Direct serial line in/out. P-persistent CSMA. SLIP compatibility.

This commit is contained in:
Mark Qvist 2014-04-27 18:54:01 +02:00
parent 74542aa87a
commit bd11c5ee83
9 changed files with 180 additions and 52 deletions

View File

@ -3,11 +3,13 @@
#define FSK_CFG #define FSK_CFG
// Debug & test options // Debug & test options
#define SERIAL_DEBUG true #define SERIAL_DEBUG false
#define PASSALL true #define PASSALL false
#define AUTOREPLY false #define AUTOREPLY false
// Modem options // Modem options
#define TX_MAXWAIT 2UL // How many milliseconds should pass with no
// no incoming data before it is transmitted
#define CONFIG_AFSK_RX_BUFLEN 64 // The size of the modems receive buffer #define CONFIG_AFSK_RX_BUFLEN 64 // The size of the modems receive buffer
#define CONFIG_AFSK_TX_BUFLEN 64 // The size of the modems transmit buffer #define CONFIG_AFSK_TX_BUFLEN 64 // The size of the modems transmit buffer
#define CONFIG_AFSK_DAC_SAMPLERATE 9600 // The samplerate of the DAC. Note that #define CONFIG_AFSK_DAC_SAMPLERATE 9600 // The samplerate of the DAC. Note that
@ -17,7 +19,7 @@
#define CONFIG_AFSK_RXTIMEOUT 0 // How long a read operation from the modem #define CONFIG_AFSK_RXTIMEOUT 0 // How long a read operation from the modem
// will wait for data before timing out. // will wait for data before timing out.
#define CONFIG_AFSK_PREAMBLE_LEN 450UL // The length of the packet preamble in milliseconds #define CONFIG_AFSK_PREAMBLE_LEN 350UL // The length of the packet preamble in milliseconds
#define CONFIG_AFSK_TRAILER_LEN 20UL // The length of the packet tail in milliseconds #define CONFIG_AFSK_TRAILER_LEN 50UL // The length of the packet tail in milliseconds
#endif #endif

View File

@ -111,8 +111,10 @@ void hw_afsk_adcInit(int ch, Afsk *_modem)
// "ADC_vect". This lets the processor know what to do // "ADC_vect". This lets the processor know what to do
// when all the timing and configuration we just set up // when all the timing and configuration we just set up
// finally* ends up triggering the interrupt. // finally* ends up triggering the interrupt.
bool hw_ptt_on;
bool hw_afsk_dac_isr; bool hw_afsk_dac_isr;
DECLARE_ISR(ADC_vect) { DECLARE_ISR(ADC_vect) {
TIFR1 = BV(ICF1); TIFR1 = BV(ICF1);
// Call the routine for analysing the captured sample // Call the routine for analysing the captured sample
@ -131,7 +133,7 @@ DECLARE_ISR(ADC_vect) {
// We also need to check if we're supposed to spit // We also need to check if we're supposed to spit
// out some modulated data to the DAC. // out some modulated data to the DAC.
if (hw_afsk_dac_isr) if (hw_afsk_dac_isr) {
// If there is, it's easy to actually do so. We // If there is, it's easy to actually do so. We
// calculate what the sample should be in the // calculate what the sample should be in the
// DAC ISR, and apply the bitmask 11110000. This // DAC ISR, and apply the bitmask 11110000. This
@ -143,13 +145,19 @@ DECLARE_ISR(ADC_vect) {
// by the PORTD register. This is the PTT pin // by the PORTD register. This is the PTT pin
// which tells the radio to open it transmitter. // which tells the radio to open it transmitter.
PORTD = (afsk_dac_isr(modem) & 0xF0) | BV(3); PORTD = (afsk_dac_isr(modem) & 0xF0) | BV(3);
else } else {
// If we're not supposed to transmit anything, we // If we're not supposed to transmit anything, we
// keep quiet by continously sending 128, which // keep quiet by continously sending 128, which
// when converted to an AC waveform by the DAC, // when converted to an AC waveform by the DAC,
// equates to a steady, unchanging 0 volts. // equates to a steady, unchanging 0 volts.
if (hw_ptt_on) {
PORTD = 136;
} else {
PORTD = 128; PORTD = 128;
} }
}
}
// * "finally" is probably the wrong description here. // * "finally" is probably the wrong description here.

View File

@ -53,4 +53,7 @@ void hw_afsk_dacInit(int ch, struct Afsk *_ctx);
#define AFSK_DAC_IRQ_START() do { extern bool hw_afsk_dac_isr; PORTD |= BV(3); hw_afsk_dac_isr = true; } while (0) #define AFSK_DAC_IRQ_START() do { extern bool hw_afsk_dac_isr; PORTD |= BV(3); hw_afsk_dac_isr = true; } while (0)
#define AFSK_DAC_IRQ_STOP() do { extern bool hw_afsk_dac_isr; PORTD &= ~BV(3); hw_afsk_dac_isr = false; } while (0) #define AFSK_DAC_IRQ_STOP() do { extern bool hw_afsk_dac_isr; PORTD &= ~BV(3); hw_afsk_dac_isr = false; } while (0)
#define AFSK_HW_PTT_ON() do { extern bool hw_ptt_on; hw_ptt_on = true; } while (0)
#define AFSK_HW_PTT_OFF() do { extern bool hw_ptt_on; hw_ptt_on = false; } while (0)
#endif #endif

View File

@ -33,7 +33,8 @@ static Serial ser; // Declare a serial interface struct
#define TEST_TX_INTERVAL 10000L #define TEST_TX_INTERVAL 10000L
static uint8_t serialBuffer[MP1_MAX_FRAME_LENGTH]; // This is a buffer for incoming serial data static uint8_t serialBuffer[MP1_MAX_DATA_SIZE]; // This is a buffer for incoming serial data
static int sbyte; // For holding byte read from serial port static int sbyte; // For holding byte read from serial port
static size_t serialLen = 0; // Counter for counting length of data from serial static size_t serialLen = 0; // Counter for counting length of data from serial
static bool sertx = false; // Flag signifying whether it's time to send data static bool sertx = false; // Flag signifying whether it's time to send data
@ -47,6 +48,7 @@ static bool sertx = false; // Flag signifying whether it's time to send da
// so we can process each packet as they are decoded. // so we can process each packet as they are decoded.
// Right now it just prints the packet to the serial port. // Right now it just prints the packet to the serial port.
static void mp1Callback(struct MP1Packet *packet) { static void mp1Callback(struct MP1Packet *packet) {
if (SERIAL_DEBUG) {
kfile_printf(&ser.fd, "%.*s\n", packet->dataLength, packet->data); kfile_printf(&ser.fd, "%.*s\n", packet->dataLength, packet->data);
if (AUTOREPLY && packet->data[0]-128 == 'R' && packet->data[1]-128 == 'Q') { if (AUTOREPLY && packet->data[0]-128 == 'R' && packet->data[1]-128 == 'Q') {
@ -55,6 +57,11 @@ static void mp1Callback(struct MP1Packet *packet) {
uint8_t output[sizeof(TEST_PACKET)] = TEST_PACKET; uint8_t output[sizeof(TEST_PACKET)] = TEST_PACKET;
mp1Send(&mp1, output, sizeof(TEST_PACKET)); mp1Send(&mp1, output, sizeof(TEST_PACKET));
} }
} else {
for (unsigned long i = 0; i < packet->dataLength; i++) {
kfile_putc(packet->data[i], &ser.fd);
}
}
} }
// Simple initialization function. // Simple initialization function.
@ -69,7 +76,7 @@ static void init(void)
// Initialize serial comms on UART0, // Initialize serial comms on UART0,
// which is the hardware serial on arduino // which is the hardware serial on arduino
ser_init(&ser, SER_UART0); ser_init(&ser, SER_UART0);
ser_setbaudrate(&ser, 115200); ser_setbaudrate(&ser, 9600);
// For some reason BertOS sets the serial // For some reason BertOS sets the serial
// to 7 bit characters by default. We set // to 7 bit characters by default. We set
@ -99,18 +106,23 @@ int main(void)
mp1Poll(&mp1); mp1Poll(&mp1);
// If there was actually some data waiting for us
// there, let's se what it tastes like :)
if (ser_available(&ser)) {
// We then read a byte from the serial port. // We then read a byte from the serial port.
// Notice that we use "_nowait" since we can't // Notice that we use "_nowait" since we can't
// have this blocking execution until a byte // have this blocking execution until a byte
// comes in. // comes in.
sbyte = ser_getchar_nowait(&ser); sbyte = ser_getchar_nowait(&ser);
// If there was actually some data waiting for us
// there, let's se what it tastes like :) // If SERIAL_DEBUG is specified we'll handle
if (sbyte != EOF) { // serial data as direct human input and only
// transmit when we get a LF character
if (SERIAL_DEBUG) {
// If we have not yet surpassed the maximum frame length // If we have not yet surpassed the maximum frame length
// and the byte is not a "transmit" (newline) character, // and the byte is not a "transmit" (newline) character,
// we should store it for transmission. // we should store it for transmission.
if ((serialLen < MP1_MAX_FRAME_LENGTH) && (sbyte != 10)) { if ((serialLen < MP1_MAX_DATA_SIZE) && (sbyte != 10)) {
// Put the read byte into the buffer; // Put the read byte into the buffer;
serialBuffer[serialLen] = sbyte; serialBuffer[serialLen] = sbyte;
// Increment the read length counter // Increment the read length counter
@ -121,28 +133,55 @@ int main(void)
// transmission flag to true. // transmission flag to true.
sertx = true; sertx = true;
} }
} else {
// Otherwise we assume the modem is running
// in automated mode, and we push out data
// as it becomes available. We either transmit
// immediately when the max frame length has
// been reached, or when we get no input for
// a certain amount of time.
if (serialLen < MP1_MAX_DATA_SIZE-1) {
// Put the read byte into the buffer;
serialBuffer[serialLen] = sbyte;
// Increment the read length counter
serialLen++;
} else {
// If max frame length has been reached
// we need to transmit.
serialBuffer[serialLen] = sbyte;
serialLen++;
sertx = true;
}
start = timer_clock();
}
} else {
if (!SERIAL_DEBUG && serialLen > 0 && timer_clock() - start > ms_to_ticks(TX_MAXWAIT)) {
sertx = true;
}
} }
// Check whether we should send data in our serial buffer // Check whether we should send data in our serial buffer
if (sertx) { if (sertx) {
// If we should, pass the buffer to the protocol's // Wait until incoming packets are done
// send function. if (!mp1CarrierSense(&mp1)) {
// And then send the data
mp1Send(&mp1, serialBuffer, serialLen); mp1Send(&mp1, serialBuffer, serialLen);
// Reset the transmission flag and length counter // Reset the transmission flag and length counter
sertx = false; sertx = false;
serialLen = 0; serialLen = 0;
} }
}
// Periodically send test data if we should do so // Periodically send test data if we should do so
if (TEST_TX && timer_clock() - start > ms_to_ticks(TEST_TX_INTERVAL)) { if (SERIAL_DEBUG && TEST_TX && timer_clock() - start > ms_to_ticks(TEST_TX_INTERVAL)) {
// Reset the timer counter; // Reset the timer counter;
start = timer_clock(); start = timer_clock();
// And send a test packet! // And send a test packet!
uint8_t output[sizeof(TEST_PACKET)] = TEST_PACKET; uint8_t output[sizeof(TEST_PACKET)] = TEST_PACKET;
mp1Send(&mp1, output, sizeof(TEST_PACKET)); mp1Send(&mp1, output, sizeof(TEST_PACKET));
kprintf("TX done\n");
} }
} }
return 0; return 0;

View File

@ -1,8 +1,10 @@
#include "mp1.h" #include "mp1.h"
#include "hardware.h" #include "hardware.h"
#include "config.h" #include "config.h"
#include <stdlib.h> // Used for random
#include <string.h> #include <string.h>
#include <drv/ser.h> #include <drv/ser.h>
#include <drv/timer.h> // Timer driver from BertOS
#include "compression/heatshrink_encoder.h" #include "compression/heatshrink_encoder.h"
#include "compression/heatshrink_decoder.h" #include "compression/heatshrink_decoder.h"
@ -51,7 +53,7 @@ static uint8_t mp1ParityBlock(uint8_t first, uint8_t other) {
return parity; return parity;
} }
// This deode function retrieves the buffer of // This decode function retrieves the buffer of
// received, deinterleaved and error-corrected // received, deinterleaved and error-corrected
// bytes, inspects the header and determines // bytes, inspects the header and determines
// whether there is padding to be removed, and // whether there is padding to be removed, and
@ -79,7 +81,7 @@ static void mp1Decode(MP1 *mp1) {
// Set the payload length of the packet to the counted // Set the payload length of the packet to the counted
// length minus 1, so we remove the checksum // length minus 1, so we remove the checksum
packet.dataLength = mp1->packetLength - 2 - (header & 0x01)*padding; packet.dataLength = mp1->packetLength - 2 - (header & MP1_HEADER_PADDED)*padding;
// Check if we have received a compressed packet // Check if we have received a compressed packet
if (header & MP1_HEADER_COMPRESSION) { if (header & MP1_HEADER_COMPRESSION) {
@ -89,11 +91,20 @@ static void mp1Decode(MP1 *mp1) {
size_t decompressedSize = decompress(buffer, packet.dataLength); size_t decompressedSize = decompress(buffer, packet.dataLength);
if (SERIAL_DEBUG) kprintf("[DS=%d]", decompressedSize); if (SERIAL_DEBUG) kprintf("[DS=%d]", decompressedSize);
packet.dataLength = decompressedSize; packet.dataLength = decompressedSize;
memcpy(buffer, compressionBuffer, decompressedSize); memcpy(mp1->buffer, compressionBuffer, decompressedSize);
} else {
// If the packet was not compressed, we shift
// the data in our buffer back down to the actual
// beginning of the buffer array, since we incremented
// the pointer address for removing the header and
// padding.
for (unsigned long i = 0; i < packet.dataLength; i++) {
mp1->buffer[i] = buffer[i];
}
} }
// Set the data field of the packet to our buffer // Set the data field of the packet to our buffer
packet.data = buffer; packet.data = mp1->buffer;
// If a callback have been specified, let's // If a callback have been specified, let's
// call it and pass the decoded packet // call it and pass the decoded packet
@ -112,7 +123,9 @@ void mp1Poll(MP1 *mp1) {
// Read bytes from the modem until we reach EOF // Read bytes from the modem until we reach EOF
while ((byte = kfile_getc(mp1->modem)) != EOF) { while ((byte = kfile_getc(mp1->modem)) != EOF) {
// We have a byte, increment our read counter // We read something from the modem, so we
// set the settleTimer
mp1->settleTimer = timer_clock();
///////////////////////////////////////////// /////////////////////////////////////////////
// This following block handles forward // // This following block handles forward //
@ -127,6 +140,7 @@ void mp1Poll(MP1 *mp1) {
if ((mp1->reading && (byte != AX25_ESC )) || (mp1->reading && (mp1->escape && (byte == AX25_ESC || byte == HDLC_FLAG || byte == HDLC_RESET)))) { if ((mp1->reading && (byte != AX25_ESC )) || (mp1->reading && (mp1->escape && (byte == AX25_ESC || byte == HDLC_FLAG || byte == HDLC_RESET)))) {
// We have a byte, increment our read counter
mp1->readLength++; mp1->readLength++;
// Check if we have read three bytes. If we // Check if we have read three bytes. If we
@ -269,6 +283,10 @@ void mp1Poll(MP1 *mp1) {
// frame length, which means the flag signifies // frame length, which means the flag signifies
// the end of the packet. Pass control to the // the end of the packet. Pass control to the
// decoder. // decoder.
//
// We also set the settle timer to indicate
// the time the frame completed reading.
mp1->settleTimer = timer_clock();
if ((mp1->checksum_in & 0xff) == 0x00) { if ((mp1->checksum_in & 0xff) == 0x00) {
if (SERIAL_DEBUG) kprintf("[CHK-OK] [C=%d] ", mp1->correctionsMade); if (SERIAL_DEBUG) kprintf("[CHK-OK] [C=%d] ", mp1->correctionsMade);
mp1Decode(mp1); mp1Decode(mp1);
@ -322,7 +340,6 @@ void mp1Poll(MP1 *mp1) {
// byte in the buffer. When we have collected 3 // byte in the buffer. When we have collected 3
// bytes, they will be processed by the error // bytes, they will be processed by the error
// correction part above. // correction part above.
mp1->buffer[mp1->packetLength++] = byte; mp1->buffer[mp1->packetLength++] = byte;
} else { } else {
// If not, we have a problem: The buffer has overrun // If not, we have a problem: The buffer has overrun
@ -381,6 +398,13 @@ static void mp1Putbyte(MP1 *mp1, uint8_t byte) {
// to be transmitted, and structures it into // to be transmitted, and structures it into
// a valid packet. // a valid packet.
void mp1Send(MP1 *mp1, void *_buffer, size_t length) { void mp1Send(MP1 *mp1, void *_buffer, size_t length) {
// Open transmitter and wait for MP1_TXDELAY msecs
AFSK_HW_PTT_ON();
ticks_t start = timer_clock();
while (timer_clock() - start < ms_to_ticks(MP1_TXDELAY)) {
cpu_relax();
}
// Get the transmit data buffer // Get the transmit data buffer
uint8_t *buffer = (uint8_t *)_buffer; uint8_t *buffer = (uint8_t *)_buffer;
@ -493,6 +517,9 @@ void mp1Send(MP1 *mp1, void *_buffer, size_t length) {
// And transmit a HDLC_FLAG to signify // And transmit a HDLC_FLAG to signify
// end of the transmission. // end of the transmission.
kfile_putc(HDLC_FLAG, mp1->modem); kfile_putc(HDLC_FLAG, mp1->modem);
// Turn off manual PTT
AFSK_HW_PTT_OFF();
} }
// This function will simply initialize // This function will simply initialize
@ -505,6 +532,34 @@ void mp1Init(MP1 *mp1, KFile *modem, mp1_callback_t callback) {
// a callback for when a packet has been decoded // a callback for when a packet has been decoded
mp1->modem = modem; mp1->modem = modem;
mp1->callback = callback; mp1->callback = callback;
mp1->settleTimer = timer_clock();
mp1->randomSeed = 0;
}
// A simple form of P-persistent CSMA.
// Everytime we have heard activity
// on the channel, we wait at least
// MP1_SETTLE_TIME milliseconds after the
// activity has ceased. We then pick a random
// number, and if it is less than
// MP1_P_PERSISTENCE, we transmit.
bool mp1CarrierSense(MP1 *mp1) {
if (mp1->randomSeed == 0) {
mp1->randomSeed = timer_clock();
srand(mp1->randomSeed);
}
if (timer_clock() - mp1->settleTimer > ms_to_ticks(MP1_SETTLE_TIME)) {
uint8_t r = rand() % 255;
if (r < MP1_P_PERSISTENCE) {
return false;
} else {
mp1->settleTimer = timer_clock();
return true;
}
} else {
return true;
}
} }
// A handy debug function that can determine // A handy debug function that can determine

View File

@ -6,11 +6,20 @@
// Frame sizing & checksum // Frame sizing & checksum
#define MP1_INTERLEAVE_SIZE 12 #define MP1_INTERLEAVE_SIZE 12
#define MP1_MAX_FRAME_LENGTH 22 * MP1_INTERLEAVE_SIZE
#define MP1_HEADER_SIZE 1
#define MP1_CHECKSUM_SIZE 1
#define MP1_MAX_DATA_SIZE MP1_MAX_FRAME_LENGTH - MP1_HEADER_SIZE - MP1_CHECKSUM_SIZE
#define MP1_MIN_FRAME_LENGTH MP1_INTERLEAVE_SIZE #define MP1_MIN_FRAME_LENGTH MP1_INTERLEAVE_SIZE
#define MP1_DATA_BLOCK_SIZE ((MP1_INTERLEAVE_SIZE/3)*2) #define MP1_DATA_BLOCK_SIZE ((MP1_INTERLEAVE_SIZE/3)*2)
#define MP1_MAX_FRAME_LENGTH 250
#define MP1_CHECKSUM_INIT 0xAA #define MP1_CHECKSUM_INIT 0xAA
// These two parameters are used for
// P-persistent CSMA
#define MP1_SETTLE_TIME 100UL // The minimum wait time before considering sending
#define MP1_P_PERSISTENCE 85UL // The probability (between 0 and 255) for sending
#define MP1_TXDELAY 150UL // Delay between turning on the transmitter and sending
// We need to know some basic HDLC flag bytes // We need to know some basic HDLC flag bytes
#define HDLC_FLAG 0x7E #define HDLC_FLAG 0x7E
#define HDLC_RESET 0x7F #define HDLC_RESET 0x7F
@ -44,10 +53,12 @@ typedef struct MP1 {
uint8_t checksum_out; // Rolling checksum for outgoing packets uint8_t checksum_out; // Rolling checksum for outgoing packets
bool reading; // True when we have seen a HDLC flag bool reading; // True when we have seen a HDLC flag
bool escape; // We need to know if we are in an escape sequence bool escape; // We need to know if we are in an escape sequence
ticks_t settleTimer; // Timer used for carrier sense settling
long correctionsMade; // A counter for how many corrections were made to a packet long correctionsMade; // A counter for how many corrections were made to a packet
uint8_t interleaveCounter; // Keeps track of when we have received an entire interleaved block uint8_t interleaveCounter; // Keeps track of when we have received an entire interleaved block
uint8_t interleaveOut[MP1_INTERLEAVE_SIZE]; // A buffer for interleaving bytes before they are sent uint8_t interleaveOut[MP1_INTERLEAVE_SIZE]; // A buffer for interleaving bytes before they are sent
uint8_t interleaveIn[MP1_INTERLEAVE_SIZE]; // A buffer for storing interleaved bytes before they are deinterleaved uint8_t interleaveIn[MP1_INTERLEAVE_SIZE]; // A buffer for storing interleaved bytes before they are deinterleaved
uint8_t randomSeed; // A seed for the pseudo-random number generator
} MP1; } MP1;
// A struct encapsulating a network packet // A struct encapsulating a network packet
@ -61,6 +72,7 @@ void mp1Init(MP1 *mp1, KFile *modem, mp1_callback_t callback);
void mp1Read(MP1 *mp1, int byte); void mp1Read(MP1 *mp1, int byte);
void mp1Poll(MP1 *mp1); void mp1Poll(MP1 *mp1);
void mp1Send(MP1 *mp1, void *_buffer, size_t length); void mp1Send(MP1 *mp1, void *_buffer, size_t length);
bool mp1CarrierSense(MP1 *mp1);
int freeRam(void); int freeRam(void);
size_t compress(uint8_t *input, size_t length); size_t compress(uint8_t *input, size_t length);

View File

@ -189,6 +189,14 @@ int ser_getchar_nowait(struct Serial *fd)
return (int)(unsigned char)fifo_pop_locked(&fd->rxfifo); return (int)(unsigned char)fifo_pop_locked(&fd->rxfifo);
} }
bool ser_available(struct Serial *fd) {
if (fifo_isempty_locked(&fd->rxfifo)) {
return false;
} else {
return true;
}
}
/** /**

View File

@ -197,6 +197,7 @@ void ser_setparity(struct Serial *fd, int parity);
void ser_settimeouts(struct Serial *fd, mtime_t rxtimeout, mtime_t txtimeout); void ser_settimeouts(struct Serial *fd, mtime_t rxtimeout, mtime_t txtimeout);
void ser_resync(struct Serial *fd, mtime_t delay); void ser_resync(struct Serial *fd, mtime_t delay);
int ser_getchar_nowait(struct Serial *fd); int ser_getchar_nowait(struct Serial *fd);
bool ser_available(struct Serial *fd);
void ser_purgeRx(struct Serial *fd); void ser_purgeRx(struct Serial *fd);
void ser_purgeTx(struct Serial *fd); void ser_purgeTx(struct Serial *fd);

View File

@ -1,2 +1,2 @@
#define VERS_BUILD 1401 #define VERS_BUILD 1560
#define VERS_HOST "shard" #define VERS_HOST "shard"