Scaling Elasticsearch Clusters at Uber

This commit is contained in:
binhnguyennus 2018-05-10 23:47:04 +08:00
parent 17d7fe9ae0
commit 7f0deed04e

View File

@ -202,6 +202,7 @@ An updated and curated list of selected readings to illustrate best practices in
* [Nebula: Storage Platform to Build Search Backends at Airbnb](https://medium.com/airbnb-engineering/nebula-as-a-storage-platform-to-build-airbnbs-search-backends-ecc577b05f06)
* [ELK (Elasticsearch, Logstash, Kibana) Stack](https://logz.io/blog/15-tech-companies-chose-elk-stack/)
* [Predictions in Real Time with ELK at Uber](https://eng.uber.com/elk/)
* [Scaling Elasticsearch Clusters at Uber](https://www.infoq.com/presentations/uber-elasticsearch-clusters?utm_source=presentations_about_Case_Study&utm_medium=link&utm_campaign=Case_Study)
* [Elasticsearch Performance Tuning Practice at eBay](https://www.ebayinc.com/stories/blogs/tech/elasticsearch-performance-tuning-practice-at-ebay/)
* [Elasticsearch at Kickstarter](https://kickstarter.engineering/elasticsearch-at-kickstarter-db3c487887fc)
* [Distributed Troubleshooting Platform with ELK Stack at Target.com](http://target.github.io/infrastructure/distributed-troubleshooting)