OpenModem/bertos/cpu/dsp56k/drv/ser_dsp56k.c

367 lines
9.1 KiB
C
Raw Normal View History

2014-04-03 16:21:37 -04:00
/**
* \file
* <!--
* This file is part of BeRTOS.
*
* Bertos is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* As a special exception, you may use this file as part of a free software
* library without restriction. Specifically, if other files instantiate
* templates or use macros or inline functions from this file, or you compile
* this file and link it with other files to produce an executable, this
* file does not by itself cause the resulting executable to be covered by
* the GNU General Public License. This exception does not however
* invalidate any other reasons why the executable file might be covered by
* the GNU General Public License.
*
* Copyright 2003, 2004 Develer S.r.l. (http://www.develer.com/)
*
* -->
*
*
* \author Stefano Fedrigo <aleph@develer.com>
* \author Giovanni Bajo <rasky@develer.com>
*
* \brief DSP5680x CPU specific serial I/O driver
*/
#include <drv/ser.h>
#include <drv/ser_p.h>
#include <drv/irq.h>
#include <cfg/debug.h>
#include <hw.h>
#include <DSP56F807.h>
// GPIO E is shared with SPI (in DSP56807). Pins 0&1 are TXD0 and RXD0. To use
// the serial, we need to disable the GPIO functions on them.
#define REG_GPIO_SERIAL_0 REG_GPIO_E
#define REG_GPIO_SERIAL_MASK_0 0x03
#define REG_GPIO_SERIAL_1 REG_GPIO_D
#define REG_GPIO_SERIAL_MASK_1 0xC0
// Check flag consistency
#if (SERRF_PARITYERROR != REG_SCI_SR_PF) || \
(SERRF_RXSROVERRUN != REG_SCI_SR_OR) || \
(SERRF_FRAMEERROR != REG_SCI_SR_FE) || \
(SERRF_NOISEERROR != REG_SCI_SR_NF)
#error error flags do not match with register bits
#endif
static unsigned char ser0_fifo_rx[CONFIG_SER0_FIFOSIZE_RX];
static unsigned char ser0_fifo_tx[CONFIG_SER0_FIFOSIZE_TX];
static unsigned char ser1_fifo_rx[CONFIG_SER1_FIFOSIZE_RX];
static unsigned char ser1_fifo_tx[CONFIG_SER1_FIFOSIZE_TX];
#if CONFIG_SER_MULTI
#include <kern/sem.h>
#define MAX_MULTI_GROUPS 1
struct Semaphore multi_sems[MAX_MULTI_GROUPS];
#endif
struct SCI
{
struct SerialHardware hw;
struct Serial* serial;
volatile struct REG_SCI_STRUCT* regs;
IRQ_VECTOR irq_tx;
IRQ_VECTOR irq_rx;
int num_group;
int id;
};
static inline void enable_tx_irq_bare(volatile struct REG_SCI_STRUCT* regs)
{
regs->CR |= REG_SCI_CR_TEIE | REG_SCI_CR_TIIE;
}
static inline void enable_rx_irq_bare(volatile struct REG_SCI_STRUCT* regs)
{
regs->CR |= REG_SCI_CR_RIE;
}
static inline void disable_tx_irq_bare(volatile struct REG_SCI_STRUCT* regs)
{
regs->CR &= ~(REG_SCI_CR_TEIE | REG_SCI_CR_TIIE);
}
static inline void disable_rx_irq_bare(volatile struct REG_SCI_STRUCT* regs)
{
regs->CR &= ~(REG_SCI_CR_RIE | REG_SCI_CR_REIE);
}
static inline void disable_tx_irq(struct SerialHardware* _hw)
{
struct SCI* hw = (struct SCI*)_hw;
disable_tx_irq_bare(hw->regs);
}
static inline void disable_rx_irq(struct SerialHardware* _hw)
{
struct SCI* hw = (struct SCI*)_hw;
disable_rx_irq_bare(hw->regs);
}
static inline void enable_tx_irq(struct SerialHardware* _hw)
{
struct SCI* hw = (struct SCI*)_hw;
enable_tx_irq_bare(hw->regs);
}
static inline void enable_rx_irq(struct SerialHardware* _hw)
{
struct SCI* hw = (struct SCI*)_hw;
enable_rx_irq_bare(hw->regs);
}
static inline bool tx_irq_enabled(struct SerialHardware* _hw)
{
struct SCI* hw = (struct SCI*)_hw;
return (hw->regs->CR & REG_SCI_CR_TEIE);
}
static void tx_isr(const struct SCI *hw)
{
#pragma interrupt warn
volatile struct REG_SCI_STRUCT* regs = hw->regs;
if (fifo_isempty(&hw->serial->txfifo))
disable_tx_irq_bare(regs);
else
{
// Clear transmitter flags before sending data
(void)regs->SR;
regs->DR = fifo_pop(&hw->serial->txfifo);
}
}
static void rx_isr(const struct SCI *hw)
{
#pragma interrupt warn
volatile struct REG_SCI_STRUCT* regs = hw->regs;
// Propagate errors
hw->serial->status |= regs->SR & (SERRF_PARITYERROR |
SERRF_RXSROVERRUN |
SERRF_FRAMEERROR |
SERRF_NOISEERROR);
/*
* Serial IRQ can happen for two reason: data ready (RDRF) or overrun (OR)
* If the data is ready, we need to fetch it from the data register or
* the interrupt will retrigger immediatly. In case of overrun, instead,
* the value of the data register is meaningless.
*/
if (regs->SR & REG_SCI_SR_RDRF)
{
unsigned char data = regs->DR;
if (fifo_isfull(&hw->serial->rxfifo))
hw->serial->status |= SERRF_RXFIFOOVERRUN;
else
fifo_push(&hw->serial->rxfifo, data);
}
// Writing anything to the status register clear the error bits.
regs->SR = 0;
}
static void init(struct SerialHardware* _hw, struct Serial* ser)
{
struct SCI* hw = (struct SCI*)_hw;
volatile struct REG_SCI_STRUCT* regs = hw->regs;
// Clear status register (IRQ/status flags)
(void)regs->SR;
regs->SR = 0;
// Clear data register
(void)regs->DR;
// Install the handlers and set priorities for both IRQs
irq_install(hw->irq_tx, (isr_t)tx_isr, hw);
irq_install(hw->irq_rx, (isr_t)rx_isr, hw);
irq_setpriority(hw->irq_tx, IRQ_PRIORITY_SCI_TX);
irq_setpriority(hw->irq_rx, IRQ_PRIORITY_SCI_RX);
// Activate the RX error interrupts, and RX/TX transmissions
regs->CR = REG_SCI_CR_TE | REG_SCI_CR_RE;
enable_rx_irq_bare(regs);
// Disable GPIO pins for TX and RX lines
// \todo this should be divided into serial 0 and 1
REG_GPIO_SERIAL_0->PER |= REG_GPIO_SERIAL_MASK_0;
REG_GPIO_SERIAL_1->PER |= REG_GPIO_SERIAL_MASK_1;
hw->serial = ser;
}
static void cleanup(struct SerialHardware* _hw)
{
struct SCI* hw = (struct SCI*)_hw;
// Uninstall the ISRs
disable_rx_irq(_hw);
disable_tx_irq(_hw);
irq_uninstall(hw->irq_tx);
irq_uninstall(hw->irq_rx);
}
static void setbaudrate(struct SerialHardware* _hw, unsigned long rate)
{
struct SCI* hw = (struct SCI*)_hw;
// SCI has an internal 16x divider on the input clock, which comes
// from the IPbus (see the scheme in user manual, 12.7.3). We apply
// it to calculate the period to store in the register.
hw->regs->BR = (IPBUS_FREQ + rate * 8ul) / (rate * 16ul);
}
static void setparity(struct SerialHardware* _hw, int parity)
{
// ???
ASSERT(0);
}
#if CONFIG_SER_MULTI
static void multi_init(void)
{
static bool flag = false;
int i;
if (flag)
return;
for (i = 0; i < MAX_MULTI_GROUPS; ++i)
sem_init(&multi_sems[i]);
flag = true;
}
static void init_lock(struct SerialHardware* _hw, struct Serial *ser)
{
struct SCI* hw = (struct SCI*)_hw;
// Initialize the multi engine (if needed)
multi_init();
// Acquire the lock of the semaphore for this group
ASSERT(hw->num_group >= 0);
ASSERT(hw->num_group < MAX_MULTI_GROUPS);
sem_obtain(&multi_sems[hw->num_group]);
// Do a hardware switch to the given serial
ser_hw_switch(hw->num_group, hw->id);
init(_hw, ser);
}
static void cleanup_unlock(struct SerialHardware* _hw)
{
struct SCI* hw = (struct SCI*)_hw;
cleanup(_hw);
sem_release(&multi_sems[hw->num_group]);
}
#endif /* CONFIG_SER_MULTI */
static const struct SerialHardwareVT SCI_VT =
{
.init = init,
.cleanup = cleanup,
.setBaudrate = setbaudrate,
.setParity = setparity,
.txStart = enable_tx_irq,
.txSending = tx_irq_enabled,
};
#if CONFIG_SER_MULTI
static const struct SerialHardwareVT SCI_MULTI_VT =
{
.init = init_lock,
.cleanup = cleanup_unlock,
.setBaudrate = setbaudrate,
.setParity = setparity,
.txStart = enable_tx_irq,
.txSending = tx_irq_enabled,
};
#endif /* CONFIG_SER_MULTI */
#define SCI_DESC_NORMAL(hwch) \
{ \
.hw = \
{ \
.table = &SCI_VT, \
.rxbuffer = ser ## hwch ## _fifo_rx, \
.txbuffer = ser ## hwch ## _fifo_tx, \
.rxbuffer_size = countof(ser ## hwch ## _fifo_rx), \
.txbuffer_size = countof(ser ## hwch ## _fifo_tx), \
}, \
.regs = &REG_SCI[hwch], \
.irq_rx = IRQ_SCI ## hwch ## _RECEIVER_FULL, \
.irq_tx = IRQ_SCI ## hwch ## _TRANSMITTER_READY, \
.num_group = -1, \
.id = -1, \
} \
/**/
#if CONFIG_SER_MULTI
#define SCI_DESC_MULTI(hwch, group_, id_) \
{ \
.hw = \
{ \
.table = &SCI_MULTI_VT, \
.rxbuffer = ser ## hwch ## _fifo_rx, \
.txbuffer = ser ## hwch ## _fifo_tx, \
.rxbuffer_size = countof(ser ## hwch ## _fifo_rx), \
.txbuffer_size = countof(ser ## hwch ## _fifo_tx), \
}, \
.regs = &REG_SCI[hwch], \
.irq_rx = IRQ_SCI ## hwch ## _RECEIVER_FULL, \
.irq_tx = IRQ_SCI ## hwch ## _TRANSMITTER_READY, \
.num_group = group_, \
.id = id_, \
} \
/**/
#endif /* CONFIG_SER_MULTI */
// \todo Move this into hw.h, with a little preprocessor magic
static struct SCI SCIDescs[] =
{
SCI_DESC_NORMAL(0),
SCI_DESC_MULTI(1, 0, 0),
SCI_DESC_MULTI(1, 0, 1),
};
struct SerialHardware* ser_hw_getdesc(int unit)
{
ASSERT(unit < countof(SCIDescs));
return &SCIDescs[unit].hw;
}