diff --git a/ai_research/labs/tf_keras.md b/ai_research/labs/tf_keras.md index d391b83..9dfe7f9 100644 --- a/ai_research/labs/tf_keras.md +++ b/ai_research/labs/tf_keras.md @@ -17,30 +17,31 @@ To provide students with hands-on experience in developing, training, and evalua **Setting Up the Environment**: - Installing TensorFlow and Keras: - ```bash + +```bash pip install tensorflow keras - ``` +``` **Image Data Preprocessing**: - - **Step 1**: Importing Necessary Libraries: - ```python +- **Step 1**: Importing Necessary Libraries: +```python import tensorflow as tf from tensorflow.keras import datasets, layers, models - ``` +``` - - **Step 2**: Loading and Preprocessing Image Data: - ```python +- **Step 2**: Loading and Preprocessing Image Data: +```python (train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data() # Normalize pixel values to be between 0 and 1 train_images, test_images = train_images / 255.0, test_images / 255.0 - ``` +``` **Building a Convolutional Neural Network (CNN)**: - - **Step 3**: Defining the CNN Architecture: - ```python +- **Step 3**: Defining the CNN Architecture: +```python model = models.Sequential([ layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)), layers.MaxPooling2D((2, 2)), @@ -48,34 +49,34 @@ To provide students with hands-on experience in developing, training, and evalua layers.MaxPooling2D((2, 2)), layers.Conv2D(64, (3, 3), activation='relu') ]) - ``` +``` - - **Step 4**: Adding Dense Layers: - ```python +- **Step 4**: Adding Dense Layers: +```python model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(10)) - ``` +``` **Compiling and Training the Model**: - - **Step 5**: Compiling the Model: - ```python +- **Step 5**: Compiling the Model: +```python model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) - ``` +``` - - **Step 6**: Training the Model: - ```python +- **Step 6**: Training the Model: +```python history = model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels)) - ``` +``` **Evaluating the Model**: - - **Step 7**: Evaluating the Model and Visualizing Results: - ```python +- **Step 7**: Evaluating the Model and Visualizing Results: +```python test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) import matplotlib.pyplot as plt @@ -87,9 +88,7 @@ To provide students with hands-on experience in developing, training, and evalua plt.ylim([0.5, 1]) plt.legend(loc='lower right') plt.show() - ``` - - +``` ## **Resources**