<3

< 7. ° o 4 s
& e Memory Forensics = DFIR =y ..

Windows Forensics)
(Formerly FOR408) ' - and Threat Hunting

DG FIEISS & NEOEVT RSP Ana lys| S Poster crt DIGITAL FORENSICS & INCIDENT RESPONSE scen

FOR572
Advanced Network
Forensics and

Memory analysis is the decisive victory on rorsie [/S Analysis GNFA

Mac Forensics

2557
21
-

the battlefield between offense and defense,

giving the upper hand to incident responders ' Cyber Threat

Intelligence

by exposing injection and hooking techniques

FOR526 Aoy
. . M F i Aoty
that would otherwise remain undetected. O n-Depth A FOR610
. | REM: Malware Analysis
GREM

Memory Analysis will prepare your

team to: FOR585 —~— SEC504
. Advanced . \ Hacker Tools, Techniques,
* Discover zero-day malware Smartphone |P/R:R Exploits, and
. F i ¥ . .
- Detect compromises OFensICcs GASF . i Incident Handling cciH
« Uncover evidence that others miss

The Battleground Between m —
Offense and Defense » W - D

DFIR-Memory_v21_7-17

d igita l-forensics.sans.o £3 @ sansforensics sansforensics dfir.to/DFIRCast dfir.to/gplus-sansforensics dfir.to/MAIL-LIST

Rekall Memory Forensic Framework Extracting Process Details

[
. . . DLLLIST List of loaded dlls by process. ()
The Rekall Memory Forensic Framework is a collection of memory Filter on specific process(es) by including the process identifier <PID> as a positional argument Co u nte rS to M e m 0 ry FO re ns I CS.

acquisition and analysis tools implemented in Python under the GNU [1] image.img 11:14:35> dlllist [1580,204]
- . . . ‘ ‘ A ‘ Y) o
General Public |T|cense. Th|s ;heatsheet prowdes d qP'F'f refgrence for HANDLES List of open handles for each process include pid or array of pids separated by commas
memory analysis operations in Rekall, covering acquisition, live memory object_types="TYPE" - Limit to handles of a certain type {Process, Thread, Key, O e rn n I — n a SIS eC n I u es
analysis, and parsing plugins used in the Six-Step Investigative Process. For Event, File, Mutant, Token, Port})
more information on this tool, visit rekall-forensic.com. [1] image.img 11:14:35> handles 868, object_ types="Key

FILESCAN Scan memory for _FILE_OBJECT handles Subverting Memory Acquisition
[1] image.img 11:15:35> filescan output="filescan.txt” . 5 .
Dementia by Luka Milkovic

Getting Started with Rekall lici : . An impressive advancement in “anti-analysis” research was presented by Luka Milkovic at the 29th Chaos Communication Congress in December 2012. His
Single Command Example [1)Cimage. imgy11:14:355 HEUHEEUE o6 B R AT tool, Dementia, evades memory capture by intercepting NtWriteFile() calls through the use of inline hooking and a file system mini-filter. The buffer of a

kal -f i .i list o o q q
$ rekal -f image.img psiis IDENTIFY SUSPICIOUS PROCESSES by COMMAND LINE A memory acquisition tool is manipulated so that any reference to the target process and its kernel objects is removed and the resultant memory image file has
Starting an Interactive Session session# currentimage local system time PSTREE (WITH VERBOSITY) — List processes with path and command line

$ rekal -f image.img [1] be.aff4 11:14:35> describe (pstree) - View columns to output no evidence of this running process.

[1] be.aff4 11:14:35> select _EPROCESS,ppid,cmd,path from pstree () . oo . q q Q
DETECT CODE INJECTION by VAD ANALYSIS For more on this, visit: https://events.ccc.de/congress/2012/Fahrplan/attachments/2231_Defeating%20Windows%20memory%20forensics.ppt

o MALFIND Find injected code and dump sections o . o . . .
Process Enumeration <pid> Positional Argument: Show information only for specific PIDs Antl'AnalyS|S: Spll‘lnlng the Wheels of the Forensic Examiner

PSLIST Enumerate processes phys_eprocess= Provide physical offset of process to scan Attention Deﬁcit Disorder by Jake Williams
Rekall uses 5 techniques to enumerate processes by default eprocess= Provide virtual offset for process to scan

(PsActiveProcessList, sessions, handles, CSRSS, PspCidTable) dump_di= Directory to save memory sections Another anti-memory analysis POC is ADD (Attention Deficit Disorder), written by Jake Williams. This tool creates fake EPPROCESS, TCP_Endpoint, and

1] i .img 11:14:35> pslist 14- : - - ")) i i)
(1 image.ing ~ penist , [1] be.affd 11:14:35> malfind eprocess=0x853c£460, dump_dir="/cases FILE_OBJECT structures in memory that lead the examiner down rabbit holes where files may appear to be loaded into system memory or where network
Narrow the process enumeration using “method= LDRMODULES Detect unlinked DLLs

[1] image.img 11:14:35> pslist method= verbosity= Verbose: show full paths from three DLL lists connections to rogue IP/domains may appear to exist. As with the arms race of malware sophistication and the reversing skills of our ninja malware engineers,
CPS:*Ct,l"eP’ftcests"etad'th " [1] be.affd 11:14:35> ldrmodules 1936 anti-analysis techniques will continue to push the edge of forensic detection.

ustomize pslist output with efilters - : . .

[1] image.img 11:14:35> select For more on this, visit: http://malwarejake.blogspot.com/2014/01/analysis-of-add-ref-image-part-1.html

EPROCESS,ppid,process_create_time from pslist() Windows® Memory AchiSition (winpmem)

order by process_create_time

PROCINFO Display detailed process & PE info CREATING AN AFF4 (Open cmd. exe as Administrator) Evasion of Malicious Code Detection Techniques
[1] image.img 11:14:35> procinfo <PID> C:\> winpmem <version>.exe -o output.aff4 Gargoyle by JOSh Lospinoso

DESKTOPS E % | h INCLUDE PAGE FILE -
o [T;mfr:litc_e;j.efm?p].sla:nld4(:j255<>tog:s;cesjp§s verbosity=<#> C:\> winpmem <version>.exe -p c:\pagefile.sys -o output.aff4 One of the methods we use to identify code injection (see Step 4 above) is to look for executable memory that is not mapped to disk. Gargoyle implements

SESSIONS ~ Enumerate sessions and associated processes EXTRACTING THE RAW MEMORY IMAGE FROM THE AFF4 a unique proof of concept evasion technique, writing malicious code into read/write only memory, then using an Asynchronous Procedure Call based on a

: : . . : C:\> winpmem <version>.exe output.aff4 --export PhysicalMemory -o memory.im " . q 9 q 5 q
[1] image.img 11:14:35> sessions rapnen _fvexstons. exe onted P e Y ¥ane timer that calls a ROP gadget to invoke VirtualProtectEx to change protections to RWX. After Gargoyle executes, it again calls VirtualProtectEx to return to RW
THREADS ~ Enumerates process threads EXTRACTING TO RAW USING REKALL

[1] image.img 11:14:35> threads proc_regex= “chrome” [l ¥ rekal -f win7.aff4 imagecopy --output-image="/cases/win7.img protections to further evade detection.

i i OTHER WINPMEM OPTIONS 0. o o T 3
DT ?lls]plaiyltsla?;cﬂg|<elr;?ll E?tsasitrzctttj\(e; procESS") view affd metadata (-V)| elf output (--elf) For more on this, visit: https://github.com/JLospinoso/gargoyle

Six-Step Investigative Advances in Memory Forensics

M eth o d O lo ReCO\Ier Memory'ReSident EVidence Of Execution: FOR526@SIFTS vol.py -f test.img --profile=Win85P1x64 -g 0xf8004f6569b0 shimcachemem
Shimcachemem Volatility Foundation Volatility Framework 2.6

Order Last Modified Last Update Exec Flag File Size File Path

by Fred House, Andrew Davis, and Claudiu Teodorescu INFO : volatility.debug : Shimcache found at Oxffffc00000e13e88
. INFO :volatility.debug : Shimcache found at Oxffffc00000c24bb8
The use of shimcache artifacts in many investigations has been limited because 12014-06-16 10:48:40 True SYSVOL\Cases\winpmem-1.6.0\winpmem_1.6.0.exe
i H H H i i i 2 2013-08-22 05:20:05 True SYSVOL\Program Files (x86)\Internet Explorer\iexplore.exe
data is not updated in the registry until the system is shut down. As a winning 20130822 10.03.31 e SYSVOL\Wiows\Systom32\emd.exe

"We can remember it for you wholesale!" submission to the 2015 Volatility plugin contest, these researchers authored a 42013-08-22 12:35:25 True SYSVOL\Windows\System32\dllhost.exe

o g 2 o o a.afle 52014-10-07 09:01:46 T SYSVOL\P am Files\biforder\i io.
This program is free software; you can redistribute it and/or modify it under parsing plugin that extracts these entries from the Application Compatibility 6 2013.08.22 12.44.43 Troe SYSUOLM?fg;ES\;j;\e;3;&2;22‘?;—;_5;2:“

|dentify rogue e ferms of the GNU General Public License. Cache database in module or process memory. Despite changes in structure 72013-08-22 11:00:12 True SYSVOL\Windows\System32\notepad.exe

See http:/# rekall-fo ic. fdocs/M If ial.htrml & t d. 82013-08-22 05:21:45 True SYSVOL\Windows\SysWwOWe4\dllhost.exe
Processes o6 NP uwrurekal Torensic.com docs/Manualuloral imito get starte and the method of organization of these entries across versions of Windows, 0 2013.08.22 05.54:03 Trie SYSVOL\Windowe\S stem32\WUDF Host exe

5 | 1 1 10 2013-08-22 12:32:40 False SYSVOL\Windows\System32\audiodg.exe
shimcachemem SUpportS Versions from WmXPSPZ to WlndOW52012R2 11 2013-08-22 11:01:57 True SYSVOL\Windows\System32\ThumbnailExtractionHost.exe

- 3 e 1 =W1 - 1 12 2013-08-22 12:34:04 T SYSVOL\P Fil Int t Expl i | .
0x85212030 rundii3Z.exe 3276 rundli32.exe "C:\Users\usenAppData\Roaming\tsxfas.dil", DelltemString $ vol.py -f test.img --profile=Win8SP1x64 -g 0x£8004£6569b0 shimcachemem ue \Program Files\internet Explorer\iexplore.exe

0x856203e0 rundli32.exe 3416 rundll32.exe "C:\Users\userAppData\Roaming\coles.dli”,get_user_height_max 13 2013-08-22 11:03:41 True SYSVOL\Windows\System32\rundli32.exe
Out<18:22:33> Plugin: search (Search) \ »

Decompress Win 8+ Hiberfil.sys and Carve
FOR526@SIFTS rekal -f farietvmen dlist 3276 | egrep i 'system32 Hibernation Slack: Hibernation Recon ooy et Gl e a2 100

An a Iyz e base size reason dil_path
 — 0 Q Step 1/5: Parsing memory tables - Complete
rundll32.exe pid; 3276 H|bernat|°n Recon by Arsenal Recon Step 2/5. Reconstructing active memory - Complete
process DI.I.S Command line : rundli32.exe "C:\Users\usertAppData\Roamingltsxfas.dll",DelltemString . . h . Step 3: Extr:cllr.fg s:ack dm| .C(:lmple'.; |
— S— Step 4/5: Looking for legacy slack data - Complete
and handles 0x6d820000 0xBc000 65535 C:\Windows\AppPatchiAcLayers.DLL Hibr2Bin by Comae Technologies Step /5: Flushing output file buffers - Complete

: i ; ; ; ; Acti bytes: 9683MB D d slack bytes: 6446 MB Elapsed Time: @ days 0 hrs 0 min 56
0x10000000 0xa1000 1 il el Hibernation files can be a treasure trove of forensic artifacts |nﬂ:;<esT;nm;1r:‘:ief ﬁ?mx active): 73218 |n§$n;i|)£;5;::ri::ﬁnlD?(asslack]: 40214 0S version/arch: 'w.'?:gfxe:rs e

H H H H $0bjld index $O entries (INDX active): 100 $0bjld index $O entries (INDX slack): 23
n i ﬂveStIgatI ons Of a“ tyDES We encou nte red d h u rd le to Non-zero bytes after valid slack: 28 KB Raw slack bytes: JINMKE Result Complete
FORS26@SIFTS rekal -f shells.vmem connections

of fset v local _net_address remote_net_address pid our analysis when Windows 8 introduced the LZ Huffman Outpust limited to active memory per Free Mode
Review network 0x83034440 10.10.10.9:1087 10.10.75.104:4444 3888 XPRESS compression method for storing the contents of
if Fipeptscodibal bbbl e o physical memory for a hibernating machine. Our tools at the time could not
artifacts 9
9
9

FOR526@SIFTS rekal -f fariet.vmem

_EPROCESS cmd

e oo il hene e decompress, barring us from unearthing system state analysis for the time of

0xB82072748 10.10.10.

\
1033 10.10.75.64: 4444 2104 hibernation. Arsenal Recon and Comae Technologies introduced decompression Bulk_xtractor

tools recently that allow examiners to analyze this dataset.

FORS26@SIFT$ rekal -T test.img malfind 1456

B e e L L LT

Process: inspasio.exe Pid: 1456 Address: 0x400000

Physical to Virtual Address Translation

PrivateMemory: 1, Protection: 6

0x400000 4d 5a 90 00 03 00 00 00 04 00 ff ff 7S vad_0x400000 Strings by VOlatllity Framework

0x400010 b8 00 00 0O OO0 00 00 00 40 00 00 00 . BT
0x400020 00 00 00O 0O 00 OO0 QO Q0 OO 00 00 00 I

N
0x400030 00 00 0O 00 00 00 OO 00 d8 00 ptov or paszvas by Rekal‘l‘ FOR526@SIFTS rekal -f test.img ptov 21732272

Look for vad_0x400000 To map keywords identified by Bulk_Extractor or the strings tool, to their Rekall’s ptov | bT8 0x3322f000 Owning process:[xe000027795c0 Inspasio.exe 400E |

PML4E® 0x3322ff68 = OxB00000003322f863
0x400000 Ox0 dec ebp

evidence of 0x400001 OX1 pop edx owning process or kernel module, we must perform physical to virtual address POPTEE 0x33221000 = 0xc0000017512867

PDE@ 0x1f51e000 = 0x45000007371f867
0x400002 0Ox2 nop

code iniection g::ggggi g:i gggg :S: byte ptr [ebx], al U’aﬂSlatIOﬂ BOth Reka“. and VOlaU“ty Oﬂ:er plugInS that pI’OVIde thIS ptOV PTE@ 0x7371f088 = 0x6960000003a41867

byte ptr [eax], al o o o ana o . . Physical Address 0x14b%bb0
0x400007 O0x7 000400 add byte ptr [eax + eax], al functionality. With Volatility, we can invoke the strings plugin. Rekall has two virtual Address 0x2206bb0 (DTB 0x3322f000)

0x40000a Oxa 0000 add byte ptr [eax], al

0x40000c OXxc ff .byte Oxff different plugins that offer physical to virtual address translation, ptov and

Ox40000d Oxd ffoo inc dword ptr [eax]

O0x40000f Oxf 00bBO000O00O add byte per [eax], pas2vas. These plugins employ different methods in determining which process

0x400015 0x15 0000 add byte ptr [eax],

400017 Ox17 004000 add byte ptr [eax]. has been allocated the frame in physical memory where the keyword lies. Regardless of the

) . FORS526@SIFTS vol.py -f win7erypto.vmem --profile=Win75P0x86 editbox
0xdoooia Oxia 0000 a0 byte pir [eax], method used, the end result is a reverse lookup of keyword to owning process. Volatility Foundation Volatility Framework 2.6

0x40001c Ox1c 000D add byte ptr [eax], & FRREER R KRR R

$ rekal -f test.img ptov 21732272 Wnd Context : 1\WinSta0\Default
Process ID 2308

FOR526@SIFTS rekal -f stuxnet.vmem devicetree ImageFileName : notepad.exe
Type Address Name device_type Path IsWowbd :No

Recover Text from WindOWS Edit Controls atom_class 6.0.7600.16385!Edit

3 DRV - - :
Check for signs .DEV 0x822e29a8 FsWrap FILE_DEVICE_NETWORK_FILE_SYSTEM . R value-of WndExtra : 0x28ef30
DRV OxBle5e5aB \FileSystemivmhgfs editbox by Adam Bridge nChars 151

of a rootkit .DEV 0xB820f0030 hgfsinternal UNKNOWN (33792) selStart 51

. | | | | | | [End 151
-DEV. - 0xB21a1030 HOFS B DD T T aystemiFIMgrM Extracting the relevant contents of applications with Edit controls, such as notepad was a difficult ~ sefnd ol

~ ATT 0xB2135408 HGFS FILE_DEVICE_NETWORK_FILE_SYSTE \DriverMRxNet challenge until the introduction of the editbox plugin. Based on the research of Adam Bridge, undopos 0
. . unaoLen M
we can now uncover urls fields, undo buffers, and undo text entered in the Run dialogue box. address-of undoBuf : 0x0
D 83 FORS26@SIFTS rekal -f fariet.vmem dlldump --regex "colcs™ --dump_dir="/cases" i . . X undoBuf :
ump suspicious _EPROCESS base module filename $ vol.py -f memory.img --profile=<profile> editbox

mmmmmm mmmmmmmmm e mmmmmmmmm e The password to my Hotmail account is: C@tcHem@11

processes 0x8561e3a8 iexplore.exe 1892 0x10000000 colcs.dll module. 1892.3f61e9a8. 10000000. colcs
0x856184e8 iexplore.exe 3340 0x10000000 colcs.dll module.3340,3f6184e8. 10000000.colcs

and drivers 0x856203e0 rundl132.exe 3416 0x10000000 colcs.dll module.3416.3f6203e0. 10000000 colcs Identify Known Malware Based on |mport API Fuzzy Hashing: impfuzzy

Impfuzzy by JPCERTCC FORS26@SIFTS vol.py -f spynet.img --profile=Win7SP1x86 psinfo -p 3376

Tip.for ParSingamemory Image FOR326@SIFT$ vol.py -T test.img —-pr'of_ilr—.j:'.*."_nSSP‘Ixﬁ-4 kdbgscan Slgnatu res for mal|c|ous b|nar|es extracted from the ﬁle System are not appllcable to memory Volatility F0unda.:ian\.’ola:ili:',rFramr:w::-rk 26
with an Encoded KDBG: Velatility Foundation Velatility Framework 2.6)))) Pracess Informatian:
Windows 8 and later (x64) analysis, due to changes that occur when a PE file is loaded into memory. By using fuzzy hash Process: explorer.exe PID: 3376

Instantiating KDBG using: Unnamed AS Win85P1x64 (6.3.9600 64bit)

. H ; i Parent Process: NA PPID: 2016
encode the KDBG, a key offset (V) : Oxf8004f71730 of the Import API table, as performed by impfuzzy, we can identify the presence of previously e 15 0530 01.23:33 UTC+0000

structure tremendously Ui kdcopypataBlock (V) : 0xf8004f6569b0 Signatu red malware in new memory Samples. Process Base Mame(PEB): explorer.exe

9 Block encoded T Yes i Command Line(PEB): "C:A\Windows\explorer.exe”
for memory forensics. To Wait never : 0xB4830386005e8862 $ vol.py -f memory.img --profile=<profile> impfuzzy -p <pid>

more easily analyze these Wait always : 0xbd109e6b6071800 VAD and PEB Comparison:

: : KDBG owner tag check : True
memory ImageS, an examiner Profile sugge%t ion (KDBGHeader): Win8SP1x64 Base Address{VAD): Oxd50000

should supply the offset Version64 . 0xf8004f717d90 (Major: 15, Minor: ComprehenSive PrOCESS and VAD AnalySiS Process Path(VAD): \Windows\explorer.exe

Service Pack (CmNtCSDvVersion) : 0 Wad Protection: PAGE_EXECUTE_WRITECOPY

for the KdCopyDataBlock, Build string (NtBuildLab) : 9600.16384.amdé4fre.winblue_rtm. psinfo by Monnappa K A Vad Tag: Vadm

identiﬁed With kdbgscan' Ps.ﬂ.ctiueProcessHead : OxfIfff8004f72e700 (71 processes)
to speed Volatility’s ability oo e dodutet st 180044481000 mag et o) rue Often during memory analysis, an examiner will enumerate processes multiple ways in order to gain Base Address(PEB): 0xd50000
Process Path{PEB): C:\Windows\explorer.exe

to identify the KiwaitNever Major (OptionalHeader) e Insight into its functions and characteristics. Instead of requiring multiple runs of different plugins, Memory Protection: PAGE_EXECUTE WRITECOPY

Minor (OpticnalHeader)

and KiWaitAlways values and KPCR . Oxfffff8004772000 (CPU 0) : i - M ag: Vad
TR e KDgG data structure. o NPT 00020720000 (CFY 15 psinfo provides process and VAD analysis in one. emory Tag: Vadm

$ vol.py -f memory.img --profile=<profile> psinfo -p <pid>

What Lies Within: Windows

We are in a cybersecurity arms race as incident responders, faced with a growing sophistication of threats, posed by actors
both internal and external to our environment. Our ability to effectively and efficiently detect and contain malicious actors
inside our environment hinges on visibility into the current system state of our endpoint. The details uncovered through
memory analysis allows us to baseline normal functions and spot significant anomalies indicative of malicious activity. This
poster provides insight into the most relevant Windows internal structures for forensic analysis. Though there are far more
members of each structure than shown here, these are the most pertinent for spotting malicious activity and subversion.

Unloaded Drivers
Name — Driver name
StartAddress —Start address where driver was loaded
EndAddress — End address where driver was loaded

CurrentTime — Time when driver was unloaded

Kernel Debugger Data Block
(_KDDEBUGGER_DATA64)

PsLoadedModuleList — Pointer to the list of loaded kernel modules

~_MMVAD - |
' o LeftChild — Pointer to the left VAD child

PsActiveProcessHead — Pointer to the list head of active processes
PspCidTable — Table of processes used by the scheduler

MmUnloadedDrivers — List of recently unloaded drivers

Security Protections

Kernel Patch Protection (aka PatchGuard)

Modern x64 Windows implements a functionality called Kernel Patch Protection
(sometimes referred to as PatchGuard). KPP checks key system structures, including
(but not limited to) the doubly-linked lists that track most objects on Windows. In
particular, KPP makes the DKOM rootkit technique of unlinking a process from the
process list obsolete. When KPP detects an unauthorized modification, it causes a
BSOD to halt the system. As a result, Windows kernel mode rootkits now use kernel
callbacks, Asynchronous Procedure Calls (APCs), and Deferred Procedure Calls (DPCs)
to run code instead of the old “launch a process and use DKOM to hide it” technique.

Kernel Object Obfuscation

Just as we do in memory forensics, many rootkits have relied on the KDBG to locate
key operating system structures. As of Windows 8, the KDBG is encrypted to prevent
rootkits from easily locating it. This does not impact operations since the KDBG is not
used during normal system operation. If the system crashes, the KeBugCheck routine
decrypts the KDBG before storing the crash dump data in the page file (making the
KDBG available for debugging purposes). Kernel object headers are also encrypted

in Windows 10. While intended to interfere with rootkits, this also has the effect of
inhibiting some scanning plugins.

FOR526:
Memory Forensics
In-Depth

AUTHORS:

Alissa Torres
@sibertor

Jake Williams
@malwarejake

In today’s enterprise investigations, memory forensics plays a crucial role in
unraveling the details of what happened on the system. Recent large-scale
malware infections have involved attackers implementing advanced anti-analysis
techniques, making the system memory the battleground between offense and
defense. Skilled incident responders use memory forensics skills to reveal
“ground truth” of malicious activity and move more swiftly to remediation.

Learn more about FOR526: Memory Forensics In-Depth at www.sans.org/FOR526

RightChild — Pointer to the right VAD child
StartingVpn — Starting address described by VAD
EndingVpn — Ending address described by VAD

VadsProcess — Pointer to the _EPROCESS block
that owns this VAD

13

System Process DTB
(directory table base)

Memory
Analysis

The directory table base of a process points to the base of
the page directory table (sometimes called the page directory
base, or PDB). The CR3 register points to this location, which

is unique per process. From the DTB, the complete list of the
processes’ page tables can be discovered. Rekall locates the DTB

for the Idle process (the Idle process is really just an accounting

~—Process Struct (_EPROCESS)

structure), then uses this to find the image base of the kernel.

Then, the KDBG (if needed at all) can be found deterministically,

Pcb — Process control block

CreateTime — Time when the process was started.

rather than using the scanning approach to find the KDBG
used by Volatility. From the Idle process DTB, all other required

structure offsets can be determined.

ExitTime — Exit time of the process — process is still
stored in the process list for some time after it exits, which
allows for graceful deallocation of other process structures.

UniqueProcessld — PID of the process

ActiveProcessLinks — Doubly-linked list to other
process’ EPROCESS structures (process list)

ObjectTable — Pointer to the process’ handle table
Peb — Pointer to the process environment block
InheritedFromUniqueProcessld — The parent PID
ThreadListHead — List of active threads (_ETHREAD)
VadRoot — Pointer to the root of the VAD tree

—Process Environment Block (_PEB)

BeingDebugged — Is a debugger attached to the process
ImageBaseAddress — Virtual address where the executable is loaded
Ldr — Pointer to _PEB_LDR_DATA structure

ProcessParameters — Full path name and command-line arguments

— LDR_DATA_TABLE_ENTRY
DIIBase — The base address of the DLL
EntryPoint — Entry point of the DLL.

\5—1—/InMemoryOrderModuIeList — List of loaded DLLs

—PEB Loader Data (_PEB_LDR_DATA)

_—InLoadOrderModuleList — List of loaded DLLs

_—InlnitializationOrderModuleList — List of loaded DLLs

SizeOflmage — Size of the DLL in memory
FullDIIName — Full path name of the DLL
TimeDateStamp — The compile time stamp for the DLL

f

_

1) PsLoadedModulelist

The PsLoadedModuleList structure of the KDBG points to the list of loaded kernel modules
(device drivers) in memory. Many malware variants use kernel modules because they
require low level access to the system. Rootkits, packet sniffers, and many keyloggers use
may be found in the loaded modules list. The members of the list are _LDR_DATA_TABLE_ENTRY
structures. Stuxnet, Duqu, Regin, R2D2, Flame, etc., have all used some kernel mode
module component - so this is a great place to look for advanced (supposed) nation-state
malware. However, note that some malware has the ability to unlink itself from this list, so
scanning for structures may also be necessary.

REKALL PLUGINS: modules, modscan

2) Unloaded Modules

The Windows 0S keeps track of recently unloaded kernel modules (device drivers). This is
useful for finding rootkits (and misbehaving legitimate device drivers).

REKALL PLUGINS: unloaded_modules

3) VAD

VADs (Virtual Address Descriptors) are used by the memory manager to track ALL memory
allocated on the system. Malware and rootkits can hide from a lot of different 0S components,
but hiding from the memory manager is unwise. If it can’t see your memory, it will give it away!

REKALL PLUGINS: vad, vaddump

4) _EPROCESS

The _EPROCESS is perhaps the most important structure in memory forensics. The
_EPROCESS structure has more than 100 members, many of them pointers to other
structures. The _EPROCESS gives us the PID and parent PID of a given process. Analyzing PID
relationships between processes can reveal malware. For more information, see the SANS
DFIR poster “Know Normal, Find Evil.” The _[EPROCESS block also contains the creation and
exit time of a process. Why would the 0S keep track of exited processes? The answer is that
when a process exits, it may have open handles which must be closed by the 0S. The 0S
also needs time to gracefully deallocate other structures used by the process. The ExitTime
field allows us to see that a process has exited but has not yet been completely removed
by the 0S. Note that the task manager and other live response tools will not show exited
processes at all, but they are easy to see with use of memory forensics!

REKALL PLUGINS: pslist, psscan, pstree

5) Process Environment Block

The PEB contains pointers to the _PEB_LDR_DATA structure (discussed below). It also contains a flag
that tells whether a debugger is attached to a process. Some malware will debug a child process as
an antireversing measure. Finally, the PEB also contains a pointer to the command line arguments
that were supplied to the process on creation.

REKALL PLUGINS: Idrmodules, dlllist, pstree verbosity=10

6) ObjectTable

For a process in Windows to use any resource (registry key, file, directory, process, etc.), it must
have a handle to that object. We can tell a lot about a process just by looking at its open handles. For
instance, you could potentially infer the log file a keylogger is using or persistence keys used by the
malware, all by examining handles.

REKALL PLUGINS: handles, object_types

7) ThreadListHead

Where are the thread list structures on the poster? Sorry, we just don’t have room to do them justice
— but most investigations don’t require us to dive into thread structures directly. Threads are still
important. though. In Windows, a process is best thought of as an accounting structure. The Windows
scheduler never deals with processes directly, rather it schedules individual threads (inside a
process) for execution. Still, you’ll find yourself using process structures more in your investigations.

REKALL PLUGINS: thrdscan, threads

8) _LDR_DATA_TABLE_ENTRY

This structure is used to describe a loaded module. Loaded modules come in two forms: the kernel
module (aka device driver) and dynamic link libraries (DLLs), which are loaded into user mode
processes.

REKALL PLUGINS: modules, Idrmodules, dlllist

9) PEB Loader Data

This structure contains pointers to three linked lists of loaded modules in a given process. Each

is ordered differently (order of loading, order of initialization, and order of memory addresses).
Sometimes malware will inject a DLL into a legitimate Windows service, then try to hide. But they’d
better hide from all three lists or, you’ll detect it with no trouble.

REKALL PLUGINS: Idrmodules

Note that many internal OS structures are doubly-linked lists. The pointers in the lists actually point to the pointer in the next structure. However,
for clarity of illustration, we have chosen to show the type of structure they point to. Also, note that the PsActiveProcessHead member of the KDBG
structure points to ActiveProcessLinks member of the _EPROCESS structure. However, for clarity, we depict the pointer pointing to the base of the
_EPROCESS structure. We feel that this depiction illustrates this more clearly.

