diff --git a/README.md b/README.md index 539693d..b6a2441 100644 --- a/README.md +++ b/README.md @@ -35,6 +35,7 @@ Contributions are always welcome! * [SQL and NoSQL](https://www.upwork.com/hiring/data/sql-vs-nosql-databases-whats-the-difference/) * [Consistent Hashing - Tom White, author of 'Hadoop: the Definitive Guide'](http://www.tom-e-white.com/2007/11/consistent-hashing.html) * [Cache is King!](https://www.stevesouders.com/blog/2012/10/11/cache-is-king/) +* [Anti-Caching](http://the-paper-trail.org/blog/paper-notes-anti-caching/) * [Understand Latency](http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it) * [Architecture Issues When Scaling Web Applications: Bottlenecks, Database, CPU, IO](http://highscalability.com/blog/2014/5/12/4-architecture-issues-when-scaling-web-applications-bottlene.html) * [20 Common Bottlenecks](http://highscalability.com/blog/2012/5/16/big-list-of-20-common-bottlenecks.html) @@ -203,7 +204,7 @@ Contributions are always welcome! * [Master/Worker Pattern](https://docs.gigaspaces.com/sbp/master-worker-pattern.html) * [Loop Parallelism Pattern: Extracting parallel tasks from loops](https://www.cs.umd.edu/class/fall2001/cmsc411/projects/unroll/main.htm) * [Fork/Join Pattern: Good for recursive data processing](http://highscalability.com/learn-how-exploit-multiple-cores-better-performance-and-scalability) - * [Map-Reduce Pattern: Born for Simplified Data Processing on Large Clusters](http://static.googleusercontent.com/media/research.google.com/en/us/archive/mapreduce-osdi04.pdf) + * [Map-Reduce: Born for Simplified Data Processing on Large Clusters](http://static.googleusercontent.com/media/research.google.com/en/us/archive/mapreduce-osdi04.pdf) * [On the Death of Map-Reduce - Henry Robinson, Cloudera](http://the-paper-trail.org/blog/the-elephant-was-a-trojan-horse-on-the-death-of-map-reduce-at-google/) * [Parallelize the rendering of web pages: Use case of Yelp.com](https://engineeringblog.yelp.com/2017/07/generating-web-pages-in-parallel-with-pagelets.html) * [Distributed Machine Learning](https://arxiv.org/pdf/1512.09295.pdf)