
A Guide to macOS Threat
Hunting and Incident
Response
By Phil Stokes

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 2

CONTENTS
Foreword�� 4

Introduction�� 5

Chapter 1�� 6
Threat Hunting - How Malicious Software Persists on macOS�������������������������������������6

Get a List of Users��6

Hunting for Persistence Mechanisms��8

How to Persist Using a LaunchAgent���8

Persistence by LaunchDaemon���10

Persistence with Profiles���11

Cron Still Persists on macOS���13

Kexts for Persistence���14

How to Find Persistent Login Items��14

AppleScript & Friends��14

Also Ran: Forgotten Persistence Tricks���15

Periodics as a Means of Persistence���16

LoginHooks and LogoutHooks���17

At Jobs: Run Once, Persist Forever���17

Emond - The Forgotten Event Monitor��18

Conclusion��19

Chapter 2�� 20
Threat Hunting - Detecting Malicious Behavior on macOS���20

Check Open Ports and Connections��20

Investigate Running Processes���21

Investigate Open Files���23

Examine the File System��23

Examine the Mac's Network Configuration���27

Conclusion��27

Chapter 3�� 28
Incident Response: Collecting Device, File & System Data��28

Say Hello to Sysdiagnose���28

Exploring Files Collected by Sysdiagnose���30

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 3

Interlude – A Note About Timestamps���31

Finding Traces of Malicious Activity��32

One Log to Rule Them All���36

Exploring fs_usage for File Activity��38

FSEvents – Old, Not Obsolete���39

Conclusion��42

Chapter 4�� 43
Incident Response - User Data, Activity and Behavior���43

A Quick Review of SQLite���43

Finding Interesting Data on macOS���44

Databases in the User Library��46

Mining the Darwin_User_Dir for Data��49

Reading User Notifications, Blobs & Plists��50

Reading Data from Notes, More Blob Tricks���51

Finding Other Data Stores��52

Conclusion��53

Chapter 5�� 54
Incident Response - System Manipulation���54

Usurping the Sudoers File��54

Cuckoos in the PATH��54

Bash, Zsh and Other Shells��55

Etc, Hosts and Friends���56

Networking and Sharing Prefs���57

Finding Local and Remote Logins��58

Achieving Persistence Through Application Bundles���60

Manipulating Users Through Their Browsers��61

Conclusion��65

Appendix�� 66
A Rough Guide to macOS Malware��66

1. Backdoors, Crytominers & Data Stealers��66

2. Adware, PUPs & Trojan Installers��67

3. Keyloggers and Exploit kits��69

References�� 70

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 4

FOREWORD
At Cengage, we run a large fleet of Macs within a
larger fleet of other desktop, server, laptop and
multi-use devices, all protected by SentinelOne’s
EPP/EDR platform.

Macs have a deserved reputation for robustness,
longevity and reliability. Along with that, there is a
widespread perception that Macs do not suffer from the
kind of security issues that most of us are familiar with
on Windows-driven devices. Alas, while it’s true there
is nothing like the same quantity of malware out there
targeting Macs as there is Windows machines, there is
still plenty of malicious backdoors, trojans, adware, and
PUPs lurking in the wild, just waiting for an opportunity
to infect unprotected devices or unwary users.

My experience in the enterprise suggests that many Mac users still have to learn the
same kind of caution that is much more widespread in the Windows-PC world. From
being more circumspect about what websites they visit or what software they download
to taking a pause before offering up administrator privileges to installations that really
have no business asking for them, Mac users owe it to themselves - and their employers
- to realize that the threat landscape has changed markedly for macOS in recent years.
The number of threats we see blocked by SentinelOne on our endpoints has grown
dramatically over time, and all the signs are that this is a trend set to continue.

This eBook answers an important question for anyone running macOS, and particularly for
those challenged with defending Macs in the enterprise: if you suspected that you might
have just installed a piece of malicious software, become victim to a phishing attack, or
let an intruder sneak in and out of your system, where would you look for evidence? And
what evidence would you look for? Do you know there is Mac malware that goes to sleep
when you open the Activity Monitor and backdoors that persist by means other than
LaunchAgents? Many Mac users, perhaps most, do not.

This eBook serves as a comprehensive reference and guided tutorial on where to find
evidence of threats on macOS, how to collect data on file, system and user activity,
and how to read some of the Mac’s more obscure and obtuse databases. For anyone
interested in macOS security, this eBook is a valuable resource, and I am delighted to
recommend it to the reader.

Alex Burinskiy
Manager of Security Engineering at Cengage

http://www.cengage.com/

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 5

INTRODUCTION
In a previous eBook, How To Reverse macOS Malware Without Getting Infected,
I explored how macOS malware works and how an analyst could reverse malware
samples safely. That raised the question of how one goes about detecting malware on
an Apple Mac computer in the first place. How does macOS malware persist, how does
it behave and how can you find evidence of its activity? This eBook sets out to provide
answers to those questions and is intended to serve as both an introduction and
a reference.

How you go about hunting down malware on a macOS endpoint depends a great deal
on what access you have to the device and what kind of software is currently running
on it. Of course, if you have a SentinelOne-protected Mac, for example, you can do
a lot of your hunting right there in the management console or by using the
remote shell capability, but for the purposes of this eBook, we’re going to take an
unprotected device and see how we can hunt for any hidden malware and find
evidence of user or system manipulation. The principles remain the same if you have
a protected device, and understanding what and where to look will help you use any
threat hunting and IR software you may already have more effectively.

The book contains five chapters and begins by looking at ways that malware can persist
on macOS. In Chapter 2, we learn how to examine running processes, the file system,
network configuration and more. Chapters 3 through 5 discuss many of the hidden logs,
text files and databases that are littered across both the user and system domains that
can reveal suspicious or malicious activity. Throughout, there are plenty of examples
taken from real, in-the-wild macOS malware. The content also covers some techniques
that threat hunters should be aware of that have not been seen in the wild but which
could be used both in terms of persistence and infection. We’ll also see how to write our
own scripts to collect and analyse that data along the way. Let’s get started!

https://go.sentinelone.com/ebook-macos-reversing-malware-registration.html
https://www.sentinelone.com/blog/full-remote-shell/

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 6

CHAPTER 1
Threat Hunting - How Malicious Software
Persists on macOS
In this chapter, we first take a look at how to gather a list of users on the device, a
prerequisite for any threat hunting and which is not as simple as it might seem. Then,
we’ll review macOS malware persistence techniques seen in the wild as well as
highlighting other persistence mechanisms attackers could use if defenders leave the
door open. Has your IT team and security solution got them all covered? Let's take a look.

Get a List of Users
The first thing you need to know is what user accounts exist on the Mac. There's a
couple of different ways of doing that, but the most effective is look at the output from
dscl, which can show up user accounts that might be hidden from display in
the System Preferences app and the login screen.

A command like

$ dscl . list /Users UniqueID

will show you a lot more than just listing the contents of the /Users folder with
something like ls, which won't show you hidden users or those whose home folder
is located elsewhere, so be sure to use dscl to get a complete picture.

A downside of the dscl list command is that it will flood you with perhaps a 100 or
more accounts, most of which are used by the system rather than used by console
(i.e., login) users. We can narrow the list down by filtering out all the system accounts
by ignoring those that begin with an underscore:

$ dscl . list /Users UniqueID | grep -v ^_

However, there's nothing to stop a malicious actor from creating an account name that
begins with an underscore, too:

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 7

So you should both check through the full list and supplement the user search with
other info about user activity. A great command to use here is w, which tells you every
user that is logged in and what they are currently doing.

Here we see that user _mrmalicious, which wouldn't have appeared if we filtered
the dscl list by grepping out underscores, is using bash.

While the w utility is a great way to check out who is currently active, it won't show up
a user that has been and gone, so let's supplement our hunt for users with the last
command, which indicates previous logins.

$ last

Here's a partial output, which suggests our user briefly logged in and then shutdown
the system.

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 8

Hunting for Persistence Mechanisms
Whether it's a cryptominer looking for low-risk money-making opportunities,
adware hijacking browser sessions to inject unwanted search results, or malware
designed to spy on a user, steal data or traverse an enterprise network, there's one
thing all threats have in common: the need for a persistent presence on the endpoint.
On Apple's macOS platform, attackers have a number of different ways to persist from
one login or reboot to another.

Our list of users from the previous section will be put to good use here. Particularly
when looking for Launch Agents (see the next section), for which there are individual
LaunchAgent folders for each login user, but also other persistence mechanisms can be
user specific, too. For that reason, you have to consider all users on the Mac, including
the root user, which if present should be found at /var/root.

Here’s one piece of Mac malware that likes to run from there. A system-level
LaunchDaemon that runs on every boot for all users calls a python script hidden inside
an invisible folder in the root user’s Library folder.

How to Persist Using a LaunchAgent
By far the most common way malware persists on macOS is via a LaunchAgent. Each
user on a Mac can have a LaunchAgents folder in their own Library folder to specify
code that should be run every time that user logs in. In addition, a LaunchAgents folder
exists at the computer level which can run code for all users that login. There is also a
LaunchAgents folder reserved for the System's own use. However, since this folder is
now managed by macOS itself (since 10.11), malware is locked out of this location by
default so long as System Integrity Protection has not been disabled or bypassed.

https://www.sentinelone.com/blog/macos-cryptomining-malware-rise/
https://www.sentinelone.com/blog/adware-apple-google-extensions-put-users-at-risk/
https://www.sentinelone.com/blog/macos-spyware-dangers-fake-cryptowallet-keylogger/

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 9

LaunchAgents take the form of property list files, which can either specify a file to
execute or can contain their own commands to execute directly.

Since user LaunchAgents require no privileges to install, these are by far the easiest
and most common form of persistence seen in the wild. Unfortunately, Apple took the
controversial step of hiding the parent Library folder from users by default all the way
back in OSX 10.7 Lion, making it easier for threat actors to hide these agents from
unsavvy users.

Users can unhide this library in a couple of different ways for manual checks, but
enterprise security solutions should monitor the contents of this folder and block or
alert on malicious processes that write to this location, as shown here in this example
from a SentinelOne console. The threat is autonomously blocked and the IT team is

https://osxdaily.com/2013/10/28/show-user-library-folder-os-x-mavericks/
https://www.sentinelone.com/platform/

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 10

alerted to the IOCs, with reference to Mitre Att&ck framework, and convenient
links to RecordedFuture and VirusTotal detections.

Persistence by LaunchDaemon
LaunchDaemons only exist at the computer and system level, and technically are
reserved for persistent code that does not interact with the user - perfect for malware.
The bar is raised for attackers as writing a daemon to /Library/LaunchDaemons
requires administrator level privileges. However, since most Mac users are also admin
users and habitually provide authorisation for software to install components whenever
asked, the bar is not all that high and is regularly cleared by infections we see in the
wild. In this image, the computer has been infected by three separate, malicious
LaunchDaemons.

Because LaunchDaemons run on startup and for every user even before a user logs
in, it is essential that your security software is aware of what daemons are running
and when any new daemons are written. As with System LaunchAgents, the System
LaunchDaemons are protected by SIP so the primary location to monitor is /Library/
LaunchDaemons.

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 11

Don't just assume labels you recognize are benign either. Some legitimate
LaunchDaemons point to unsigned code that could itself be replaced by something
malicious. For example, the popular networking program Wireshark uses a
LaunchDaemon,

/Library/LaunchDaemons/org.wireshark.ChmodBPF.plist

that executes unsigned code at the path:

/Library/Application Support/Wireshark/ChmodBPF/ChmodBPF

Even Apple itself uses a LaunchDaemon that isn't always cleaned up immediately such as

/Library/LaunchDaemons/com.apple.installer.cleanupinstaller.plist

This points to an executable in the /macOS Install Data folder that could be replaced
by malicious code.

Remember that with privileges, an attacker can either modify the program arguments
of these property plists or the executables that they point to in order to achieve
stealthy persistence. Since these programs will run with root privileges, it's important
that you or your security solution isn't just blanket whitelisting code because it looks
like it comes from a legitimate vendor.

Persistence with Profiles
Profiles are intended for organizational use to allow IT admins to manage machines
for their users, but their potential for misuse has already been spotted by malware
authors. As profiles can be distributed via email or a website, tricking users into
inadvertently installing them is just another element of social engineering.

https://www.sentinelone.com/blog/can-whitelisting-win-advanced-persistent-threats/

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 12

Configuration profiles can force a user to use certain browser settings, DNS proxy settings,
or VPN settings. Many other payloads are possible which make them ripe for abuse.

Profiles can be viewed by users in System Preferences Profiles pane and by administrators
by enumerating the /Library/Managed Preferences folder. Be aware that neither the pane
nor folder will be present on a system where profiles have never been installed.

https://developer.apple.com/business/documentation/Configuration-Profile-Reference.pdf

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 13

Cron Still Persists on macOS
The venerable old cron job has not been overlooked by malware authors. Although
Apple has announced that new cron jobs will require user interaction to install in
10.15 Catalina, it's unlikely that this will do much to hinder attackers using it as a
persistence method. As I've noted before, user prompts are not an effective security
measure when the user has already been tricked into installing the malicious software
under the guise of something else. There's overwhelming evidence to suggest that
users escape 'death by dialog' by simply clicking everything without paying attention
to what the dialog alert actually says.

Malicious cron jobs are used by AdLoad and Mughthesec malware, among others,
to achieve persistence.

https://www.sentinelone.com/blog/7-big-security-surprises-coming-to-macos-10-15-catalina/
https://www.sentinelone.com/blog/mojaves-security-hardening-user-protections-bypassed/

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 14

Kexts for Persistence
Kernel extensions are widely used by legitimate software for persistent behavior, and
we've seen them also used by so-called PUP software like MacKeeper. An open-source
keylogger, logkext, has also been around for some years, but in general kexts are not
a favoured trick among malware authors as they are comparatively difficult to create,
lack stealth, and can be easily removed. Moreover, with the advent of macOS 10.15
Catalina, Apple have formerly deprecated kernel extensions and appear to be moving
rapidly to phase them out entirely possibly as early as by 10.16 or 10.17.

How to Find Persistent Login Items
Changes made by Apple to Login Items have, on the other hand, resulted in more
attractive opportunities for malware persistence. Once upon a time, Login Items were
easily enumerated through the System Preferences utility, but a newer mechanism
makes it possible for any installed application to launch itself at login time simply by
including a Login Item in its own bundle. While the intention of this mechanism is for
legitimate developers to offer control of the login item through the app's user interface,
unscrupulous developers of commodity adware and PUP software have been abusing
this as a persistence trick as it's very difficult for users to reliably enumerate which
applications actually contain a bundled login item.

While it's not a simple matter for users to enumerate all the Login Items, admins can
do so with a little extra work by parsing the following file, if it exists:

~/Library/Application
Support/com.apple.backgroundtaskmanagementagent/backgrounditems.btm

A method of doing so was first written up by security researcher Patrick Wardle,
but that still requires some programming skill to implement. A more user-friendly
AppleScript version that can be cut and pasted into the macOS Script Editor utility
and run more conveniently is available here.

AppleScript & Friends
While on the subject of AppleScript, Apple's most useful "swiss army knife" tool
somewhat unsurprisingly also has some persistence mechanisms to offer. The first
leverages Folder Actions and allows an attacker to execute code that could even be
read into memory remotely every time a particular folder is written to. This remarkably
clever way of enabling a fileless malware attack by repurposing an old macOS
convenience-tool was first written up by Cody Thomas.

https://github.com/SlEePlEs5/logKext
https://objective-see.com/blog/blog_0x31.html
https://pastebin.com/TJGTr9af
https://posts.specterops.io/folder-actions-for-persistence-on-macos-8923f222343d

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 15

Admins with security solutions that do not have behavioral AI detection should monitor
processes executing with osascript and ScriptMonitor in the command arguments to
watch out for this kind of threat.

An even more wily trick leverages Mail rules, either local or iCloud-based, to achieve
persistence by triggering code after sending the victim an email with a specially-crafted
subject line. This method is particularly stealthy and will evade many detection tools.

Defenders can manually check for the presence of suspicious Mail rules by parsing
the ubiquitous_SyncedRules.plist file and the SyncedRules.plist file for iCloud and local
Mail rules, respectively. A quick bash script such as

$ grep -A1 "AppleScript"
~/Library/Mail/V6/MailData/SyncedRules.plist

will enumerate any Mail rules that are calling AppleScripts. If any are found, those will
then need to be examined closely to ensure they are not malicious.

Also Ran: Forgotten Persistence Tricks
For those who remember them, rc.common and launchd.conf no longer work on
macOS, and support for StartupItems also appears to have been removed after
10.9 Mavericks.

https://www.n00py.io/2016/10/using-email-for-persistence-on-os-x/

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 16

Even so, other old "nix tricks" do still work, and while we've yet to see any of the
following persistence mechanisms used in the wild, they are worth keeping an eye on.
These tricks include using periodics, loginhooks, at jobs, and the emond service.

Periodics as a Means of Persistence
Periodics are system scripts that are generally used for maintenance and run on a daily,
weekly and monthly schedule. Periodics live in similarly titled subfolders within etc/
periodic folder.

Listing the contents of each of the subfolders should reveal the standard set of
periodics, unless your admins are using their own custom periodic scripts. If not,
anything additional found there should be treated as suspicious and inspected.
Notice the unusual "uptime" script here, which will run on a daily basis without user
interaction or notification.

Also, be sure to check both /etc/defaults/periodic.conf and
/etc/periodic.conf for system and local overrides to the default periodic configuration.

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 17

LoginHooks and LogoutHooks
LoginHooks and LogoutHooks have been around for years and are rarely used these
days, but are still a perfectly viable way of running a persistence script on macOS
Mojave. As the names suggest, these mechanisms run code when the user either logs
in or logs out.

It's a simple matter to write these hooks, but fortunately it's also quite easy to check
for their existence. The following command should return a result that doesn't have
either LoginHook or LogoutHook values:

$ sudo defaults read com.apple.loginwindow

If, on the other hand, it reveals a command or path to a script, then consider those
worthy of investigation.

At Jobs: Run Once, Persist Forever
A much less well-known mechanism is at jobs. While these only run once and are not
enabled by default, they are a sneaky way to run some code on restart. The single-
use isn't really a problem, since the at job can simply be re-written each time the
persistence mechanism fires, and these jobs are very unlikely to be noticed by most
users or indeed many less-experienced admins.

You can check whether any at jobs are scheduled by enumerating the /var/at/jobs
directory. Jobs are prefixed with the letter a and have a hex-style name.

Emond - The Forgotten Event Monitor
Sometime around OSX 10.5 Leopard, Apple introduced a logging mechanism called
emond. It appears it was never fully developed, and development may have been
abandoned by Apple for other mechanisms, but it remains available even on macOS
10.15 Catalina.

In 2016, James Reynolds provided the most comprehensive analysis to-date of
emond and its capabilities. Reynolds was not interested in emond from a security
angle, but rather was documenting a little-known daemon from the angle of an admin
wanting to implement their own log scanner. Reynolds concludes his analysis with an
interesting comment, though:

This little-known service may not be much use to a Mac admin, but to a threat actor
one very good reason would be to use it as a persistence mechanism that most macOS
admins probably wouldn't know to look for.

Detecting malicious use of emond shouldn't be difficult, as the System LaunchDaemon
for the service looks for scripts to run in only one place:

/private/var/db/emondClients

Admins can easily check to see if a threat actor has placed anything in that location.

As emond is almost certainly not used in your environment for any legitimate reason,
anything found in the emondClient directory should be treated as suspicious.

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 18

http://www.magnusviri.com/Mac/what-is-emond.html

Conclusion
As the above mechanisms show, there are plenty of ways for attackers to persist on
macOS. While some of the older ways are now defunct, the onus is still very much
on defenders to keep an eye on the many possible avenues that code execution can
survive a reboot.

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 19

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 20

CHAPTER 2
Threat Hunting - Detecting Malicious Behavior
on macOS
Having gathered a list of users and conducted a thorough hunt for persistence
mechanisms across the entire device, it’s time to start looking at other indicators of
compromise and signs of malicious behavior on the Mac.

Check Open Ports and Connections
Malware authors interested in backdoors will often try to set up a server on an unused
port to listen out for connections. A good example of this is the recent Zoom vulnerability,
which forced the company to push out an emergency patch in an attempt to address a
zero-day vulnerability for Mac users. Zoom has been running a hidden server on port
19421 that could potentially expose a live webcam feed to an attacker and allow remote
code execution. This is a good example of just how easy it is for one privileged process
to set up a persistent server that could act as a backdoor to easily evade detection by
ordinary users, as well as macOS's built-in security mechanisms.

To detect this kind of issue, we can use netstat and lsof to help check for this.

First, we use

$ netstat -na | egrep 'LISTEN|ESTABLISH'

to list services that are either listening for connections or already connected.

https://medium.com/bugbountywriteup/zoom-zero-day-4-million-webcams-maybe-an-rce-just-get-them-to-visit-your-website-ac75c83f4ef5

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 21

We can see that there are servers listening in on ports 22, 88, and 445. These indicate
that the Mac's Sharing preferences are enabled for remote login and remote file
sharing. A full list of ports used by Apple's services can be found here.

Next, let's use

$ lsof -i

to list all files with an open IPv4, IPv6 or HP-UX X25 connection.

This output gives us quite a bit of useful information, including the IP address,
command and PID. We can query the ps utility for more information on each process.

$ ps -p <pid>

Investigate Running Processes
The ps command has a lot of useful options and is one of a number of tools you can use
to see what's running on a Mac at the time of collection.

One of the first things I'll do is get a full list of all processes by running this as
the superuser.

$ ps -axo user,pid,ppid,%cpu,%mem,start,time,command

I will normally dump that out to a text file and pay particular interest to commands
where the PPID, the parent process identifier, is something other than 1, indicating a
user process that's also spawning child processes.

I also like to dump the output from

$ lsappinfo list

https://support.apple.com/en-us/HT202944

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 22

as that gives a lot of useful information about applications including the executable
path, pid, bundle identifier (useful for detection purposes) and launch time.

You should also examine running daemons, agents and XPC services through the
launchctl utility. I find the older, deprecated (but still functional) syntax somewhat
easier to parse than the newer syntax, but that may be just my preference from habit,
so experiment with either.

In the old syntax, you can simply run

$ launchtl list

to get a lot of useful information on what's running in that particular user's domain.
The same command prepended with sudo will produce a list of services running in the
system-wide domain.

For the newer syntax, use something like

$ launchctl print user/501

Replacing '501' for the UID of any user you're interested in. Use

$ launchctl print system

to target the system-wide domain.

The output between the old and the new syntax is quite different, and which you find
more useful may depend on what kind of information you want. I often use the old
syntax and grep out anything with a com.apple label so that I can focus on (mostly)
non-system processes. However, some macOS malware does deliberately use the
name "apple" in their labels precisely in an attempt to hide in the weeds, so if you do
follow that suggestion be sure that you're parsing items with "apple" labels somewhere
else, too (e.g., such as from the data you received from examining the Launch folders in
Chapter 1 or from using the ps utility).

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 23

Investigate Open Files
Earlier we used lsof with the -i option to list open ports, but we can also list all open
files by just running lsof without any flags at all. That produces quite a mountain of
information and you'll want to quickly narrow it down to make it manageable.

If the system is running with System Integrity Protection turned on (tip: you can
determine that with the command csrutil status), I will normally parse the output
of lsof in something like BBEdit and remove all lines that contain references to the
System folder. Bear in mind that doing so could cause you to miss something - not
all System folders are protected by SIP, but in the early stages of an investigation I
will leave that kind of possibility for later in the event that I don't find any other IOCs
(Indicators of Compromise).

For similar reasons, I'll tend to focus first on open files that don't belong to regular
apps. Again, keep in mind the caveat that malware authors can sometimes use regular
apps to live off the land, exploit browser zero days or sneak in via supply chain attacks,
so be judicious in what you filter out and remember to go back over anything you
skimmed or ignored later on if necessary.

Examine the File System
If I haven't found any suspicious processes at this point, that could well be because
the malware has already finished its execution, so next it's time to start making an
initial investigation into the file system. At this point, we're just trying to establish that
a threat exists, rather than do a deep forensic dive on the entire system, so let's look
at some of the resources you can quickly access and parse to look for evidence of
malicious behaviour.

https://www.sentinelone.com/blog/how-two-firefox-zero-days-led-to-two-macos-backdoors/

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 24

A word of warning, though, before we start. If you're dealing with a macOS system
from 10.14 Mojave onwards, you may find command line investigations hampered by
macOS's recent user protections. In order to avoid those, ensure that Terminal has been
added to the Full Disk Access panel in the Privacy pane.

I tend to start by making an initial audit of files in certain locations that are often
populated by malware. These include hidden files and folders in the User's home
folder, unusual folders added to the /Library and ~/Library folders, and the Application
Support folders within all of those (remember there's a separate Library folder for
every user as well as the one at the computer domain level).

You can get those for the current user and the computer domain with a one-liner:

$ ls -al ~/.* ~/Library /Library ~/Library/Application\ Support
/Library/Application\ Support/

You'll need to drop down to sudo and iterate over users with a bash script if there's
more than one user account on the Mac.

https://www.sentinelone.com/blog/mojaves-security-hardening-user-protections-bypassed/

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 25

Next, check the /Users/Shared folder, and the temp directories at /private/tmp and
the user's Temporary Directory (these are not the same), which you can get to using
the $TMPDIR environment variable.

$ ls -al /Users/Shared

$ ls -al /private/tmp

$ ls -al $TMPDIR

Also, don't forget that you should already have a list of items present in the Launch
folders and any Cron jobs from your investigation into persistence mechanisms. More
often than not the program arguments of these will have already led you to other
locations of interest.

Below is an example of a script that inserts a python backdoor via CURL (the URL has
been redacted) into /usr/local/sbin folder.

We’ve also seen an increasing use of /usr/local by cryptominers recently, so this is
another good location to regularly hunt for malicious and suspicious behavior (these
locations may or may not exist):

$ ls -al /usr/local

$ ls -al /usr/local/bin

$ ls -al /usr/local/sbin

Also, be aware of whether your user has Homebrew installed or not. The Homebrew
executable at /usr/local/bin/brew is itself a shell script. All commands in that script
are executed whenever the user types $brew <command> in the Terminal. The script can
be modified by any other process running as the user without authentication, and could
be a tempting target for persistence or opening a backdoor. Any changes to the script
will be overwritten when the user issues the $brew update command, although they
can also be retrieved, as helpfully indicated here by Homebrew itself:

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 26

In the majority of cases, if a Mac has been infected the above steps will have turned
up something and directed my searches further, but if not, there's still a few other
things to look for. If the time since the suspected infection is still relatively recent
(within a few days or less), you may try a find search to look for any files created since
or between a certain time or date. For example, this will find any files modified in the
current working directory in the last 30 minutes. You can substitute the m for h to
specify hours, or leave off a specifier and it will default to days.

$ find . -mtime +0m -a -mtime -30m -print

Depending on how much regular activity there has been on the device since then, and
how long the timespan you search for, that could result in an overwhelming amount of
data or just enough to be manageable, so adjust your search parameters to suit.

We can also query the LSQuarantine database to see what items have been
downloaded by email clients and browsers.

$ sqlite3
~/Library/Preferences/com.apple.LaunchServices.QuarantineEventsV*
'select LSQuarantineEventIdentifier, LSQuarantineAgentName,
LSQuarantineAgentBundleIdentifier, LSQuarantineDataURLString,
LSQuarantineSenderName, LSQuarantineSenderAddress,
LSQuarantineOriginURLString, LSQuarantineTypeNumber,
date(LSQuarantineTimeStamp + 978307200, "unixepoch") as
downloadedDate from LSQuarantineEvent order by
LSQuarantineTimeStamp' | sort | grep '|' --color

Again, you could get a lot of data to sift through here, but filter on the dates to find
recent items. The good side of LSQuarantine is it will give you the exact URL from where
the file was downloaded, and you can use this to check against reputation on VT or
other sources. The downside of LSQuarantine is that the database is easily purged by
normal actions the user (or malicious actor) can take in the UI, so not finding something
there doesn't rule out that a file didn't actually come through the quarantine process.

Another useful trick here is to see what turns up just by doing an mdfind query on the
quarantine bit:

$ mdfind com.apple.quarantine

That should find documents - which are also tagged with the quarantine bit - that have
been downloaded, including malicious pdf, Word .docx and others. Again, there'll be a
lot of innocent stuff in the results, so careful filtering will be required.

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 27

Examine the Mac's Network Configuration
Malware authors on macOS have in some cases manipulated the DNS and AutoProxy
network configurations, so it's always worth checking on these settings. You can get
all these from the command line, so first let's get the details of the network interface
configuration with this command:

$ ifconfig

That will output information regarding the wireless, ethernet, bluetooth and other
interfaces. You'll also want to gather the SystemConfiguration property list to look out
for malware that tries to hijack the Mac's DNS server settings, as OSX.MaMi was seen
to do in 2018.

$ plutil -p
/Library/Preferences/SystemConfiguration/preferences.plist

Use this command

$ scutil --proxy

to inspect the Mac's auto proxy settings. Spyware like OnionSpy has been seen to
configure these settings to redirect user traffic to a server of the attacker's choosing.

Conclusion
Whether you are hunting cryptominers, adware, backdoors or nation state actors,
the steps outlined above should give you a good start on where to look and what to
look for. In the majority of cases, they will be sufficient to find evidence of even
the most stealthy of macOS malware.

Even so, digging down into the hidden depths of macOS may provide you with more
evidence that can help in detection, remediation, and attribution. In the remaining
chapters of this eBook, we'll cover things like Apple's built-in system_profiler and
sysdiagnose utilities, unified logging, fsevents and a plethora of sqlite caches that
hold almost every detail you could ever wish to know.

https://www.sentinelone.com/blog/macos-malware-review-in-2018/
https://www.sentinelone.com/blog/macos-cryptomining-malware-rise/
https://labs.sentinelone.com/lazarus-apt-targets-mac-users-poisoned-word-document/

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 28

CHAPTER 3
Incident Response:
Collecting Device, File & System Data
Depending on what access and authorization you have, it's possible to dive a lot deeper
than we have so far and recover very fine-detailed information about file system
events, user's browsing and email history, application usage, connected devices and
more. You won’t usually need to do so for threat hunting, but once you have found a
threat on a user’s Mac you will have cause to dig deeper and see what other activity
may have occurred.

When I’m dealing with a Mac that’s known to be compromised, the first step is to
consider the client’s situation and the potential nature of the breach. For example,
if the device may have been used in a crime or could become part of a criminal
investigation, I would recommend the client to use a digital forensics lab that can
image the device and recover artefacts from memory without polluting the evidence.
This is quite a different process from what we will cover here, which is more akin to a
SOC team investigation to determine what an intruder or a malware infection may have
done that has not already been logged by detection software. Has there been lateral
movement, has data been exfiltrated, has there been system manipulation? Are there
other indicators of attack or compromise that we haven’t yet discovered? These are the
questions that we want to set out to answer as quickly as possible in order to protect
the business.

Let’s assume for the purposes of our scenario, then, that an employee has brought us
a machine after discovering and removing a malware infection. The machine is still
powered on, and we have the necessary credentials (and authority) to examine the
machine fully.

Say Hello to Sysdiagnose
With that out of the way, let’s set about collecting some initial information. Typically,
investigators will want to list things like the system version, currently running
processes, network configuration, Bluetooth setup, mounted volumes, install history,
system log and much more besides. You could invest quite some time writing your own
custom scripts to collect that and other information (we’ll do a bit of custom script
writing later in this series), but if you have direct access to the machine you can save
yourself a lot of work by leveraging the built-in sysdiagnose tool provided by Apple.

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 29

The sysdiagnose tool was not designed for security or incident response purposes.
Apple wrote it for macOS beta testers as a means of collecting just about everything
they could ever want to know about a Mac when investigating OS bug reports. But for
that reason, it’s ideal for our purposes, too. Here’s an image showing just some of the
data that it collects.

What’s even nicer, from the point of convenience, is that if you have physical access to
the machine you can kickoff the report simply by pressing this keychord:

Control-Option-Command-Shift-Period

If you get it right, you’ll see the display briefly flash indicating that the process has
begun. If using the keychord is a problem for any reason, head over to the Terminal app.
There are a bunch of command line options you can specify (see man sysdiagnose), but
for our purposes we will just run it in vanilla mode. Enter the following, type the admin
password, and confirm that you want to proceed when prompted:

$ sudo sysdiagnose

In this case you will not see the display flash.

Regardless of which way you invoke the tool, it’ll take a few minutes to complete, so
you might want to take the opportunity to make a coffee, walk the dog, feed the cat, or
while away the time as you see fit until sysdiagnose has done its thing.

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 30

Exploring Files Collected by Sysdiagnose
When sysdiagnose has finished, it’ll pop a Finder window showing you the
compressed result. Copy it off to your local machine, then double-click it to unpack it
and have a quick scroll through what’s been collected. Yes, there’s a lot of juicy stuff in
there: everything from a full ps to netstat, kextstat, system_profiler, top, Wifi scans
and much, much more.

When working with large amounts of text files I like to use BBEdit, which offers many
useful functions for quickly searching and manipulating multiple files. The features I’ll
use are all available in the free version, so if you don’t already have a copy of BBEdit
just go ahead and download the free demo. Of course, if you have your own way of
working with large sets of files, that’s fine, too.

If you have BBEdit in the Dock, grab the sysdiagnose parent folder in the Finder and
drag and drop it on top of the BBEdit Dock icon. When the project view opens up, scroll
down to the logs folder in BBEdit’s Sidebar, click the disclosure triangle and scroll
down again. You should see useful things like Install.log and InstallHistory.plist among
many other goodies.

Still in the logs subfolder, find the folder SystemExp, descend into that and open up
the folder named “Dock” (followed by a date and timestamp). Here, you’ll find useful
stuff such as CachedWindows.txt, which might tell you a little about the user’s recent
activity (more to come on that in the following chapters).

https://www.barebones.com/products/bbedit/

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 31

Also, take a look at dockextras.txt file, which may include info on things like the last
time the user connected to Facetime, Messages and a bunch of other apps.

Interlude – A Note About Timestamps
Before we move on, a note about the timestamps you see here, as you’ll encounter
these elsewhere in macOS logs. Timestamps like this

587381138.016775

may look like Unix epoch timestamps (that is, seconds since 1/1/1970), but if you try
to convert them using Unix epoch time you’ll get nonsense dates. These are actually
Cocoa timestamps, which are similar but the seconds are counted since 1/1/2001.
To convert them, add the difference between Unix and Cocoa start dates in seconds
(that’s a fixed integer of 978307200) and use the date command line utility with the -r
switch. We remove the fraction of a second and just deal with the whole integer, like so:

$ date -r $((587381137 + 978307200))

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 32

That returns the more human-friendly date of

Tue 13 Aug 2019 16:25:37 +07

from the Cocoa timestamp.

Finding Traces of Malicious Activity
Just below the logs folder you should see a file lsappinfo.txt. Click on it to load it into
the main editor window. This file contains a lot of useful data about currently running
applications, but even more useful for incident response – when we’re likely faced with
a situation where malware has been and gone – is to look in the two files below, the
admin (501) and root (0) dumps of lsregister. These are dumps of the databases held
by Launch Services and contain detailed information about every application that
has been available to the user.

Let’s walk through a practical example of how we might use this information to learn
more about an infection.

If you scroll through lsregister-0.txt, you’ll notice each record has a path field and
many have a CFBundleIdentifierfield. To make a cursory examination of this file,
I’ll use BBEdit’s ‘Process Lines Containing’ function (from the Text menu) and copy
all lines containing CFBundleIdentifier to a new document.

In the resulting text window, I’ll use the same function only this time I’ll delete all
lines containing “com.apple” to narrow down my search (as I mentioned in an earlier
chapter, some malware likes to disguise itself by using the “com.apple” label, so bear
that in mind).

https://developer.apple.com/documentation/coreservices/launch_services

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 33

On my suspect device, this gives the following results. The highlighted ones will stand
out to anyone familiar with macOS malware. There’s a bunch of commodity adware/
PUP programs, but the ones in red are particularly interesting.

Let’s see what more we can find out about them. We’ll start with the bottom one,
since that kind of bundle identifier is a non-standard pattern rarely used by legitimate
software. Using BBEdit’s Multi-File Search function (Shift-Command-F), we can rapidly
search through all the files collected by sysdiagnose for this identifier and see what
else is known about it.

https://www.sentinelone.com/blog/how-to-reverse-macos-malware-part-one/

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 34

Add the identifier to the “Find” field and choose “Frontmost project” from the “Search
in:” panel below. Then click ‘Find All’.

Our search results have revealed the Path, full App Name and team ID (aka “Developer
Signature”). But further investigation on the machine shows no evidence the
application still exists. After trying searches on VirusTotal and other public search
engines, the teamID led us to a Russian-language stackoverflow post.

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 35

It turns out that the developer signature was used to sign an “app” that was in fact a
Bash script bundled in an Application wrapper. It looks very much like a variant of OSX.
Shlayer. There’s a high probability that the item found on our machine was a variant
of the same malware, given that they were both signed by the same developer.

Returning to our list of labels, note that the second item, com.lights.Oblivion, is a
bundle identifier associated with OSX.CrescentCore.

And what about the other highlighted item, com.ableton.live? Ableton Live is a
legitimate commercial program, but there’s also cracked versions on the internet
that are used for cryptojacking. Again, using the Multi-File search, we can find
more info in the sysdiagnose folder. This time a result in the install.log reveals that the
app was delivered in an unsigned .pkg. Since there is no chance that a company like
Ableton would be distributing their software without proper code signing, there’s a
strong likelihood that this package is malware.

It seems our user’s machine has seen quite a lot of action!

https://www.intego.com/mac-security-blog/osxshlayer-new-mac-malware-comes-out-of-its-shell/
https://www.intego.com/mac-security-blog/osxshlayer-new-mac-malware-comes-out-of-its-shell/
https://www.sentinelone.com/blog/macos-malware-2019-first-six-months/
https://www.sentinelone.com/blog/macos-malware-2019-first-six-months/
https://www.sentinelone.com/blog/meet-cryptojacking-not-new-kid-block/

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 36

While the above example isn’t particularly methodical, it does hopefully give you an
idea of what you can do with such a vast amount of data and a few multi-file searches.

One Log to Rule Them All
Among the many other files worth exploring in the sysdiagnose folder, there is one
other that deserves special mention. Scroll down (either in BBEdit or Finder) to a file
called system_logs.logarchive.

As the name suggests, this is a collection of macOS system logs, the sort that are
typically viewed in the Console.app. The file is actually a directory, but its contents are
unreadable in BBEdit; however, double-clicking it in BBEdit will open it in the Console.
app. You can also read this format with the log command in the Terminal. The latter
is a far more powerful and effective tool for investigative work, but it does take a little
practice to master. As there are many good guides on the log command, such as here
and here, as well as the manpage itself, we won’t go into details here. However, there
are a couple of oddities about the “unified logging” system that I haven’t seen covered
elsewhere and which are worth being aware of.

First, note that the system_logs.logarchive file collected by sysdiagnose only contains
a subset of the logs available. You can see the range of information collected by using
the stats command. For example,

$ log stats --archive <path to logarchive file> --overview

https://krypted.com/mac-os-x/logs-logging-logger-oh/
https://eclecticlight.co/2016/10/17/log-a-primer-on-predicates/

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 37

In this case, we see logs collected from August 15th to 20th. Now let’s run the same
command on the machine without specifying the name of the logarchive file in the
sysdisagnose folder.

$ log stats --overview

With no logarchive file specified, the command returns the stats for the main system
log datastore held on the device.

That’s quite a lot more (and also quite a lot larger!) and covers around 30 days worth of
logs, from July 22nd to August 21st. To collect all the log info, run a separate collection
command. Be sure to specify a destination that is safe to write to (such as a connected
device or quarantined folder) as by default the collect verb will save to the current
working directory.

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 38

$ sudo log collect --output <path to dst>

The other oddity of this tool is that if you run the stats command on your newly
collected log file, you may find it contains logs reaching even further back in time than
the previous output of --overview indicated. In this case, the collect command appears
to have reached back an additional 4 days, to 18th July.

The cause of these oddities is unknown (at least to me) – whether it’s a bug or intended
behavior – but the vagaries of the log command are worth bearing in mind.

Exploring fs_usage for File Activity
One other file we’ll mention in the sysdiagnose folder before moving on is fs_usage.
txt. This gives you a capture of file activity at the time when you run sysdiagnose.
It is useful to see what was occurring at the time of collection. You can quickly parse
fs_usage.txt to get a list of every process that was involved in file activity. Try to
cd into the sysdiagnose parent directory, then use something like the following to
uniquely list processes that were interacting with the file system:

$ awk '{print $NF}' fs_usage.txt | cut -d. -f1 | sort -u

AirPlayXPCHelper
CoreServicesUIAg
Electron
Finder
Opera
Slack

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 39

...snip...
Telegram
UserEventAgent
WireGuardNetworkExt
WireGuardNetworkExtension

We can do something similar to quickly get a list of all file paths that were accessed.
Note we’re grepping out files accessed by sysdiagnose itself to ignore our own activity:

$ awk '{print $0}' fs_usage.txt | grep '/' | sort -u | grep -v -i
sysdiagnose

However, as fs_usage only records file activity at the time we ran the utility, we need
something better to provide historical records of file events.

FSEvents – Old, Not Obsolete
Fortunately, such records of file system events are created in a hidden folder at the
root of each volume or disk image.

/.fseventsd

You can easily toggle visibility of this and other useful hidden folders in the Finder by
using the keychord:

Command-Shift-Period

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 40

As we see in the image above, this folder is protected, so we will need to drop down to
root on the command line to inspect it.

The .fseventsd folder contains data files compressed with gzip. Although we could
manually unzip each file, hexdump it or extract the printable characters with strings, that
all requires a lot of labor and the results are likely to lose context. A better solution is to
use the free tool FSEventsParser. This has the ability to create both SQL database and
spreadsheet output, giving us access to much more powerful queries and analysis.

Running the tool in its most basic form requires specifying the source and destination
folders (more recent versions also require the -t switch and either folder or image for a
value). Depending on the number of records, this may take some time.

$ python FSEParser_V3.3.py -s -t folder /.fseventsd -o
/Users/sentinel/Desktop/FSEvents_Out

https://www.freebsd.org/cgi/man.cgi?query=hexdump&sektion=1
https://github.com/dlcowen/FSEventsParser

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 41

The output, however, is well worth it. With FSEvents, we can conduct queries such
as which files were sent to the Trash, what devices were mounted, which files were
accessed or what websites were visited on a particular date.

Like the unified logs, .fseventsd will only reach back a limited timespan as the records
are continually churned to save space. How far back depends on a number of factors,
including how active the system is, but if your suspicious events occurred close enough
to the collection time, you may well have some extremely rich data that you can mine
for evidence of malicious activity.

Be aware that activities like updating the OS will wipe out existing logs in the .fseventsd
folder (you can use the install.log in the sysdiagnose folder to determine when the
most recent update occurred), and it’s also not unheard of for some events to fail to be
recorded at all, such as during especially heavy I/O activity.

http://nicoleibrahim.com/apple-fsevents-forensics/

Another issue to bear in mind is that users can deliberately prevent the system from
recording FSEvent activity by creating a touch file inside the .fseventsd folder.

$ sudo touch /.fseventsd/no_log

What all that means is that you can’t assume something didn’t happen just because
you didn’t find a record of it in .fseventsd. However, what you do find can often prove
extremely illuminating.

Conclusion
In this chapter, we’ve taken a look at three built-in tools – sysdiagnose, unified logging
and FSEvents – that can help you quickly collect device, file and environmental data
about a Mac. Due to the breadth of the subject, there’s a lot we didn’t cover here, but
hopefully it has given you enough of a taste to explore further. In the next chapter, we’ll
continue our exploration into macOS Incident Response by taking a look at some of the
hidden databases that reveal user activity.

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 42

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 43

CHAPTER 4
Incident Response - User Data,
Activity and Behavior
In the previous chapter, we looked at collecting device, file and system data. In, it’s
time to take a look at retrieving data on user activity and behavior.

There’s a few reasons why user behavior is of interest. First, there’s the possibility of
either unintentional or malicious insider threats. What has the user been
doing with the device, what have they accessed and who have they communicated with?

Second, ‘user behavior’ isn’t necessarily restricted to the authorized or designated user
(or users), but also covers unauthorized users including remote and local attackers.
Who has accounts on the device, when have they been accessed, and do those
access times correlate with the pattern of behaviour we would expect to see from the
authorized users? These are all questions that we would want to be able to answer.

Third, a lot of confidential and personal user data is stored away in hidden or obscure
databases on macOS. While Apple has made some efforts recently to lock these
down, many are still scrapable by processes running with the user’s privileges, but not
necessarily their knowledge. By looking at these databases, what they contain, and
when they were accessed, we can get a sense of what data the company might have
lost in an attack, from everything from personal communications, to contacts, web
history, notes, notifications and more.

A Quick Review of SQLite
Although some data we will come across is in Apple’s property plist format and
less occasionally plain text files, most of the data we’re interested in is saved in
sqlite databases. I am certainly no expert with SQL, but we can very quickly extract
interesting data with a few simple commands and utilities. You can use the free DB
Browser for SQLite if you want a GUI front end, or you can use the command
line. I tend to use the command line for quick, broad-brush looks at what a database
contains and turn to the SQLite Browser if I really want to dig deep and run fine-grained
queries. Here are some very basic commands that serve me well.

$ sqlite3 /path to db/ .dump

This is my go-to command, which just pumps out everything in one (potentially huge)
flood of data. It’s a great way to quickly look at what kind of info the database might
contain. You can grep that output, too, if you’re looking for specific kinds of things like file

https://www.sentinelone.com/blog/insider-threats-from-malicious-to-unintentional/
https://www.sentinelone.com/blog/financial-cyber-threats-10-cases-of-insider-bank-attacks/
https://www.sentinelone.com/blog/macos-perspective-sentinelone-remote-desktop-pups/
https://www.sentinelone.com/blog/7-big-security-surprises-coming-to-macos-10-15-catalina/
https://sqlitebrowser.org/

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 44

paths, email or URL addresses, and piping the output to a plain text file can make it easy
to save and review if you don’t want to work directly on the command line all the time.

$ sqlite3 /path to db/ .tables

The .tables command gives you a sense of the different kinds of data stored and
which might be most interesting to look at in detail.

$ sqlite3 /path to db/ 'select * from [tablename]'

Another one of my go-to commands, this is equivalent of doing a “dump” on a specific table.

$ sqlite3 /path to db/ .schema

This command is essential to understand the structure of the tables in the database.
The .schema command allows you to understand what columns each table contains
and what kind of data they hold. We’ll look at an example of doing this below.

Finding Interesting Data on macOS
There’s a few challenges when investigating user activity on the Mac, and the first is
actually finding the databases of interest. Aside from the fact that they are littered
all over the user and system folders, they can also move around from one version of
macOS to another and have also been known to change structure from time to time.

In the previous chapter, when we played with sysdiagnose, you may recall that one
location the utility scraped logs from was /var/db. There is user data in there, too.
For example, in CoreDuet, you may find the Knowledge/knowledgeC.db and the
People/interactionC.db.

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 45

SANS macOS forensics instructor Sarah Edwards did a great post on mining the
knowledgeC.db which I highly recommend. From it, you will be able to discern a great
deal of information about the user’s Application usage and activity, browser habits and
more. Some of this information we’ll also gather from other sources below, but the more
corroborating evidence you can gather to base your interpretations on the better.

The interactionC.db may give you insight into the user’s email activity, something we
will return to later in this chapter. In the meantime, let’s use this database for a simple
example of how we can interpret the SQL databases in general. Drop into a root shell
(or use sudo), then change

$ cd /private/var/db/CoreDuet/People

and list the contents with ls -al. You should see interactionC.db in the listing.

If we run .tables on this database, we can see it contains some interesting looking items.

Let’s dump everything from the ZCONTACTS table and have a look at the data.

$ sqlite3 interactionC.db 'select * from ZCONTACTS'

Each line has a form like this:

3|2|31|0|0|17|0|0|2|583116432.847281||583091780||0|588622185||
|donotreply@apple.com

|donotreply@apple.com|

Sure, we can see the email address in plain text, but what does the rest of the data
mean? This is where .schema helps us out. After running the .schema command, look
for the CREATE TABLE ZCONTACTS schema in the output.

$ sqlite3 interactionC.db .schema

https://www.sentinelone.com/blog/21-macos-ios-twitter-accounts-should-follow/
https://www.mac4n6.com/blog/2018/8/5/knowledge-is-power-using-the-knowledgecdb-database-on-macos-and-ios-to-determine-precise-user-and-application-usage

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 46

The comma-separated fields tell us the table column name and the kind of data the
ZCONTACTS table accepts (eg. Z_OPT column takes integers). There are 20 possible
columns in this table, and we can match those up with each column from data
extracted from the table earlier, where each column in that output is separated by a
|. Here we also used the method of converting Cocoa timestamps to human-readable
dates that we discussed in Chapter Three.

The data indicates that between 25 June and 28 August the recipient received 17
messages from the email address identified in fields 18 and 19.

However, a word of caution about interpretation. Until you are very familiar with how a
given database is populated (and depopulated) over time, do not jump to conclusions
about what you think it’s telling you. Could there have been more or less than 17
messages during that time? Unless you know what criteria the underlying process uses
for including or removing a record in its database, that’s very difficult to say for sure.
In similar vein, note that the timestamps may not always be reliable either. You cannot
assume that a single database is sufficient to establish a particular conclusion. That’s
why corroborating evidence from other databases and other activities is essential.
What we are looking at with these sources of data are indications of particular activity
rather than cast-iron proof of it.

Databases in the User Library
A great deal of user data is held in various directories within the ~/Libraryfolder.
The following code will pump out an exhaustive list of .db files that can be accessed as
the current user (try with sudo to see what extras you can get).

$ cd ~/Library/Application\ Support; find . -type f -name "*.db"
2> /dev/null

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 47

However, here’s another difficulty if you’re working on Mojave or later. Since Apple
brought in enhanced user protections, you may find some files off limits even
with sudo. To get around that, you could try taking a trip to the System Preferences.
app and adding the Terminal to Full Disk Access. That’s assuming, of course, that there
are no concerns about ‘contaminating’ a device with your own activity.

Dumping a list of all the possible databases might look daunting, but here’s just a few
of the more interesting Apple ones you might want to look at on top of those associated
with 3rd party software, email clients, browsers and so on.

./Application Support/Knowledge/knowledgeC.db

./Application Support/com.apple.TCC/TCC.db

./Containers/com.apple.Notes/Data/Library/Caches/com.apple.
Notes/Cache.db
./Mail/../
./Messages/chat.db
./Safari/History.db
./Suggestions/snippets.db

Let’s look at a few examples. Surprisingly, the Messages’ chat.db is entirely
unprotected, so you can dump messages in plain text. You might be surprised to find
just how unguarded people can be on informal chat platforms like this.

$ sqlite3 chat.db .tables

This user has basically left themselves open to compromise from any process running
under their own user name.

$ sqlite3 chat.db 'select * from message'

https://www.sentinelone.com/blog/mojaves-security-hardening-user-protections-bypassed/

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 48

Mail is also completely readable once you dig down through the hierarchy of folders.
Here the messages are not stored in a sqlite database, but use the .emlx format. These
encode the email content in base64, which can easily be extracted and decoded.

You can save yourself a lot of time with emails by reading the snippets.db in the
Suggestions folder. This contains databases that are meant to speed up predictive
suggestions by the OS in application searches (Contacts, Mail, etc), as well as Spotlight
and the browser address bar. The snippets.db contains snippets of email conversations
and contact information.

Sometimes you’ll get silent ‘permission denied’ issues on these databases, even when
using root and Terminal has Full Disk Access. For example, in the image below, the file
size of the queue.db clearly indicates that there’s more data in there than I seem to be
getting from sqlite.

https://www.sentinelone.com/blog/guide-encode-decoded-base64/

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 49

When these kinds of things happen, a ‘quick and dirty’ solution can be to turn to either
the strings command or the xxd utility to quickly dump out the raw ASCII text and
see if the contents are worthy of interest.

Mining the Darwin_User_Dir for Data
Apple hides some databases in an obscure folder in /var/folders/. When logged in as a
given user, you can leverage the DARWIN_USER_DIR environment variable to get there.

$ cd $(getconf DARWIN_USER_DIR)

Again, you may find even with Terminal added to Full Disk Access, some directories will
remain off limits, even for the root user, like the SafariFamily folder appears to be.

In this case, we can’t even dump the strings because we cannot even get permission to
list the file.

The only way to get access to these kinds of protected places is to turn off System
Integrity Protection, which may or may not be something you are able to do, depending
on the case.

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 50

Reading User Notifications, Blobs & Plists
One of the databases you’ll find in the folder that the variable DARWIN_USER_DIR
takes you to is the database that stores data from Notifications – messages sent from
Applications like Mail, Slack and so on to the Notification Center and which appear as
alerts and banners in the top right of the screen. Fortunately or unfortunately, depending
on how you look at it, we don’t need special permissions to read this database.

If you’re logged in as the user whose Notifications you want to look at, the following
command will take you to the directory where the sqlite database is located.

$ cd $(getconf DARWIN_USER_DIR)/com.apple.notificationcenter/

The Notifications database has changed at some point in time, and if you list the
contents of the directory you may see both a db and a db2 folder. Change directory into
each in turn and run the .tables and .schema commands to compare the different
structures. Both use blobs for the data, so you will need a couple of tricks to learn
how to read these.

One way is to open the database in DB Browser for SQLite, click on the blob data and
view the source in binary format. You can export that source as blob.bin and then use
plutil -p blob.bin to output it to nice human-readable text.

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 51

I’m usually in too much of a hurry to do all that. Instead, I’ll do something like

$ sqlite3 db 'select * from app_info'

to browse through the list of apps that have sent Notifications, then run a few greps
on the entire database. For example, if I want to read Slack notifications, I can use
something like this:

$ strings $(getconf
DARWIN_USER_DIR)/com.apple.notificationcenter/db2/db | grep -i -
A4 slack

And of course I can just change ‘slack’ for ‘mail’ or whatever else looks interesting. I
might then use the previous method with the DB Browser and plutil mentioned above
to dig deeper.

Reading Data from Notes, More Blob Tricks
There’s plenty of application databases that we haven’t touched on, but one that I
want to cover in this overview is Apple’s Notes. Not only might this be a good source of
information about user activity, it’s also trickier to deal with than the other databases
we’ve looked at.

We can find the Notes database in the ~/Library/Group\ Containers folder. Let’s
quickly re view the tables:

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 52

$ sqlite3 ~/Library/Group\
Containers/group.com.apple.notes/NoteStore.sqlite .tables

This somewhat byzantine-looking one-liner will dump all the user’s iCloud notes to stdout.

$ for i in $(sqlite3 ~/Library/Group\
Containers/group.com.apple.notes/NoteStore.sqlite "select Z_PK
from ZICNOTEDATA;"); do sqlite3 ~/Library/Group\
Containers/group.com.apple.notes/NoteStore.sqlite "select
writefile('body1.gz.z', ZDATA) from ZICNOTEDATA where Z_PK =
'$i';"; zcat body1.gz.Z ; done

Let’s take a look at how it works. The first part selects Z_PK column – the primary keys
or unique identifiers of the notes in the database – and then iterates over each one.
The second part takes the primary key and for each note in the ZICNOTEDATA table, it
extracts the ZDATA blob containing the note’s content. Next, writefile writes the blob
to a compressed file body1.gz.z in the current working directory and finally zcat
decompresses it into plain text!

Finding Other Data Stores
If you are interested in a particular application or process but do not know what it uses
for a backing store, if anything, there’s a couple of investigative methods you can try.
First, see if the process is running in the Activity Monitor. If it is, click the Info button
and select the ‘Open Files and Ports’ tab and see where it’s writing to. You could also
do the same thing with lsof on the command line.

If that doesn’t work, try running strings on the executable file and grepping for a
forward slash (‘/’) to search for paths that the program might write to. If you’re still
out of luck, you may have to do a little more macOS reverse engineering to
understand what the program is up to and find where it hides its data.

https://www.sentinelone.com/blog/how-to-reverse-macos-malware-part-one/

Conclusion
In this chapter, we’ve taken a tour of various places where macOS stores data on user
activity and user behavior and reviewed some of the main ways that you can locate and
extract this data for analysis. From Chapter Three and Chapter Four, we have collected
data on the device and on user(s) activity. But we also need to look at our device for
evidence of manipulation by an attacker that can leave the system vulnerable to future
exploitation. We’ll turn to that in the final chapter.

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 53

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 54

CHAPTER 5
Incident Response - System Manipulation
In this chapter, we’re going to look for evidence of system manipulation that could
leave a device or a user vulnerable to further exploitation. Some of that evidence may
already have been collected from our earlier work, while other pieces of information
will require some extra digging.

Usurping the Sudoers File
One of the first places I want to look for system manipulation is in the /etc/sudoers
file. This file can be used to allow users to run processes with elevated privileges without
being challenged for a password. To check whether the sudoers file has been modified,
we will use the visudo utility rather than opening the file directly in vi or another editor.
Using visudo is safer as it prevents the file being saved in an invalid format.

$ sudo visudo

Modifications to the sudoers file will typically be seen at the end of the file. In part,
that’s because the easiest way for a process to write to it is by simply appending to
it, but also the commands in the file take precedence in reverse order, with the later
commands overriding earlier ones. For that reason, it’s important for attackers that
their commands override any others that may target the same users, groups or hosts.
In this example, we can see that a malicious process has added a line to allow the user
‘sentinel’ – or more importantly any process running as that user – to run the command
at the path shown on any host (ALL) without authenticating.

Cuckoos in the PATH
The $PATH environment variable lists the paths where the shell will search for
programs to execute that correspond to a given command name. We can see the user’s
path list with

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 55

$ echo $PATH

In this example, the user’s path contains the following locations:

We can use a short Bash script to iterate over the paths, and list their contents, sorted
by date modified in descending order.

#! /bin/bash
while IFS=: read -d: -r path; do
  cd $path
  echo $path
  ls -altR
done <<< "${PATH:+"${PATH}:"}"

From the results, we can quickly see which files were modified most recently. Pay
particular attention to what is at the top of the path, as /usr/local/bin is in the above
example. This location will be searched first when a command is issued on the command
line, ahead of system paths. A “cuckoo” script named, say, sudo or any other commonly
used system utility, inserted at the top of the path would get called before – in other
words, instead of – the real utility. A malicious actor could write a fake sudo script which
first called the actor’s own routines before passing on the user’s intended actions to the
real sudo utility. Done properly, this would be completely transparent to the user, and of
course the attacker would have gained elevated privileges along the way.

Bash, Zsh and Other Shells
In a similar way, an attacker could modify one of several files that determine things like
shell aliases. An alias in say the .bashrc file could replace every call to sudo with a call
to an attacker’s script. To search for this possibility, be sure to check the contents of
the following for such manipulations:

~/.bash_profile	 # if it exists, read once when you log in to the shell
~/.bash_login		 # if it exists, read once if .bash_profile doesn't exist
~/.profile	 	 # if it exists, read once if the two above don't exist
/etc/profile		 # only read if none of the above exist

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 56

~/.bashrc		 # if it exists, read every time you start a new shell
~/.bash_logout	 # if it exists, read when the login shell exits

And look for the same for other shell environments the user might have like .zshrc for Zsh.

Etc, Hosts and Friends
It’s also worth running a time-sorted ls on the etc folder.

$ cd /etc; ls -altR

On this compromised system, it’s very clear what’s been modified recently.

The hosts file is a leftover from the past and the way computers used to resolve domain
names to IP addresses, a primitive form of DNS. These days the only use of the hosts
file is to loopback certain domain names to the localhost, 127.0.0.1, which effectively
prevents the system from reaching out to these domains. The hosts file is often
manipulated by malware to stop the system checking in with certain remote services,
such as Apple or other software vendors. A healthy hosts file will typically have very
few entries, like so:

https://www.sentinelone.com/blog/dns-hijacking-what-is-it-and-how-does-it-work/

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 57

Networking and Sharing Prefs
While we’re discussing network communications, let’s check on several other areas
that can be manipulated. In System Preferences’ Network pane, click Advanced… and
look at the Proxies tab. Some malware will use an autoproxy to redirect user’s traffic
in order to achieve a man-in-the-middle attack. We can also pull this information from
the data we collected from sysdiagnose by searching on “autoproxy”. Here we see the
good news that no autoproxy is set.

We can utilise the networksetup utility here to output similar information to what you
can see in the System Preferences UI regarding each network service.

#! /bin/bash

n=$(networksetup -listallnetworkservices | grep -v asterisk)
for nt in $n; do
  printf "\n$nt\n--------\n";
  networksetup -getinfo $nt;
done

We can also find this information in the sysdiagnose report in the output of
SystemProfiler’s SPNetworkLocationDataType.spx file.

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 58

Finding Local and Remote Logins
Let’s start with the obvious. Does the device have any of its sharing preferences
enabled? In the User Interface, these are listed in the Sharing Pane:

As explained in Chapter Two, ‘Malware Hunting - Detecting Malicious Behavior on
macOS’, we can get the same information from netstat by grepping for particular
ports associated with sharing services. For convenience, we can run a one-liner on
the command line or via script that will succinctly output the Sharing preferences:

$ rmMgmt=`netstat -na | grep LISTEN | grep tcp46 | grep "*.3283"
| wc -l`; scrShrng=`netstat -na | grep LISTEN | egrep
'tcp4|tcp6' | grep "*.5900" | wc -l`; flShrng=`netstat -na |
grep LISTEN | egrep 'tcp4|tcp6' | egrep "*.88|*.445|*.548" |
wc -l`;rLgn=`netstat -na | grep LISTEN | egrep 'tcp4|tcp6' |
grep "*.22" | wc -l`; rAE=`netstat -na | grep LISTEN | egrep
'tcp4|tcp6' | grep "*.3031" | wc -l`; bmM=`netstat -na | grep LISTEN |
egrep
'tcp4|tcp6' | grep "*.4488" | wc -l`;printf
"\nThe following services are OFF if '0', or ON
otherwise:\nScreen Sharing: %s\nFile Sharing: %s\nRemote Login:
%s\nRemote Mgmt: %s\nRemote Apple Events: %s\nBack to My Mac:
%s\n\n" "$scrShrng" "$flShrng" "$rLgn" "$rmMgmt" "$rAE" "$bmM";

This lengthy pipeline of commands should return something like this.

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 59

In the sysdiagnose/network-info folder, the netstat.txt file will also list, among other
things, active internet connections. Alternatively, you can collect much of the same
relevant information with the following commands:

Active Internet connections (including servers):

$ netstat -A -a -l -n -v

Routing tables:

$ netstat -n -r -a -l

Also, check the user’s home folder for the invisible .ssh directory and the addition of
any attacker public keys. Here, an unwanted process has secretly written a known_
hosts file into the ssh folder so that the process can ensure it’s connecting to its own
C2 server before exfiltrating user data or downloading further components.

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 60

Either on the system itself or from the sysdiagnose folder, look for the existence of the
kcpassword file. This file only exists if the system has Auto login set up, which allows
a user to login to the Mac without providing a user name or password. Although it’s
unlikely a remote attacker would choose to set this up, a local one might (such as a co-
worker), if they had hopes of physical access in the future. Perhaps more importantly,
the file contains the user’s actual login password in encoded but not encrypted form.
It’s a simple thing to decode it, but it does require having already achieved elevated
privileges to do so.

The /usr/sbin/sysadminctl utility has a few useful options for checking on the Guest
account and other settings. This one-liner will output some useful status information:

$ state=("automaticTime" "afpGuestAccess" "filesystem"
"guestAccount" "smbGuestAccess"); for i in "${state[@]}"; do
sysadminctl -"${i}" status; done;

Achieving Persistence Through Application Bundles
We have already covered macOS persistence techniques in Chapter One, and I
encourage you to review that for a more in-depth treatment. However, it’s worth
mentioning in this context one of the upshots of Apple’s recent change to requiring
developers to use Application bundles for things like kexts and login items, which
is that it can now be much harder to track these down. In the past, all 3rd party
extensions would have been in /Library/Extensions and all login items could be tracked
through the loginitems.plist file. Recent changes mean these can now be anywhere
that an application can be, and that is pretty much everywhere!

In Chapter Three, we looked at an example of using LSRegister to hunt for unusual or
unwanted applications. We can also leverage the Spotlight backend to search for the
location of apps once we have a target bundle identifier to hand. For example:

$ mdfind "kMDItemCFBundleIdentifier == 'com.cnaa4c4d'"

https://applehelpwriter.com/2017/06/26/why-malware-loves-auto-login-and-why-you-shouldnt/

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 61

Be careful with the syntax: the whole search statement is encapsulated in double
quotes and the value to search for is within single quotes. More information about
using mdfind can be found in the utility’s man page. A list of possible predicate search
terms can be printed out with

$ mdimport -X

Manipulating Users Through Their Browsers
For the vast majority of attacks, the gateway to compromise comes through
interaction with the user, so it’s important to check on applications that are used for
communications. Have these applications’ default settings been manipulated to make
further exploitation and compromise easier for the attacker?

We already took a look at this in general in Chapter 4, but specifically some of the items
we would want to look at are the addition of browser extensions, default home page
and search criteria, security settings, additional or privileged users and password use.
We should also check the default download location and iterate over that folder for
recent activity.

I’ve explained in Chapter Two how we can examine recent downloads that have been
tagged with Apple’s LSQuarantine bit, but this bit is easily removed and the records in
the LSQuarantine file are not all that reliable. A full listing of the user’s browser history
is better scraped from the relevant folders and databases belonging to each browser
app. Although browser history does not tell us directly about system manipulation,
by tracking the urls of malicious sites visited we can build a picture not only of where
malware may have come from, but where it might be sending our user to for further
compromises. We can also use any malicious URLs found in browser history as search
terms across our collected data.

Although there are many browsers, I will only deal with the major ones here. It should
be possible to apply the same principles in these examples to other browsers. Safari,
Firefox, Chrome and Opera all have slightly different ways of storing history. Here’s a
few examples.

Browser History

To retrieve Safari history (Terminal will require Full Disk Access in Mojave and later):

$ sqlite3 ~/Library/Safari/History.db "SELECT h.visit_time,
i.url FROM history_visits h INNER JOIN history_items i ON
h.history_item = i.id"

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 62

To retrieve a list of sites that have acquired Push Notifications permissions in Safari:

$ plutil -p ~/Library/Safari/UserNotificationPermissions.plist |
grep -a3 '"Permission" => 1'

To retrieve the last session data from Safari:

$ plutil -p ~/Library/Safari/LastSession.plist | grep -iv
sessionstate

Chrome history can be gathered with the following command:

$ sqlite3 ~/Library/Application\
Support/Google/Chrome/Default/History "SELECT
datetime(((v.visit_time/1000000)-11644473600), 'unixepoch'),
u.url FROM visits v INNER JOIN urls u ON u.id = v.url;"

Similar will work for Vivaldi and other Chromium based browsers once you substitute
the appropriate path to the browser’s database. For example:

$ sqlite3 ~/Library/Application\ Support/Vivaldi/Default/History
"SELECT datetime(((v.visit_time/1000000)-11644473600),
'unixepoch'), u.url FROM visits v INNER JOIN urls u ON u.id =
v.url;"

Firefox History is slightly different.

$ sqlite3 ~/Library/Application\
Support/Firefox/Profiles/*/places.sqlite "SELECT
datetime(last_visit_date/1000000,'unixepoch'), url, title from
moz_places"

Browser Extensions

I’ve previously described how the Safari Extensions format has changed recently
and how this can be leveraged by bad actors. To retrieve an old-style list of Safari
browser extensions:

$ plutil -p ~/Library/Safari/Extensions/Extensions.plist| grep
"Bundle Directory Name" | sort --ignore-case

Extensions with the new .appex style, which requires an Application bundle, can be
enumerated via the pluginkit utility.

$ pluginkit -mDvvv -p com.apple.Safari.extension

https://www.sentinelone.com/blog/inside-safari-extensions-malware-golden-key-user-data/
https://www.sentinelone.com/blog/inside-safari-extensions-malicious-plugins-remain-mojave/

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 63

Extensions, particularly in Chrome have long been problematic and an easy way for
scammers to control user’s browsing. Extensions can be enumerated in Chromium
browsers from the Extensions folder:

$ ~/Library/Application\
Support/Google/Chrome/Default/Extensions; ls -al

Unfortunately, the randomized names and lack of human-readable identifiers is
not helpful.

Suffice to say it is worth going over the contents of each directory thoroughly.

Like Safari, Firefox uses a similar, though reversed, bundleIdentifier format for
Extension names, which is far more user-friendly:

$ cd ~/Library/Application\
Support/Firefox/Profiles/*/extensions; ls -al

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 64

Browser Security Settings

Some adware and malware attempt to turn off the browser’s built-in anti-phishing
settings, which is surprisingly easy to do. We can check this setting for various browsers
with a few simple one-liners.

For Safari:

$ defaults read com.apple.Safari WarnAboutFraudulentWebsites

The reply should be 1 to indicate the setting is active.

Chrome and Chromium browsers typically use a “safebrowsing” key in the Preferences
file located in the Defaults folder. You can simply grep for “safebrowsing” and look for
{"enabled: true,"} in the result to indicate anti-phishing and malware protection is on.

$ grep 'safebrowsing' ~/Library/Application\
Support/Google/Chrome/Default/Preferences

Opera is slightly different, using the key “fraud_protection_enabled” rather than
‘safebrowsing’.

$ grep 'fraud_protection_enabled' ~/Library/Application\
Support/com.operasoftware.Opera/Preferences

In Firefox, preferences are held in the prefs.js file. The following command

$ grep 'browser.safebrowsing' ~/Library/Application\
Support/Firefox/Profiles/*/prefs.js

will return “safebrowsing.malware.enabled” and “phishing.enabled” as false if the safe
search settings have been disabled, as shown in the following images:

https://applehelpwriter.com/2018/06/11/browsers-anti-phishing-protections-easily-defeated/

If the settings are on, those keys will not be present.

There are many other settings that can be mined from the browser’s support folders
aside from history, preferences and extensions using the same techniques as above.
These locations should also be searched for manipulation of user settings and
preferences such as default home page and search engines.

Conclusion
And that brings us to the end of this chapter and this ebook on threat hunting and
Incident Response on macOS! There is much that we have not covered; the subject is
as vast in its breadth as is macOS itself, but we have covered how malware persists
and how to find it in Chapters 1 and 2; in Chapters 3, 4, and 5, we went over the basics
of where and what kind of information you can collect about a macOS device’s activity,
the users’ behavior and threat actor manipulations.

For those interested in learning more, you could take a look at OS X Incident Response
Scripting & Analysis by Jaron Bradley, which takes a different but useful approach from
the one I’ve taken here. If you want to go beyond these kinds of overviews to digital
forensics, check out the SANS course run by Sarah Edwards. Finally, of course, please
follow me on Twitter if you have comments, questions or suggestions on this series and
@SentinelOne to keep up with all the news about macOS.

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 65

https://www.elsevier.com/books/os-x-incident-response/bradley/978-0-12-804456-8
https://www.elsevier.com/books/os-x-incident-response/bradley/978-0-12-804456-8
https://twitter.com/jbradley89
https://www.sans.org/course/mac-and-ios-forensic-analysis-and-incident-response
https://twitter.com/iamevltwin
https://twitter.com/philofishal
https://twitter.com/SentinelOne

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 66

APPENDIX
A Rough Guide to macOS Malware
When looking for malware on macOS, it can be helpful to have an idea of what sorts of
threats are common on the platform. Here we detail the main categories of malware
currently circulating in the wild and provide references to some representative samples.
This can be helpful for testing your defences and training SOC staff and IT teams. Samples
are available on VirusTotal.com and other public malware repositories.

1. Backdoors, Crytominers & Data Stealers
The following list comprises a number of macOS threats seen active over the last 12 to
18 months, with links to more details and a representative hash sample for each.

Certainly the work of APT groups in some cases, these tend to be low-volume,
highly-specific and often short-lived campaigns using purpose-built malware.
Nevertheless, there remains the possibility of reuse and/or redistribution by other actors.

CookieMiner - Cryptominer & Backdoor
91b3f5e5d3b4e669a49d9c4fc044d0025cabb8ebb08f8d1839b887156ae0d6dd

CrescentCore - Adware dropper, Anti-AV detection
b5d896885b44f96bd1cda3c798e7758e001e3664e800497d7880f21fbeea4f79

OSX.DarthMiner - Cryptominer
ebecdeac53069c9db1207b2e0d1110a73bc289e31b0d3261d903163ca4b1e31e

OSX.Dok - Backdoor, Data exfiltration, Network traffic capture
c9841ae4a6edfdfb451aee1f2f078a7eacfd7e5e26fb3b2298f55255cb0b56a3

OSX.GMERA - Trojan, Backdoor
d2eaeca25dd996e4f34984a0acdc4c2a1dfa3bacf2594802ad20150d52d23d68

Lazarus/AppleJeus: Malicious Doc Used in Phishing Campaign - Backdoor, Data
Exfiltration
761bcff9401bed2ace80b85c43b230294f41fc4d1c0dd1ff454650b624cf239d

Lazarus/AppleJeus: Fake Crypto Software - Backdoor
2ab58b7ce583402bf4cbc90bee643ba5f9503461f91574845264d4f7e3ccb390

LoudMiner/BirdMiner - Cryptominer
42f982cde3d7aa9c5b86abe6c94119f7e4351fe84fe5ede41a1f1f2e0ab45be0

https://www.sentinelone.com/blog/osx-fruitfly-recycled-macos-still-vulnerable-old-perl-script/
https://www.sentinelone.com/blog/macos-malware-2019-first-six-months/
https://www.sentinelone.com/blog/macos-malware-2019-first-six-months/
https://www.sentinelone.com/blog/macos-malware-review-in-2018/
https://www.sentinelone.com/blog/mac-malware-osx-dok-is-back-actively-infecting-victims/
https://labs.sentinelone.com/detecting-macos-gmera-malware-through-behavioral-inspection/
https://labs.sentinelone.com/lazarus-apt-targets-mac-users-poisoned-word-document/
https://www.sentinelone.com/blog/macos-malware-outbreaks-2019-the-second-6-months/
http://https://www.sentinelone.com/blog/macos-malware-2019-first-six-months/

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 67

OSX.Netwire/Wirenet, Mokes - Backdoor, Data Exfiltration
07a4e04ee8b4c8dc0f7507f56dc24db00537d4637afee43dbb9357d4d54f6ff4

OSX.Siggen - Backdoor, leverages EvilOSX exploit kit.
437a6eb61be177eb6c6652049f41d0bc4460b6743bc9222db95b947bfe68f08f

Windshift/WindTail.A - Backdoor, Data Exfiltration
ebba0fd56ad6f861e7103b9dcbbb21353a9d48fa40d23eb83efd78523b5b40d3

2. Adware, PUPs & Trojan Installers
The majority of macOS threats are Adware, PUPs and Trojan installers aimed at leveraging
victims for financial gain through hidden or duplicitous Pay-Per-Install and Pay-Per-Click
revenue generating schemes. Some, such as OSX.Shlayer and Adload, use aggressive
malware-style tricks for stealth, persistence, anti-analysis and AV avoidance. The use of
MITMProxy and DNS hijacking to force-serve advertisements and browser hijacking is
not uncommon.

There are literally hundreds of new samples of these each day on VirusTotal. The
developers iterate rapidly and often. Again, this is not an exhaustive listing, but rather an
indication of the primary active threats we are seeing in-the-wild at this time.

Adload/Surfbuyer
2abea11d2b5e402cf681b0e7f4f4f7be66c8ac2910520a1568c105e3d9f0fa9c

Bundlore & OSX.Shlayer
Bundlore DMG:
962dd0564f179904c7ae59e92c6456a2906527fc2dc26480d25ef87b28bd429a

Shlayer DMG:
05a3b34be443c7fabcb89a489c78fb7f27c896da29d125162c8b87f2d2128010

Shlayer_A:
dcb293a665e2f02777b87bca271b9c151e83e86521fc32e1c37026d281993a32

Shlayer_D:
c32199390872536e45f0cc9d5a55e23ed5b0822772555b57def9aeb22cfdcb49

Genieo
5fd4fb37087c12748b06cf7e9aba93feb1e0fefa169018bf11037f6082f5f777

InstallCore
3efa825ac9eadc3cb804aab5f6a1af2d144f48885f6381844a508ce31d5884d9
bb2e44e17820501d32d018fe6a9795b1d1ef29b48bc3df72d68aebed1b2b77fa

https://www.sentinelone.com/blog/how-two-firefox-zero-days-led-to-two-macos-backdoors/
https://www.sentinelone.com/blog/macos-malware-2019-first-six-months/
https://www.sentinelone.com/blog/macos-malware-review-in-2018/
https://www.sentinelone.com/blog/scripting-macs-with-malice-how-shlayer-and-other-malware-installers-infect-macos/
https://labs.sentinelone.com/how-adload-macos-malware-continues-to-adapt-evade/
https://labs.sentinelone.com/how-adload-macos-malware-continues-to-adapt-evade/
https://www.sentinelone.com/blog/scripting-macs-with-malice-how-shlayer-and-other-malware-installers-infect-macos/

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 68

PUPs/PUAs
There are hundreds of ‘Potentially Unwanted Programs/Applications’ (PUP/PUA), most
of which are a variation on the same theme as ‘Advanced Mac Cleaner’ and ‘MacKeeper’,
and characteristically promise the user dubious utility, security and performance
enhancements. PUPs tend to engage in aggressive upselling of barely functional
“freemium” software to subscriptions at inflated rates and unfavorable conditions that are
incommensurate with the software’s intrinsic value. A partial list of common names for
reference appears below.

Advanced Mac Cleaner
9a8584f1b642908237868a3460819d13422a1a9c34aed574c522dc349638ca54

Auto Mac Up
0cdcb0932d0eb9e491cad3bf3ce90f7adf29ac8ca7d2a7cfd3699c2a04eb53a3

Mac Auto Fixer
73a702bce579cf8222dd4d6a4e86a8a5f5f670dc52637e7a4d0982f4114515fa

MacBooster
290e5ae08d6d17ae2be4fcb585dafae78a68be166c98a743c37a488d996cf941

Mac Clean Plus
314bde7c9ec8ae41ea1028c56b92e5f5dfbcb80e1da5355f5792e7cf533afc57

MacClean 360
95f525a274b85050d5590c3238c87605280ae87d6dd5a96de58bb3230795905b

MacKeeper
1a37069f464714604e5a7d7cb76497d89fbd8edb0037e16d8848eac8a116994b

MacOptimizer Pro
cc98bdc4fa39ed7b131e1bc07f270a97bfcab90836a75a1b266e7e6fbae6560a

MacRemover
385e4f95a87e15549ac9226a94539f17929c2d6b3f2ac2b59ce8b2e4070c952b

MacShiny
42a612aa6505433ea63e3be504580c6a56856193e8922909ad5453ba520296f9

Mac Tonic
5ba13a0e223fda58b226a16093e8854a372c5c4dddb846769281ad5970a30e48

Reimage Cleaner
2e0a348c530af2cd8e8232e542e7b2a0e8c284b1d4f90eb06f6c6a4f0bb131df

TuneupMyMac
0686012dc008e4bd3310cbcd74679b47c0aa446035c8bd5c60ef2ecfe8c461b6

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 69

3. Keyloggers and Exploit kits
Below we list a variety of commonly-encountered tools that are publicly available for use
(either freely or for sale) to anyone wishing to engage in macOS-oriented cyber attacks.
We include in this list so-called “legitimate use” spyware masquerading as “parental
control” or “employee monitoring” software which has limited to no benefit to the user
(as opposed to benefit to the installer) and is primarily deployed without, or regardless
of, the end user’s consent or awareness. In at least one case we are aware of, such
‘commercial software’ has been deployed in-the-wild as malware by third parties.

Spyware/Keyloggers (Commercial)
A few samples of some of the recently active ones.

Elite Keylogger
cf8660e672201d8033d63ba2a57492d405b115dcb62b4e35f2ea58019af74579

KidLogger
60cc061368b71833b21fb429cd23f5f25d9777a74fba5411682977c48518ca1a

PKL (Perfect Key Logger)
e58a1ea0d86fe7402572df8db5539cee7de6d64432d6d827008e0276c9b2c121

RealtimeSpy
ae2390d8f49084ab514a5d2d8c5fd2b15a8b8dbfc65920d8362fe84fbe7ed8dd

Refog Keylogger
88dbc53ea3f19a234f80979bae2a496c9c71be0c0b9ea001157511ff37f725f7

RATs, Backdoors and Post-Exploit Kits
These kinds of tools are constantly evolving and new iterations can usually be found on
github and similar repositories. A few of the ‘usual suspects’ are:

Bashark: https://github.com/TheSecondSun/Bashark

Bella: https://github.com/kdaoudieh/Bella

DarkSpiritz: https://github.com/DarkSpiritz/DarkSpiritz

Empire: https://github.com/EmpireProject/Empire

Eggshell: https://github.com/neoneggplant/EggShell/

EvilOSX: https://github.com/Marten4n6/EvilOSX

Pupy: https://github.com/n1nj4sec/pupy

https://www.sentinelone.com/blog/macos-spyware-dangers-fake-cryptowallet-keylogger/
https://www.sentinelone.com/blog/macos-spyware-dangers-fake-cryptowallet-keylogger/
https://github.com/TheSecondSun/Bashark
https://github.com/kdaoudieh/Bella
https://github.com/DarkSpiritz/DarkSpiritz
https://github.com/EmpireProject/Empire
https://github.com/neoneggplant/EggShell/
https://github.com/Marten4n6/EvilOSX
https://github.com/n1nj4sec/pupy

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 70

REFERENCES
1.	 SentinelOne: A Review of Malware affecting macOS in 2018 (Dec 20, 2018)

2.	 SentinelOne: MacOS Malware Outbreaks 2019 | The First 6 Months (Jul 1, 2019)

3.	 SentinelOne: MacOS Malware Outbreaks 2019 | The Second 6 Months (Dec 18, 2019)

4.	� SentinelOne: How Two Firefox Zero Days Led to Two macOS Backdoors
(Jun 26, 2019)

5.	� SentinelLabs: Detecting macOS.GMERA Malware Through Behavioral Inspection
(Sep 25, 2019)

6.	� SentinelLabs: Lazarus APT Targets Mac Users with Poisoned Word Document
(Apr 25, 2019)

7.	 SentinelOne: Mac Malware OSX.Dok is Back, Actively Infecting Victims (Jan 17, 2019)

8.	� SentinelOne: The Weakest Link: When Admins Get Phished | MacOS “OSX.Dummy”
Malware (Jul 9, 2018)

9.	� SentinelLabs: How AdLoad macOS Malware Continues to Adapt & Evade
(Oct 28, 2019)

10.	� SentinelOne: Scripting Macs With Malice | How Shlayer and Other Malware Installers
Infect macOS (Jan 29, 2020)

11.	� SentinelOne: macOS Spyware | The Dangers of a Fake CryptoWallet Keylogger
(Nov 27, 2018)

12.	� SentinelOne: OSX.Fruitfly Recycled | macOS Still Vulnerable to ‘Old’ Perl Script
(Aug 23, 2018)

MACOS THREAT HUNTING AND INCIDENT RESPONSE A COMPLETE GUIDE 70

https://www.sentinelone.com/blog/macos-malware-review-in-2018/
https://www.sentinelone.com/blog/macos-malware-2019-first-six-months/
https://www.sentinelone.com/blog/macos-malware-outbreaks-2019-the-second-6-months/
https://www.sentinelone.com/blog/how-two-firefox-zero-days-led-to-two-macos-backdoors/
https://www.sentinelone.com/blog/how-two-firefox-zero-days-led-to-two-macos-backdoors/
https://labs.sentinelone.com/detecting-macos-gmera-malware-through-behavioral-inspection/
https://labs.sentinelone.com/detecting-macos-gmera-malware-through-behavioral-inspection/
https://labs.sentinelone.com/lazarus-apt-targets-mac-users-poisoned-word-document/
https://labs.sentinelone.com/lazarus-apt-targets-mac-users-poisoned-word-document/
https://www.sentinelone.com/blog/mac-malware-osx-dok-is-back-actively-infecting-victims/
https://www.sentinelone.com/blog/weakest-link-admins-get-phished-macos-osx-dummy-malware/
https://www.sentinelone.com/blog/weakest-link-admins-get-phished-macos-osx-dummy-malware/
https://labs.sentinelone.com/how-adload-macos-malware-continues-to-adapt-evade/
https://labs.sentinelone.com/how-adload-macos-malware-continues-to-adapt-evade/
https://www.sentinelone.com/blog/scripting-macs-with-malice-how-shlayer-and-other-malware-installers-infect-macos/
https://www.sentinelone.com/blog/scripting-macs-with-malice-how-shlayer-and-other-malware-installers-infect-macos/
https://www.sentinelone.com/blog/macos-spyware-dangers-fake-cryptowallet-keylogger/
https://www.sentinelone.com/blog/macos-spyware-dangers-fake-cryptowallet-keylogger/
https://www.sentinelone.com/blog/osx-fruitfly-recycled-macos-still-vulnerable-old-perl-script/
https://www.sentinelone.com/blog/osx-fruitfly-recycled-macos-still-vulnerable-old-perl-script/

	Foreword
	Introduction
	Chapter 1
	Threat Hunting - How Malicious Software
Persists on macOS
	Get a List of Users
	Hunting for Persistence Mechanisms
	How to Persist Using a LaunchAgent
	Persistence by LaunchDaemon
	Persistence with Profiles
	Cron Still Persists on macOS
	Kexts for Persistence
	How to Find Persistent Login Items
	AppleScript & Friends
	Also Ran: Forgotten Persistence Tricks
	Periodics as a Means of Persistence
	LoginHooks and LogoutHooks
	At Jobs: Run Once, Persist Forever
	Emond - The Forgotten Event Monitor
	Conclusion

	Chapter 2
	Threat Hunting - Detecting Malicious Behavior on macOS
	Check Open Ports and Connections
	Investigate Running Processes
	Investigate Open Files
	Examine the File System
	Examine the Mac's Network Configuration
	Conclusion

	Chapter 3
	Incident Response:
Collecting Device, File & System Data
	Say Hello to Sysdiagnose
	Exploring Files Collected by Sysdiagnose
	Interlude – A Note About Timestamps
	Finding Traces of Malicious Activity
	One Log to Rule Them All
	Exploring fs_usage for File Activity
	FSEvents – Old, Not Obsolete
	Conclusion

	Chapter 4
	Incident Response - User Data,
Activity and Behavior
	A Quick Review of SQLite
	Finding Interesting Data on macOS
	Databases in the User Library
	Mining the Darwin_User_Dir for Data
	Reading User Notifications, Blobs & Plists
	Reading Data from Notes, More Blob Tricks
	Finding Other Data Stores
	Conclusion

	Chapter 5
	Incident Response - System Manipulation
	Usurping the Sudoers File
	Cuckoos in the PATH
	Bash, Zsh and Other Shells
	Etc, Hosts and Friends
	Networking and Sharing Prefs
	Finding Local and Remote Logins
	Achieving Persistence Through Application Bundles
	Manipulating Users Through Their Browsers
	Conclusion

	Appendix
	A Rough Guide to macOS Malware
	1. Backdoors, Crytominers & Data Stealers
	2. Adware, PUPs & Trojan Installers
	3. Keyloggers and Exploit kits

	References

