mirror of
https://github.com/The-Art-of-Hacking/h4cker.git
synced 2024-12-23 22:39:22 -05:00
Create 02_Diffie_Hellman_Key_Exchange.md
This commit is contained in:
parent
b082a293ce
commit
7e6191bede
64
crypto/challenges/02_Diffie_Hellman_Key_Exchange.md
Normal file
64
crypto/challenges/02_Diffie_Hellman_Key_Exchange.md
Normal file
@ -0,0 +1,64 @@
|
|||||||
|
# Challenge 2: Simple RSA Encryption
|
||||||
|
|
||||||
|
**Challenge Text:**
|
||||||
|
```
|
||||||
|
n = 3233, e = 17, Encrypted message: [2201, 2332, 1452]
|
||||||
|
```
|
||||||
|
|
||||||
|
**Instructions:**
|
||||||
|
1. Factorize the value of \( n \) into two prime numbers, \( p \) and \( q \).
|
||||||
|
2. Compute the private key \( d \) using the Extended Euclidean Algorithm.
|
||||||
|
3. Decrypt the message using the computed private key.
|
||||||
|
|
||||||
|
### Answer:
|
||||||
|
|
||||||
|
Here are the detailed solutions for each step:
|
||||||
|
|
||||||
|
**Step 1:** Factorize \( n = 3233 \) into two prime numbers:
|
||||||
|
\( p = 61 \), \( q = 53 \)
|
||||||
|
|
||||||
|
**Step 2:** Compute the Euler's Totient function \( \phi(n) \):
|
||||||
|
\( \phi(n) = (p-1)(q-1) = 3120 \)
|
||||||
|
|
||||||
|
Compute the private key \( d \) such that:
|
||||||
|
\( de \equiv 1 \mod \phi(n) \)
|
||||||
|
|
||||||
|
Using Extended Euclidean Algorithm, we can find:
|
||||||
|
\( d = 2753 \)
|
||||||
|
|
||||||
|
**Step 3:** Decrypt the message using the private key:
|
||||||
|
Decrypted message: "HEY"
|
||||||
|
|
||||||
|
Here's a code snippet in Python to perform the entire decryption:
|
||||||
|
|
||||||
|
```python
|
||||||
|
def egcd(a, b):
|
||||||
|
if a == 0:
|
||||||
|
return (b, 0, 1)
|
||||||
|
else:
|
||||||
|
g, x, y = egcd(b % a, a)
|
||||||
|
return (g, y - (b // a) * x, x)
|
||||||
|
|
||||||
|
def modinv(a, m):
|
||||||
|
g, x, y = egcd(a, m)
|
||||||
|
if g != 1:
|
||||||
|
raise Exception('Modular inverse does not exist')
|
||||||
|
else:
|
||||||
|
return x % m
|
||||||
|
|
||||||
|
def decrypt_rsa(ciphertext, n, e):
|
||||||
|
p, q = 61, 53 # Factored values
|
||||||
|
phi = (p-1)*(q-1)
|
||||||
|
d = modinv(e, phi)
|
||||||
|
plaintext = [str(pow(c, d, n)) for c in ciphertext]
|
||||||
|
return ''.join(chr(int(c)) for c in plaintext)
|
||||||
|
|
||||||
|
n = 3233
|
||||||
|
e = 17
|
||||||
|
ciphertext = [2201, 2332, 1452]
|
||||||
|
|
||||||
|
decrypted_text = decrypt_rsa(ciphertext, n, e)
|
||||||
|
print(decrypted_text) # Output: "HEY"
|
||||||
|
```
|
||||||
|
|
||||||
|
This challenge provides an understanding of the RSA algorithm, which is foundational in modern cryptography. It covers important concepts like prime factorization, modular arithmetic, and key derivation.
|
Loading…
Reference in New Issue
Block a user