OpenModem/bertos/struct/hashtable.h

302 lines
9.8 KiB
C
Raw Normal View History

2014-04-03 16:21:37 -04:00
/**
* \file
* <!--
* This file is part of BeRTOS.
*
* Bertos is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* As a special exception, you may use this file as part of a free software
* library without restriction. Specifically, if other files instantiate
* templates or use macros or inline functions from this file, or you compile
* this file and link it with other files to produce an executable, this
* file does not by itself cause the resulting executable to be covered by
* the GNU General Public License. This exception does not however
* invalidate any other reasons why the executable file might be covered by
* the GNU General Public License.
*
* Copyright 2004, 2006, 2008 Develer S.r.l. (http://www.develer.com/)
* Copyright 2004 Giovanni Bajo
* -->
*
* \defgroup hashtable Hash table implementation
* \ingroup struct
* \{
*
* \brief Portable hash table
*
* This file implements a portable hash table, with the following features:
*
* \li Open double-hashing. The maximum number of elements is fixed. The double hashing
* function improves recovery in case of collisions.
* \li Configurable size (which is clamped to a power of two)
* \li Visiting interface through iterator (returns the element in random order).
* \li The key is stored within the data and a hook is used to extract it. Optionally, it
* is possible to store a copy of the key within the hash table.
*
* Since the hashing is open, there is no way to remove elements from the table. Instead, a
* function is provided to clear the table completely.
*
* The data stored within the table must be a pointer. The NULL pointer is used as
* a marker for a free node, so it is invalid to store a NULL pointer in the table
* with \c ht_insert().
*
* \author Giovanni Bajo <rasky@develer.com>
*
* $WIZ$ module_name = "hashtable"
* $WIZ$ module_configuration = "bertos/cfg/cfg_hashtable.h"
*/
#ifndef STRUCT_HASHTABLE_H
#define STRUCT_HASHTABLE_H
#include "cfg/cfg_hashtable.h"
#include <cfg/compiler.h>
#include <cfg/macros.h>
#include <cfg/debug.h>
/// Maximum length of the internal key (use (2^n)-1 for slight speedup)
#define INTERNAL_KEY_MAX_LENGTH 15
/**
* Hook to get the key from \a data, which is an element of the hash table. The
* key must be returned together with \a key_length (in words).
*/
typedef const void *(*hook_get_key)(const void *data, uint8_t *key_length);
/**
* Hash table description
*
* \note This structures MUST NOT be accessed directly. Its definition is
* provided in the header file only for optimization purposes (see the rationale
* in hashtable.c).
*
* \note If new elements must be added to this list, please double check
* \c DECLARE_HASHTABLE, which requires the existing elements to be at the top.
*/
struct HashTable
{
const void **mem; ///< Buckets of data
uint16_t max_elts_log2; ///< Log2 of the size of the table
struct {
bool key_internal : 1; ///< true if the key is copied internally
} flags;
union {
hook_get_key hook; ///< Hook to get the key
uint8_t *mem; ///< Pointer to the key memory
} key_data;
};
/// Iterator to walk the hash table
typedef struct
{
const void** pos;
const void** end;
} HashIterator;
/**
* Declare a hash table in the current scope
*
* \param name Variable name
* \param size Number of elements
* \param hook_gk Hook to be used to extract the key from the node
*
* \note The number of elements will be rounded down to the nearest
* power of two.
*
*/
#define DECLARE_HASHTABLE(name, size, hook_gk) \
static const void* name##_nodes[1 << UINT32_LOG2(size)]; \
struct HashTable name = \
{ \
.mem = name##_nodes, \
.max_elts_log2 = UINT32_LOG2(size), \
.flags = { .key_internal = false }, \
.key_data.hook = hook_gk \
}
/** Exactly like \c DECLARE_HASHTABLE, but the variable will be declared as static. */
#define DECLARE_HASHTABLE_STATIC(name, size, hook_gk) \
enum { name##_SIZE = (1 << UINT32_LOG2(size)), }; \
static const void* name##_nodes[name##_SIZE]; \
static struct HashTable name = \
{ \
.mem = name##_nodes, \
.max_elts_log2 = UINT32_LOG2(size), \
.flags = { .key_internal = false }, \
.key_data.hook = hook_gk \
}
#if CONFIG_HT_OPTIONAL_INTERNAL_KEY
/** Declare a hash table with internal copies of the keys. This version does not
* require a hook, nor it requires the user to allocate static memory for the keys.
* It is mostly suggested for tables whose keys are computed on the fly and need
* to be stored somewhere.
*/
#define DECLARE_HASHTABLE_INTERNALKEY(name, size) \
static uint8_t name##_keys[(1 << UINT32_LOG2(size)) * (INTERNAL_KEY_MAX_LENGTH + 1)]; \
static const void* name##_nodes[1 << UINT32_LOG2(size)]; \
struct HashTable name = { name##_nodes, UINT32_LOG2(size), { true }, name##_keys }
/** Exactly like \c DECLARE_HASHTABLE_INTERNALKEY, but the variable will be declared as static. */
#define DECLARE_HASHTABLE_INTERNALKEY_STATIC(name, size) \
enum { name##_KEYS = ((1 << UINT32_LOG2(size)) * (INTERNAL_KEY_MAX_LENGTH + 1)), \
name##_SIZE = (1 << UINT32_LOG2(size)), }; \
static uint8_t name##_keys[name##_KEYS]; \
static const void* name##_nodes[name##_SIZE]; \
static struct HashTable name = \
{ \
.mem = name##_nodes, \
.max_elts_log2 = UINT32_LOG2(size), \
.flags = { .key_internal = true }, \
.key_data.mem = name##_keys \
}
#endif
/**
* Initialize (and clear) a hash table in a memory buffer.
*
* \param ht Hash table declared with \c DECLARE_HASHTABLE
*
* \note This function must be called before using the hash table. Optionally,
* it can be called later in the program to clear the hash table,
* removing all its elements.
*/
void ht_init(struct HashTable* ht);
/**
* Insert an element into the hash table
*
* \param ht Handle of the hash table
* \param data Data to be inserted into the table
* \return true if insertion was successful, false otherwise (table is full)
*
* \note The key for the element to insert is extract from the data with
* the hook. This means that this function cannot be called for hashtables
* with internal keys.
*
* \note If an element with the same key already exists in the table,
* it will be overwritten.
*
* \note It is not allowed to store NULL in the table. If you pass NULL as data,
* the function call will fail.
*/
bool ht_insert(struct HashTable* ht, const void* data);
/**
* Insert an element into the hash table
*
* \param ht Handle of the hash table
* \param key Key of the element
* \param key_length Length of the key in characters
* \param data Data to be inserted into the table
* \return true if insertion was successful, false otherwise (table is full)
*
* \note If this function is called for hash table with external keys,
* the key provided must be match the key that would be extracted with the
* hook, otherwise the function will fail.
*
* \note If an element with the same key already exists in the table,
* it will be overwritten.
*
* \note It is not allowed to store NULL in the table. If you pass NULL as data,
* the function call will fail.
*/
bool ht_insert_with_key(struct HashTable* ht, const void* key, uint8_t key_length, const void* data);
/**
* Find an element in the hash table
*
* \param ht Handle of the hash table
* \param key Key of the element
* \param key_length Length of the key in characters
* \return Data of the element, or NULL if no element was found for the given key.
*/
const void* ht_find(struct HashTable* ht, const void* key, uint8_t key_length);
/** Similar to \c ht_insert_with_key() but \a key is an ASCIIZ string */
#define ht_insert_str(ht, key, data) ht_insert_with_key(ht, key, strlen(key), data)
/** Similar to \c ht_find() but \a key is an ASCIIZ string */
#define ht_find_str(ht, key) ht_find(ht, key, strlen(key))
/// Get an iterator to the begin of the hash table \a ht
INLINE HashIterator ht_iter_begin(struct HashTable* ht)
{
HashIterator h;
h.pos = &ht->mem[0];
h.end = &ht->mem[1 << ht->max_elts_log2];
while (h.pos != h.end && !*h.pos)
++h.pos;
return h;
}
/**
* Get an iterator to the (exclusive) end of the hash table \a ht
*
* \note Like in STL, the end iterator is not a valid iterator (you
* cannot call \c ht_iter_get() on it), and it must be used only to
* detect if we reached the end of the iteration (through \c ht_iter_cmp()).
*/
INLINE HashIterator ht_iter_end(struct HashTable* ht)
{
HashIterator h;
h.pos = h.end = &ht->mem[1 << ht->max_elts_log2];
return h;
}
/// Compare \a it1 and \a it2 for equality
INLINE bool ht_iter_cmp(HashIterator it1, HashIterator it2)
{
ASSERT(it1.end == it2.end);
return it1.pos == it2.pos;
}
/// Get the element within the hash table \a ht pointed by the iterator \a iter
INLINE const void* ht_iter_get(HashIterator iter)
{ return *iter.pos; }
/** Return an iterator pointing to the element following \a h
*
* \note The order of the elements visited during the iteration is casual,
* and depends on the implementation.
*
*/
INLINE HashIterator ht_iter_next(HashIterator h)
{
++h.pos;
while (h.pos != h.end && !(*h.pos))
++h.pos;
return h;
}
int hashtable_testSetup(void);
int hashtable_testRun(void);
int hashtable_testTearDown(void);
/** \} */ // \defgroup hashtable
#endif /* STRUCT_HASHTABLE_H */