

SQLite POCKET REFERENCE GUIDE

SANS Institute - http://computer-forensics.sans.org
Sarah Edwards - mac4n6.com
Heather Mahalik – smarterforensics.com

• sqlite3	–	Free	CLI	utility	available	for	(or	native	to)	
Mac/iOS/Android/*nix/Windows	-	sqlite.org/cli.html	

• DB	Browser	for	SQLite	–	Free	GUI	utility	available	for	
Mac/Windows/*nix	–	sqlitebrowser.org	

• SQLite	Spy	–	Free	GUI	utility	for	Windows	-	
https://www.yunqa.de/delphi/products/sqlitespy/index	

• Sanderson	Forensic	Toolkit	for	SQLite	–	Commercial	GUI	
utility	for	Windows	-	sandersonforensics.com	

• Commercial	tools	and	Browser	Plug-ins		-	A	SQLite	editor	is	
available	in	most	forensic	tool	suites	

SQLite Analysis Tools

This	 guide	 is	 a	 supplement	 to	 SANS	 FOR518:	 Mac	
Forensic	 Analysis	 and	 SANS	 FOR585:	 Advanced	
Smartphone	Forensics,	and	enhances	concepts	covered	
in	other	courses.		It	covers	some	of	the	core	methods	to	
extracting	 data	 from	 SQLite	 databases.	 Definitions,	
sample	 queries,	 and	 SQLite	 terminology	 will	 help	 you	
conduct	manual	extractions	from	databases	of	interest	
found	on	Macs,	Smartphones,	and	PCs.	

Commercial	tools	will	only	get	you	so	far.	Manual	
recovery	and	extracting	contents	is	what	really	matters!	

Purpose

How To Use This Document

SQLite	databases	are	used	to	store	a	vast	amount	of	data	
recovered	 from	 digital	 media.	 	 This	 handout	 cannot	
begin	to	scratch	the	surface	of	the	great	and	powerful	
things	you	can	do	with	SQL	queries.	Use	this	document	
as	 a	 “memory	 jog”	 for	 some	 of	 the	 queries,	 tools	
available	 and	 examples	 for	 normalizing	 data	 formats	
recovered	from	databases.		
We	think	you	will	find	this	reference	as	a	place	to	start	
or	simply	help	remember	which	operators	and	queries	
will	 assist	 you	 in	 your	 investigation.	 The	 tools	 listed	
provide	support	for	CLI	and	GUI.	

• NULL	–	NULL	Value	
• INTEGER	–	Signed	Integer	
• REAL	–	Floating	Point	Number	
• TEXT	–	Text	String	(UTF-8,	UTF-16BE	or	UTF-16LE)	
• BLOB	–	(Binary	Large	OBjects)	to	store	large	chunks	of	data.	

This	data	may	be	a	picture,	video,	audio,	or	archive	(Gzip)	files.	
This	data	is	not	defined	in	the	database,	it	may	contain	
anything	an	app	developer	desires.	This	data	is	often	
overlooked	but	may	contain	forensic	nuggets	of	gold!	

Data Types

Get	everything	from	a	single	table:	
SELECT * FROM A_TABLE;
	
Get	two	columns	from	a	single	table:	
SELECT COLUMN_A, COLUMN_B FROM A_TABLE;
	

Basic Analysis Query Structure
SQLite	 databases	 are	 a	 self-contained	 database	 stored	 as	 a	 file	
system	file	 (but	may	have	a	few	supporting	files	that	will	 also	be	
needed	 for	 analysis!)	 Files	 have	 the	 magic	 number	 “SQLite
format 3”.	SQLite	files	correspond	to	a	database	that	contains	
tables.	Tables	 contain	 rows	 of	 data	with	 corresponding	 columns	
that	describe	the	data	in	the	row.	

	
Some	temporary	files	may	also	be	 created,	 including	Journal	files	
and	Write	Ahead	 Logs.	 	 Journal	 files	store	original	data	before	a	
transaction	 change	 so	 the	 database	 can	 be	 restored	 to	 a	 known	
state	if	an	error	occurs.	They	are	created	by	default.		

Write	Ahead	Logs	(WAL)	contain	new	data	changes,	leaving	original	
database	untouched.	After	a	set	number	of	page	changes,	the	WAL	
is	 used	 to	 update	 the	 actual	 database.	 Write	 ahead	 logs	 are	
optional.	 Journal	 files	 –	 stores	 original	 data	 before	 a	 transaction	
change	so	the	database	can	be	restored	to	a	known	state	if	an	error	
occurs.	(created	by	default)		

	

SQLite Database Basics

Arithmetic:	
• Addition	[+]	
• Subtraction	[-]	
• Multiplication	[*]	
• Division	[/]	
• Modulus	[%]	
	
Comparison:	
• Equal	[==]	or	[=],	Not	Equal	[!=]	or	[<>]	
• Greater	Than	[>]	or		Greater	Than	or	Equal	[>=]	
• Less	Than	[<]	or		Less	Than	or	Equal	[<=]	
	
Logic:	
• IS	/	IS	NOT	–	Equal/Not	Equal	
• IN	/	NOT	IN	–	Is	value	in	(or	not)	a	list	of	values?	
• LIKE	(Case	Insensitive)	/	GLOB	(Case	Sensitive)	–	Is	value	like	

this	other	value?	Uses	wildcards.	
• AND	/	OR	–		Use	with	WHERE	clause	to	create	complex	logic.	
• BETWEEN	–	Look	for	values	between	two	values.	
• UNIQUE	–	Look	for	unique	data,	no	duplicates.	

	

Operators

 v.090517	

Taking	 data	 from	 two	 (or	 more!)	 tables	 that	 have	 a	 column	 in	
common	and	joining	them	into	one	table.	Identify	tables	of	interest	
that	contain	unique	values.	

LEFT	JOIN	–	Resulting	rows	are	returned	from	the	LEFT	table	even	
if	there	are	no	matches	in	the	right.	Using	the	LEFT	JOIN	produced	
all	the	text	messages	including	those	with	and	without	
attachments.	
	
SELECT
ZVIBERMESSAGE.ZTEXT AS "Message Text",
ZATTACHMENT.ZNAME AS “Attachment Filename",
datetime(ZVIBERMESSAGE.ZDATE+978307200,'unixepoch'
,'localtime') AS "Message Date",
ZVIBERMESSAGE.ZSTATE AS "Message Direction/State"
FROM
ZVIBERMESSAGE
LEFT JOIN ZATTACHMENT on
ZATTACHMENT.Z_PK=ZVIBERMESSAGE.ZATTACHMENT

INNER	JOIN	-	Resulting	rows	are	returned	when	both	items	are	a	
match.		Using	the	INNER	JOIN	(also	achieved	by	typing	“JOIN”	in	
the	query)	returned	just	the	messages	that	included	attachments.	
	

Table Joins
Use	the	command	line	version	of	the	sqlite3	program	
(sqlite.org/cli.html)	either	in	a	SQLite	shell,	or	just	query	via	CLI:	
$ sqlite3 <db_file>
$ sqlite3 <db_file> ‘select * from a_table’

• .help	–	Provides	a	list	of	these	‘dot-commands’	
• .tables	–	Show	the	table	names	in	the	database	
• .headers on	–	Show	the	column	names	in	the	output	
• .mode column		-	Show	left-aligned	columns	
• .mode tabs	–	Show	tab	separated	columns	
• .output <filename>	-	Send	output	to	file	
• .dump	–	Dump	database	contents	(use	with	.output)	
• .quit	–	Quit	sqlite3	shell		

sqlite3 CLI Options

The	SQLite	header	for	every	database	will	contain	offsets	enabling	
you	to	differentiate	if	a	journal	or	WAL	is	being	used	to	support	the	
database.	

• File	Offset	18	(1	byte)	=	x01	=	Journaling	
• File	Offset	19	(1	byte)	=	x01	=	Journaling	

OR	
• File	Offset	18	(1	byte)	=	x02	=	WAL	
• File	Offset	19	(1	byte)	=	x02	=	WAL	

	

Is the Database Using WAL or Journaling

Timestamps	are	stored	in	the	databases	as	one	of	several	numerical	
representations.	(Timestamps	are	assumed	to	be	stored	in	UTC,	you	
may	need	to	verify	this.)	
	
UNIX	Epoch	(10	digit	number	-	number	of	seconds	since	
01/01/1970	00:00:00):	
• SELECT datetime(TS_COLUMN,'unixepoch')
Or	in	local	time	as	suggested	by	the	device	settings	(this	can	be	
done	for	all	the	following	timestamps):	
• SELECT datetime(TS_COLUMN,'unixepoch',

'localtime')
	
UNIX	Epoch	MILLISECONDS	(13	digit	number	-	number	of	
milliseconds	since	01/01/1970	00:00:00):	
• SELECT

datetime(TS_COLUMN/1000,'unixepoch');
	
Mac	Absolute	time,	number	of	seconds	since	01/01/2001	
00:00:00.		In	order	to	correctly	convert	this	timestamp,	first,	add	
the	number	of	seconds	since	UNIXEPOCH	time	to	Mac	Absolute	
Time	(978307200),	then	convert.	
• SELECT datetime(TS_COLUMN + 978307200,

'unixepoch');
	
Chrome	 time	 accounts	 for	 time	 accurate	 to	 the	 MICROSECOND,	
which	requires	dividing	the	number	by	1,000,000:	
• SELECT datetime(TS_COLUMN/1000000 +

(strftime('%s','1601-01-
01')),'UNIXEPOCH');

Timestamp Conversion

• Official	SQLite	Documentation:	https://sqlite.org	
• Great	Tutorials:		

o https://www.tutorialspoint.com/sqlite/	
o http://www.sqlitetutorial.net/	
o http://zetcode.com/db/sqlite/	
o http://sandersonforensics.com/forum/content.php?2

75-How-NOT-to-examine-SQLite-WAL-files	
• FOR518	–	Mac	Forensic	Analysis	–	FOR518.com	
• FOR585	–	Advanced	Smartphone	Forensics	–	FOR585.com	

	

SQLite References & Tutorials

Column	Renaming:	
A_TABLE.ZAWKWARDCOLUMNNAME AS “Chat Messages”
	
Counting:	
SELECT COUNT(*) FROM A_TABLE;
	
Aggregating	with	GROUP	BY	and	COUNT	(Count	chat	messages	per	
contact):	
SELECT MESSAGES,COUNT(*) FROM CHAT GROUP BY
CONTACT;
	
Sorting	with	ORDER	BY:	
SELECT * FROM CHAT ORDER BY A_TIMESTAMP ASC
ASC	=	Ascending	
DESC	=	Descending	
	
Searching	with	WHERE	and	LIKE:	
SELECT CONTACT, MESSAGE FROM CHAT WHERE
CONTACT LIKE ‘%Hank%’
	

Useful Stuff

Examine	the	table	to	determine	if	data	is	moved	to	the	free	pages	
or	a	Boolean	value	is	entered	to	mark	the	data	deleted.	

Use	a	SQLite	Editor	to	examine	the	free	pages	in	a	Hex	view	to	carve	
for	deleted	artifacts.	

Use	scripts	and	tools	available	to	conduct	a	cursory	scan	of	the	free	
pages	for	deleted	SQLite	entries	

	

SQLite Deletion

