mirror of
https://github.com/markqvist/OpenModem.git
synced 2024-10-01 03:15:46 -04:00
Filters reworked for new samplerate
This commit is contained in:
parent
74e0b0d1db
commit
56bed68143
5
device.h
5
device.h
@ -14,8 +14,6 @@
|
||||
|
||||
// Sampling & timer setup
|
||||
#define CONFIG_SAMPLERATE 19200UL
|
||||
//#define CONFIG_SAMPLERATE 19200UL
|
||||
//#define CONFIG_SAMPLERATE 9600
|
||||
|
||||
// Serial settings
|
||||
#define BAUD 115200
|
||||
@ -25,6 +23,9 @@
|
||||
// CSMA Settings
|
||||
#define CONFIG_CSMA_P 255
|
||||
|
||||
// Packet settings
|
||||
#define CONFIG_PASSALL false
|
||||
|
||||
// Port settings
|
||||
#if TARGET_CPU == m1284p
|
||||
#define ADC_PORT PORTA
|
||||
|
@ -375,54 +375,53 @@ void AFSK_adc_isr(Afsk *afsk, int8_t currentSample) {
|
||||
|
||||
afsk->iirX[0] = afsk->iirX[1];
|
||||
|
||||
#if FILTER_CUTOFF == 600
|
||||
afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) >> 2;
|
||||
// The above is a simplification of:
|
||||
// afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) / 3.558147322;
|
||||
#elif FILTER_CUTOFF == 800
|
||||
afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) >> 2;
|
||||
// The above is a simplification of:
|
||||
// afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) / 2.899043379;
|
||||
#elif FILTER_CUTOFF == 1200
|
||||
afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) >> 1;
|
||||
// The above is a simplification of:
|
||||
// afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) / 2.228465666;
|
||||
#elif FILTER_CUTOFF == 1600
|
||||
afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) >> 1;
|
||||
// The above is a simplification of:
|
||||
// afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) / 1.881349100;
|
||||
#if CONFIG_SAMPLERATE == 9600
|
||||
#if FILTER_CUTOFF == 600
|
||||
afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) >> 2;
|
||||
// The above is a simplification of:
|
||||
// afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) / 3.558147322;
|
||||
#else
|
||||
#error Unsupported filter cutoff!
|
||||
#endif
|
||||
#elif CONFIG_SAMPLERATE == 19200
|
||||
#if FILTER_CUTOFF == 600
|
||||
afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) / 6;
|
||||
#else
|
||||
#error Unsupported filter cutoff!
|
||||
#endif
|
||||
#else
|
||||
#error Unsupported filter cutoff!
|
||||
#error Unsupported samplerate!
|
||||
#endif
|
||||
|
||||
afsk->iirY[0] = afsk->iirY[1];
|
||||
|
||||
#if FILTER_CUTOFF == 600
|
||||
afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] >> 1);
|
||||
// The above is a simplification of a first-order 600Hz chebyshev filter:
|
||||
// afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] * 0.4379097269);
|
||||
#elif FILTER_CUTOFF == 800
|
||||
afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] / 3);
|
||||
// The above is a simplification of a first-order 800Hz chebyshev filter:
|
||||
// afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] * 0.3101172565);
|
||||
#elif FILTER_CUTOFF == 1200
|
||||
afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] / 10);
|
||||
// The above is a simplification of a first-order 1200Hz chebyshev filter:
|
||||
// afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] * 0.1025215106);
|
||||
#elif FILTER_CUTOFF == 1600
|
||||
afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + -1*(afsk->iirY[0] / 17);
|
||||
// The above is a simplification of a first-order 1600Hz chebyshev filter:
|
||||
// afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] * -0.0630669239);
|
||||
#if CONFIG_SAMPLERATE == 9600
|
||||
#if FILTER_CUTOFF == 600
|
||||
afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] >> 1);
|
||||
// The above is a simplification of:
|
||||
// afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] * 0.4379097269);
|
||||
#else
|
||||
#error Unsupported filter cutoff!
|
||||
#endif
|
||||
#elif CONFIG_SAMPLERATE == 19200
|
||||
#if FILTER_CUTOFF == 600
|
||||
afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] / 2);
|
||||
#else
|
||||
#error Unsupported filter cutoff!
|
||||
#endif
|
||||
#else
|
||||
#error Unsupported filter cutoff!
|
||||
#error Unsupported samplerate!
|
||||
#endif
|
||||
|
||||
|
||||
//int8_t freq_disc = (int8_t)fifo_pop(&afsk->delayFifo) * currentSample;
|
||||
|
||||
// We put the sampled bit in a delay-line:
|
||||
// First we bitshift everything 1 left
|
||||
afsk->sampledBits <<= 1;
|
||||
|
||||
// And then add the sampled bit to our delay line
|
||||
afsk->sampledBits |= (afsk->iirY[1] > 0) ? 0 : 1;
|
||||
//afsk->sampledBits |= (freq_disc > 0) ? 0 : 1;
|
||||
|
||||
// Put the current raw sample in the delay FIFO
|
||||
fifo_push(&afsk->delayFifo, currentSample);
|
||||
@ -489,6 +488,7 @@ void AFSK_adc_isr(Afsk *afsk, int8_t currentSample) {
|
||||
// the last 3 sampled bits. If there is two or
|
||||
// more 1's, we will assume that the transmitter
|
||||
// sent us a one, otherwise we assume a zero
|
||||
|
||||
uint8_t bits = afsk->sampledBits & 0x07;
|
||||
if (bits == 0x07 || // 111
|
||||
bits == 0x06 || // 110
|
||||
@ -498,15 +498,17 @@ void AFSK_adc_isr(Afsk *afsk, int8_t currentSample) {
|
||||
afsk->actualBits |= 1;
|
||||
}
|
||||
|
||||
//// Alternative using five bits ////////////////
|
||||
// uint8_t bits = afsk->sampledBits & 0x0f;
|
||||
// uint8_t c = 0;
|
||||
// c += bits & BV(1);
|
||||
// c += bits & BV(2);
|
||||
// c += bits & BV(3);
|
||||
// c += bits & BV(4);
|
||||
// c += bits & BV(5);
|
||||
// if (c >= 3) afsk->actualBits |= 1;
|
||||
|
||||
//// Alternative using six bits ////////////////
|
||||
// uint8_t bits = afsk->sampledBits & 0x3F;
|
||||
// uint8_t c = 0;
|
||||
// c += bits & _BV(0);
|
||||
// c += bits & _BV(1);
|
||||
// c += bits & _BV(2);
|
||||
// c += bits & _BV(3);
|
||||
// c += bits & _BV(4);
|
||||
// c += bits & _BV(5);
|
||||
// if (c >= 3) afsk->actualBits |= 1;
|
||||
/////////////////////////////////////////////////
|
||||
|
||||
// Now we can pass the actual bit to the HDLC parser.
|
||||
|
@ -35,9 +35,11 @@ inline static uint8_t sinSample(uint16_t i) {
|
||||
#define BITS_DIFFER(bits1, bits2) (((bits1)^(bits2)) & 0x01)
|
||||
#define TRANSITION_FOUND(bits) BITS_DIFFER((bits), (bits) >> 1)
|
||||
|
||||
// TODO: Maybe expand number of bits looked at here:
|
||||
// TODO: Maybe revert to only looking at two samples
|
||||
#define DUAL_XOR(bits1, bits2) ((((bits1)^(bits2)) & 0x03) == 0x03)
|
||||
#define SIGNAL_TRANSITIONED(bits) DUAL_XOR((bits), (bits) >> 2)
|
||||
#define QUAD_XOR(bits1, bits2) ((((bits1)^(bits2)) & 0x0F) == 0x0F)
|
||||
#define SIGNAL_TRANSITIONED(bits) QUAD_XOR((bits), (bits) >> 4)
|
||||
// #define SIGNAL_TRANSITIONED(bits) DUAL_XOR((bits), (bits) >> 2)
|
||||
|
||||
#define CPU_FREQ F_CPU
|
||||
|
||||
@ -53,16 +55,19 @@ inline static uint8_t sinSample(uint16_t i) {
|
||||
#define SAMPLESPERBIT (CONFIG_SAMPLERATE / BITRATE)
|
||||
#define TICKS_BETWEEN_SAMPLES ((((CPU_FREQ+FREQUENCY_CORRECTION)) / CONFIG_SAMPLERATE) - 1)
|
||||
|
||||
// TODO: Calculate based on sample rate
|
||||
#define PHASE_INC SAMPLESPERBIT/8 // Nudge by an eigth of a sample each adjustment
|
||||
#define PHASE_BITS 8 // How much to increment phase counter each sample
|
||||
// TODO: Calculate based on sample rate [Done?]
|
||||
#define PHASE_BITS 8 // 8 // Sub-sample phase counter resolution
|
||||
#define PHASE_INC 1 // 1 // Nudge by above resolution for each adjustment
|
||||
|
||||
#define PHASE_MAX (SAMPLESPERBIT * PHASE_BITS) // Resolution of our phase counter
|
||||
#define PHASE_THRESHOLD (PHASE_MAX / 2) // Target transition point of our phase window
|
||||
#define PHASE_MAX (SAMPLESPERBIT * PHASE_BITS) // 128 // Size of our phase counter
|
||||
// TODO: Test which target is best in real world
|
||||
#define PHASE_THRESHOLD (PHASE_MAX / 2)+3*PHASE_BITS // Target transition point of our phase window
|
||||
//#define PHASE_THRESHOLD (PHASE_MAX / 2) // 64 // Target transition point of our phase window
|
||||
|
||||
#define DCD_TIMEOUT_SAMPLES CONFIG_SAMPLERATE/100
|
||||
#define DCD_MIN_COUNT CONFIG_SAMPLERATE/1600
|
||||
|
||||
|
||||
// TODO: Revamp filtering
|
||||
#if BITRATE == 1200
|
||||
#define FILTER_CUTOFF 600
|
||||
#define MARK_FREQ 1200
|
||||
@ -120,8 +125,12 @@ typedef struct Afsk
|
||||
int16_t iirX[2]; // IIR Filter X cells
|
||||
int16_t iirY[2]; // IIR Filter Y cells
|
||||
|
||||
uint8_t sampledBits; // Bits sampled by the demodulator (at ADC speed)
|
||||
int8_t currentPhase; // Current phase of the demodulator
|
||||
#if SAMPLESPERBIT < 17
|
||||
uint16_t sampledBits; // Bits sampled by the demodulator (at ADC speed)
|
||||
#else
|
||||
#error Not enough space in sampledBits variable!
|
||||
#endif
|
||||
int16_t currentPhase; // Current phase of the demodulator
|
||||
uint8_t actualBits; // Actual found bits at correct bitrate
|
||||
|
||||
volatile int status; // Status of the modem, 0 means OK
|
||||
|
@ -31,7 +31,7 @@ void ax25_poll(AX25Ctx *ctx) {
|
||||
while ((c = fgetc(ctx->ch)) != EOF) {
|
||||
if (!ctx->escape && c == HDLC_FLAG) {
|
||||
if (ctx->frame_len >= AX25_MIN_FRAME_LEN) {
|
||||
if (ctx->crc_in == AX25_CRC_CORRECT) {
|
||||
if (ctx->crc_in == AX25_CRC_CORRECT || CONFIG_PASSALL) {
|
||||
#if OPEN_SQUELCH == true
|
||||
LED_RX_ON();
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user