mirror of
https://github.com/The-Art-of-Hacking/h4cker.git
synced 2024-10-01 01:25:43 -04:00
55 lines
1.6 KiB
Python
55 lines
1.6 KiB
Python
|
from langchain.document_loaders import WebBaseLoader
|
||
|
from langchain.document_transformers import ChunkTransformer
|
||
|
from langchain.embeddings import OpenAIEmbeddings
|
||
|
from langchain.vectorstores import FAISS
|
||
|
from langchain.retrievers import SemanticRetriever
|
||
|
from langchain.prompts import ChatPromptTemplate
|
||
|
from langchain.chat_models import ChatOpenAI
|
||
|
from langchain.schema.output_parser import StrOutputParser
|
||
|
from langchain.schema.runnable import RunnablePassthrough
|
||
|
|
||
|
# Step 1: Load documents
|
||
|
loader = WebBaseLoader("https://example.com")
|
||
|
documents = loader.load()
|
||
|
|
||
|
# Step 2: Transform documents
|
||
|
transformer = ChunkTransformer(chunk_size=512)
|
||
|
transformed_documents = transformer.transform(documents)
|
||
|
|
||
|
# Step 3: Create embeddings
|
||
|
embedding_model = OpenAIEmbeddings()
|
||
|
embeddings = embedding_model.embed(transformed_documents)
|
||
|
|
||
|
# Step 4: Store embeddings in a vector store
|
||
|
vector_store = FAISS.from_embeddings(embeddings)
|
||
|
|
||
|
# Step 5: Create a retriever
|
||
|
retriever = SemanticRetriever(vector_store)
|
||
|
|
||
|
# Step 6: Define the prompt template
|
||
|
template = """Answer the question based only on the following context:
|
||
|
{context}
|
||
|
|
||
|
Question: {question}
|
||
|
"""
|
||
|
prompt = ChatPromptTemplate.from_template(template)
|
||
|
|
||
|
# Step 7: Create the language model
|
||
|
model = ChatOpenAI()
|
||
|
|
||
|
# Step 8: Define the output parser
|
||
|
output_parser = StrOutputParser()
|
||
|
|
||
|
# Step 9: Define the RAG pipeline
|
||
|
pipeline = {
|
||
|
"context": retriever,
|
||
|
"question": RunnablePassthrough(),
|
||
|
} | prompt | model | output_parser
|
||
|
|
||
|
# Step 10: Invoke the RAG pipeline with a question
|
||
|
question = "What is the capital of France?"
|
||
|
answer = pipeline.invoke({"question": question})
|
||
|
|
||
|
# Step 11: Print the answer
|
||
|
print(answer)
|