2023-12-28 19:10:03 -05:00
|
|
|
# A Simple script to illustrate an example of a basic AI Risk Matrix
|
|
|
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
# Define the risks and their impact and likelihood
|
|
|
|
risks = {
|
|
|
|
"Data Privacy Risk": {"Impact": "Medium", "Likelihood": "Medium"},
|
|
|
|
"Diagnostic Accuracy Risk": {"Impact": "Very High", "Likelihood": "Low"},
|
|
|
|
"Bias Risk": {"Impact": "High", "Likelihood": "Medium"}
|
|
|
|
}
|
|
|
|
|
|
|
|
# Mapping of impact and likelihood to numerical values
|
|
|
|
impact_mapping = {"Low": 1, "Medium": 2, "High": 3, "Very High": 4}
|
|
|
|
likelihood_mapping = {"Low": 1, "Medium": 2, "High": 3, "Very High": 4}
|
|
|
|
|
|
|
|
# Prepare data for plotting
|
|
|
|
x = [likelihood_mapping[risks[risk]['Likelihood']] for risk in risks]
|
|
|
|
y = [impact_mapping[risks[risk]['Impact']] for risk in risks]
|
|
|
|
labels = list(risks.keys())
|
|
|
|
|
|
|
|
# Create the plot
|
|
|
|
plt.figure(figsize=(8, 6))
|
|
|
|
plt.scatter(x, y, color='blue')
|
2023-12-28 19:17:18 -05:00
|
|
|
plt.title('AI System Risk Matrix', fontsize=18)
|
|
|
|
plt.xlabel('Likelihood', fontsize=14)
|
|
|
|
plt.ylabel('Impact', fontsize=14)
|
|
|
|
plt.xticks([1, 2, 3, 4], ['Low', 'Medium', 'High', 'Very High'], fontsize=14)
|
|
|
|
plt.yticks([1, 2, 3, 4], ['Low', 'Medium', 'High', 'Very High'], fontsize=14)
|
2023-12-28 19:10:03 -05:00
|
|
|
plt.grid(True)
|
|
|
|
|
2023-12-28 19:17:18 -05:00
|
|
|
# Annotate the points with larger font
|
2023-12-28 19:10:03 -05:00
|
|
|
for i, label in enumerate(labels):
|
2023-12-28 19:17:18 -05:00
|
|
|
plt.annotate(label, (x[i], y[i]), fontsize=14)
|
2023-12-28 19:10:03 -05:00
|
|
|
|
|
|
|
plt.show()
|