-48;
} else {
DST_SSID = buffer[1]-48;
}
if (VERBOSE) printf_P(PSTR("Destination: %.6s-%d\n"), DST, DST_SSID);
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
}
if (buffer[0] == '1' && buffer[2] > 48 && buffer[2] < 58) {
if (length > 2) {
PATH1_SSID = 10+buffer[2]-48;
} else {
PATH1_SSID = buffer[1]-48;
}
if (VERBOSE) printf_P(PSTR("Path1: %.6s-%d\n"), PATH1, PATH1_SSID);
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
}
if (buffer[0] == '2' && buffer[2] > 48 && buffer[2] < 58) {
if (length > 2) {
PATH2_SSID = 10+buffer[2]-48;
} else {
PATH2_SSID = buffer[1]-48;
}
if (VERBOSE) printf_P(PSTR("Path2: %.6s-%d\n"), PATH2, PATH2_SSID);
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
}
} else if (buffer[0] == 'p' && length > 2) {
buffer++; length--;
if (buffer[0] == 's') {
if (buffer[1] == 49) {
PRINT_SRC = true;
if (VERBOSE) printf_P(PSTR("Print SRC enabled\n"));
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
} else {
PRINT_SRC = false;
if (VERBOSE) printf_P(PSTR("Print SRC disabled\n"));
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
}
}
if (buffer[0] == 'd') {
if (buffer[1] == 49) {
PRINT_DST = true;
if (VERBOSE) printf_P(PSTR("Print DST enabled\n"));
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
} else {
PRINT_DST = false;
if (VERBOSE) printf_P(PSTR("Print DST disabled\n"));
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
}
}
if (buffer[0] == 'p') {
if (buffer[1] == 49) {
PRINT_PATH = true;
if (VERBOSE) printf_P(PSTR("Print PATH enabled\n"));
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
} else {
PRINT_PATH = false;
if (VERBOSE) printf_P(PSTR("Print PATH disabled\n"));
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
}
}
if (buffer[0] == 'm') {
if (buffer[1] == 49) {
PRINT_DATA = true;
if (VERBOSE) printf_P(PSTR("Print DATA enabled\n"));
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
} else {
PRINT_DATA = false;
if (VERBOSE) printf_P(PSTR("Print DATA disabled\n"));
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
}
}
if (buffer[0] == 'i') {
if (buffer[1] == 49) {
PRINT_INFO = true;
if (VERBOSE) printf_P(PSTR("Print INFO enabled\n"));
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
} else {
PRINT_INFO = false;
if (VERBOSE) printf_P(PSTR("Print INFO disabled\n"));
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
}
}
} else if (buffer[0] == 'v') {
if (buffer[1] == 49) {
VERBOSE = true;
printf_P(PSTR("Verbose mode enabled\n"));
} else {
VERBOSE = false;
printf_P(PSTR("Verbose mode disabled\n"));
}
} else if (buffer[0] == 'V') {
if (buffer[1] == 49) {
SILENT = true;
VERBOSE = false;
printf_P(PSTR("Silent mode enabled\n"));
} else {
SILENT = false;
printf_P(PSTR("Silent mode disabled\n"));
}
} else if (buffer[0] == 'l' && length > 2) {
buffer++; length--;
if (buffer[0] == 'l' && buffer[1] == 'a' && length >= 10) {
buffer += 2;
memcpy(latitude, (void *)buffer, 8);
if (VERBOSE) printf_P(PSTR("Latitude set to %.8s\n"), latitude);
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
} else if (buffer[0] == 'l' && buffer[1] == 'o' && length >= 11) {
buffer += 2;
memcpy(longtitude, (void *)buffer, 9);
if (VERBOSE) printf_P(PSTR("Longtitude set to %.9s\n"), longtitude);
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
} else if (buffer[0] == 'p' && length >= 2 && buffer[1] >= 48 && buffer[1] <= 57) {
power = buffer[1] - 48;
if (VERBOSE) printf_P(PSTR("Power set to %dw\n"), power*power);
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
} else if (buffer[0] == 'h' && length >= 2 && buffer[1] >= 48 && buffer[1] <= 57) {
height = buffer[1] - 48;
if (VERBOSE) printf_P(PSTR("Antenna height set to %ldm AAT\n"), (long)(_BV(height)*1000L)/328L);
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
} else if (buffer[0] == 'g' && length >= 2 && buffer[1] >= 48 && buffer[1] <= 57) {
gain = buffer[1] - 48;
if (VERBOSE) printf_P(PSTR("Gain set to %ddB\n"), gain);
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
} else if (buffer[0] == 'd' && length >= 2 && buffer[1] >= 48 && buffer[1] <= 57) {
directivity = buffer[1] - 48;
if (directivity == 9) directivity = 8;
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
if (VERBOSE) {
if (directivity == 0) printf_P(PSTR("Directivity set to omni\n"));
if (directivity != 0) printf_P(PSTR("Directivity set to %ddeg\n"), directivity*45);
}
} else if (buffer[0] == 's' && length >= 2) {
symbol = buffer[1];
if (VERBOSE) printf_P(PSTR("Symbol set to %c\n"), symbol);
} else if (buffer[0] == 't' && length >= 2) {
if (buffer[1] == 'a') {
symbolTable = '\\';
if (VERBOSE) printf_P(PSTR("Selected alternate symbol table\n"));
} else {
symbolTable = '/';
if (VERBOSE) printf_P(PSTR("Selected standard symbol table\n"));
}
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
}
} else if (buffer[0] == 'm' && length > 1) {
buffer++; length--;
if (buffer[0] == 'c' && length > 1) {
buffer++; length--;
int count = 0;
while (length-- && count < 6) {
char c = buffer[count];
if (c != 0 && c != 10 && c != 13) {
message_recip[count] = c;
} else {
message_recip[count] = 0x00;
}
count++;
}
while (count < 6) {
message_recip[count] = 0x00;
count++;
}
if (VERBOSE) {
printf_P(PSTR("Message recipient: %.6s"), message_recip);
if (message_recip_ssid != -1) {
printf_P(PSTR("-%d\n"), message_recip_ssid);
} else {
printf_P(PSTR("\n"));
}
}
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
} else if (buffer[0] == 's' && length > 1) {
if (length > 2) {
message_recip_ssid = 10+buffer[2]-48;
} else {
message_recip_ssid = buffer[1]-48;
}
if (message_recip_ssid < 0 || message_recip_ssid > 15) message_recip_ssid = -1;
if (VERBOSE) {
printf_P(PSTR("Message recipient: %.6s"), message_recip);
if (message_recip_ssid != -1) {
printf_P(PSTR("-%d\n"), message_recip_ssid);
} else {
printf_P(PSTR("\n"));
}
}
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
} else if (buffer[0] == 'r') {
ss_msgRetry(ctx);
if (VERBOSE) printf_P(PSTR("Retried last message\n"));
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
} else if (buffer[0] == 'a') {
if (buffer[1] == 49) {
message_autoAck = true;
if (VERBOSE) printf_P(PSTR("Message auto-ack enabled\n"));
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
} else {
message_autoAck = false;
if (VERBOSE) printf_P(PSTR("Message auto-ack disabled\n"));
if (!VERBOSE && !SILENT) printf_P(PSTR("1\n"));
}
}
} else if (buffer[0] == 'w' && length >= 2) {
char str[4]; buffer++;
memcpy(str, buffer, length-1);
int preamble = atoi(str);
if (preamble >= 0 && preamble <= 9999) {
custom_preamble = preamble;
printf_P(PSTR("Preamble set to %lums\n"), custom_preamble);
} else {
printf_P(PSTR("Error: Invalid value for preamble\n"));
}
} else if (buffer[0] == 'W' && length >= 2) {
char str[4]; buffer++;
memcpy(str, buffer, length-1);
int tail = atoi(str);
if (tail >= 0 && tail <= 9999) {
custom_tail = tail;
printf_P(PSTR("TX Tail set to %lums\n"), custom_tail);
} else {
printf_P(PSTR("Error: Invalid value for TX tail\n"));
}
} else {
if (VERBOSE) printf_P(PSTR("Error: Invalid command\n"));
if (!VERBOSE && !SILENT) printf_P(PSTR("0\n"));
}
}
}
void ss_sendPkt(void *_buffer, size_t length, AX25Ctx *ax25) {
uint8_t *buffer = (uint8_t *)_buffer;
memcpy(dst.call, DST, 6);
dst.ssid = DST_SSID;
memcpy(src.call, CALL, 6);
src.ssid = CALL_SSID;
memcpy(path1.call, PATH1, 6);
path1.ssid = PATH1_SSID;
memcpy(path2.call, PATH2, 6);
path2.ssid = PATH2_SSID;
path[0] = dst;
path[1] = src;
path[2] = path1;
path[3] = path2;
ax25_sendVia(ax25, path, countof(path), buffer, length);
}
void ss_sendLoc(void *_buffer, size_t length, AX25Ctx *ax25) {
size_t payloadLength = 20+length;
bool usePHG = false;
if (power < 10 && height < 10 && gain < 10 && directivity < 9) {
usePHG = true;
payloadLength += 7;
}
uint8_t *packet = malloc(payloadLength);
uint8_t *ptr = packet;
packet[0] = '=';
packet[9] = symbolTable;
packet[19] = symbol;
ptr++;
memcpy(ptr, latitude, 8);
ptr += 9;
memcpy(ptr, longtitude, 9);
ptr += 10;
if (usePHG) {
packet[20] = 'P';
packet[21] = 'H';
packet[22] = 'G';
packet[23] = power+48;
packet[24] = height+48;
packet[25] = gain+48;
packet[26] = directivity+48;
ptr+=7;
}
if (length > 0) {
uint8_t *buffer = (uint8_t *)_buffer;
memcpy(ptr, buffer, length);
}
//printf_P(PSTR("Assembled packet:\n%.*s\n", payloadLength, packet);
ss_sendPkt(packet, payloadLength, ax25);
free(packet);
}
void ss_sendMsg(void *_buffer, size_t length, AX25Ctx *ax25) {
if (length > 67) length = 67;
size_t payloadLength = 11+length+4;
uint8_t *packet = malloc(payloadLength);
uint8_t *ptr = packet;
packet[0] = ':';
int callSize = 6;
int count = 0;
while (callSize--) {
if (message_recip[count] != 0) {
packet[1+count] = message_recip[count];
count++;
}
}
if (message_recip_ssid != -1) {
packet[1+count] = '-'; count++;
if (message_recip_ssid < 10) {
packet[1+count] = message_recip_ssid+48; count++;
} else {
packet[1+count] = 49; count++;
packet[1+count] = message_recip_ssid-10+48; count++;
}
}
while (count < 9) {
packet[1+count] = ' '; count++;
}
packet[1+count] = ':';
ptr += 11;
if (length > 0) {
uint8_t *buffer = (uint8_t *)_buffer;
memcpy(ptr, buffer, length);
memcpy(lastMessage, buffer, length);
lastMessageLen = length;
}
message_seq++;
if (message_seq > 999) message_seq = 0;
packet[11+length] = '{';
int n = message_seq % 10;
int d = ((message_seq % 100) - n)/10;
int h = (message_seq - d - n) / 100;
packet[12+length] = h+48;
packet[13+length] = d+48;
packet[14+length] = n+48;
//printf_P(PSTR("Assembled packet:\n%.*s\n", payloadLength, packet);
ss_sendPkt(packet, payloadLength, ax25);
free(packet);
}
void ss_msgRetry(AX25Ctx *ax25) {
message_seq--;
ss_sendMsg(lastMessage, lastMessageLen, ax25);
}
void ss_printSettings(void) {
printf_P(PSTR("Configuration:\n"));
printf_P(PSTR("Callsign: %.6s-%d\n"), CALL, CALL_SSID);
printf_P(PSTR("Destination: %.6s-%d\n"), DST, DST_SSID);
printf_P(PSTR("Path1: %.6s-%d\n"), PATH1, PATH1_SSID);
printf_P(PSTR("Path2: %.6s-%d\n"), PATH2, PATH2_SSID);
if (message_autoAck) {
printf_P(PSTR("Auto-ack messages: On\n"));
} else {
printf_P(PSTR("Auto-ack messages: Off\n"));
}
if (power != 10) printf_P(PSTR("Power: %d\n"), power);
if (height != 10) printf_P(PSTR("Height: %d\n"), height);
if (gain != 10) printf_P(PSTR("Gain: %d\n"), gain);
if (directivity != 10) printf_P(PSTR("Directivity: %d\n"), directivity);
if (symbolTable == '\\') printf_P(PSTR("Symbol table: alternate\n"));
if (symbolTable == '/') printf_P(PSTR("Symbol table: standard\n"));
printf_P(PSTR("Symbol: %c\n"), symbol);
printf_P(PSTR("TX Preamble: %lu\n"), custom_preamble);
printf_P(PSTR("TX Tail: %lu\n"), custom_tail);
}
#if ENABLE_HELP
void ss_printHelp(void) {
printf_P(PSTR("----------------------------------\n"));
printf_P(PSTR("Serial commands:\n"));
printf_P(PSTR("!<data> Send raw packet\n"));
printf_P(PSTR("@<cmt> Send location update (cmt = optional comment)\n"));
printf_P(PSTR("#<msg> Send APRS message\n\n"));
printf_P(PSTR("c<call> Set your callsign\n"));
printf_P(PSTR("d<call> Set destination callsign\n"));
printf_P(PSTR("1<call> Set PATH1 callsign\n"));
printf_P(PSTR("2<call> Set PATH2 callsign\n\n"));
printf_P(PSTR("sc<ssid> Set your SSID\n"));
printf_P(PSTR("sd<ssid> Set destination SSID\n"));
printf_P(PSTR("s1<ssid> Set PATH1 SSID\n"));
printf_P(PSTR("s2<ssid> Set PATH2 SSID\n\n"));
printf_P(PSTR("lla<LAT> Set latitude (NMEA-format, eg 4903.50N)\n"));
printf_P(PSTR("llo<LON> Set latitude (NMEA-format, eg 07201.75W)\n"));
printf_P(PSTR("lp<0-9> Set TX power info\n"));
printf_P(PSTR("lh<0-9> Set antenna height info\n"));
printf_P(PSTR("lg<0-9> Set antenna gain info\n"));
printf_P(PSTR("ld<0-9> Set antenna directivity info\n"));
printf_P(PSTR("ls<sym> Select symbol\n"));
printf_P(PSTR("lt<s/a> Select symbol table (standard/alternate)\n\n"));
printf_P(PSTR("mc<call> Set message recipient callsign\n"));
printf_P(PSTR("ms<ssid> Set message recipient SSID\n"));
printf_P(PSTR("mr<ssid> Retry last message\n"));
printf_P(PSTR("ma<1/0> Automatic message ACK on/off\n\n"));
printf_P(PSTR("ps<1/0> Print SRC on/off\n"));
printf_P(PSTR("pd<1/0> Print DST on/off\n"));
printf_P(PSTR("pp<1/0> Print PATH on/off\n"));
printf_P(PSTR("pm<1/0> Print DATA on/off\n"));
printf_P(PSTR("pi<1/0> Print INFO on/off\n\n"));
printf_P(PSTR("v<1/0> Verbose mode on/off\n"));
printf_P(PSTR("V<1/0> Silent mode on/off\n\n"));
printf_P(PSTR("w<XXX> Set preamble time in ms\n"));
printf_P(PSTR("W<XXX> Set transmission tail time in ms\n"));
printf_P(PSTR("S Save configuration\n"));
printf_P(PSTR("L Load configuration\n"));
printf_P(PSTR("C Clear configuration\n"));
printf_P(PSTR("H Print configuration\n"));
printf_P(PSTR("----------------------------------\n"));
}
#endif
#endif

25
protocol/SimpleSerial.h Normal file
View File

@ -0,0 +1,25 @@
#ifndef _PROTOCOL_SIMPLE_SERIAL
#define _PROTOCOL_SIMPLE_SERIAL 0x01
#include "AX25.h"
#define DEFAULT_CALLSIGN "NOCALL"
#define DEFAULT_DESTINATION_CALL "APZMDM"
void ss_init(AX25Ctx *ax25);
void ss_messageCallback(struct AX25Msg *msg);
void ss_serialCallback(void *_buffer, size_t length, AX25Ctx *ctx);
void ss_sendPkt(void *_buffer, size_t length, AX25Ctx *ax25);
void ss_sendLoc(void *_buffer, size_t length, AX25Ctx *ax25);
void ss_sendMsg(void *_buffer, size_t length, AX25Ctx *ax25);
void ss_msgRetry(AX25Ctx *ax25);
void ss_clearSettings(void);
void ss_loadSettings(void);
void ss_saveSettings(void);
void ss_printSettings(void);
void ss_printHelp(void);
#endif

36
util/CRC-CCIT.c Normal file
View File

@ -0,0 +1,36 @@
#include "CRC-CCIT.h"
const uint16_t crc_ccit_table[256] PROGMEM = {
0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,
0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78,
};

18
util/CRC-CCIT.h Normal file
View File

@ -0,0 +1,18 @@
// CRC-CCIT Implementation based on work by Francesco Sacchi
#ifndef CRC_CCIT_H
#define CRC_CCIT_H
#include <stdint.h>
#include <avr/pgmspace.h>
#define CRC_CCIT_INIT_VAL ((uint16_t)0xFFFF)
extern const uint16_t crc_ccit_table[256];
inline uint16_t update_crc_ccit(uint8_t c, uint16_t prev_crc) {
return (prev_crc >> 8) ^ pgm_read_word(&crc_ccit_table[(prev_crc ^ c) & 0xff]);
}
#endif

85
util/FIFO.h Normal file
View File

@ -0,0 +1,85 @@
#ifndef UTIL_FIFO_H
#define UTIL_FIFO_H
#include <stddef.h>
#include <util/atomic.h>
typedef struct FIFOBuffer
{
unsigned char *begin;
unsigned char *end;
unsigned char * volatile head;
unsigned char * volatile tail;
} FIFOBuffer;
inline bool fifo_isempty(const FIFOBuffer *f) {
return f->head == f->tail;
}
inline bool fifo_isfull(const FIFOBuffer *f) {
return ((f->head == f->begin) && (f->tail == f->end)) || (f->tail == f->head - 1);
}
inline void fifo_push(FIFOBuffer *f, unsigned char c) {
*(f->tail) = c;
if (f->tail == f->end) {
f->tail = f->begin;
} else {
f->tail++;
}
}
inline unsigned char fifo_pop(FIFOBuffer *f) {
if(f->head == f->end) {
f->head = f->begin;
return *(f->end);
} else {
return *(f->head++);
}
}
inline void fifo_flush(FIFOBuffer *f) {
f->head = f->tail;
}
inline bool fifo_isempty_locked(const FIFOBuffer *f) {
bool result;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
result = fifo_isempty(f);
}
return result;
}
inline bool fifo_isfull_locked(const FIFOBuffer *f) {
bool result;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
result = fifo_isfull(f);
}
return result;
}
inline void fifo_push_locked(FIFOBuffer *f, unsigned char c) {
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
fifo_push(f, c);
}
}
inline unsigned char fifo_pop_locked(FIFOBuffer *f) {
unsigned char c;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
c = fifo_pop(f);
}
return c;
}
inline void fifo_init(FIFOBuffer *f, unsigned char *buffer, size_t size) {
f->head = f->tail = f->begin = buffer;
f->end = buffer + size -1;
}
inline size_t fifo_len(FIFOBuffer *f) {
return f->end - f->begin;
}
#endif

9
util/constants.h Normal file
View File

@ -0,0 +1,9 @@
#define PROTOCOL_KISS 0x01
#define PROTOCOL_SIMPLE_SERIAL 0x02
#define m328p 0x01
#define m1284p 0x02
#define m644p 0x03
#define REF_3V3 0x01
#define REF_5V 0x02

43
util/time.h Normal file
View File

@ -0,0 +1,43 @@
#ifndef UTIL_TIME_H
#define UTIL_TIME_H
#include <util/atomic.h>
#include "device.h"
#define DIV_ROUND(dividend, divisor) (((dividend) + (divisor) / 2) / (divisor))
#define CLOCK_TICKS_PER_SEC CONFIG_AFSK_DAC_SAMPLERATE
typedef int32_t ticks_t;
typedef int32_t mtime_t;
volatile ticks_t _clock;
inline ticks_t timer_clock(void) {
ticks_t result;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
result = _clock;
}
return result;
}
inline ticks_t ms_to_ticks(mtime_t ms) {
return ms * DIV_ROUND(CLOCK_TICKS_PER_SEC, 1000);
}
inline void cpu_relax(void) {
// Do nothing!
}
inline void delay_ms(unsigned long ms) {
ticks_t start = timer_clock();
unsigned long n_ticks = ms_to_ticks(ms);
while (timer_clock() - start < n_ticks) {
cpu_relax();
}
}
#endif