mirror of
https://github.com/Egida/EndGame0.git
synced 2025-08-08 22:32:20 -04:00
EndGame v3
This commit is contained in:
commit
9e36ba54ee
646 changed files with 271674 additions and 0 deletions
27
sourcecode/gobalance/vendor/golang.org/x/crypto/LICENSE
generated
vendored
Normal file
27
sourcecode/gobalance/vendor/golang.org/x/crypto/LICENSE
generated
vendored
Normal file
|
@ -0,0 +1,27 @@
|
|||
Copyright (c) 2009 The Go Authors. All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
* Neither the name of Google Inc. nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
22
sourcecode/gobalance/vendor/golang.org/x/crypto/PATENTS
generated
vendored
Normal file
22
sourcecode/gobalance/vendor/golang.org/x/crypto/PATENTS
generated
vendored
Normal file
|
@ -0,0 +1,22 @@
|
|||
Additional IP Rights Grant (Patents)
|
||||
|
||||
"This implementation" means the copyrightable works distributed by
|
||||
Google as part of the Go project.
|
||||
|
||||
Google hereby grants to You a perpetual, worldwide, non-exclusive,
|
||||
no-charge, royalty-free, irrevocable (except as stated in this section)
|
||||
patent license to make, have made, use, offer to sell, sell, import,
|
||||
transfer and otherwise run, modify and propagate the contents of this
|
||||
implementation of Go, where such license applies only to those patent
|
||||
claims, both currently owned or controlled by Google and acquired in
|
||||
the future, licensable by Google that are necessarily infringed by this
|
||||
implementation of Go. This grant does not include claims that would be
|
||||
infringed only as a consequence of further modification of this
|
||||
implementation. If you or your agent or exclusive licensee institute or
|
||||
order or agree to the institution of patent litigation against any
|
||||
entity (including a cross-claim or counterclaim in a lawsuit) alleging
|
||||
that this implementation of Go or any code incorporated within this
|
||||
implementation of Go constitutes direct or contributory patent
|
||||
infringement, or inducement of patent infringement, then any patent
|
||||
rights granted to you under this License for this implementation of Go
|
||||
shall terminate as of the date such litigation is filed.
|
59
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/curve25519.go
generated
vendored
Normal file
59
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/curve25519.go
generated
vendored
Normal file
|
@ -0,0 +1,59 @@
|
|||
// Copyright 2019 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package curve25519 provides an implementation of the X25519 function, which
|
||||
// performs scalar multiplication on the elliptic curve known as Curve25519.
|
||||
// See RFC 7748.
|
||||
//
|
||||
// Starting in Go 1.20, this package is a wrapper for the X25519 implementation
|
||||
// in the crypto/ecdh package.
|
||||
package curve25519 // import "golang.org/x/crypto/curve25519"
|
||||
|
||||
// ScalarMult sets dst to the product scalar * point.
|
||||
//
|
||||
// Deprecated: when provided a low-order point, ScalarMult will set dst to all
|
||||
// zeroes, irrespective of the scalar. Instead, use the X25519 function, which
|
||||
// will return an error.
|
||||
func ScalarMult(dst, scalar, point *[32]byte) {
|
||||
scalarMult(dst, scalar, point)
|
||||
}
|
||||
|
||||
// ScalarBaseMult sets dst to the product scalar * base where base is the
|
||||
// standard generator.
|
||||
//
|
||||
// It is recommended to use the X25519 function with Basepoint instead, as
|
||||
// copying into fixed size arrays can lead to unexpected bugs.
|
||||
func ScalarBaseMult(dst, scalar *[32]byte) {
|
||||
scalarBaseMult(dst, scalar)
|
||||
}
|
||||
|
||||
const (
|
||||
// ScalarSize is the size of the scalar input to X25519.
|
||||
ScalarSize = 32
|
||||
// PointSize is the size of the point input to X25519.
|
||||
PointSize = 32
|
||||
)
|
||||
|
||||
// Basepoint is the canonical Curve25519 generator.
|
||||
var Basepoint []byte
|
||||
|
||||
var basePoint = [32]byte{9}
|
||||
|
||||
func init() { Basepoint = basePoint[:] }
|
||||
|
||||
// X25519 returns the result of the scalar multiplication (scalar * point),
|
||||
// according to RFC 7748, Section 5. scalar, point and the return value are
|
||||
// slices of 32 bytes.
|
||||
//
|
||||
// scalar can be generated at random, for example with crypto/rand. point should
|
||||
// be either Basepoint or the output of another X25519 call.
|
||||
//
|
||||
// If point is Basepoint (but not if it's a different slice with the same
|
||||
// contents) a precomputed implementation might be used for performance.
|
||||
func X25519(scalar, point []byte) ([]byte, error) {
|
||||
// Outline the body of function, to let the allocation be inlined in the
|
||||
// caller, and possibly avoid escaping to the heap.
|
||||
var dst [32]byte
|
||||
return x25519(&dst, scalar, point)
|
||||
}
|
105
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/curve25519_compat.go
generated
vendored
Normal file
105
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/curve25519_compat.go
generated
vendored
Normal file
|
@ -0,0 +1,105 @@
|
|||
// Copyright 2019 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
//go:build !go1.20
|
||||
|
||||
package curve25519
|
||||
|
||||
import (
|
||||
"crypto/subtle"
|
||||
"errors"
|
||||
"strconv"
|
||||
|
||||
"golang.org/x/crypto/curve25519/internal/field"
|
||||
)
|
||||
|
||||
func scalarMult(dst, scalar, point *[32]byte) {
|
||||
var e [32]byte
|
||||
|
||||
copy(e[:], scalar[:])
|
||||
e[0] &= 248
|
||||
e[31] &= 127
|
||||
e[31] |= 64
|
||||
|
||||
var x1, x2, z2, x3, z3, tmp0, tmp1 field.Element
|
||||
x1.SetBytes(point[:])
|
||||
x2.One()
|
||||
x3.Set(&x1)
|
||||
z3.One()
|
||||
|
||||
swap := 0
|
||||
for pos := 254; pos >= 0; pos-- {
|
||||
b := e[pos/8] >> uint(pos&7)
|
||||
b &= 1
|
||||
swap ^= int(b)
|
||||
x2.Swap(&x3, swap)
|
||||
z2.Swap(&z3, swap)
|
||||
swap = int(b)
|
||||
|
||||
tmp0.Subtract(&x3, &z3)
|
||||
tmp1.Subtract(&x2, &z2)
|
||||
x2.Add(&x2, &z2)
|
||||
z2.Add(&x3, &z3)
|
||||
z3.Multiply(&tmp0, &x2)
|
||||
z2.Multiply(&z2, &tmp1)
|
||||
tmp0.Square(&tmp1)
|
||||
tmp1.Square(&x2)
|
||||
x3.Add(&z3, &z2)
|
||||
z2.Subtract(&z3, &z2)
|
||||
x2.Multiply(&tmp1, &tmp0)
|
||||
tmp1.Subtract(&tmp1, &tmp0)
|
||||
z2.Square(&z2)
|
||||
|
||||
z3.Mult32(&tmp1, 121666)
|
||||
x3.Square(&x3)
|
||||
tmp0.Add(&tmp0, &z3)
|
||||
z3.Multiply(&x1, &z2)
|
||||
z2.Multiply(&tmp1, &tmp0)
|
||||
}
|
||||
|
||||
x2.Swap(&x3, swap)
|
||||
z2.Swap(&z3, swap)
|
||||
|
||||
z2.Invert(&z2)
|
||||
x2.Multiply(&x2, &z2)
|
||||
copy(dst[:], x2.Bytes())
|
||||
}
|
||||
|
||||
func scalarBaseMult(dst, scalar *[32]byte) {
|
||||
checkBasepoint()
|
||||
scalarMult(dst, scalar, &basePoint)
|
||||
}
|
||||
|
||||
func x25519(dst *[32]byte, scalar, point []byte) ([]byte, error) {
|
||||
var in [32]byte
|
||||
if l := len(scalar); l != 32 {
|
||||
return nil, errors.New("bad scalar length: " + strconv.Itoa(l) + ", expected 32")
|
||||
}
|
||||
if l := len(point); l != 32 {
|
||||
return nil, errors.New("bad point length: " + strconv.Itoa(l) + ", expected 32")
|
||||
}
|
||||
copy(in[:], scalar)
|
||||
if &point[0] == &Basepoint[0] {
|
||||
scalarBaseMult(dst, &in)
|
||||
} else {
|
||||
var base, zero [32]byte
|
||||
copy(base[:], point)
|
||||
scalarMult(dst, &in, &base)
|
||||
if subtle.ConstantTimeCompare(dst[:], zero[:]) == 1 {
|
||||
return nil, errors.New("bad input point: low order point")
|
||||
}
|
||||
}
|
||||
return dst[:], nil
|
||||
}
|
||||
|
||||
func checkBasepoint() {
|
||||
if subtle.ConstantTimeCompare(Basepoint, []byte{
|
||||
0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
}) != 1 {
|
||||
panic("curve25519: global Basepoint value was modified")
|
||||
}
|
||||
}
|
46
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/curve25519_go120.go
generated
vendored
Normal file
46
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/curve25519_go120.go
generated
vendored
Normal file
|
@ -0,0 +1,46 @@
|
|||
// Copyright 2022 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
//go:build go1.20
|
||||
|
||||
package curve25519
|
||||
|
||||
import "crypto/ecdh"
|
||||
|
||||
func x25519(dst *[32]byte, scalar, point []byte) ([]byte, error) {
|
||||
curve := ecdh.X25519()
|
||||
pub, err := curve.NewPublicKey(point)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
priv, err := curve.NewPrivateKey(scalar)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
out, err := priv.ECDH(pub)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
copy(dst[:], out)
|
||||
return dst[:], nil
|
||||
}
|
||||
|
||||
func scalarMult(dst, scalar, point *[32]byte) {
|
||||
if _, err := x25519(dst, scalar[:], point[:]); err != nil {
|
||||
// The only error condition for x25519 when the inputs are 32 bytes long
|
||||
// is if the output would have been the all-zero value.
|
||||
for i := range dst {
|
||||
dst[i] = 0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func scalarBaseMult(dst, scalar *[32]byte) {
|
||||
curve := ecdh.X25519()
|
||||
priv, err := curve.NewPrivateKey(scalar[:])
|
||||
if err != nil {
|
||||
panic("curve25519: internal error: scalarBaseMult was not 32 bytes")
|
||||
}
|
||||
copy(dst[:], priv.PublicKey().Bytes())
|
||||
}
|
7
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/internal/field/README
generated
vendored
Normal file
7
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/internal/field/README
generated
vendored
Normal file
|
@ -0,0 +1,7 @@
|
|||
This package is kept in sync with crypto/ed25519/internal/edwards25519/field in
|
||||
the standard library.
|
||||
|
||||
If there are any changes in the standard library that need to be synced to this
|
||||
package, run sync.sh. It will not overwrite any local changes made since the
|
||||
previous sync, so it's ok to land changes in this package first, and then sync
|
||||
to the standard library later.
|
416
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/internal/field/fe.go
generated
vendored
Normal file
416
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/internal/field/fe.go
generated
vendored
Normal file
|
@ -0,0 +1,416 @@
|
|||
// Copyright (c) 2017 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package field implements fast arithmetic modulo 2^255-19.
|
||||
package field
|
||||
|
||||
import (
|
||||
"crypto/subtle"
|
||||
"encoding/binary"
|
||||
"math/bits"
|
||||
)
|
||||
|
||||
// Element represents an element of the field GF(2^255-19). Note that this
|
||||
// is not a cryptographically secure group, and should only be used to interact
|
||||
// with edwards25519.Point coordinates.
|
||||
//
|
||||
// This type works similarly to math/big.Int, and all arguments and receivers
|
||||
// are allowed to alias.
|
||||
//
|
||||
// The zero value is a valid zero element.
|
||||
type Element struct {
|
||||
// An element t represents the integer
|
||||
// t.l0 + t.l1*2^51 + t.l2*2^102 + t.l3*2^153 + t.l4*2^204
|
||||
//
|
||||
// Between operations, all limbs are expected to be lower than 2^52.
|
||||
l0 uint64
|
||||
l1 uint64
|
||||
l2 uint64
|
||||
l3 uint64
|
||||
l4 uint64
|
||||
}
|
||||
|
||||
const maskLow51Bits uint64 = (1 << 51) - 1
|
||||
|
||||
var feZero = &Element{0, 0, 0, 0, 0}
|
||||
|
||||
// Zero sets v = 0, and returns v.
|
||||
func (v *Element) Zero() *Element {
|
||||
*v = *feZero
|
||||
return v
|
||||
}
|
||||
|
||||
var feOne = &Element{1, 0, 0, 0, 0}
|
||||
|
||||
// One sets v = 1, and returns v.
|
||||
func (v *Element) One() *Element {
|
||||
*v = *feOne
|
||||
return v
|
||||
}
|
||||
|
||||
// reduce reduces v modulo 2^255 - 19 and returns it.
|
||||
func (v *Element) reduce() *Element {
|
||||
v.carryPropagate()
|
||||
|
||||
// After the light reduction we now have a field element representation
|
||||
// v < 2^255 + 2^13 * 19, but need v < 2^255 - 19.
|
||||
|
||||
// If v >= 2^255 - 19, then v + 19 >= 2^255, which would overflow 2^255 - 1,
|
||||
// generating a carry. That is, c will be 0 if v < 2^255 - 19, and 1 otherwise.
|
||||
c := (v.l0 + 19) >> 51
|
||||
c = (v.l1 + c) >> 51
|
||||
c = (v.l2 + c) >> 51
|
||||
c = (v.l3 + c) >> 51
|
||||
c = (v.l4 + c) >> 51
|
||||
|
||||
// If v < 2^255 - 19 and c = 0, this will be a no-op. Otherwise, it's
|
||||
// effectively applying the reduction identity to the carry.
|
||||
v.l0 += 19 * c
|
||||
|
||||
v.l1 += v.l0 >> 51
|
||||
v.l0 = v.l0 & maskLow51Bits
|
||||
v.l2 += v.l1 >> 51
|
||||
v.l1 = v.l1 & maskLow51Bits
|
||||
v.l3 += v.l2 >> 51
|
||||
v.l2 = v.l2 & maskLow51Bits
|
||||
v.l4 += v.l3 >> 51
|
||||
v.l3 = v.l3 & maskLow51Bits
|
||||
// no additional carry
|
||||
v.l4 = v.l4 & maskLow51Bits
|
||||
|
||||
return v
|
||||
}
|
||||
|
||||
// Add sets v = a + b, and returns v.
|
||||
func (v *Element) Add(a, b *Element) *Element {
|
||||
v.l0 = a.l0 + b.l0
|
||||
v.l1 = a.l1 + b.l1
|
||||
v.l2 = a.l2 + b.l2
|
||||
v.l3 = a.l3 + b.l3
|
||||
v.l4 = a.l4 + b.l4
|
||||
// Using the generic implementation here is actually faster than the
|
||||
// assembly. Probably because the body of this function is so simple that
|
||||
// the compiler can figure out better optimizations by inlining the carry
|
||||
// propagation. TODO
|
||||
return v.carryPropagateGeneric()
|
||||
}
|
||||
|
||||
// Subtract sets v = a - b, and returns v.
|
||||
func (v *Element) Subtract(a, b *Element) *Element {
|
||||
// We first add 2 * p, to guarantee the subtraction won't underflow, and
|
||||
// then subtract b (which can be up to 2^255 + 2^13 * 19).
|
||||
v.l0 = (a.l0 + 0xFFFFFFFFFFFDA) - b.l0
|
||||
v.l1 = (a.l1 + 0xFFFFFFFFFFFFE) - b.l1
|
||||
v.l2 = (a.l2 + 0xFFFFFFFFFFFFE) - b.l2
|
||||
v.l3 = (a.l3 + 0xFFFFFFFFFFFFE) - b.l3
|
||||
v.l4 = (a.l4 + 0xFFFFFFFFFFFFE) - b.l4
|
||||
return v.carryPropagate()
|
||||
}
|
||||
|
||||
// Negate sets v = -a, and returns v.
|
||||
func (v *Element) Negate(a *Element) *Element {
|
||||
return v.Subtract(feZero, a)
|
||||
}
|
||||
|
||||
// Invert sets v = 1/z mod p, and returns v.
|
||||
//
|
||||
// If z == 0, Invert returns v = 0.
|
||||
func (v *Element) Invert(z *Element) *Element {
|
||||
// Inversion is implemented as exponentiation with exponent p − 2. It uses the
|
||||
// same sequence of 255 squarings and 11 multiplications as [Curve25519].
|
||||
var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t Element
|
||||
|
||||
z2.Square(z) // 2
|
||||
t.Square(&z2) // 4
|
||||
t.Square(&t) // 8
|
||||
z9.Multiply(&t, z) // 9
|
||||
z11.Multiply(&z9, &z2) // 11
|
||||
t.Square(&z11) // 22
|
||||
z2_5_0.Multiply(&t, &z9) // 31 = 2^5 - 2^0
|
||||
|
||||
t.Square(&z2_5_0) // 2^6 - 2^1
|
||||
for i := 0; i < 4; i++ {
|
||||
t.Square(&t) // 2^10 - 2^5
|
||||
}
|
||||
z2_10_0.Multiply(&t, &z2_5_0) // 2^10 - 2^0
|
||||
|
||||
t.Square(&z2_10_0) // 2^11 - 2^1
|
||||
for i := 0; i < 9; i++ {
|
||||
t.Square(&t) // 2^20 - 2^10
|
||||
}
|
||||
z2_20_0.Multiply(&t, &z2_10_0) // 2^20 - 2^0
|
||||
|
||||
t.Square(&z2_20_0) // 2^21 - 2^1
|
||||
for i := 0; i < 19; i++ {
|
||||
t.Square(&t) // 2^40 - 2^20
|
||||
}
|
||||
t.Multiply(&t, &z2_20_0) // 2^40 - 2^0
|
||||
|
||||
t.Square(&t) // 2^41 - 2^1
|
||||
for i := 0; i < 9; i++ {
|
||||
t.Square(&t) // 2^50 - 2^10
|
||||
}
|
||||
z2_50_0.Multiply(&t, &z2_10_0) // 2^50 - 2^0
|
||||
|
||||
t.Square(&z2_50_0) // 2^51 - 2^1
|
||||
for i := 0; i < 49; i++ {
|
||||
t.Square(&t) // 2^100 - 2^50
|
||||
}
|
||||
z2_100_0.Multiply(&t, &z2_50_0) // 2^100 - 2^0
|
||||
|
||||
t.Square(&z2_100_0) // 2^101 - 2^1
|
||||
for i := 0; i < 99; i++ {
|
||||
t.Square(&t) // 2^200 - 2^100
|
||||
}
|
||||
t.Multiply(&t, &z2_100_0) // 2^200 - 2^0
|
||||
|
||||
t.Square(&t) // 2^201 - 2^1
|
||||
for i := 0; i < 49; i++ {
|
||||
t.Square(&t) // 2^250 - 2^50
|
||||
}
|
||||
t.Multiply(&t, &z2_50_0) // 2^250 - 2^0
|
||||
|
||||
t.Square(&t) // 2^251 - 2^1
|
||||
t.Square(&t) // 2^252 - 2^2
|
||||
t.Square(&t) // 2^253 - 2^3
|
||||
t.Square(&t) // 2^254 - 2^4
|
||||
t.Square(&t) // 2^255 - 2^5
|
||||
|
||||
return v.Multiply(&t, &z11) // 2^255 - 21
|
||||
}
|
||||
|
||||
// Set sets v = a, and returns v.
|
||||
func (v *Element) Set(a *Element) *Element {
|
||||
*v = *a
|
||||
return v
|
||||
}
|
||||
|
||||
// SetBytes sets v to x, which must be a 32-byte little-endian encoding.
|
||||
//
|
||||
// Consistent with RFC 7748, the most significant bit (the high bit of the
|
||||
// last byte) is ignored, and non-canonical values (2^255-19 through 2^255-1)
|
||||
// are accepted. Note that this is laxer than specified by RFC 8032.
|
||||
func (v *Element) SetBytes(x []byte) *Element {
|
||||
if len(x) != 32 {
|
||||
panic("edwards25519: invalid field element input size")
|
||||
}
|
||||
|
||||
// Bits 0:51 (bytes 0:8, bits 0:64, shift 0, mask 51).
|
||||
v.l0 = binary.LittleEndian.Uint64(x[0:8])
|
||||
v.l0 &= maskLow51Bits
|
||||
// Bits 51:102 (bytes 6:14, bits 48:112, shift 3, mask 51).
|
||||
v.l1 = binary.LittleEndian.Uint64(x[6:14]) >> 3
|
||||
v.l1 &= maskLow51Bits
|
||||
// Bits 102:153 (bytes 12:20, bits 96:160, shift 6, mask 51).
|
||||
v.l2 = binary.LittleEndian.Uint64(x[12:20]) >> 6
|
||||
v.l2 &= maskLow51Bits
|
||||
// Bits 153:204 (bytes 19:27, bits 152:216, shift 1, mask 51).
|
||||
v.l3 = binary.LittleEndian.Uint64(x[19:27]) >> 1
|
||||
v.l3 &= maskLow51Bits
|
||||
// Bits 204:251 (bytes 24:32, bits 192:256, shift 12, mask 51).
|
||||
// Note: not bytes 25:33, shift 4, to avoid overread.
|
||||
v.l4 = binary.LittleEndian.Uint64(x[24:32]) >> 12
|
||||
v.l4 &= maskLow51Bits
|
||||
|
||||
return v
|
||||
}
|
||||
|
||||
// Bytes returns the canonical 32-byte little-endian encoding of v.
|
||||
func (v *Element) Bytes() []byte {
|
||||
// This function is outlined to make the allocations inline in the caller
|
||||
// rather than happen on the heap.
|
||||
var out [32]byte
|
||||
return v.bytes(&out)
|
||||
}
|
||||
|
||||
func (v *Element) bytes(out *[32]byte) []byte {
|
||||
t := *v
|
||||
t.reduce()
|
||||
|
||||
var buf [8]byte
|
||||
for i, l := range [5]uint64{t.l0, t.l1, t.l2, t.l3, t.l4} {
|
||||
bitsOffset := i * 51
|
||||
binary.LittleEndian.PutUint64(buf[:], l<<uint(bitsOffset%8))
|
||||
for i, bb := range buf {
|
||||
off := bitsOffset/8 + i
|
||||
if off >= len(out) {
|
||||
break
|
||||
}
|
||||
out[off] |= bb
|
||||
}
|
||||
}
|
||||
|
||||
return out[:]
|
||||
}
|
||||
|
||||
// Equal returns 1 if v and u are equal, and 0 otherwise.
|
||||
func (v *Element) Equal(u *Element) int {
|
||||
sa, sv := u.Bytes(), v.Bytes()
|
||||
return subtle.ConstantTimeCompare(sa, sv)
|
||||
}
|
||||
|
||||
// mask64Bits returns 0xffffffff if cond is 1, and 0 otherwise.
|
||||
func mask64Bits(cond int) uint64 { return ^(uint64(cond) - 1) }
|
||||
|
||||
// Select sets v to a if cond == 1, and to b if cond == 0.
|
||||
func (v *Element) Select(a, b *Element, cond int) *Element {
|
||||
m := mask64Bits(cond)
|
||||
v.l0 = (m & a.l0) | (^m & b.l0)
|
||||
v.l1 = (m & a.l1) | (^m & b.l1)
|
||||
v.l2 = (m & a.l2) | (^m & b.l2)
|
||||
v.l3 = (m & a.l3) | (^m & b.l3)
|
||||
v.l4 = (m & a.l4) | (^m & b.l4)
|
||||
return v
|
||||
}
|
||||
|
||||
// Swap swaps v and u if cond == 1 or leaves them unchanged if cond == 0, and returns v.
|
||||
func (v *Element) Swap(u *Element, cond int) {
|
||||
m := mask64Bits(cond)
|
||||
t := m & (v.l0 ^ u.l0)
|
||||
v.l0 ^= t
|
||||
u.l0 ^= t
|
||||
t = m & (v.l1 ^ u.l1)
|
||||
v.l1 ^= t
|
||||
u.l1 ^= t
|
||||
t = m & (v.l2 ^ u.l2)
|
||||
v.l2 ^= t
|
||||
u.l2 ^= t
|
||||
t = m & (v.l3 ^ u.l3)
|
||||
v.l3 ^= t
|
||||
u.l3 ^= t
|
||||
t = m & (v.l4 ^ u.l4)
|
||||
v.l4 ^= t
|
||||
u.l4 ^= t
|
||||
}
|
||||
|
||||
// IsNegative returns 1 if v is negative, and 0 otherwise.
|
||||
func (v *Element) IsNegative() int {
|
||||
return int(v.Bytes()[0] & 1)
|
||||
}
|
||||
|
||||
// Absolute sets v to |u|, and returns v.
|
||||
func (v *Element) Absolute(u *Element) *Element {
|
||||
return v.Select(new(Element).Negate(u), u, u.IsNegative())
|
||||
}
|
||||
|
||||
// Multiply sets v = x * y, and returns v.
|
||||
func (v *Element) Multiply(x, y *Element) *Element {
|
||||
feMul(v, x, y)
|
||||
return v
|
||||
}
|
||||
|
||||
// Square sets v = x * x, and returns v.
|
||||
func (v *Element) Square(x *Element) *Element {
|
||||
feSquare(v, x)
|
||||
return v
|
||||
}
|
||||
|
||||
// Mult32 sets v = x * y, and returns v.
|
||||
func (v *Element) Mult32(x *Element, y uint32) *Element {
|
||||
x0lo, x0hi := mul51(x.l0, y)
|
||||
x1lo, x1hi := mul51(x.l1, y)
|
||||
x2lo, x2hi := mul51(x.l2, y)
|
||||
x3lo, x3hi := mul51(x.l3, y)
|
||||
x4lo, x4hi := mul51(x.l4, y)
|
||||
v.l0 = x0lo + 19*x4hi // carried over per the reduction identity
|
||||
v.l1 = x1lo + x0hi
|
||||
v.l2 = x2lo + x1hi
|
||||
v.l3 = x3lo + x2hi
|
||||
v.l4 = x4lo + x3hi
|
||||
// The hi portions are going to be only 32 bits, plus any previous excess,
|
||||
// so we can skip the carry propagation.
|
||||
return v
|
||||
}
|
||||
|
||||
// mul51 returns lo + hi * 2⁵¹ = a * b.
|
||||
func mul51(a uint64, b uint32) (lo uint64, hi uint64) {
|
||||
mh, ml := bits.Mul64(a, uint64(b))
|
||||
lo = ml & maskLow51Bits
|
||||
hi = (mh << 13) | (ml >> 51)
|
||||
return
|
||||
}
|
||||
|
||||
// Pow22523 set v = x^((p-5)/8), and returns v. (p-5)/8 is 2^252-3.
|
||||
func (v *Element) Pow22523(x *Element) *Element {
|
||||
var t0, t1, t2 Element
|
||||
|
||||
t0.Square(x) // x^2
|
||||
t1.Square(&t0) // x^4
|
||||
t1.Square(&t1) // x^8
|
||||
t1.Multiply(x, &t1) // x^9
|
||||
t0.Multiply(&t0, &t1) // x^11
|
||||
t0.Square(&t0) // x^22
|
||||
t0.Multiply(&t1, &t0) // x^31
|
||||
t1.Square(&t0) // x^62
|
||||
for i := 1; i < 5; i++ { // x^992
|
||||
t1.Square(&t1)
|
||||
}
|
||||
t0.Multiply(&t1, &t0) // x^1023 -> 1023 = 2^10 - 1
|
||||
t1.Square(&t0) // 2^11 - 2
|
||||
for i := 1; i < 10; i++ { // 2^20 - 2^10
|
||||
t1.Square(&t1)
|
||||
}
|
||||
t1.Multiply(&t1, &t0) // 2^20 - 1
|
||||
t2.Square(&t1) // 2^21 - 2
|
||||
for i := 1; i < 20; i++ { // 2^40 - 2^20
|
||||
t2.Square(&t2)
|
||||
}
|
||||
t1.Multiply(&t2, &t1) // 2^40 - 1
|
||||
t1.Square(&t1) // 2^41 - 2
|
||||
for i := 1; i < 10; i++ { // 2^50 - 2^10
|
||||
t1.Square(&t1)
|
||||
}
|
||||
t0.Multiply(&t1, &t0) // 2^50 - 1
|
||||
t1.Square(&t0) // 2^51 - 2
|
||||
for i := 1; i < 50; i++ { // 2^100 - 2^50
|
||||
t1.Square(&t1)
|
||||
}
|
||||
t1.Multiply(&t1, &t0) // 2^100 - 1
|
||||
t2.Square(&t1) // 2^101 - 2
|
||||
for i := 1; i < 100; i++ { // 2^200 - 2^100
|
||||
t2.Square(&t2)
|
||||
}
|
||||
t1.Multiply(&t2, &t1) // 2^200 - 1
|
||||
t1.Square(&t1) // 2^201 - 2
|
||||
for i := 1; i < 50; i++ { // 2^250 - 2^50
|
||||
t1.Square(&t1)
|
||||
}
|
||||
t0.Multiply(&t1, &t0) // 2^250 - 1
|
||||
t0.Square(&t0) // 2^251 - 2
|
||||
t0.Square(&t0) // 2^252 - 4
|
||||
return v.Multiply(&t0, x) // 2^252 - 3 -> x^(2^252-3)
|
||||
}
|
||||
|
||||
// sqrtM1 is 2^((p-1)/4), which squared is equal to -1 by Euler's Criterion.
|
||||
var sqrtM1 = &Element{1718705420411056, 234908883556509,
|
||||
2233514472574048, 2117202627021982, 765476049583133}
|
||||
|
||||
// SqrtRatio sets r to the non-negative square root of the ratio of u and v.
|
||||
//
|
||||
// If u/v is square, SqrtRatio returns r and 1. If u/v is not square, SqrtRatio
|
||||
// sets r according to Section 4.3 of draft-irtf-cfrg-ristretto255-decaf448-00,
|
||||
// and returns r and 0.
|
||||
func (r *Element) SqrtRatio(u, v *Element) (rr *Element, wasSquare int) {
|
||||
var a, b Element
|
||||
|
||||
// r = (u * v3) * (u * v7)^((p-5)/8)
|
||||
v2 := a.Square(v)
|
||||
uv3 := b.Multiply(u, b.Multiply(v2, v))
|
||||
uv7 := a.Multiply(uv3, a.Square(v2))
|
||||
r.Multiply(uv3, r.Pow22523(uv7))
|
||||
|
||||
check := a.Multiply(v, a.Square(r)) // check = v * r^2
|
||||
|
||||
uNeg := b.Negate(u)
|
||||
correctSignSqrt := check.Equal(u)
|
||||
flippedSignSqrt := check.Equal(uNeg)
|
||||
flippedSignSqrtI := check.Equal(uNeg.Multiply(uNeg, sqrtM1))
|
||||
|
||||
rPrime := b.Multiply(r, sqrtM1) // r_prime = SQRT_M1 * r
|
||||
// r = CT_SELECT(r_prime IF flipped_sign_sqrt | flipped_sign_sqrt_i ELSE r)
|
||||
r.Select(rPrime, r, flippedSignSqrt|flippedSignSqrtI)
|
||||
|
||||
r.Absolute(r) // Choose the nonnegative square root.
|
||||
return r, correctSignSqrt | flippedSignSqrt
|
||||
}
|
15
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/internal/field/fe_amd64.go
generated
vendored
Normal file
15
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/internal/field/fe_amd64.go
generated
vendored
Normal file
|
@ -0,0 +1,15 @@
|
|||
// Code generated by command: go run fe_amd64_asm.go -out ../fe_amd64.s -stubs ../fe_amd64.go -pkg field. DO NOT EDIT.
|
||||
|
||||
//go:build amd64 && gc && !purego
|
||||
|
||||
package field
|
||||
|
||||
// feMul sets out = a * b. It works like feMulGeneric.
|
||||
//
|
||||
//go:noescape
|
||||
func feMul(out *Element, a *Element, b *Element)
|
||||
|
||||
// feSquare sets out = a * a. It works like feSquareGeneric.
|
||||
//
|
||||
//go:noescape
|
||||
func feSquare(out *Element, a *Element)
|
378
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/internal/field/fe_amd64.s
generated
vendored
Normal file
378
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/internal/field/fe_amd64.s
generated
vendored
Normal file
|
@ -0,0 +1,378 @@
|
|||
// Code generated by command: go run fe_amd64_asm.go -out ../fe_amd64.s -stubs ../fe_amd64.go -pkg field. DO NOT EDIT.
|
||||
|
||||
//go:build amd64 && gc && !purego
|
||||
|
||||
#include "textflag.h"
|
||||
|
||||
// func feMul(out *Element, a *Element, b *Element)
|
||||
TEXT ·feMul(SB), NOSPLIT, $0-24
|
||||
MOVQ a+8(FP), CX
|
||||
MOVQ b+16(FP), BX
|
||||
|
||||
// r0 = a0×b0
|
||||
MOVQ (CX), AX
|
||||
MULQ (BX)
|
||||
MOVQ AX, DI
|
||||
MOVQ DX, SI
|
||||
|
||||
// r0 += 19×a1×b4
|
||||
MOVQ 8(CX), AX
|
||||
IMUL3Q $0x13, AX, AX
|
||||
MULQ 32(BX)
|
||||
ADDQ AX, DI
|
||||
ADCQ DX, SI
|
||||
|
||||
// r0 += 19×a2×b3
|
||||
MOVQ 16(CX), AX
|
||||
IMUL3Q $0x13, AX, AX
|
||||
MULQ 24(BX)
|
||||
ADDQ AX, DI
|
||||
ADCQ DX, SI
|
||||
|
||||
// r0 += 19×a3×b2
|
||||
MOVQ 24(CX), AX
|
||||
IMUL3Q $0x13, AX, AX
|
||||
MULQ 16(BX)
|
||||
ADDQ AX, DI
|
||||
ADCQ DX, SI
|
||||
|
||||
// r0 += 19×a4×b1
|
||||
MOVQ 32(CX), AX
|
||||
IMUL3Q $0x13, AX, AX
|
||||
MULQ 8(BX)
|
||||
ADDQ AX, DI
|
||||
ADCQ DX, SI
|
||||
|
||||
// r1 = a0×b1
|
||||
MOVQ (CX), AX
|
||||
MULQ 8(BX)
|
||||
MOVQ AX, R9
|
||||
MOVQ DX, R8
|
||||
|
||||
// r1 += a1×b0
|
||||
MOVQ 8(CX), AX
|
||||
MULQ (BX)
|
||||
ADDQ AX, R9
|
||||
ADCQ DX, R8
|
||||
|
||||
// r1 += 19×a2×b4
|
||||
MOVQ 16(CX), AX
|
||||
IMUL3Q $0x13, AX, AX
|
||||
MULQ 32(BX)
|
||||
ADDQ AX, R9
|
||||
ADCQ DX, R8
|
||||
|
||||
// r1 += 19×a3×b3
|
||||
MOVQ 24(CX), AX
|
||||
IMUL3Q $0x13, AX, AX
|
||||
MULQ 24(BX)
|
||||
ADDQ AX, R9
|
||||
ADCQ DX, R8
|
||||
|
||||
// r1 += 19×a4×b2
|
||||
MOVQ 32(CX), AX
|
||||
IMUL3Q $0x13, AX, AX
|
||||
MULQ 16(BX)
|
||||
ADDQ AX, R9
|
||||
ADCQ DX, R8
|
||||
|
||||
// r2 = a0×b2
|
||||
MOVQ (CX), AX
|
||||
MULQ 16(BX)
|
||||
MOVQ AX, R11
|
||||
MOVQ DX, R10
|
||||
|
||||
// r2 += a1×b1
|
||||
MOVQ 8(CX), AX
|
||||
MULQ 8(BX)
|
||||
ADDQ AX, R11
|
||||
ADCQ DX, R10
|
||||
|
||||
// r2 += a2×b0
|
||||
MOVQ 16(CX), AX
|
||||
MULQ (BX)
|
||||
ADDQ AX, R11
|
||||
ADCQ DX, R10
|
||||
|
||||
// r2 += 19×a3×b4
|
||||
MOVQ 24(CX), AX
|
||||
IMUL3Q $0x13, AX, AX
|
||||
MULQ 32(BX)
|
||||
ADDQ AX, R11
|
||||
ADCQ DX, R10
|
||||
|
||||
// r2 += 19×a4×b3
|
||||
MOVQ 32(CX), AX
|
||||
IMUL3Q $0x13, AX, AX
|
||||
MULQ 24(BX)
|
||||
ADDQ AX, R11
|
||||
ADCQ DX, R10
|
||||
|
||||
// r3 = a0×b3
|
||||
MOVQ (CX), AX
|
||||
MULQ 24(BX)
|
||||
MOVQ AX, R13
|
||||
MOVQ DX, R12
|
||||
|
||||
// r3 += a1×b2
|
||||
MOVQ 8(CX), AX
|
||||
MULQ 16(BX)
|
||||
ADDQ AX, R13
|
||||
ADCQ DX, R12
|
||||
|
||||
// r3 += a2×b1
|
||||
MOVQ 16(CX), AX
|
||||
MULQ 8(BX)
|
||||
ADDQ AX, R13
|
||||
ADCQ DX, R12
|
||||
|
||||
// r3 += a3×b0
|
||||
MOVQ 24(CX), AX
|
||||
MULQ (BX)
|
||||
ADDQ AX, R13
|
||||
ADCQ DX, R12
|
||||
|
||||
// r3 += 19×a4×b4
|
||||
MOVQ 32(CX), AX
|
||||
IMUL3Q $0x13, AX, AX
|
||||
MULQ 32(BX)
|
||||
ADDQ AX, R13
|
||||
ADCQ DX, R12
|
||||
|
||||
// r4 = a0×b4
|
||||
MOVQ (CX), AX
|
||||
MULQ 32(BX)
|
||||
MOVQ AX, R15
|
||||
MOVQ DX, R14
|
||||
|
||||
// r4 += a1×b3
|
||||
MOVQ 8(CX), AX
|
||||
MULQ 24(BX)
|
||||
ADDQ AX, R15
|
||||
ADCQ DX, R14
|
||||
|
||||
// r4 += a2×b2
|
||||
MOVQ 16(CX), AX
|
||||
MULQ 16(BX)
|
||||
ADDQ AX, R15
|
||||
ADCQ DX, R14
|
||||
|
||||
// r4 += a3×b1
|
||||
MOVQ 24(CX), AX
|
||||
MULQ 8(BX)
|
||||
ADDQ AX, R15
|
||||
ADCQ DX, R14
|
||||
|
||||
// r4 += a4×b0
|
||||
MOVQ 32(CX), AX
|
||||
MULQ (BX)
|
||||
ADDQ AX, R15
|
||||
ADCQ DX, R14
|
||||
|
||||
// First reduction chain
|
||||
MOVQ $0x0007ffffffffffff, AX
|
||||
SHLQ $0x0d, DI, SI
|
||||
SHLQ $0x0d, R9, R8
|
||||
SHLQ $0x0d, R11, R10
|
||||
SHLQ $0x0d, R13, R12
|
||||
SHLQ $0x0d, R15, R14
|
||||
ANDQ AX, DI
|
||||
IMUL3Q $0x13, R14, R14
|
||||
ADDQ R14, DI
|
||||
ANDQ AX, R9
|
||||
ADDQ SI, R9
|
||||
ANDQ AX, R11
|
||||
ADDQ R8, R11
|
||||
ANDQ AX, R13
|
||||
ADDQ R10, R13
|
||||
ANDQ AX, R15
|
||||
ADDQ R12, R15
|
||||
|
||||
// Second reduction chain (carryPropagate)
|
||||
MOVQ DI, SI
|
||||
SHRQ $0x33, SI
|
||||
MOVQ R9, R8
|
||||
SHRQ $0x33, R8
|
||||
MOVQ R11, R10
|
||||
SHRQ $0x33, R10
|
||||
MOVQ R13, R12
|
||||
SHRQ $0x33, R12
|
||||
MOVQ R15, R14
|
||||
SHRQ $0x33, R14
|
||||
ANDQ AX, DI
|
||||
IMUL3Q $0x13, R14, R14
|
||||
ADDQ R14, DI
|
||||
ANDQ AX, R9
|
||||
ADDQ SI, R9
|
||||
ANDQ AX, R11
|
||||
ADDQ R8, R11
|
||||
ANDQ AX, R13
|
||||
ADDQ R10, R13
|
||||
ANDQ AX, R15
|
||||
ADDQ R12, R15
|
||||
|
||||
// Store output
|
||||
MOVQ out+0(FP), AX
|
||||
MOVQ DI, (AX)
|
||||
MOVQ R9, 8(AX)
|
||||
MOVQ R11, 16(AX)
|
||||
MOVQ R13, 24(AX)
|
||||
MOVQ R15, 32(AX)
|
||||
RET
|
||||
|
||||
// func feSquare(out *Element, a *Element)
|
||||
TEXT ·feSquare(SB), NOSPLIT, $0-16
|
||||
MOVQ a+8(FP), CX
|
||||
|
||||
// r0 = l0×l0
|
||||
MOVQ (CX), AX
|
||||
MULQ (CX)
|
||||
MOVQ AX, SI
|
||||
MOVQ DX, BX
|
||||
|
||||
// r0 += 38×l1×l4
|
||||
MOVQ 8(CX), AX
|
||||
IMUL3Q $0x26, AX, AX
|
||||
MULQ 32(CX)
|
||||
ADDQ AX, SI
|
||||
ADCQ DX, BX
|
||||
|
||||
// r0 += 38×l2×l3
|
||||
MOVQ 16(CX), AX
|
||||
IMUL3Q $0x26, AX, AX
|
||||
MULQ 24(CX)
|
||||
ADDQ AX, SI
|
||||
ADCQ DX, BX
|
||||
|
||||
// r1 = 2×l0×l1
|
||||
MOVQ (CX), AX
|
||||
SHLQ $0x01, AX
|
||||
MULQ 8(CX)
|
||||
MOVQ AX, R8
|
||||
MOVQ DX, DI
|
||||
|
||||
// r1 += 38×l2×l4
|
||||
MOVQ 16(CX), AX
|
||||
IMUL3Q $0x26, AX, AX
|
||||
MULQ 32(CX)
|
||||
ADDQ AX, R8
|
||||
ADCQ DX, DI
|
||||
|
||||
// r1 += 19×l3×l3
|
||||
MOVQ 24(CX), AX
|
||||
IMUL3Q $0x13, AX, AX
|
||||
MULQ 24(CX)
|
||||
ADDQ AX, R8
|
||||
ADCQ DX, DI
|
||||
|
||||
// r2 = 2×l0×l2
|
||||
MOVQ (CX), AX
|
||||
SHLQ $0x01, AX
|
||||
MULQ 16(CX)
|
||||
MOVQ AX, R10
|
||||
MOVQ DX, R9
|
||||
|
||||
// r2 += l1×l1
|
||||
MOVQ 8(CX), AX
|
||||
MULQ 8(CX)
|
||||
ADDQ AX, R10
|
||||
ADCQ DX, R9
|
||||
|
||||
// r2 += 38×l3×l4
|
||||
MOVQ 24(CX), AX
|
||||
IMUL3Q $0x26, AX, AX
|
||||
MULQ 32(CX)
|
||||
ADDQ AX, R10
|
||||
ADCQ DX, R9
|
||||
|
||||
// r3 = 2×l0×l3
|
||||
MOVQ (CX), AX
|
||||
SHLQ $0x01, AX
|
||||
MULQ 24(CX)
|
||||
MOVQ AX, R12
|
||||
MOVQ DX, R11
|
||||
|
||||
// r3 += 2×l1×l2
|
||||
MOVQ 8(CX), AX
|
||||
IMUL3Q $0x02, AX, AX
|
||||
MULQ 16(CX)
|
||||
ADDQ AX, R12
|
||||
ADCQ DX, R11
|
||||
|
||||
// r3 += 19×l4×l4
|
||||
MOVQ 32(CX), AX
|
||||
IMUL3Q $0x13, AX, AX
|
||||
MULQ 32(CX)
|
||||
ADDQ AX, R12
|
||||
ADCQ DX, R11
|
||||
|
||||
// r4 = 2×l0×l4
|
||||
MOVQ (CX), AX
|
||||
SHLQ $0x01, AX
|
||||
MULQ 32(CX)
|
||||
MOVQ AX, R14
|
||||
MOVQ DX, R13
|
||||
|
||||
// r4 += 2×l1×l3
|
||||
MOVQ 8(CX), AX
|
||||
IMUL3Q $0x02, AX, AX
|
||||
MULQ 24(CX)
|
||||
ADDQ AX, R14
|
||||
ADCQ DX, R13
|
||||
|
||||
// r4 += l2×l2
|
||||
MOVQ 16(CX), AX
|
||||
MULQ 16(CX)
|
||||
ADDQ AX, R14
|
||||
ADCQ DX, R13
|
||||
|
||||
// First reduction chain
|
||||
MOVQ $0x0007ffffffffffff, AX
|
||||
SHLQ $0x0d, SI, BX
|
||||
SHLQ $0x0d, R8, DI
|
||||
SHLQ $0x0d, R10, R9
|
||||
SHLQ $0x0d, R12, R11
|
||||
SHLQ $0x0d, R14, R13
|
||||
ANDQ AX, SI
|
||||
IMUL3Q $0x13, R13, R13
|
||||
ADDQ R13, SI
|
||||
ANDQ AX, R8
|
||||
ADDQ BX, R8
|
||||
ANDQ AX, R10
|
||||
ADDQ DI, R10
|
||||
ANDQ AX, R12
|
||||
ADDQ R9, R12
|
||||
ANDQ AX, R14
|
||||
ADDQ R11, R14
|
||||
|
||||
// Second reduction chain (carryPropagate)
|
||||
MOVQ SI, BX
|
||||
SHRQ $0x33, BX
|
||||
MOVQ R8, DI
|
||||
SHRQ $0x33, DI
|
||||
MOVQ R10, R9
|
||||
SHRQ $0x33, R9
|
||||
MOVQ R12, R11
|
||||
SHRQ $0x33, R11
|
||||
MOVQ R14, R13
|
||||
SHRQ $0x33, R13
|
||||
ANDQ AX, SI
|
||||
IMUL3Q $0x13, R13, R13
|
||||
ADDQ R13, SI
|
||||
ANDQ AX, R8
|
||||
ADDQ BX, R8
|
||||
ANDQ AX, R10
|
||||
ADDQ DI, R10
|
||||
ANDQ AX, R12
|
||||
ADDQ R9, R12
|
||||
ANDQ AX, R14
|
||||
ADDQ R11, R14
|
||||
|
||||
// Store output
|
||||
MOVQ out+0(FP), AX
|
||||
MOVQ SI, (AX)
|
||||
MOVQ R8, 8(AX)
|
||||
MOVQ R10, 16(AX)
|
||||
MOVQ R12, 24(AX)
|
||||
MOVQ R14, 32(AX)
|
||||
RET
|
11
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/internal/field/fe_amd64_noasm.go
generated
vendored
Normal file
11
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/internal/field/fe_amd64_noasm.go
generated
vendored
Normal file
|
@ -0,0 +1,11 @@
|
|||
// Copyright (c) 2019 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
//go:build !amd64 || !gc || purego
|
||||
|
||||
package field
|
||||
|
||||
func feMul(v, x, y *Element) { feMulGeneric(v, x, y) }
|
||||
|
||||
func feSquare(v, x *Element) { feSquareGeneric(v, x) }
|
15
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/internal/field/fe_arm64.go
generated
vendored
Normal file
15
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/internal/field/fe_arm64.go
generated
vendored
Normal file
|
@ -0,0 +1,15 @@
|
|||
// Copyright (c) 2020 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
//go:build arm64 && gc && !purego
|
||||
|
||||
package field
|
||||
|
||||
//go:noescape
|
||||
func carryPropagate(v *Element)
|
||||
|
||||
func (v *Element) carryPropagate() *Element {
|
||||
carryPropagate(v)
|
||||
return v
|
||||
}
|
42
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/internal/field/fe_arm64.s
generated
vendored
Normal file
42
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/internal/field/fe_arm64.s
generated
vendored
Normal file
|
@ -0,0 +1,42 @@
|
|||
// Copyright (c) 2020 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
//go:build arm64 && gc && !purego
|
||||
|
||||
#include "textflag.h"
|
||||
|
||||
// carryPropagate works exactly like carryPropagateGeneric and uses the
|
||||
// same AND, ADD, and LSR+MADD instructions emitted by the compiler, but
|
||||
// avoids loading R0-R4 twice and uses LDP and STP.
|
||||
//
|
||||
// See https://golang.org/issues/43145 for the main compiler issue.
|
||||
//
|
||||
// func carryPropagate(v *Element)
|
||||
TEXT ·carryPropagate(SB),NOFRAME|NOSPLIT,$0-8
|
||||
MOVD v+0(FP), R20
|
||||
|
||||
LDP 0(R20), (R0, R1)
|
||||
LDP 16(R20), (R2, R3)
|
||||
MOVD 32(R20), R4
|
||||
|
||||
AND $0x7ffffffffffff, R0, R10
|
||||
AND $0x7ffffffffffff, R1, R11
|
||||
AND $0x7ffffffffffff, R2, R12
|
||||
AND $0x7ffffffffffff, R3, R13
|
||||
AND $0x7ffffffffffff, R4, R14
|
||||
|
||||
ADD R0>>51, R11, R11
|
||||
ADD R1>>51, R12, R12
|
||||
ADD R2>>51, R13, R13
|
||||
ADD R3>>51, R14, R14
|
||||
// R4>>51 * 19 + R10 -> R10
|
||||
LSR $51, R4, R21
|
||||
MOVD $19, R22
|
||||
MADD R22, R10, R21, R10
|
||||
|
||||
STP (R10, R11), 0(R20)
|
||||
STP (R12, R13), 16(R20)
|
||||
MOVD R14, 32(R20)
|
||||
|
||||
RET
|
11
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/internal/field/fe_arm64_noasm.go
generated
vendored
Normal file
11
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/internal/field/fe_arm64_noasm.go
generated
vendored
Normal file
|
@ -0,0 +1,11 @@
|
|||
// Copyright (c) 2021 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
//go:build !arm64 || !gc || purego
|
||||
|
||||
package field
|
||||
|
||||
func (v *Element) carryPropagate() *Element {
|
||||
return v.carryPropagateGeneric()
|
||||
}
|
264
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/internal/field/fe_generic.go
generated
vendored
Normal file
264
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/internal/field/fe_generic.go
generated
vendored
Normal file
|
@ -0,0 +1,264 @@
|
|||
// Copyright (c) 2017 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package field
|
||||
|
||||
import "math/bits"
|
||||
|
||||
// uint128 holds a 128-bit number as two 64-bit limbs, for use with the
|
||||
// bits.Mul64 and bits.Add64 intrinsics.
|
||||
type uint128 struct {
|
||||
lo, hi uint64
|
||||
}
|
||||
|
||||
// mul64 returns a * b.
|
||||
func mul64(a, b uint64) uint128 {
|
||||
hi, lo := bits.Mul64(a, b)
|
||||
return uint128{lo, hi}
|
||||
}
|
||||
|
||||
// addMul64 returns v + a * b.
|
||||
func addMul64(v uint128, a, b uint64) uint128 {
|
||||
hi, lo := bits.Mul64(a, b)
|
||||
lo, c := bits.Add64(lo, v.lo, 0)
|
||||
hi, _ = bits.Add64(hi, v.hi, c)
|
||||
return uint128{lo, hi}
|
||||
}
|
||||
|
||||
// shiftRightBy51 returns a >> 51. a is assumed to be at most 115 bits.
|
||||
func shiftRightBy51(a uint128) uint64 {
|
||||
return (a.hi << (64 - 51)) | (a.lo >> 51)
|
||||
}
|
||||
|
||||
func feMulGeneric(v, a, b *Element) {
|
||||
a0 := a.l0
|
||||
a1 := a.l1
|
||||
a2 := a.l2
|
||||
a3 := a.l3
|
||||
a4 := a.l4
|
||||
|
||||
b0 := b.l0
|
||||
b1 := b.l1
|
||||
b2 := b.l2
|
||||
b3 := b.l3
|
||||
b4 := b.l4
|
||||
|
||||
// Limb multiplication works like pen-and-paper columnar multiplication, but
|
||||
// with 51-bit limbs instead of digits.
|
||||
//
|
||||
// a4 a3 a2 a1 a0 x
|
||||
// b4 b3 b2 b1 b0 =
|
||||
// ------------------------
|
||||
// a4b0 a3b0 a2b0 a1b0 a0b0 +
|
||||
// a4b1 a3b1 a2b1 a1b1 a0b1 +
|
||||
// a4b2 a3b2 a2b2 a1b2 a0b2 +
|
||||
// a4b3 a3b3 a2b3 a1b3 a0b3 +
|
||||
// a4b4 a3b4 a2b4 a1b4 a0b4 =
|
||||
// ----------------------------------------------
|
||||
// r8 r7 r6 r5 r4 r3 r2 r1 r0
|
||||
//
|
||||
// We can then use the reduction identity (a * 2²⁵⁵ + b = a * 19 + b) to
|
||||
// reduce the limbs that would overflow 255 bits. r5 * 2²⁵⁵ becomes 19 * r5,
|
||||
// r6 * 2³⁰⁶ becomes 19 * r6 * 2⁵¹, etc.
|
||||
//
|
||||
// Reduction can be carried out simultaneously to multiplication. For
|
||||
// example, we do not compute r5: whenever the result of a multiplication
|
||||
// belongs to r5, like a1b4, we multiply it by 19 and add the result to r0.
|
||||
//
|
||||
// a4b0 a3b0 a2b0 a1b0 a0b0 +
|
||||
// a3b1 a2b1 a1b1 a0b1 19×a4b1 +
|
||||
// a2b2 a1b2 a0b2 19×a4b2 19×a3b2 +
|
||||
// a1b3 a0b3 19×a4b3 19×a3b3 19×a2b3 +
|
||||
// a0b4 19×a4b4 19×a3b4 19×a2b4 19×a1b4 =
|
||||
// --------------------------------------
|
||||
// r4 r3 r2 r1 r0
|
||||
//
|
||||
// Finally we add up the columns into wide, overlapping limbs.
|
||||
|
||||
a1_19 := a1 * 19
|
||||
a2_19 := a2 * 19
|
||||
a3_19 := a3 * 19
|
||||
a4_19 := a4 * 19
|
||||
|
||||
// r0 = a0×b0 + 19×(a1×b4 + a2×b3 + a3×b2 + a4×b1)
|
||||
r0 := mul64(a0, b0)
|
||||
r0 = addMul64(r0, a1_19, b4)
|
||||
r0 = addMul64(r0, a2_19, b3)
|
||||
r0 = addMul64(r0, a3_19, b2)
|
||||
r0 = addMul64(r0, a4_19, b1)
|
||||
|
||||
// r1 = a0×b1 + a1×b0 + 19×(a2×b4 + a3×b3 + a4×b2)
|
||||
r1 := mul64(a0, b1)
|
||||
r1 = addMul64(r1, a1, b0)
|
||||
r1 = addMul64(r1, a2_19, b4)
|
||||
r1 = addMul64(r1, a3_19, b3)
|
||||
r1 = addMul64(r1, a4_19, b2)
|
||||
|
||||
// r2 = a0×b2 + a1×b1 + a2×b0 + 19×(a3×b4 + a4×b3)
|
||||
r2 := mul64(a0, b2)
|
||||
r2 = addMul64(r2, a1, b1)
|
||||
r2 = addMul64(r2, a2, b0)
|
||||
r2 = addMul64(r2, a3_19, b4)
|
||||
r2 = addMul64(r2, a4_19, b3)
|
||||
|
||||
// r3 = a0×b3 + a1×b2 + a2×b1 + a3×b0 + 19×a4×b4
|
||||
r3 := mul64(a0, b3)
|
||||
r3 = addMul64(r3, a1, b2)
|
||||
r3 = addMul64(r3, a2, b1)
|
||||
r3 = addMul64(r3, a3, b0)
|
||||
r3 = addMul64(r3, a4_19, b4)
|
||||
|
||||
// r4 = a0×b4 + a1×b3 + a2×b2 + a3×b1 + a4×b0
|
||||
r4 := mul64(a0, b4)
|
||||
r4 = addMul64(r4, a1, b3)
|
||||
r4 = addMul64(r4, a2, b2)
|
||||
r4 = addMul64(r4, a3, b1)
|
||||
r4 = addMul64(r4, a4, b0)
|
||||
|
||||
// After the multiplication, we need to reduce (carry) the five coefficients
|
||||
// to obtain a result with limbs that are at most slightly larger than 2⁵¹,
|
||||
// to respect the Element invariant.
|
||||
//
|
||||
// Overall, the reduction works the same as carryPropagate, except with
|
||||
// wider inputs: we take the carry for each coefficient by shifting it right
|
||||
// by 51, and add it to the limb above it. The top carry is multiplied by 19
|
||||
// according to the reduction identity and added to the lowest limb.
|
||||
//
|
||||
// The largest coefficient (r0) will be at most 111 bits, which guarantees
|
||||
// that all carries are at most 111 - 51 = 60 bits, which fits in a uint64.
|
||||
//
|
||||
// r0 = a0×b0 + 19×(a1×b4 + a2×b3 + a3×b2 + a4×b1)
|
||||
// r0 < 2⁵²×2⁵² + 19×(2⁵²×2⁵² + 2⁵²×2⁵² + 2⁵²×2⁵² + 2⁵²×2⁵²)
|
||||
// r0 < (1 + 19 × 4) × 2⁵² × 2⁵²
|
||||
// r0 < 2⁷ × 2⁵² × 2⁵²
|
||||
// r0 < 2¹¹¹
|
||||
//
|
||||
// Moreover, the top coefficient (r4) is at most 107 bits, so c4 is at most
|
||||
// 56 bits, and c4 * 19 is at most 61 bits, which again fits in a uint64 and
|
||||
// allows us to easily apply the reduction identity.
|
||||
//
|
||||
// r4 = a0×b4 + a1×b3 + a2×b2 + a3×b1 + a4×b0
|
||||
// r4 < 5 × 2⁵² × 2⁵²
|
||||
// r4 < 2¹⁰⁷
|
||||
//
|
||||
|
||||
c0 := shiftRightBy51(r0)
|
||||
c1 := shiftRightBy51(r1)
|
||||
c2 := shiftRightBy51(r2)
|
||||
c3 := shiftRightBy51(r3)
|
||||
c4 := shiftRightBy51(r4)
|
||||
|
||||
rr0 := r0.lo&maskLow51Bits + c4*19
|
||||
rr1 := r1.lo&maskLow51Bits + c0
|
||||
rr2 := r2.lo&maskLow51Bits + c1
|
||||
rr3 := r3.lo&maskLow51Bits + c2
|
||||
rr4 := r4.lo&maskLow51Bits + c3
|
||||
|
||||
// Now all coefficients fit into 64-bit registers but are still too large to
|
||||
// be passed around as a Element. We therefore do one last carry chain,
|
||||
// where the carries will be small enough to fit in the wiggle room above 2⁵¹.
|
||||
*v = Element{rr0, rr1, rr2, rr3, rr4}
|
||||
v.carryPropagate()
|
||||
}
|
||||
|
||||
func feSquareGeneric(v, a *Element) {
|
||||
l0 := a.l0
|
||||
l1 := a.l1
|
||||
l2 := a.l2
|
||||
l3 := a.l3
|
||||
l4 := a.l4
|
||||
|
||||
// Squaring works precisely like multiplication above, but thanks to its
|
||||
// symmetry we get to group a few terms together.
|
||||
//
|
||||
// l4 l3 l2 l1 l0 x
|
||||
// l4 l3 l2 l1 l0 =
|
||||
// ------------------------
|
||||
// l4l0 l3l0 l2l0 l1l0 l0l0 +
|
||||
// l4l1 l3l1 l2l1 l1l1 l0l1 +
|
||||
// l4l2 l3l2 l2l2 l1l2 l0l2 +
|
||||
// l4l3 l3l3 l2l3 l1l3 l0l3 +
|
||||
// l4l4 l3l4 l2l4 l1l4 l0l4 =
|
||||
// ----------------------------------------------
|
||||
// r8 r7 r6 r5 r4 r3 r2 r1 r0
|
||||
//
|
||||
// l4l0 l3l0 l2l0 l1l0 l0l0 +
|
||||
// l3l1 l2l1 l1l1 l0l1 19×l4l1 +
|
||||
// l2l2 l1l2 l0l2 19×l4l2 19×l3l2 +
|
||||
// l1l3 l0l3 19×l4l3 19×l3l3 19×l2l3 +
|
||||
// l0l4 19×l4l4 19×l3l4 19×l2l4 19×l1l4 =
|
||||
// --------------------------------------
|
||||
// r4 r3 r2 r1 r0
|
||||
//
|
||||
// With precomputed 2×, 19×, and 2×19× terms, we can compute each limb with
|
||||
// only three Mul64 and four Add64, instead of five and eight.
|
||||
|
||||
l0_2 := l0 * 2
|
||||
l1_2 := l1 * 2
|
||||
|
||||
l1_38 := l1 * 38
|
||||
l2_38 := l2 * 38
|
||||
l3_38 := l3 * 38
|
||||
|
||||
l3_19 := l3 * 19
|
||||
l4_19 := l4 * 19
|
||||
|
||||
// r0 = l0×l0 + 19×(l1×l4 + l2×l3 + l3×l2 + l4×l1) = l0×l0 + 19×2×(l1×l4 + l2×l3)
|
||||
r0 := mul64(l0, l0)
|
||||
r0 = addMul64(r0, l1_38, l4)
|
||||
r0 = addMul64(r0, l2_38, l3)
|
||||
|
||||
// r1 = l0×l1 + l1×l0 + 19×(l2×l4 + l3×l3 + l4×l2) = 2×l0×l1 + 19×2×l2×l4 + 19×l3×l3
|
||||
r1 := mul64(l0_2, l1)
|
||||
r1 = addMul64(r1, l2_38, l4)
|
||||
r1 = addMul64(r1, l3_19, l3)
|
||||
|
||||
// r2 = l0×l2 + l1×l1 + l2×l0 + 19×(l3×l4 + l4×l3) = 2×l0×l2 + l1×l1 + 19×2×l3×l4
|
||||
r2 := mul64(l0_2, l2)
|
||||
r2 = addMul64(r2, l1, l1)
|
||||
r2 = addMul64(r2, l3_38, l4)
|
||||
|
||||
// r3 = l0×l3 + l1×l2 + l2×l1 + l3×l0 + 19×l4×l4 = 2×l0×l3 + 2×l1×l2 + 19×l4×l4
|
||||
r3 := mul64(l0_2, l3)
|
||||
r3 = addMul64(r3, l1_2, l2)
|
||||
r3 = addMul64(r3, l4_19, l4)
|
||||
|
||||
// r4 = l0×l4 + l1×l3 + l2×l2 + l3×l1 + l4×l0 = 2×l0×l4 + 2×l1×l3 + l2×l2
|
||||
r4 := mul64(l0_2, l4)
|
||||
r4 = addMul64(r4, l1_2, l3)
|
||||
r4 = addMul64(r4, l2, l2)
|
||||
|
||||
c0 := shiftRightBy51(r0)
|
||||
c1 := shiftRightBy51(r1)
|
||||
c2 := shiftRightBy51(r2)
|
||||
c3 := shiftRightBy51(r3)
|
||||
c4 := shiftRightBy51(r4)
|
||||
|
||||
rr0 := r0.lo&maskLow51Bits + c4*19
|
||||
rr1 := r1.lo&maskLow51Bits + c0
|
||||
rr2 := r2.lo&maskLow51Bits + c1
|
||||
rr3 := r3.lo&maskLow51Bits + c2
|
||||
rr4 := r4.lo&maskLow51Bits + c3
|
||||
|
||||
*v = Element{rr0, rr1, rr2, rr3, rr4}
|
||||
v.carryPropagate()
|
||||
}
|
||||
|
||||
// carryPropagateGeneric brings the limbs below 52 bits by applying the reduction
|
||||
// identity (a * 2²⁵⁵ + b = a * 19 + b) to the l4 carry. TODO inline
|
||||
func (v *Element) carryPropagateGeneric() *Element {
|
||||
c0 := v.l0 >> 51
|
||||
c1 := v.l1 >> 51
|
||||
c2 := v.l2 >> 51
|
||||
c3 := v.l3 >> 51
|
||||
c4 := v.l4 >> 51
|
||||
|
||||
v.l0 = v.l0&maskLow51Bits + c4*19
|
||||
v.l1 = v.l1&maskLow51Bits + c0
|
||||
v.l2 = v.l2&maskLow51Bits + c1
|
||||
v.l3 = v.l3&maskLow51Bits + c2
|
||||
v.l4 = v.l4&maskLow51Bits + c3
|
||||
|
||||
return v
|
||||
}
|
1
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/internal/field/sync.checkpoint
generated
vendored
Normal file
1
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/internal/field/sync.checkpoint
generated
vendored
Normal file
|
@ -0,0 +1 @@
|
|||
b0c49ae9f59d233526f8934262c5bbbe14d4358d
|
19
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/internal/field/sync.sh
generated
vendored
Normal file
19
sourcecode/gobalance/vendor/golang.org/x/crypto/curve25519/internal/field/sync.sh
generated
vendored
Normal file
|
@ -0,0 +1,19 @@
|
|||
#! /bin/bash
|
||||
set -euo pipefail
|
||||
|
||||
cd "$(git rev-parse --show-toplevel)"
|
||||
|
||||
STD_PATH=src/crypto/ed25519/internal/edwards25519/field
|
||||
LOCAL_PATH=curve25519/internal/field
|
||||
LAST_SYNC_REF=$(cat $LOCAL_PATH/sync.checkpoint)
|
||||
|
||||
git fetch https://go.googlesource.com/go master
|
||||
|
||||
if git diff --quiet $LAST_SYNC_REF:$STD_PATH FETCH_HEAD:$STD_PATH; then
|
||||
echo "No changes."
|
||||
else
|
||||
NEW_REF=$(git rev-parse FETCH_HEAD | tee $LOCAL_PATH/sync.checkpoint)
|
||||
echo "Applying changes from $LAST_SYNC_REF to $NEW_REF..."
|
||||
git diff $LAST_SYNC_REF:$STD_PATH FETCH_HEAD:$STD_PATH | \
|
||||
git apply -3 --directory=$LOCAL_PATH
|
||||
fi
|
62
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/doc.go
generated
vendored
Normal file
62
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/doc.go
generated
vendored
Normal file
|
@ -0,0 +1,62 @@
|
|||
// Copyright 2014 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package sha3 implements the SHA-3 fixed-output-length hash functions and
|
||||
// the SHAKE variable-output-length hash functions defined by FIPS-202.
|
||||
//
|
||||
// Both types of hash function use the "sponge" construction and the Keccak
|
||||
// permutation. For a detailed specification see http://keccak.noekeon.org/
|
||||
//
|
||||
// # Guidance
|
||||
//
|
||||
// If you aren't sure what function you need, use SHAKE256 with at least 64
|
||||
// bytes of output. The SHAKE instances are faster than the SHA3 instances;
|
||||
// the latter have to allocate memory to conform to the hash.Hash interface.
|
||||
//
|
||||
// If you need a secret-key MAC (message authentication code), prepend the
|
||||
// secret key to the input, hash with SHAKE256 and read at least 32 bytes of
|
||||
// output.
|
||||
//
|
||||
// # Security strengths
|
||||
//
|
||||
// The SHA3-x (x equals 224, 256, 384, or 512) functions have a security
|
||||
// strength against preimage attacks of x bits. Since they only produce "x"
|
||||
// bits of output, their collision-resistance is only "x/2" bits.
|
||||
//
|
||||
// The SHAKE-256 and -128 functions have a generic security strength of 256 and
|
||||
// 128 bits against all attacks, provided that at least 2x bits of their output
|
||||
// is used. Requesting more than 64 or 32 bytes of output, respectively, does
|
||||
// not increase the collision-resistance of the SHAKE functions.
|
||||
//
|
||||
// # The sponge construction
|
||||
//
|
||||
// A sponge builds a pseudo-random function from a public pseudo-random
|
||||
// permutation, by applying the permutation to a state of "rate + capacity"
|
||||
// bytes, but hiding "capacity" of the bytes.
|
||||
//
|
||||
// A sponge starts out with a zero state. To hash an input using a sponge, up
|
||||
// to "rate" bytes of the input are XORed into the sponge's state. The sponge
|
||||
// is then "full" and the permutation is applied to "empty" it. This process is
|
||||
// repeated until all the input has been "absorbed". The input is then padded.
|
||||
// The digest is "squeezed" from the sponge in the same way, except that output
|
||||
// is copied out instead of input being XORed in.
|
||||
//
|
||||
// A sponge is parameterized by its generic security strength, which is equal
|
||||
// to half its capacity; capacity + rate is equal to the permutation's width.
|
||||
// Since the KeccakF-1600 permutation is 1600 bits (200 bytes) wide, this means
|
||||
// that the security strength of a sponge instance is equal to (1600 - bitrate) / 2.
|
||||
//
|
||||
// # Recommendations
|
||||
//
|
||||
// The SHAKE functions are recommended for most new uses. They can produce
|
||||
// output of arbitrary length. SHAKE256, with an output length of at least
|
||||
// 64 bytes, provides 256-bit security against all attacks. The Keccak team
|
||||
// recommends it for most applications upgrading from SHA2-512. (NIST chose a
|
||||
// much stronger, but much slower, sponge instance for SHA3-512.)
|
||||
//
|
||||
// The SHA-3 functions are "drop-in" replacements for the SHA-2 functions.
|
||||
// They produce output of the same length, with the same security strengths
|
||||
// against all attacks. This means, in particular, that SHA3-256 only has
|
||||
// 128-bit collision resistance, because its output length is 32 bytes.
|
||||
package sha3 // import "golang.org/x/crypto/sha3"
|
97
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/hashes.go
generated
vendored
Normal file
97
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/hashes.go
generated
vendored
Normal file
|
@ -0,0 +1,97 @@
|
|||
// Copyright 2014 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package sha3
|
||||
|
||||
// This file provides functions for creating instances of the SHA-3
|
||||
// and SHAKE hash functions, as well as utility functions for hashing
|
||||
// bytes.
|
||||
|
||||
import (
|
||||
"hash"
|
||||
)
|
||||
|
||||
// New224 creates a new SHA3-224 hash.
|
||||
// Its generic security strength is 224 bits against preimage attacks,
|
||||
// and 112 bits against collision attacks.
|
||||
func New224() hash.Hash {
|
||||
if h := new224Asm(); h != nil {
|
||||
return h
|
||||
}
|
||||
return &state{rate: 144, outputLen: 28, dsbyte: 0x06}
|
||||
}
|
||||
|
||||
// New256 creates a new SHA3-256 hash.
|
||||
// Its generic security strength is 256 bits against preimage attacks,
|
||||
// and 128 bits against collision attacks.
|
||||
func New256() hash.Hash {
|
||||
if h := new256Asm(); h != nil {
|
||||
return h
|
||||
}
|
||||
return &state{rate: 136, outputLen: 32, dsbyte: 0x06}
|
||||
}
|
||||
|
||||
// New384 creates a new SHA3-384 hash.
|
||||
// Its generic security strength is 384 bits against preimage attacks,
|
||||
// and 192 bits against collision attacks.
|
||||
func New384() hash.Hash {
|
||||
if h := new384Asm(); h != nil {
|
||||
return h
|
||||
}
|
||||
return &state{rate: 104, outputLen: 48, dsbyte: 0x06}
|
||||
}
|
||||
|
||||
// New512 creates a new SHA3-512 hash.
|
||||
// Its generic security strength is 512 bits against preimage attacks,
|
||||
// and 256 bits against collision attacks.
|
||||
func New512() hash.Hash {
|
||||
if h := new512Asm(); h != nil {
|
||||
return h
|
||||
}
|
||||
return &state{rate: 72, outputLen: 64, dsbyte: 0x06}
|
||||
}
|
||||
|
||||
// NewLegacyKeccak256 creates a new Keccak-256 hash.
|
||||
//
|
||||
// Only use this function if you require compatibility with an existing cryptosystem
|
||||
// that uses non-standard padding. All other users should use New256 instead.
|
||||
func NewLegacyKeccak256() hash.Hash { return &state{rate: 136, outputLen: 32, dsbyte: 0x01} }
|
||||
|
||||
// NewLegacyKeccak512 creates a new Keccak-512 hash.
|
||||
//
|
||||
// Only use this function if you require compatibility with an existing cryptosystem
|
||||
// that uses non-standard padding. All other users should use New512 instead.
|
||||
func NewLegacyKeccak512() hash.Hash { return &state{rate: 72, outputLen: 64, dsbyte: 0x01} }
|
||||
|
||||
// Sum224 returns the SHA3-224 digest of the data.
|
||||
func Sum224(data []byte) (digest [28]byte) {
|
||||
h := New224()
|
||||
h.Write(data)
|
||||
h.Sum(digest[:0])
|
||||
return
|
||||
}
|
||||
|
||||
// Sum256 returns the SHA3-256 digest of the data.
|
||||
func Sum256(data []byte) (digest [32]byte) {
|
||||
h := New256()
|
||||
h.Write(data)
|
||||
h.Sum(digest[:0])
|
||||
return
|
||||
}
|
||||
|
||||
// Sum384 returns the SHA3-384 digest of the data.
|
||||
func Sum384(data []byte) (digest [48]byte) {
|
||||
h := New384()
|
||||
h.Write(data)
|
||||
h.Sum(digest[:0])
|
||||
return
|
||||
}
|
||||
|
||||
// Sum512 returns the SHA3-512 digest of the data.
|
||||
func Sum512(data []byte) (digest [64]byte) {
|
||||
h := New512()
|
||||
h.Write(data)
|
||||
h.Sum(digest[:0])
|
||||
return
|
||||
}
|
27
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/hashes_generic.go
generated
vendored
Normal file
27
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/hashes_generic.go
generated
vendored
Normal file
|
@ -0,0 +1,27 @@
|
|||
// Copyright 2017 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
//go:build !gc || purego || !s390x
|
||||
|
||||
package sha3
|
||||
|
||||
import (
|
||||
"hash"
|
||||
)
|
||||
|
||||
// new224Asm returns an assembly implementation of SHA3-224 if available,
|
||||
// otherwise it returns nil.
|
||||
func new224Asm() hash.Hash { return nil }
|
||||
|
||||
// new256Asm returns an assembly implementation of SHA3-256 if available,
|
||||
// otherwise it returns nil.
|
||||
func new256Asm() hash.Hash { return nil }
|
||||
|
||||
// new384Asm returns an assembly implementation of SHA3-384 if available,
|
||||
// otherwise it returns nil.
|
||||
func new384Asm() hash.Hash { return nil }
|
||||
|
||||
// new512Asm returns an assembly implementation of SHA3-512 if available,
|
||||
// otherwise it returns nil.
|
||||
func new512Asm() hash.Hash { return nil }
|
414
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/keccakf.go
generated
vendored
Normal file
414
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/keccakf.go
generated
vendored
Normal file
|
@ -0,0 +1,414 @@
|
|||
// Copyright 2014 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
//go:build !amd64 || purego || !gc
|
||||
|
||||
package sha3
|
||||
|
||||
import "math/bits"
|
||||
|
||||
// rc stores the round constants for use in the ι step.
|
||||
var rc = [24]uint64{
|
||||
0x0000000000000001,
|
||||
0x0000000000008082,
|
||||
0x800000000000808A,
|
||||
0x8000000080008000,
|
||||
0x000000000000808B,
|
||||
0x0000000080000001,
|
||||
0x8000000080008081,
|
||||
0x8000000000008009,
|
||||
0x000000000000008A,
|
||||
0x0000000000000088,
|
||||
0x0000000080008009,
|
||||
0x000000008000000A,
|
||||
0x000000008000808B,
|
||||
0x800000000000008B,
|
||||
0x8000000000008089,
|
||||
0x8000000000008003,
|
||||
0x8000000000008002,
|
||||
0x8000000000000080,
|
||||
0x000000000000800A,
|
||||
0x800000008000000A,
|
||||
0x8000000080008081,
|
||||
0x8000000000008080,
|
||||
0x0000000080000001,
|
||||
0x8000000080008008,
|
||||
}
|
||||
|
||||
// keccakF1600 applies the Keccak permutation to a 1600b-wide
|
||||
// state represented as a slice of 25 uint64s.
|
||||
func keccakF1600(a *[25]uint64) {
|
||||
// Implementation translated from Keccak-inplace.c
|
||||
// in the keccak reference code.
|
||||
var t, bc0, bc1, bc2, bc3, bc4, d0, d1, d2, d3, d4 uint64
|
||||
|
||||
for i := 0; i < 24; i += 4 {
|
||||
// Combines the 5 steps in each round into 2 steps.
|
||||
// Unrolls 4 rounds per loop and spreads some steps across rounds.
|
||||
|
||||
// Round 1
|
||||
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
|
||||
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
|
||||
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
|
||||
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
|
||||
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
|
||||
d0 = bc4 ^ (bc1<<1 | bc1>>63)
|
||||
d1 = bc0 ^ (bc2<<1 | bc2>>63)
|
||||
d2 = bc1 ^ (bc3<<1 | bc3>>63)
|
||||
d3 = bc2 ^ (bc4<<1 | bc4>>63)
|
||||
d4 = bc3 ^ (bc0<<1 | bc0>>63)
|
||||
|
||||
bc0 = a[0] ^ d0
|
||||
t = a[6] ^ d1
|
||||
bc1 = bits.RotateLeft64(t, 44)
|
||||
t = a[12] ^ d2
|
||||
bc2 = bits.RotateLeft64(t, 43)
|
||||
t = a[18] ^ d3
|
||||
bc3 = bits.RotateLeft64(t, 21)
|
||||
t = a[24] ^ d4
|
||||
bc4 = bits.RotateLeft64(t, 14)
|
||||
a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i]
|
||||
a[6] = bc1 ^ (bc3 &^ bc2)
|
||||
a[12] = bc2 ^ (bc4 &^ bc3)
|
||||
a[18] = bc3 ^ (bc0 &^ bc4)
|
||||
a[24] = bc4 ^ (bc1 &^ bc0)
|
||||
|
||||
t = a[10] ^ d0
|
||||
bc2 = bits.RotateLeft64(t, 3)
|
||||
t = a[16] ^ d1
|
||||
bc3 = bits.RotateLeft64(t, 45)
|
||||
t = a[22] ^ d2
|
||||
bc4 = bits.RotateLeft64(t, 61)
|
||||
t = a[3] ^ d3
|
||||
bc0 = bits.RotateLeft64(t, 28)
|
||||
t = a[9] ^ d4
|
||||
bc1 = bits.RotateLeft64(t, 20)
|
||||
a[10] = bc0 ^ (bc2 &^ bc1)
|
||||
a[16] = bc1 ^ (bc3 &^ bc2)
|
||||
a[22] = bc2 ^ (bc4 &^ bc3)
|
||||
a[3] = bc3 ^ (bc0 &^ bc4)
|
||||
a[9] = bc4 ^ (bc1 &^ bc0)
|
||||
|
||||
t = a[20] ^ d0
|
||||
bc4 = bits.RotateLeft64(t, 18)
|
||||
t = a[1] ^ d1
|
||||
bc0 = bits.RotateLeft64(t, 1)
|
||||
t = a[7] ^ d2
|
||||
bc1 = bits.RotateLeft64(t, 6)
|
||||
t = a[13] ^ d3
|
||||
bc2 = bits.RotateLeft64(t, 25)
|
||||
t = a[19] ^ d4
|
||||
bc3 = bits.RotateLeft64(t, 8)
|
||||
a[20] = bc0 ^ (bc2 &^ bc1)
|
||||
a[1] = bc1 ^ (bc3 &^ bc2)
|
||||
a[7] = bc2 ^ (bc4 &^ bc3)
|
||||
a[13] = bc3 ^ (bc0 &^ bc4)
|
||||
a[19] = bc4 ^ (bc1 &^ bc0)
|
||||
|
||||
t = a[5] ^ d0
|
||||
bc1 = bits.RotateLeft64(t, 36)
|
||||
t = a[11] ^ d1
|
||||
bc2 = bits.RotateLeft64(t, 10)
|
||||
t = a[17] ^ d2
|
||||
bc3 = bits.RotateLeft64(t, 15)
|
||||
t = a[23] ^ d3
|
||||
bc4 = bits.RotateLeft64(t, 56)
|
||||
t = a[4] ^ d4
|
||||
bc0 = bits.RotateLeft64(t, 27)
|
||||
a[5] = bc0 ^ (bc2 &^ bc1)
|
||||
a[11] = bc1 ^ (bc3 &^ bc2)
|
||||
a[17] = bc2 ^ (bc4 &^ bc3)
|
||||
a[23] = bc3 ^ (bc0 &^ bc4)
|
||||
a[4] = bc4 ^ (bc1 &^ bc0)
|
||||
|
||||
t = a[15] ^ d0
|
||||
bc3 = bits.RotateLeft64(t, 41)
|
||||
t = a[21] ^ d1
|
||||
bc4 = bits.RotateLeft64(t, 2)
|
||||
t = a[2] ^ d2
|
||||
bc0 = bits.RotateLeft64(t, 62)
|
||||
t = a[8] ^ d3
|
||||
bc1 = bits.RotateLeft64(t, 55)
|
||||
t = a[14] ^ d4
|
||||
bc2 = bits.RotateLeft64(t, 39)
|
||||
a[15] = bc0 ^ (bc2 &^ bc1)
|
||||
a[21] = bc1 ^ (bc3 &^ bc2)
|
||||
a[2] = bc2 ^ (bc4 &^ bc3)
|
||||
a[8] = bc3 ^ (bc0 &^ bc4)
|
||||
a[14] = bc4 ^ (bc1 &^ bc0)
|
||||
|
||||
// Round 2
|
||||
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
|
||||
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
|
||||
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
|
||||
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
|
||||
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
|
||||
d0 = bc4 ^ (bc1<<1 | bc1>>63)
|
||||
d1 = bc0 ^ (bc2<<1 | bc2>>63)
|
||||
d2 = bc1 ^ (bc3<<1 | bc3>>63)
|
||||
d3 = bc2 ^ (bc4<<1 | bc4>>63)
|
||||
d4 = bc3 ^ (bc0<<1 | bc0>>63)
|
||||
|
||||
bc0 = a[0] ^ d0
|
||||
t = a[16] ^ d1
|
||||
bc1 = bits.RotateLeft64(t, 44)
|
||||
t = a[7] ^ d2
|
||||
bc2 = bits.RotateLeft64(t, 43)
|
||||
t = a[23] ^ d3
|
||||
bc3 = bits.RotateLeft64(t, 21)
|
||||
t = a[14] ^ d4
|
||||
bc4 = bits.RotateLeft64(t, 14)
|
||||
a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i+1]
|
||||
a[16] = bc1 ^ (bc3 &^ bc2)
|
||||
a[7] = bc2 ^ (bc4 &^ bc3)
|
||||
a[23] = bc3 ^ (bc0 &^ bc4)
|
||||
a[14] = bc4 ^ (bc1 &^ bc0)
|
||||
|
||||
t = a[20] ^ d0
|
||||
bc2 = bits.RotateLeft64(t, 3)
|
||||
t = a[11] ^ d1
|
||||
bc3 = bits.RotateLeft64(t, 45)
|
||||
t = a[2] ^ d2
|
||||
bc4 = bits.RotateLeft64(t, 61)
|
||||
t = a[18] ^ d3
|
||||
bc0 = bits.RotateLeft64(t, 28)
|
||||
t = a[9] ^ d4
|
||||
bc1 = bits.RotateLeft64(t, 20)
|
||||
a[20] = bc0 ^ (bc2 &^ bc1)
|
||||
a[11] = bc1 ^ (bc3 &^ bc2)
|
||||
a[2] = bc2 ^ (bc4 &^ bc3)
|
||||
a[18] = bc3 ^ (bc0 &^ bc4)
|
||||
a[9] = bc4 ^ (bc1 &^ bc0)
|
||||
|
||||
t = a[15] ^ d0
|
||||
bc4 = bits.RotateLeft64(t, 18)
|
||||
t = a[6] ^ d1
|
||||
bc0 = bits.RotateLeft64(t, 1)
|
||||
t = a[22] ^ d2
|
||||
bc1 = bits.RotateLeft64(t, 6)
|
||||
t = a[13] ^ d3
|
||||
bc2 = bits.RotateLeft64(t, 25)
|
||||
t = a[4] ^ d4
|
||||
bc3 = bits.RotateLeft64(t, 8)
|
||||
a[15] = bc0 ^ (bc2 &^ bc1)
|
||||
a[6] = bc1 ^ (bc3 &^ bc2)
|
||||
a[22] = bc2 ^ (bc4 &^ bc3)
|
||||
a[13] = bc3 ^ (bc0 &^ bc4)
|
||||
a[4] = bc4 ^ (bc1 &^ bc0)
|
||||
|
||||
t = a[10] ^ d0
|
||||
bc1 = bits.RotateLeft64(t, 36)
|
||||
t = a[1] ^ d1
|
||||
bc2 = bits.RotateLeft64(t, 10)
|
||||
t = a[17] ^ d2
|
||||
bc3 = bits.RotateLeft64(t, 15)
|
||||
t = a[8] ^ d3
|
||||
bc4 = bits.RotateLeft64(t, 56)
|
||||
t = a[24] ^ d4
|
||||
bc0 = bits.RotateLeft64(t, 27)
|
||||
a[10] = bc0 ^ (bc2 &^ bc1)
|
||||
a[1] = bc1 ^ (bc3 &^ bc2)
|
||||
a[17] = bc2 ^ (bc4 &^ bc3)
|
||||
a[8] = bc3 ^ (bc0 &^ bc4)
|
||||
a[24] = bc4 ^ (bc1 &^ bc0)
|
||||
|
||||
t = a[5] ^ d0
|
||||
bc3 = bits.RotateLeft64(t, 41)
|
||||
t = a[21] ^ d1
|
||||
bc4 = bits.RotateLeft64(t, 2)
|
||||
t = a[12] ^ d2
|
||||
bc0 = bits.RotateLeft64(t, 62)
|
||||
t = a[3] ^ d3
|
||||
bc1 = bits.RotateLeft64(t, 55)
|
||||
t = a[19] ^ d4
|
||||
bc2 = bits.RotateLeft64(t, 39)
|
||||
a[5] = bc0 ^ (bc2 &^ bc1)
|
||||
a[21] = bc1 ^ (bc3 &^ bc2)
|
||||
a[12] = bc2 ^ (bc4 &^ bc3)
|
||||
a[3] = bc3 ^ (bc0 &^ bc4)
|
||||
a[19] = bc4 ^ (bc1 &^ bc0)
|
||||
|
||||
// Round 3
|
||||
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
|
||||
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
|
||||
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
|
||||
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
|
||||
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
|
||||
d0 = bc4 ^ (bc1<<1 | bc1>>63)
|
||||
d1 = bc0 ^ (bc2<<1 | bc2>>63)
|
||||
d2 = bc1 ^ (bc3<<1 | bc3>>63)
|
||||
d3 = bc2 ^ (bc4<<1 | bc4>>63)
|
||||
d4 = bc3 ^ (bc0<<1 | bc0>>63)
|
||||
|
||||
bc0 = a[0] ^ d0
|
||||
t = a[11] ^ d1
|
||||
bc1 = bits.RotateLeft64(t, 44)
|
||||
t = a[22] ^ d2
|
||||
bc2 = bits.RotateLeft64(t, 43)
|
||||
t = a[8] ^ d3
|
||||
bc3 = bits.RotateLeft64(t, 21)
|
||||
t = a[19] ^ d4
|
||||
bc4 = bits.RotateLeft64(t, 14)
|
||||
a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i+2]
|
||||
a[11] = bc1 ^ (bc3 &^ bc2)
|
||||
a[22] = bc2 ^ (bc4 &^ bc3)
|
||||
a[8] = bc3 ^ (bc0 &^ bc4)
|
||||
a[19] = bc4 ^ (bc1 &^ bc0)
|
||||
|
||||
t = a[15] ^ d0
|
||||
bc2 = bits.RotateLeft64(t, 3)
|
||||
t = a[1] ^ d1
|
||||
bc3 = bits.RotateLeft64(t, 45)
|
||||
t = a[12] ^ d2
|
||||
bc4 = bits.RotateLeft64(t, 61)
|
||||
t = a[23] ^ d3
|
||||
bc0 = bits.RotateLeft64(t, 28)
|
||||
t = a[9] ^ d4
|
||||
bc1 = bits.RotateLeft64(t, 20)
|
||||
a[15] = bc0 ^ (bc2 &^ bc1)
|
||||
a[1] = bc1 ^ (bc3 &^ bc2)
|
||||
a[12] = bc2 ^ (bc4 &^ bc3)
|
||||
a[23] = bc3 ^ (bc0 &^ bc4)
|
||||
a[9] = bc4 ^ (bc1 &^ bc0)
|
||||
|
||||
t = a[5] ^ d0
|
||||
bc4 = bits.RotateLeft64(t, 18)
|
||||
t = a[16] ^ d1
|
||||
bc0 = bits.RotateLeft64(t, 1)
|
||||
t = a[2] ^ d2
|
||||
bc1 = bits.RotateLeft64(t, 6)
|
||||
t = a[13] ^ d3
|
||||
bc2 = bits.RotateLeft64(t, 25)
|
||||
t = a[24] ^ d4
|
||||
bc3 = bits.RotateLeft64(t, 8)
|
||||
a[5] = bc0 ^ (bc2 &^ bc1)
|
||||
a[16] = bc1 ^ (bc3 &^ bc2)
|
||||
a[2] = bc2 ^ (bc4 &^ bc3)
|
||||
a[13] = bc3 ^ (bc0 &^ bc4)
|
||||
a[24] = bc4 ^ (bc1 &^ bc0)
|
||||
|
||||
t = a[20] ^ d0
|
||||
bc1 = bits.RotateLeft64(t, 36)
|
||||
t = a[6] ^ d1
|
||||
bc2 = bits.RotateLeft64(t, 10)
|
||||
t = a[17] ^ d2
|
||||
bc3 = bits.RotateLeft64(t, 15)
|
||||
t = a[3] ^ d3
|
||||
bc4 = bits.RotateLeft64(t, 56)
|
||||
t = a[14] ^ d4
|
||||
bc0 = bits.RotateLeft64(t, 27)
|
||||
a[20] = bc0 ^ (bc2 &^ bc1)
|
||||
a[6] = bc1 ^ (bc3 &^ bc2)
|
||||
a[17] = bc2 ^ (bc4 &^ bc3)
|
||||
a[3] = bc3 ^ (bc0 &^ bc4)
|
||||
a[14] = bc4 ^ (bc1 &^ bc0)
|
||||
|
||||
t = a[10] ^ d0
|
||||
bc3 = bits.RotateLeft64(t, 41)
|
||||
t = a[21] ^ d1
|
||||
bc4 = bits.RotateLeft64(t, 2)
|
||||
t = a[7] ^ d2
|
||||
bc0 = bits.RotateLeft64(t, 62)
|
||||
t = a[18] ^ d3
|
||||
bc1 = bits.RotateLeft64(t, 55)
|
||||
t = a[4] ^ d4
|
||||
bc2 = bits.RotateLeft64(t, 39)
|
||||
a[10] = bc0 ^ (bc2 &^ bc1)
|
||||
a[21] = bc1 ^ (bc3 &^ bc2)
|
||||
a[7] = bc2 ^ (bc4 &^ bc3)
|
||||
a[18] = bc3 ^ (bc0 &^ bc4)
|
||||
a[4] = bc4 ^ (bc1 &^ bc0)
|
||||
|
||||
// Round 4
|
||||
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
|
||||
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
|
||||
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
|
||||
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
|
||||
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
|
||||
d0 = bc4 ^ (bc1<<1 | bc1>>63)
|
||||
d1 = bc0 ^ (bc2<<1 | bc2>>63)
|
||||
d2 = bc1 ^ (bc3<<1 | bc3>>63)
|
||||
d3 = bc2 ^ (bc4<<1 | bc4>>63)
|
||||
d4 = bc3 ^ (bc0<<1 | bc0>>63)
|
||||
|
||||
bc0 = a[0] ^ d0
|
||||
t = a[1] ^ d1
|
||||
bc1 = bits.RotateLeft64(t, 44)
|
||||
t = a[2] ^ d2
|
||||
bc2 = bits.RotateLeft64(t, 43)
|
||||
t = a[3] ^ d3
|
||||
bc3 = bits.RotateLeft64(t, 21)
|
||||
t = a[4] ^ d4
|
||||
bc4 = bits.RotateLeft64(t, 14)
|
||||
a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i+3]
|
||||
a[1] = bc1 ^ (bc3 &^ bc2)
|
||||
a[2] = bc2 ^ (bc4 &^ bc3)
|
||||
a[3] = bc3 ^ (bc0 &^ bc4)
|
||||
a[4] = bc4 ^ (bc1 &^ bc0)
|
||||
|
||||
t = a[5] ^ d0
|
||||
bc2 = bits.RotateLeft64(t, 3)
|
||||
t = a[6] ^ d1
|
||||
bc3 = bits.RotateLeft64(t, 45)
|
||||
t = a[7] ^ d2
|
||||
bc4 = bits.RotateLeft64(t, 61)
|
||||
t = a[8] ^ d3
|
||||
bc0 = bits.RotateLeft64(t, 28)
|
||||
t = a[9] ^ d4
|
||||
bc1 = bits.RotateLeft64(t, 20)
|
||||
a[5] = bc0 ^ (bc2 &^ bc1)
|
||||
a[6] = bc1 ^ (bc3 &^ bc2)
|
||||
a[7] = bc2 ^ (bc4 &^ bc3)
|
||||
a[8] = bc3 ^ (bc0 &^ bc4)
|
||||
a[9] = bc4 ^ (bc1 &^ bc0)
|
||||
|
||||
t = a[10] ^ d0
|
||||
bc4 = bits.RotateLeft64(t, 18)
|
||||
t = a[11] ^ d1
|
||||
bc0 = bits.RotateLeft64(t, 1)
|
||||
t = a[12] ^ d2
|
||||
bc1 = bits.RotateLeft64(t, 6)
|
||||
t = a[13] ^ d3
|
||||
bc2 = bits.RotateLeft64(t, 25)
|
||||
t = a[14] ^ d4
|
||||
bc3 = bits.RotateLeft64(t, 8)
|
||||
a[10] = bc0 ^ (bc2 &^ bc1)
|
||||
a[11] = bc1 ^ (bc3 &^ bc2)
|
||||
a[12] = bc2 ^ (bc4 &^ bc3)
|
||||
a[13] = bc3 ^ (bc0 &^ bc4)
|
||||
a[14] = bc4 ^ (bc1 &^ bc0)
|
||||
|
||||
t = a[15] ^ d0
|
||||
bc1 = bits.RotateLeft64(t, 36)
|
||||
t = a[16] ^ d1
|
||||
bc2 = bits.RotateLeft64(t, 10)
|
||||
t = a[17] ^ d2
|
||||
bc3 = bits.RotateLeft64(t, 15)
|
||||
t = a[18] ^ d3
|
||||
bc4 = bits.RotateLeft64(t, 56)
|
||||
t = a[19] ^ d4
|
||||
bc0 = bits.RotateLeft64(t, 27)
|
||||
a[15] = bc0 ^ (bc2 &^ bc1)
|
||||
a[16] = bc1 ^ (bc3 &^ bc2)
|
||||
a[17] = bc2 ^ (bc4 &^ bc3)
|
||||
a[18] = bc3 ^ (bc0 &^ bc4)
|
||||
a[19] = bc4 ^ (bc1 &^ bc0)
|
||||
|
||||
t = a[20] ^ d0
|
||||
bc3 = bits.RotateLeft64(t, 41)
|
||||
t = a[21] ^ d1
|
||||
bc4 = bits.RotateLeft64(t, 2)
|
||||
t = a[22] ^ d2
|
||||
bc0 = bits.RotateLeft64(t, 62)
|
||||
t = a[23] ^ d3
|
||||
bc1 = bits.RotateLeft64(t, 55)
|
||||
t = a[24] ^ d4
|
||||
bc2 = bits.RotateLeft64(t, 39)
|
||||
a[20] = bc0 ^ (bc2 &^ bc1)
|
||||
a[21] = bc1 ^ (bc3 &^ bc2)
|
||||
a[22] = bc2 ^ (bc4 &^ bc3)
|
||||
a[23] = bc3 ^ (bc0 &^ bc4)
|
||||
a[24] = bc4 ^ (bc1 &^ bc0)
|
||||
}
|
||||
}
|
13
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/keccakf_amd64.go
generated
vendored
Normal file
13
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/keccakf_amd64.go
generated
vendored
Normal file
|
@ -0,0 +1,13 @@
|
|||
// Copyright 2015 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
//go:build amd64 && !purego && gc
|
||||
|
||||
package sha3
|
||||
|
||||
// This function is implemented in keccakf_amd64.s.
|
||||
|
||||
//go:noescape
|
||||
|
||||
func keccakF1600(a *[25]uint64)
|
390
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/keccakf_amd64.s
generated
vendored
Normal file
390
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/keccakf_amd64.s
generated
vendored
Normal file
|
@ -0,0 +1,390 @@
|
|||
// Copyright 2015 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
//go:build amd64 && !purego && gc
|
||||
|
||||
// This code was translated into a form compatible with 6a from the public
|
||||
// domain sources at https://github.com/gvanas/KeccakCodePackage
|
||||
|
||||
// Offsets in state
|
||||
#define _ba (0*8)
|
||||
#define _be (1*8)
|
||||
#define _bi (2*8)
|
||||
#define _bo (3*8)
|
||||
#define _bu (4*8)
|
||||
#define _ga (5*8)
|
||||
#define _ge (6*8)
|
||||
#define _gi (7*8)
|
||||
#define _go (8*8)
|
||||
#define _gu (9*8)
|
||||
#define _ka (10*8)
|
||||
#define _ke (11*8)
|
||||
#define _ki (12*8)
|
||||
#define _ko (13*8)
|
||||
#define _ku (14*8)
|
||||
#define _ma (15*8)
|
||||
#define _me (16*8)
|
||||
#define _mi (17*8)
|
||||
#define _mo (18*8)
|
||||
#define _mu (19*8)
|
||||
#define _sa (20*8)
|
||||
#define _se (21*8)
|
||||
#define _si (22*8)
|
||||
#define _so (23*8)
|
||||
#define _su (24*8)
|
||||
|
||||
// Temporary registers
|
||||
#define rT1 AX
|
||||
|
||||
// Round vars
|
||||
#define rpState DI
|
||||
#define rpStack SP
|
||||
|
||||
#define rDa BX
|
||||
#define rDe CX
|
||||
#define rDi DX
|
||||
#define rDo R8
|
||||
#define rDu R9
|
||||
|
||||
#define rBa R10
|
||||
#define rBe R11
|
||||
#define rBi R12
|
||||
#define rBo R13
|
||||
#define rBu R14
|
||||
|
||||
#define rCa SI
|
||||
#define rCe BP
|
||||
#define rCi rBi
|
||||
#define rCo rBo
|
||||
#define rCu R15
|
||||
|
||||
#define MOVQ_RBI_RCE MOVQ rBi, rCe
|
||||
#define XORQ_RT1_RCA XORQ rT1, rCa
|
||||
#define XORQ_RT1_RCE XORQ rT1, rCe
|
||||
#define XORQ_RBA_RCU XORQ rBa, rCu
|
||||
#define XORQ_RBE_RCU XORQ rBe, rCu
|
||||
#define XORQ_RDU_RCU XORQ rDu, rCu
|
||||
#define XORQ_RDA_RCA XORQ rDa, rCa
|
||||
#define XORQ_RDE_RCE XORQ rDe, rCe
|
||||
|
||||
#define mKeccakRound(iState, oState, rc, B_RBI_RCE, G_RT1_RCA, G_RT1_RCE, G_RBA_RCU, K_RT1_RCA, K_RT1_RCE, K_RBA_RCU, M_RT1_RCA, M_RT1_RCE, M_RBE_RCU, S_RDU_RCU, S_RDA_RCA, S_RDE_RCE) \
|
||||
/* Prepare round */ \
|
||||
MOVQ rCe, rDa; \
|
||||
ROLQ $1, rDa; \
|
||||
\
|
||||
MOVQ _bi(iState), rCi; \
|
||||
XORQ _gi(iState), rDi; \
|
||||
XORQ rCu, rDa; \
|
||||
XORQ _ki(iState), rCi; \
|
||||
XORQ _mi(iState), rDi; \
|
||||
XORQ rDi, rCi; \
|
||||
\
|
||||
MOVQ rCi, rDe; \
|
||||
ROLQ $1, rDe; \
|
||||
\
|
||||
MOVQ _bo(iState), rCo; \
|
||||
XORQ _go(iState), rDo; \
|
||||
XORQ rCa, rDe; \
|
||||
XORQ _ko(iState), rCo; \
|
||||
XORQ _mo(iState), rDo; \
|
||||
XORQ rDo, rCo; \
|
||||
\
|
||||
MOVQ rCo, rDi; \
|
||||
ROLQ $1, rDi; \
|
||||
\
|
||||
MOVQ rCu, rDo; \
|
||||
XORQ rCe, rDi; \
|
||||
ROLQ $1, rDo; \
|
||||
\
|
||||
MOVQ rCa, rDu; \
|
||||
XORQ rCi, rDo; \
|
||||
ROLQ $1, rDu; \
|
||||
\
|
||||
/* Result b */ \
|
||||
MOVQ _ba(iState), rBa; \
|
||||
MOVQ _ge(iState), rBe; \
|
||||
XORQ rCo, rDu; \
|
||||
MOVQ _ki(iState), rBi; \
|
||||
MOVQ _mo(iState), rBo; \
|
||||
MOVQ _su(iState), rBu; \
|
||||
XORQ rDe, rBe; \
|
||||
ROLQ $44, rBe; \
|
||||
XORQ rDi, rBi; \
|
||||
XORQ rDa, rBa; \
|
||||
ROLQ $43, rBi; \
|
||||
\
|
||||
MOVQ rBe, rCa; \
|
||||
MOVQ rc, rT1; \
|
||||
ORQ rBi, rCa; \
|
||||
XORQ rBa, rT1; \
|
||||
XORQ rT1, rCa; \
|
||||
MOVQ rCa, _ba(oState); \
|
||||
\
|
||||
XORQ rDu, rBu; \
|
||||
ROLQ $14, rBu; \
|
||||
MOVQ rBa, rCu; \
|
||||
ANDQ rBe, rCu; \
|
||||
XORQ rBu, rCu; \
|
||||
MOVQ rCu, _bu(oState); \
|
||||
\
|
||||
XORQ rDo, rBo; \
|
||||
ROLQ $21, rBo; \
|
||||
MOVQ rBo, rT1; \
|
||||
ANDQ rBu, rT1; \
|
||||
XORQ rBi, rT1; \
|
||||
MOVQ rT1, _bi(oState); \
|
||||
\
|
||||
NOTQ rBi; \
|
||||
ORQ rBa, rBu; \
|
||||
ORQ rBo, rBi; \
|
||||
XORQ rBo, rBu; \
|
||||
XORQ rBe, rBi; \
|
||||
MOVQ rBu, _bo(oState); \
|
||||
MOVQ rBi, _be(oState); \
|
||||
B_RBI_RCE; \
|
||||
\
|
||||
/* Result g */ \
|
||||
MOVQ _gu(iState), rBe; \
|
||||
XORQ rDu, rBe; \
|
||||
MOVQ _ka(iState), rBi; \
|
||||
ROLQ $20, rBe; \
|
||||
XORQ rDa, rBi; \
|
||||
ROLQ $3, rBi; \
|
||||
MOVQ _bo(iState), rBa; \
|
||||
MOVQ rBe, rT1; \
|
||||
ORQ rBi, rT1; \
|
||||
XORQ rDo, rBa; \
|
||||
MOVQ _me(iState), rBo; \
|
||||
MOVQ _si(iState), rBu; \
|
||||
ROLQ $28, rBa; \
|
||||
XORQ rBa, rT1; \
|
||||
MOVQ rT1, _ga(oState); \
|
||||
G_RT1_RCA; \
|
||||
\
|
||||
XORQ rDe, rBo; \
|
||||
ROLQ $45, rBo; \
|
||||
MOVQ rBi, rT1; \
|
||||
ANDQ rBo, rT1; \
|
||||
XORQ rBe, rT1; \
|
||||
MOVQ rT1, _ge(oState); \
|
||||
G_RT1_RCE; \
|
||||
\
|
||||
XORQ rDi, rBu; \
|
||||
ROLQ $61, rBu; \
|
||||
MOVQ rBu, rT1; \
|
||||
ORQ rBa, rT1; \
|
||||
XORQ rBo, rT1; \
|
||||
MOVQ rT1, _go(oState); \
|
||||
\
|
||||
ANDQ rBe, rBa; \
|
||||
XORQ rBu, rBa; \
|
||||
MOVQ rBa, _gu(oState); \
|
||||
NOTQ rBu; \
|
||||
G_RBA_RCU; \
|
||||
\
|
||||
ORQ rBu, rBo; \
|
||||
XORQ rBi, rBo; \
|
||||
MOVQ rBo, _gi(oState); \
|
||||
\
|
||||
/* Result k */ \
|
||||
MOVQ _be(iState), rBa; \
|
||||
MOVQ _gi(iState), rBe; \
|
||||
MOVQ _ko(iState), rBi; \
|
||||
MOVQ _mu(iState), rBo; \
|
||||
MOVQ _sa(iState), rBu; \
|
||||
XORQ rDi, rBe; \
|
||||
ROLQ $6, rBe; \
|
||||
XORQ rDo, rBi; \
|
||||
ROLQ $25, rBi; \
|
||||
MOVQ rBe, rT1; \
|
||||
ORQ rBi, rT1; \
|
||||
XORQ rDe, rBa; \
|
||||
ROLQ $1, rBa; \
|
||||
XORQ rBa, rT1; \
|
||||
MOVQ rT1, _ka(oState); \
|
||||
K_RT1_RCA; \
|
||||
\
|
||||
XORQ rDu, rBo; \
|
||||
ROLQ $8, rBo; \
|
||||
MOVQ rBi, rT1; \
|
||||
ANDQ rBo, rT1; \
|
||||
XORQ rBe, rT1; \
|
||||
MOVQ rT1, _ke(oState); \
|
||||
K_RT1_RCE; \
|
||||
\
|
||||
XORQ rDa, rBu; \
|
||||
ROLQ $18, rBu; \
|
||||
NOTQ rBo; \
|
||||
MOVQ rBo, rT1; \
|
||||
ANDQ rBu, rT1; \
|
||||
XORQ rBi, rT1; \
|
||||
MOVQ rT1, _ki(oState); \
|
||||
\
|
||||
MOVQ rBu, rT1; \
|
||||
ORQ rBa, rT1; \
|
||||
XORQ rBo, rT1; \
|
||||
MOVQ rT1, _ko(oState); \
|
||||
\
|
||||
ANDQ rBe, rBa; \
|
||||
XORQ rBu, rBa; \
|
||||
MOVQ rBa, _ku(oState); \
|
||||
K_RBA_RCU; \
|
||||
\
|
||||
/* Result m */ \
|
||||
MOVQ _ga(iState), rBe; \
|
||||
XORQ rDa, rBe; \
|
||||
MOVQ _ke(iState), rBi; \
|
||||
ROLQ $36, rBe; \
|
||||
XORQ rDe, rBi; \
|
||||
MOVQ _bu(iState), rBa; \
|
||||
ROLQ $10, rBi; \
|
||||
MOVQ rBe, rT1; \
|
||||
MOVQ _mi(iState), rBo; \
|
||||
ANDQ rBi, rT1; \
|
||||
XORQ rDu, rBa; \
|
||||
MOVQ _so(iState), rBu; \
|
||||
ROLQ $27, rBa; \
|
||||
XORQ rBa, rT1; \
|
||||
MOVQ rT1, _ma(oState); \
|
||||
M_RT1_RCA; \
|
||||
\
|
||||
XORQ rDi, rBo; \
|
||||
ROLQ $15, rBo; \
|
||||
MOVQ rBi, rT1; \
|
||||
ORQ rBo, rT1; \
|
||||
XORQ rBe, rT1; \
|
||||
MOVQ rT1, _me(oState); \
|
||||
M_RT1_RCE; \
|
||||
\
|
||||
XORQ rDo, rBu; \
|
||||
ROLQ $56, rBu; \
|
||||
NOTQ rBo; \
|
||||
MOVQ rBo, rT1; \
|
||||
ORQ rBu, rT1; \
|
||||
XORQ rBi, rT1; \
|
||||
MOVQ rT1, _mi(oState); \
|
||||
\
|
||||
ORQ rBa, rBe; \
|
||||
XORQ rBu, rBe; \
|
||||
MOVQ rBe, _mu(oState); \
|
||||
\
|
||||
ANDQ rBa, rBu; \
|
||||
XORQ rBo, rBu; \
|
||||
MOVQ rBu, _mo(oState); \
|
||||
M_RBE_RCU; \
|
||||
\
|
||||
/* Result s */ \
|
||||
MOVQ _bi(iState), rBa; \
|
||||
MOVQ _go(iState), rBe; \
|
||||
MOVQ _ku(iState), rBi; \
|
||||
XORQ rDi, rBa; \
|
||||
MOVQ _ma(iState), rBo; \
|
||||
ROLQ $62, rBa; \
|
||||
XORQ rDo, rBe; \
|
||||
MOVQ _se(iState), rBu; \
|
||||
ROLQ $55, rBe; \
|
||||
\
|
||||
XORQ rDu, rBi; \
|
||||
MOVQ rBa, rDu; \
|
||||
XORQ rDe, rBu; \
|
||||
ROLQ $2, rBu; \
|
||||
ANDQ rBe, rDu; \
|
||||
XORQ rBu, rDu; \
|
||||
MOVQ rDu, _su(oState); \
|
||||
\
|
||||
ROLQ $39, rBi; \
|
||||
S_RDU_RCU; \
|
||||
NOTQ rBe; \
|
||||
XORQ rDa, rBo; \
|
||||
MOVQ rBe, rDa; \
|
||||
ANDQ rBi, rDa; \
|
||||
XORQ rBa, rDa; \
|
||||
MOVQ rDa, _sa(oState); \
|
||||
S_RDA_RCA; \
|
||||
\
|
||||
ROLQ $41, rBo; \
|
||||
MOVQ rBi, rDe; \
|
||||
ORQ rBo, rDe; \
|
||||
XORQ rBe, rDe; \
|
||||
MOVQ rDe, _se(oState); \
|
||||
S_RDE_RCE; \
|
||||
\
|
||||
MOVQ rBo, rDi; \
|
||||
MOVQ rBu, rDo; \
|
||||
ANDQ rBu, rDi; \
|
||||
ORQ rBa, rDo; \
|
||||
XORQ rBi, rDi; \
|
||||
XORQ rBo, rDo; \
|
||||
MOVQ rDi, _si(oState); \
|
||||
MOVQ rDo, _so(oState) \
|
||||
|
||||
// func keccakF1600(a *[25]uint64)
|
||||
TEXT ·keccakF1600(SB), 0, $200-8
|
||||
MOVQ a+0(FP), rpState
|
||||
|
||||
// Convert the user state into an internal state
|
||||
NOTQ _be(rpState)
|
||||
NOTQ _bi(rpState)
|
||||
NOTQ _go(rpState)
|
||||
NOTQ _ki(rpState)
|
||||
NOTQ _mi(rpState)
|
||||
NOTQ _sa(rpState)
|
||||
|
||||
// Execute the KeccakF permutation
|
||||
MOVQ _ba(rpState), rCa
|
||||
MOVQ _be(rpState), rCe
|
||||
MOVQ _bu(rpState), rCu
|
||||
|
||||
XORQ _ga(rpState), rCa
|
||||
XORQ _ge(rpState), rCe
|
||||
XORQ _gu(rpState), rCu
|
||||
|
||||
XORQ _ka(rpState), rCa
|
||||
XORQ _ke(rpState), rCe
|
||||
XORQ _ku(rpState), rCu
|
||||
|
||||
XORQ _ma(rpState), rCa
|
||||
XORQ _me(rpState), rCe
|
||||
XORQ _mu(rpState), rCu
|
||||
|
||||
XORQ _sa(rpState), rCa
|
||||
XORQ _se(rpState), rCe
|
||||
MOVQ _si(rpState), rDi
|
||||
MOVQ _so(rpState), rDo
|
||||
XORQ _su(rpState), rCu
|
||||
|
||||
mKeccakRound(rpState, rpStack, $0x0000000000000001, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
|
||||
mKeccakRound(rpStack, rpState, $0x0000000000008082, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
|
||||
mKeccakRound(rpState, rpStack, $0x800000000000808a, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
|
||||
mKeccakRound(rpStack, rpState, $0x8000000080008000, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
|
||||
mKeccakRound(rpState, rpStack, $0x000000000000808b, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
|
||||
mKeccakRound(rpStack, rpState, $0x0000000080000001, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
|
||||
mKeccakRound(rpState, rpStack, $0x8000000080008081, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
|
||||
mKeccakRound(rpStack, rpState, $0x8000000000008009, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
|
||||
mKeccakRound(rpState, rpStack, $0x000000000000008a, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
|
||||
mKeccakRound(rpStack, rpState, $0x0000000000000088, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
|
||||
mKeccakRound(rpState, rpStack, $0x0000000080008009, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
|
||||
mKeccakRound(rpStack, rpState, $0x000000008000000a, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
|
||||
mKeccakRound(rpState, rpStack, $0x000000008000808b, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
|
||||
mKeccakRound(rpStack, rpState, $0x800000000000008b, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
|
||||
mKeccakRound(rpState, rpStack, $0x8000000000008089, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
|
||||
mKeccakRound(rpStack, rpState, $0x8000000000008003, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
|
||||
mKeccakRound(rpState, rpStack, $0x8000000000008002, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
|
||||
mKeccakRound(rpStack, rpState, $0x8000000000000080, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
|
||||
mKeccakRound(rpState, rpStack, $0x000000000000800a, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
|
||||
mKeccakRound(rpStack, rpState, $0x800000008000000a, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
|
||||
mKeccakRound(rpState, rpStack, $0x8000000080008081, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
|
||||
mKeccakRound(rpStack, rpState, $0x8000000000008080, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
|
||||
mKeccakRound(rpState, rpStack, $0x0000000080000001, MOVQ_RBI_RCE, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBA_RCU, XORQ_RT1_RCA, XORQ_RT1_RCE, XORQ_RBE_RCU, XORQ_RDU_RCU, XORQ_RDA_RCA, XORQ_RDE_RCE)
|
||||
mKeccakRound(rpStack, rpState, $0x8000000080008008, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP, NOP)
|
||||
|
||||
// Revert the internal state to the user state
|
||||
NOTQ _be(rpState)
|
||||
NOTQ _bi(rpState)
|
||||
NOTQ _go(rpState)
|
||||
NOTQ _ki(rpState)
|
||||
NOTQ _mi(rpState)
|
||||
NOTQ _sa(rpState)
|
||||
|
||||
RET
|
18
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/register.go
generated
vendored
Normal file
18
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/register.go
generated
vendored
Normal file
|
@ -0,0 +1,18 @@
|
|||
// Copyright 2014 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
//go:build go1.4
|
||||
|
||||
package sha3
|
||||
|
||||
import (
|
||||
"crypto"
|
||||
)
|
||||
|
||||
func init() {
|
||||
crypto.RegisterHash(crypto.SHA3_224, New224)
|
||||
crypto.RegisterHash(crypto.SHA3_256, New256)
|
||||
crypto.RegisterHash(crypto.SHA3_384, New384)
|
||||
crypto.RegisterHash(crypto.SHA3_512, New512)
|
||||
}
|
197
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/sha3.go
generated
vendored
Normal file
197
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/sha3.go
generated
vendored
Normal file
|
@ -0,0 +1,197 @@
|
|||
// Copyright 2014 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package sha3
|
||||
|
||||
// spongeDirection indicates the direction bytes are flowing through the sponge.
|
||||
type spongeDirection int
|
||||
|
||||
const (
|
||||
// spongeAbsorbing indicates that the sponge is absorbing input.
|
||||
spongeAbsorbing spongeDirection = iota
|
||||
// spongeSqueezing indicates that the sponge is being squeezed.
|
||||
spongeSqueezing
|
||||
)
|
||||
|
||||
const (
|
||||
// maxRate is the maximum size of the internal buffer. SHAKE-256
|
||||
// currently needs the largest buffer.
|
||||
maxRate = 168
|
||||
)
|
||||
|
||||
type state struct {
|
||||
// Generic sponge components.
|
||||
a [25]uint64 // main state of the hash
|
||||
buf []byte // points into storage
|
||||
rate int // the number of bytes of state to use
|
||||
|
||||
// dsbyte contains the "domain separation" bits and the first bit of
|
||||
// the padding. Sections 6.1 and 6.2 of [1] separate the outputs of the
|
||||
// SHA-3 and SHAKE functions by appending bitstrings to the message.
|
||||
// Using a little-endian bit-ordering convention, these are "01" for SHA-3
|
||||
// and "1111" for SHAKE, or 00000010b and 00001111b, respectively. Then the
|
||||
// padding rule from section 5.1 is applied to pad the message to a multiple
|
||||
// of the rate, which involves adding a "1" bit, zero or more "0" bits, and
|
||||
// a final "1" bit. We merge the first "1" bit from the padding into dsbyte,
|
||||
// giving 00000110b (0x06) and 00011111b (0x1f).
|
||||
// [1] http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf
|
||||
// "Draft FIPS 202: SHA-3 Standard: Permutation-Based Hash and
|
||||
// Extendable-Output Functions (May 2014)"
|
||||
dsbyte byte
|
||||
|
||||
storage storageBuf
|
||||
|
||||
// Specific to SHA-3 and SHAKE.
|
||||
outputLen int // the default output size in bytes
|
||||
state spongeDirection // whether the sponge is absorbing or squeezing
|
||||
}
|
||||
|
||||
// BlockSize returns the rate of sponge underlying this hash function.
|
||||
func (d *state) BlockSize() int { return d.rate }
|
||||
|
||||
// Size returns the output size of the hash function in bytes.
|
||||
func (d *state) Size() int { return d.outputLen }
|
||||
|
||||
// Reset clears the internal state by zeroing the sponge state and
|
||||
// the byte buffer, and setting Sponge.state to absorbing.
|
||||
func (d *state) Reset() {
|
||||
// Zero the permutation's state.
|
||||
for i := range d.a {
|
||||
d.a[i] = 0
|
||||
}
|
||||
d.state = spongeAbsorbing
|
||||
d.buf = d.storage.asBytes()[:0]
|
||||
}
|
||||
|
||||
func (d *state) clone() *state {
|
||||
ret := *d
|
||||
if ret.state == spongeAbsorbing {
|
||||
ret.buf = ret.storage.asBytes()[:len(ret.buf)]
|
||||
} else {
|
||||
ret.buf = ret.storage.asBytes()[d.rate-cap(d.buf) : d.rate]
|
||||
}
|
||||
|
||||
return &ret
|
||||
}
|
||||
|
||||
// permute applies the KeccakF-1600 permutation. It handles
|
||||
// any input-output buffering.
|
||||
func (d *state) permute() {
|
||||
switch d.state {
|
||||
case spongeAbsorbing:
|
||||
// If we're absorbing, we need to xor the input into the state
|
||||
// before applying the permutation.
|
||||
xorIn(d, d.buf)
|
||||
d.buf = d.storage.asBytes()[:0]
|
||||
keccakF1600(&d.a)
|
||||
case spongeSqueezing:
|
||||
// If we're squeezing, we need to apply the permutation before
|
||||
// copying more output.
|
||||
keccakF1600(&d.a)
|
||||
d.buf = d.storage.asBytes()[:d.rate]
|
||||
copyOut(d, d.buf)
|
||||
}
|
||||
}
|
||||
|
||||
// pads appends the domain separation bits in dsbyte, applies
|
||||
// the multi-bitrate 10..1 padding rule, and permutes the state.
|
||||
func (d *state) padAndPermute(dsbyte byte) {
|
||||
if d.buf == nil {
|
||||
d.buf = d.storage.asBytes()[:0]
|
||||
}
|
||||
// Pad with this instance's domain-separator bits. We know that there's
|
||||
// at least one byte of space in d.buf because, if it were full,
|
||||
// permute would have been called to empty it. dsbyte also contains the
|
||||
// first one bit for the padding. See the comment in the state struct.
|
||||
d.buf = append(d.buf, dsbyte)
|
||||
zerosStart := len(d.buf)
|
||||
d.buf = d.storage.asBytes()[:d.rate]
|
||||
for i := zerosStart; i < d.rate; i++ {
|
||||
d.buf[i] = 0
|
||||
}
|
||||
// This adds the final one bit for the padding. Because of the way that
|
||||
// bits are numbered from the LSB upwards, the final bit is the MSB of
|
||||
// the last byte.
|
||||
d.buf[d.rate-1] ^= 0x80
|
||||
// Apply the permutation
|
||||
d.permute()
|
||||
d.state = spongeSqueezing
|
||||
d.buf = d.storage.asBytes()[:d.rate]
|
||||
copyOut(d, d.buf)
|
||||
}
|
||||
|
||||
// Write absorbs more data into the hash's state. It panics if any
|
||||
// output has already been read.
|
||||
func (d *state) Write(p []byte) (written int, err error) {
|
||||
if d.state != spongeAbsorbing {
|
||||
panic("sha3: Write after Read")
|
||||
}
|
||||
if d.buf == nil {
|
||||
d.buf = d.storage.asBytes()[:0]
|
||||
}
|
||||
written = len(p)
|
||||
|
||||
for len(p) > 0 {
|
||||
if len(d.buf) == 0 && len(p) >= d.rate {
|
||||
// The fast path; absorb a full "rate" bytes of input and apply the permutation.
|
||||
xorIn(d, p[:d.rate])
|
||||
p = p[d.rate:]
|
||||
keccakF1600(&d.a)
|
||||
} else {
|
||||
// The slow path; buffer the input until we can fill the sponge, and then xor it in.
|
||||
todo := d.rate - len(d.buf)
|
||||
if todo > len(p) {
|
||||
todo = len(p)
|
||||
}
|
||||
d.buf = append(d.buf, p[:todo]...)
|
||||
p = p[todo:]
|
||||
|
||||
// If the sponge is full, apply the permutation.
|
||||
if len(d.buf) == d.rate {
|
||||
d.permute()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// Read squeezes an arbitrary number of bytes from the sponge.
|
||||
func (d *state) Read(out []byte) (n int, err error) {
|
||||
// If we're still absorbing, pad and apply the permutation.
|
||||
if d.state == spongeAbsorbing {
|
||||
d.padAndPermute(d.dsbyte)
|
||||
}
|
||||
|
||||
n = len(out)
|
||||
|
||||
// Now, do the squeezing.
|
||||
for len(out) > 0 {
|
||||
n := copy(out, d.buf)
|
||||
d.buf = d.buf[n:]
|
||||
out = out[n:]
|
||||
|
||||
// Apply the permutation if we've squeezed the sponge dry.
|
||||
if len(d.buf) == 0 {
|
||||
d.permute()
|
||||
}
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// Sum applies padding to the hash state and then squeezes out the desired
|
||||
// number of output bytes. It panics if any output has already been read.
|
||||
func (d *state) Sum(in []byte) []byte {
|
||||
if d.state != spongeAbsorbing {
|
||||
panic("sha3: Sum after Read")
|
||||
}
|
||||
|
||||
// Make a copy of the original hash so that caller can keep writing
|
||||
// and summing.
|
||||
dup := d.clone()
|
||||
hash := make([]byte, dup.outputLen, 64) // explicit cap to allow stack allocation
|
||||
dup.Read(hash)
|
||||
return append(in, hash...)
|
||||
}
|
288
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/sha3_s390x.go
generated
vendored
Normal file
288
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/sha3_s390x.go
generated
vendored
Normal file
|
@ -0,0 +1,288 @@
|
|||
// Copyright 2017 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
//go:build gc && !purego
|
||||
|
||||
package sha3
|
||||
|
||||
// This file contains code for using the 'compute intermediate
|
||||
// message digest' (KIMD) and 'compute last message digest' (KLMD)
|
||||
// instructions to compute SHA-3 and SHAKE hashes on IBM Z.
|
||||
|
||||
import (
|
||||
"hash"
|
||||
|
||||
"golang.org/x/sys/cpu"
|
||||
)
|
||||
|
||||
// codes represent 7-bit KIMD/KLMD function codes as defined in
|
||||
// the Principles of Operation.
|
||||
type code uint64
|
||||
|
||||
const (
|
||||
// function codes for KIMD/KLMD
|
||||
sha3_224 code = 32
|
||||
sha3_256 = 33
|
||||
sha3_384 = 34
|
||||
sha3_512 = 35
|
||||
shake_128 = 36
|
||||
shake_256 = 37
|
||||
nopad = 0x100
|
||||
)
|
||||
|
||||
// kimd is a wrapper for the 'compute intermediate message digest' instruction.
|
||||
// src must be a multiple of the rate for the given function code.
|
||||
//
|
||||
//go:noescape
|
||||
func kimd(function code, chain *[200]byte, src []byte)
|
||||
|
||||
// klmd is a wrapper for the 'compute last message digest' instruction.
|
||||
// src padding is handled by the instruction.
|
||||
//
|
||||
//go:noescape
|
||||
func klmd(function code, chain *[200]byte, dst, src []byte)
|
||||
|
||||
type asmState struct {
|
||||
a [200]byte // 1600 bit state
|
||||
buf []byte // care must be taken to ensure cap(buf) is a multiple of rate
|
||||
rate int // equivalent to block size
|
||||
storage [3072]byte // underlying storage for buf
|
||||
outputLen int // output length for full security
|
||||
function code // KIMD/KLMD function code
|
||||
state spongeDirection // whether the sponge is absorbing or squeezing
|
||||
}
|
||||
|
||||
func newAsmState(function code) *asmState {
|
||||
var s asmState
|
||||
s.function = function
|
||||
switch function {
|
||||
case sha3_224:
|
||||
s.rate = 144
|
||||
s.outputLen = 28
|
||||
case sha3_256:
|
||||
s.rate = 136
|
||||
s.outputLen = 32
|
||||
case sha3_384:
|
||||
s.rate = 104
|
||||
s.outputLen = 48
|
||||
case sha3_512:
|
||||
s.rate = 72
|
||||
s.outputLen = 64
|
||||
case shake_128:
|
||||
s.rate = 168
|
||||
s.outputLen = 32
|
||||
case shake_256:
|
||||
s.rate = 136
|
||||
s.outputLen = 64
|
||||
default:
|
||||
panic("sha3: unrecognized function code")
|
||||
}
|
||||
|
||||
// limit s.buf size to a multiple of s.rate
|
||||
s.resetBuf()
|
||||
return &s
|
||||
}
|
||||
|
||||
func (s *asmState) clone() *asmState {
|
||||
c := *s
|
||||
c.buf = c.storage[:len(s.buf):cap(s.buf)]
|
||||
return &c
|
||||
}
|
||||
|
||||
// copyIntoBuf copies b into buf. It will panic if there is not enough space to
|
||||
// store all of b.
|
||||
func (s *asmState) copyIntoBuf(b []byte) {
|
||||
bufLen := len(s.buf)
|
||||
s.buf = s.buf[:len(s.buf)+len(b)]
|
||||
copy(s.buf[bufLen:], b)
|
||||
}
|
||||
|
||||
// resetBuf points buf at storage, sets the length to 0 and sets cap to be a
|
||||
// multiple of the rate.
|
||||
func (s *asmState) resetBuf() {
|
||||
max := (cap(s.storage) / s.rate) * s.rate
|
||||
s.buf = s.storage[:0:max]
|
||||
}
|
||||
|
||||
// Write (via the embedded io.Writer interface) adds more data to the running hash.
|
||||
// It never returns an error.
|
||||
func (s *asmState) Write(b []byte) (int, error) {
|
||||
if s.state != spongeAbsorbing {
|
||||
panic("sha3: Write after Read")
|
||||
}
|
||||
length := len(b)
|
||||
for len(b) > 0 {
|
||||
if len(s.buf) == 0 && len(b) >= cap(s.buf) {
|
||||
// Hash the data directly and push any remaining bytes
|
||||
// into the buffer.
|
||||
remainder := len(b) % s.rate
|
||||
kimd(s.function, &s.a, b[:len(b)-remainder])
|
||||
if remainder != 0 {
|
||||
s.copyIntoBuf(b[len(b)-remainder:])
|
||||
}
|
||||
return length, nil
|
||||
}
|
||||
|
||||
if len(s.buf) == cap(s.buf) {
|
||||
// flush the buffer
|
||||
kimd(s.function, &s.a, s.buf)
|
||||
s.buf = s.buf[:0]
|
||||
}
|
||||
|
||||
// copy as much as we can into the buffer
|
||||
n := len(b)
|
||||
if len(b) > cap(s.buf)-len(s.buf) {
|
||||
n = cap(s.buf) - len(s.buf)
|
||||
}
|
||||
s.copyIntoBuf(b[:n])
|
||||
b = b[n:]
|
||||
}
|
||||
return length, nil
|
||||
}
|
||||
|
||||
// Read squeezes an arbitrary number of bytes from the sponge.
|
||||
func (s *asmState) Read(out []byte) (n int, err error) {
|
||||
n = len(out)
|
||||
|
||||
// need to pad if we were absorbing
|
||||
if s.state == spongeAbsorbing {
|
||||
s.state = spongeSqueezing
|
||||
|
||||
// write hash directly into out if possible
|
||||
if len(out)%s.rate == 0 {
|
||||
klmd(s.function, &s.a, out, s.buf) // len(out) may be 0
|
||||
s.buf = s.buf[:0]
|
||||
return
|
||||
}
|
||||
|
||||
// write hash into buffer
|
||||
max := cap(s.buf)
|
||||
if max > len(out) {
|
||||
max = (len(out)/s.rate)*s.rate + s.rate
|
||||
}
|
||||
klmd(s.function, &s.a, s.buf[:max], s.buf)
|
||||
s.buf = s.buf[:max]
|
||||
}
|
||||
|
||||
for len(out) > 0 {
|
||||
// flush the buffer
|
||||
if len(s.buf) != 0 {
|
||||
c := copy(out, s.buf)
|
||||
out = out[c:]
|
||||
s.buf = s.buf[c:]
|
||||
continue
|
||||
}
|
||||
|
||||
// write hash directly into out if possible
|
||||
if len(out)%s.rate == 0 {
|
||||
klmd(s.function|nopad, &s.a, out, nil)
|
||||
return
|
||||
}
|
||||
|
||||
// write hash into buffer
|
||||
s.resetBuf()
|
||||
if cap(s.buf) > len(out) {
|
||||
s.buf = s.buf[:(len(out)/s.rate)*s.rate+s.rate]
|
||||
}
|
||||
klmd(s.function|nopad, &s.a, s.buf, nil)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// Sum appends the current hash to b and returns the resulting slice.
|
||||
// It does not change the underlying hash state.
|
||||
func (s *asmState) Sum(b []byte) []byte {
|
||||
if s.state != spongeAbsorbing {
|
||||
panic("sha3: Sum after Read")
|
||||
}
|
||||
|
||||
// Copy the state to preserve the original.
|
||||
a := s.a
|
||||
|
||||
// Hash the buffer. Note that we don't clear it because we
|
||||
// aren't updating the state.
|
||||
klmd(s.function, &a, nil, s.buf)
|
||||
return append(b, a[:s.outputLen]...)
|
||||
}
|
||||
|
||||
// Reset resets the Hash to its initial state.
|
||||
func (s *asmState) Reset() {
|
||||
for i := range s.a {
|
||||
s.a[i] = 0
|
||||
}
|
||||
s.resetBuf()
|
||||
s.state = spongeAbsorbing
|
||||
}
|
||||
|
||||
// Size returns the number of bytes Sum will return.
|
||||
func (s *asmState) Size() int {
|
||||
return s.outputLen
|
||||
}
|
||||
|
||||
// BlockSize returns the hash's underlying block size.
|
||||
// The Write method must be able to accept any amount
|
||||
// of data, but it may operate more efficiently if all writes
|
||||
// are a multiple of the block size.
|
||||
func (s *asmState) BlockSize() int {
|
||||
return s.rate
|
||||
}
|
||||
|
||||
// Clone returns a copy of the ShakeHash in its current state.
|
||||
func (s *asmState) Clone() ShakeHash {
|
||||
return s.clone()
|
||||
}
|
||||
|
||||
// new224Asm returns an assembly implementation of SHA3-224 if available,
|
||||
// otherwise it returns nil.
|
||||
func new224Asm() hash.Hash {
|
||||
if cpu.S390X.HasSHA3 {
|
||||
return newAsmState(sha3_224)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// new256Asm returns an assembly implementation of SHA3-256 if available,
|
||||
// otherwise it returns nil.
|
||||
func new256Asm() hash.Hash {
|
||||
if cpu.S390X.HasSHA3 {
|
||||
return newAsmState(sha3_256)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// new384Asm returns an assembly implementation of SHA3-384 if available,
|
||||
// otherwise it returns nil.
|
||||
func new384Asm() hash.Hash {
|
||||
if cpu.S390X.HasSHA3 {
|
||||
return newAsmState(sha3_384)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// new512Asm returns an assembly implementation of SHA3-512 if available,
|
||||
// otherwise it returns nil.
|
||||
func new512Asm() hash.Hash {
|
||||
if cpu.S390X.HasSHA3 {
|
||||
return newAsmState(sha3_512)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// newShake128Asm returns an assembly implementation of SHAKE-128 if available,
|
||||
// otherwise it returns nil.
|
||||
func newShake128Asm() ShakeHash {
|
||||
if cpu.S390X.HasSHA3 {
|
||||
return newAsmState(shake_128)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// newShake256Asm returns an assembly implementation of SHAKE-256 if available,
|
||||
// otherwise it returns nil.
|
||||
func newShake256Asm() ShakeHash {
|
||||
if cpu.S390X.HasSHA3 {
|
||||
return newAsmState(shake_256)
|
||||
}
|
||||
return nil
|
||||
}
|
33
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/sha3_s390x.s
generated
vendored
Normal file
33
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/sha3_s390x.s
generated
vendored
Normal file
|
@ -0,0 +1,33 @@
|
|||
// Copyright 2017 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
//go:build gc && !purego
|
||||
|
||||
#include "textflag.h"
|
||||
|
||||
// func kimd(function code, chain *[200]byte, src []byte)
|
||||
TEXT ·kimd(SB), NOFRAME|NOSPLIT, $0-40
|
||||
MOVD function+0(FP), R0
|
||||
MOVD chain+8(FP), R1
|
||||
LMG src+16(FP), R2, R3 // R2=base, R3=len
|
||||
|
||||
continue:
|
||||
WORD $0xB93E0002 // KIMD --, R2
|
||||
BVS continue // continue if interrupted
|
||||
MOVD $0, R0 // reset R0 for pre-go1.8 compilers
|
||||
RET
|
||||
|
||||
// func klmd(function code, chain *[200]byte, dst, src []byte)
|
||||
TEXT ·klmd(SB), NOFRAME|NOSPLIT, $0-64
|
||||
// TODO: SHAKE support
|
||||
MOVD function+0(FP), R0
|
||||
MOVD chain+8(FP), R1
|
||||
LMG dst+16(FP), R2, R3 // R2=base, R3=len
|
||||
LMG src+40(FP), R4, R5 // R4=base, R5=len
|
||||
|
||||
continue:
|
||||
WORD $0xB93F0024 // KLMD R2, R4
|
||||
BVS continue // continue if interrupted
|
||||
MOVD $0, R0 // reset R0 for pre-go1.8 compilers
|
||||
RET
|
172
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/shake.go
generated
vendored
Normal file
172
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/shake.go
generated
vendored
Normal file
|
@ -0,0 +1,172 @@
|
|||
// Copyright 2014 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package sha3
|
||||
|
||||
// This file defines the ShakeHash interface, and provides
|
||||
// functions for creating SHAKE and cSHAKE instances, as well as utility
|
||||
// functions for hashing bytes to arbitrary-length output.
|
||||
//
|
||||
//
|
||||
// SHAKE implementation is based on FIPS PUB 202 [1]
|
||||
// cSHAKE implementations is based on NIST SP 800-185 [2]
|
||||
//
|
||||
// [1] https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
|
||||
// [2] https://doi.org/10.6028/NIST.SP.800-185
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"hash"
|
||||
"io"
|
||||
)
|
||||
|
||||
// ShakeHash defines the interface to hash functions that support
|
||||
// arbitrary-length output. When used as a plain [hash.Hash], it
|
||||
// produces minimum-length outputs that provide full-strength generic
|
||||
// security.
|
||||
type ShakeHash interface {
|
||||
hash.Hash
|
||||
|
||||
// Read reads more output from the hash; reading affects the hash's
|
||||
// state. (ShakeHash.Read is thus very different from Hash.Sum)
|
||||
// It never returns an error, but subsequent calls to Write or Sum
|
||||
// will panic.
|
||||
io.Reader
|
||||
|
||||
// Clone returns a copy of the ShakeHash in its current state.
|
||||
Clone() ShakeHash
|
||||
}
|
||||
|
||||
// cSHAKE specific context
|
||||
type cshakeState struct {
|
||||
*state // SHA-3 state context and Read/Write operations
|
||||
|
||||
// initBlock is the cSHAKE specific initialization set of bytes. It is initialized
|
||||
// by newCShake function and stores concatenation of N followed by S, encoded
|
||||
// by the method specified in 3.3 of [1].
|
||||
// It is stored here in order for Reset() to be able to put context into
|
||||
// initial state.
|
||||
initBlock []byte
|
||||
}
|
||||
|
||||
// Consts for configuring initial SHA-3 state
|
||||
const (
|
||||
dsbyteShake = 0x1f
|
||||
dsbyteCShake = 0x04
|
||||
rate128 = 168
|
||||
rate256 = 136
|
||||
)
|
||||
|
||||
func bytepad(input []byte, w int) []byte {
|
||||
// leftEncode always returns max 9 bytes
|
||||
buf := make([]byte, 0, 9+len(input)+w)
|
||||
buf = append(buf, leftEncode(uint64(w))...)
|
||||
buf = append(buf, input...)
|
||||
padlen := w - (len(buf) % w)
|
||||
return append(buf, make([]byte, padlen)...)
|
||||
}
|
||||
|
||||
func leftEncode(value uint64) []byte {
|
||||
var b [9]byte
|
||||
binary.BigEndian.PutUint64(b[1:], value)
|
||||
// Trim all but last leading zero bytes
|
||||
i := byte(1)
|
||||
for i < 8 && b[i] == 0 {
|
||||
i++
|
||||
}
|
||||
// Prepend number of encoded bytes
|
||||
b[i-1] = 9 - i
|
||||
return b[i-1:]
|
||||
}
|
||||
|
||||
func newCShake(N, S []byte, rate, outputLen int, dsbyte byte) ShakeHash {
|
||||
c := cshakeState{state: &state{rate: rate, outputLen: outputLen, dsbyte: dsbyte}}
|
||||
|
||||
// leftEncode returns max 9 bytes
|
||||
c.initBlock = make([]byte, 0, 9*2+len(N)+len(S))
|
||||
c.initBlock = append(c.initBlock, leftEncode(uint64(len(N)*8))...)
|
||||
c.initBlock = append(c.initBlock, N...)
|
||||
c.initBlock = append(c.initBlock, leftEncode(uint64(len(S)*8))...)
|
||||
c.initBlock = append(c.initBlock, S...)
|
||||
c.Write(bytepad(c.initBlock, c.rate))
|
||||
return &c
|
||||
}
|
||||
|
||||
// Reset resets the hash to initial state.
|
||||
func (c *cshakeState) Reset() {
|
||||
c.state.Reset()
|
||||
c.Write(bytepad(c.initBlock, c.rate))
|
||||
}
|
||||
|
||||
// Clone returns copy of a cSHAKE context within its current state.
|
||||
func (c *cshakeState) Clone() ShakeHash {
|
||||
b := make([]byte, len(c.initBlock))
|
||||
copy(b, c.initBlock)
|
||||
return &cshakeState{state: c.clone(), initBlock: b}
|
||||
}
|
||||
|
||||
// Clone returns copy of SHAKE context within its current state.
|
||||
func (c *state) Clone() ShakeHash {
|
||||
return c.clone()
|
||||
}
|
||||
|
||||
// NewShake128 creates a new SHAKE128 variable-output-length ShakeHash.
|
||||
// Its generic security strength is 128 bits against all attacks if at
|
||||
// least 32 bytes of its output are used.
|
||||
func NewShake128() ShakeHash {
|
||||
if h := newShake128Asm(); h != nil {
|
||||
return h
|
||||
}
|
||||
return &state{rate: rate128, outputLen: 32, dsbyte: dsbyteShake}
|
||||
}
|
||||
|
||||
// NewShake256 creates a new SHAKE256 variable-output-length ShakeHash.
|
||||
// Its generic security strength is 256 bits against all attacks if
|
||||
// at least 64 bytes of its output are used.
|
||||
func NewShake256() ShakeHash {
|
||||
if h := newShake256Asm(); h != nil {
|
||||
return h
|
||||
}
|
||||
return &state{rate: rate256, outputLen: 64, dsbyte: dsbyteShake}
|
||||
}
|
||||
|
||||
// NewCShake128 creates a new instance of cSHAKE128 variable-output-length ShakeHash,
|
||||
// a customizable variant of SHAKE128.
|
||||
// N is used to define functions based on cSHAKE, it can be empty when plain cSHAKE is
|
||||
// desired. S is a customization byte string used for domain separation - two cSHAKE
|
||||
// computations on same input with different S yield unrelated outputs.
|
||||
// When N and S are both empty, this is equivalent to NewShake128.
|
||||
func NewCShake128(N, S []byte) ShakeHash {
|
||||
if len(N) == 0 && len(S) == 0 {
|
||||
return NewShake128()
|
||||
}
|
||||
return newCShake(N, S, rate128, 32, dsbyteCShake)
|
||||
}
|
||||
|
||||
// NewCShake256 creates a new instance of cSHAKE256 variable-output-length ShakeHash,
|
||||
// a customizable variant of SHAKE256.
|
||||
// N is used to define functions based on cSHAKE, it can be empty when plain cSHAKE is
|
||||
// desired. S is a customization byte string used for domain separation - two cSHAKE
|
||||
// computations on same input with different S yield unrelated outputs.
|
||||
// When N and S are both empty, this is equivalent to NewShake256.
|
||||
func NewCShake256(N, S []byte) ShakeHash {
|
||||
if len(N) == 0 && len(S) == 0 {
|
||||
return NewShake256()
|
||||
}
|
||||
return newCShake(N, S, rate256, 64, dsbyteCShake)
|
||||
}
|
||||
|
||||
// ShakeSum128 writes an arbitrary-length digest of data into hash.
|
||||
func ShakeSum128(hash, data []byte) {
|
||||
h := NewShake128()
|
||||
h.Write(data)
|
||||
h.Read(hash)
|
||||
}
|
||||
|
||||
// ShakeSum256 writes an arbitrary-length digest of data into hash.
|
||||
func ShakeSum256(hash, data []byte) {
|
||||
h := NewShake256()
|
||||
h.Write(data)
|
||||
h.Read(hash)
|
||||
}
|
19
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/shake_generic.go
generated
vendored
Normal file
19
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/shake_generic.go
generated
vendored
Normal file
|
@ -0,0 +1,19 @@
|
|||
// Copyright 2017 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
//go:build !gc || purego || !s390x
|
||||
|
||||
package sha3
|
||||
|
||||
// newShake128Asm returns an assembly implementation of SHAKE-128 if available,
|
||||
// otherwise it returns nil.
|
||||
func newShake128Asm() ShakeHash {
|
||||
return nil
|
||||
}
|
||||
|
||||
// newShake256Asm returns an assembly implementation of SHAKE-256 if available,
|
||||
// otherwise it returns nil.
|
||||
func newShake256Asm() ShakeHash {
|
||||
return nil
|
||||
}
|
23
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/xor.go
generated
vendored
Normal file
23
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/xor.go
generated
vendored
Normal file
|
@ -0,0 +1,23 @@
|
|||
// Copyright 2015 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
//go:build (!amd64 && !386 && !ppc64le) || purego
|
||||
|
||||
package sha3
|
||||
|
||||
// A storageBuf is an aligned array of maxRate bytes.
|
||||
type storageBuf [maxRate]byte
|
||||
|
||||
func (b *storageBuf) asBytes() *[maxRate]byte {
|
||||
return (*[maxRate]byte)(b)
|
||||
}
|
||||
|
||||
var (
|
||||
xorIn = xorInGeneric
|
||||
copyOut = copyOutGeneric
|
||||
xorInUnaligned = xorInGeneric
|
||||
copyOutUnaligned = copyOutGeneric
|
||||
)
|
||||
|
||||
const xorImplementationUnaligned = "generic"
|
28
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/xor_generic.go
generated
vendored
Normal file
28
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/xor_generic.go
generated
vendored
Normal file
|
@ -0,0 +1,28 @@
|
|||
// Copyright 2015 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package sha3
|
||||
|
||||
import "encoding/binary"
|
||||
|
||||
// xorInGeneric xors the bytes in buf into the state; it
|
||||
// makes no non-portable assumptions about memory layout
|
||||
// or alignment.
|
||||
func xorInGeneric(d *state, buf []byte) {
|
||||
n := len(buf) / 8
|
||||
|
||||
for i := 0; i < n; i++ {
|
||||
a := binary.LittleEndian.Uint64(buf)
|
||||
d.a[i] ^= a
|
||||
buf = buf[8:]
|
||||
}
|
||||
}
|
||||
|
||||
// copyOutGeneric copies uint64s to a byte buffer.
|
||||
func copyOutGeneric(d *state, b []byte) {
|
||||
for i := 0; len(b) >= 8; i++ {
|
||||
binary.LittleEndian.PutUint64(b, d.a[i])
|
||||
b = b[8:]
|
||||
}
|
||||
}
|
66
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/xor_unaligned.go
generated
vendored
Normal file
66
sourcecode/gobalance/vendor/golang.org/x/crypto/sha3/xor_unaligned.go
generated
vendored
Normal file
|
@ -0,0 +1,66 @@
|
|||
// Copyright 2015 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
//go:build (amd64 || 386 || ppc64le) && !purego
|
||||
|
||||
package sha3
|
||||
|
||||
import "unsafe"
|
||||
|
||||
// A storageBuf is an aligned array of maxRate bytes.
|
||||
type storageBuf [maxRate / 8]uint64
|
||||
|
||||
func (b *storageBuf) asBytes() *[maxRate]byte {
|
||||
return (*[maxRate]byte)(unsafe.Pointer(b))
|
||||
}
|
||||
|
||||
// xorInUnaligned uses unaligned reads and writes to update d.a to contain d.a
|
||||
// XOR buf.
|
||||
func xorInUnaligned(d *state, buf []byte) {
|
||||
n := len(buf)
|
||||
bw := (*[maxRate / 8]uint64)(unsafe.Pointer(&buf[0]))[: n/8 : n/8]
|
||||
if n >= 72 {
|
||||
d.a[0] ^= bw[0]
|
||||
d.a[1] ^= bw[1]
|
||||
d.a[2] ^= bw[2]
|
||||
d.a[3] ^= bw[3]
|
||||
d.a[4] ^= bw[4]
|
||||
d.a[5] ^= bw[5]
|
||||
d.a[6] ^= bw[6]
|
||||
d.a[7] ^= bw[7]
|
||||
d.a[8] ^= bw[8]
|
||||
}
|
||||
if n >= 104 {
|
||||
d.a[9] ^= bw[9]
|
||||
d.a[10] ^= bw[10]
|
||||
d.a[11] ^= bw[11]
|
||||
d.a[12] ^= bw[12]
|
||||
}
|
||||
if n >= 136 {
|
||||
d.a[13] ^= bw[13]
|
||||
d.a[14] ^= bw[14]
|
||||
d.a[15] ^= bw[15]
|
||||
d.a[16] ^= bw[16]
|
||||
}
|
||||
if n >= 144 {
|
||||
d.a[17] ^= bw[17]
|
||||
}
|
||||
if n >= 168 {
|
||||
d.a[18] ^= bw[18]
|
||||
d.a[19] ^= bw[19]
|
||||
d.a[20] ^= bw[20]
|
||||
}
|
||||
}
|
||||
|
||||
func copyOutUnaligned(d *state, buf []byte) {
|
||||
ab := (*[maxRate]uint8)(unsafe.Pointer(&d.a[0]))
|
||||
copy(buf, ab[:])
|
||||
}
|
||||
|
||||
var (
|
||||
xorIn = xorInUnaligned
|
||||
copyOut = copyOutUnaligned
|
||||
)
|
||||
|
||||
const xorImplementationUnaligned = "unaligned"
|
Loading…
Add table
Add a link
Reference in a new issue