

Linux Shell Survival Guide v2.0

POCKET REFERENCE GUIDE

SANS Institute by Phil Hagen
http://computer-forensics.sans.org http:/lewestech.com

grep Print lines matching a pattern
 $ grep pattern input.txt

-i Case-insensitive pattern matching
-v Print lines that do not match
-c Count matching lines instead of printing them
-l Print filenames containing matching lines
-h Do not include filenames when searching

multiple input files (e.g. output*.txt)

Searching: Where For Art Thou?

This guide is a supplement to SANS FOR572:
Advanced Network Forensics and Analysis. It covers
some of what we consider the more useful Linux shell
primitives and core utilities. These can be exceedingly
helpful when automating analysis processes, generating
output that can be copied and pasted into a report or
spreadsheet document, or supporting quick-turn
responses when a full tool kit is not available.
Remember: If you can make it happen in a shell over a
lag-ridden SSH connection, there is a better chance of

being the lethal forensicator when it really matters!

Purpose

How To Use This Document

Linux has been around since 1991, and its *NIX parents
since 1969. This handout cannot begin to scratch the
surface of the great and powerful things you can do with
nothing more than a shell prompt and some moxie. Use
this document as a “memory jog” for some of the
capabilities of the more commonly used tools in this
course and in the forensic workflow in general.
Dig into the details of each tool’s features through its
manual pages (aka “man pages”) and other online and
offline references. We think you will find the shell to be
as powerful as the GUI, and in some cases a far superior
alternative – especially for scalability and automation.

sort Sort lines alphabetically or numerically
 $ sort input.txt

-n Sort numerically (5 before 10)
-r Reverse sort order
-k Specify an alternate sort field
-t Specify a field delimiter for -k (default

Order in the Court

Linux prefers small, single-purpose functions and
utilities. Chain them together with the “pipe”, which
sends the output of one command into the next as input.
 $ grep pattern input.txt | sort | uniq -c

Iteratively build a series of commands to create output
that definitively addresses your requirements.

Working on the Chain Gang

Redirect output to a file instead of the shell itself with
the “greater than” character. (Warning: Overwrites
any existing contents!)
 $ grep pat1 input.txt > results.txt

Append to existing files with “double greater than”.
 $ grep pat2 input.txt >> results.txt

Redirect Output: I Don’t Want to Hear You

BASH provides many functions to improve your
accuracy, speed, and efficiency – know and use them!

Tab Completion
Hit the <TAB> key to expand the first few characters of
a command, directory name, filename, or variable
name. If there is more than one possible option, it will
complete as far as possible. Press <TAB> again to see
the possible completion options.

Standard Variables
~ An alias for the current user’s home

directory (also available as $HOME)

$PATH The command search path

$? The exit value of the previous command

$PWD The current working directory

Command History
Cycle through previous commands by pressing the up
and down arrows. Use the history command to see a
list of the command history buffer. (BASH writes this
buffer is ~/.bash_history upon exiting,
overwriting any existing contents.) Press Ctrl-R to
search through history for commands that match a

Use the Force

uniq Only print consecutive matching lines once
 $ grep pattern input.txt | uniq

-c Print the count of consecutive lines

Remember: Only finds consecutive matching lines!
Most useful with input piped from the sort command.
 $ grep pattern input.txt | sort | uniq

De-Duplication and De-Duplication

For572HANDOUT_LSSG_V2.0_C01_01 - 1

tcpdump Dump network traffic
 $ sudo tcpdump -n -s 0 -i eth0 \

 '<BPF filter>'

 $ tcpdump -n -r input.pcap \

 -w output.pcap '<BPF filter>'

-n Prevent DNS lookups on IP addresses. Use twice
to also prevent port-to-service lookups

-r Read from pcap file instead of the network
-w Write packet data to a file
-D Enumerate network interfaces
-i Specify the network interface on which to capture
-s Number of bytes per packet to capture
-C Number of megabytes to save in a capture file

before starting a new file
-G Number of seconds to save in each capture file

(requires time format in output filename)
-W Used with the -C or -G options, limit the number

of rotated files (see man page for detailed usage)
-x Display packet contents in hex

tcpdump requires root privileges to capture network
traffic promiscuously. User-level permissions are
sufficient for manipulating existing capture files.

See the pcap-filter man page for information on
building BPFs to control captured traffic.

No Packets, No Party

tshark Dump and analyze network traffic
(aka “Wireshark in the shell”)

 $ tshark -n -r in.pcap -Y '<disp filter>'

-n Prevent DNS and port lookups
-r Read from pcap file instead of the network
-w Write output to a pcap file instead of the terminal
-T Output format (text, fields, etc.)
-e With “-T fields”, add a field to the output
-Y Protocol-aware display filter to apply
-z Statistical output modes – see man page

See the wireshark-filter man page for
information on building protocol-aware display filters.

GUI-less Packet Spelunking

awk Pattern scanning and processing language
Seriously powerful stuff™!

 $ awk -F ',' '{ print $1,$6,$3 }' in.txt

-F Specify input field separator (default is space)
Input and output field separators can be specified in
the awk script itself with the FS and OFS variables:

 $ awk '{ FS = ","; OFS = "\t"; \
print $2,$4 }' in.txt

Bring Out the Big Guns

nfdump Process NetFlow data from files on disk
 $ nfdump -R ./ -b -O tstart –o extended

-R Recursively read data from the specified directory
-r Read data from a single nfcapd file
-b Aggregate records bidirectionally
-B Bidirectional aggregation (assume a host using a

port <1024 is “destination” host)
-a Aggregate by src+dst IP, src+dst port, protocol
-A Specify custom aggregation
-t Time window, in “YYYY/MM/DD.hh:mm:ss”

format (See man page for additional details)
-s Generate “TopN” statistics
-O Specify output ordering
-o Specify output format (line, long,

extended, or custom). Custom formatting uses
“fmt:<format string>” syntax, where
“<format string>” defines values displayed
(see man page for full list).
%ts Start time %te End time
%td Duration %pr Protocol
%sa Source address %da Destination address
%sap Source IP:port %dap Destination IP:port
%sp Source port %dp Destination port
%sas Source ASN %das Destination ASN
%pkt Packet count %byt Byte count
%fl Flow count %flg TCP flags
%bps Bits per second %pps Packets per second
%bpp Bytes per packet

Go With The (Net)Flow

passivedns Generate normalized records for all
DNS queries and responses

 $ passivedns -r input.pcap –l pdnslog.txt

-r Specify pcap file to read
-l Log for normal (non-error) queries
-L Log for SRC error queries
-i Specify interface for live DNS observation

What’s in a Name?
nfpcapd Generate nfdump-compatible

NetFlow records from pcap file
 $ nfpcapd -r in.pcap –l ./netflow/ -S 1 -z

-r pcap file to read
-l Output directory
-S Output directory format (0=flat, 1=yr/mo/day;

see nfcapd man page for more)
-z Compress output flows

Index That pcap File!
Use the built-in reference manual:

man Interface to the on-line reference manuals
 $ man find

-k Perform keyword search through all man pages
Use inline command help where available – many
commands provide brief usage statements with the
“--help" or “-h” options
 $ tcpdump --help

The Grymoire - home for UNIX wizards:

 http://www.grymoire.com/Unix/

For More About These Fine Commands...

For572HANDOUT_LSSG_V2.0_C01_01 - 2

