diff --git a/README.md b/README.md index 562adf1..9372a72 100644 --- a/README.md +++ b/README.md @@ -77,7 +77,9 @@ Inspired by [Awesome Deep Learning](https://github.com/ChristosChristofidis/awes ### Method-specific -1. _[Exponential Random Graph Models for Social Networks](http://www.cambridge.org/9780521193566)_, edited by Dean Lusher, Johan Koskinen and Garry Robins (2013). +1. _[Bayesian Networks in R with Applications in Systems Biology](https://www.springer.com/fr/book/9781461464457)_, by Radhakrishnan Nagarajan, Marco Scutari and Sophie Lèbre ([website](http://www.bnlearn.com/book-useR/); 2013). +- _[Bayesian Networks with Examples in R](http://www.crcpress.com/product/isbn/9781482225587)_, by Marco Scutari and Jean-Baptiste Denis ([website](http://www.bnlearn.com/book-crc/); 2014). +- _[Exponential Random Graph Models for Social Networks](http://www.cambridge.org/9780521193566)_, edited by Dean Lusher, Johan Koskinen and Garry Robins (2013). - _Inferential Network Analysis_, by Skyler J. Cranmer, Bruce A. Desmarais and Jason Morgan (forthcoming). - _[Multilevel Network Analysis for the Social Sciences](https://www.springer.com/fr/book/9783319245188)_, edited by Emmanuel Lazega and Tom A.B. Snijders (2016). - _[Network Analysis: Methodological Foundations](https://www.springer.com/fr/book/9783540249795)_, edited by Ulrik Brandes and Thomas Erlebach - Covers network centrality, clustering, blockmodels, spatial networks and more (2005). @@ -88,7 +90,7 @@ Inspired by [Awesome Deep Learning](https://github.com/ChristosChristofidis/awes 1. _[Analyzing Social Networks](https://sites.google.com/site/analyzingsocialnetworks/)_ (using UCINET), by Stephen P. Borgatti, Martin G. Everett and Jeffrey C. Johnson (2013). - _Network Analysis with R/igraph_, by Gabor Csárdi, Thomas Nepusz and Eduardo M. Airoldi (in preparation). - _Network Analysis with Python/igraph_, by Thomas Nepusz, Gabor Csárdi and Eduardo M. Airoldi (in preparation). -- _[Statistical Analysis of Network Data with R](http://www.springer.com/us/book/9781493909827)_, by Eric D. Kolaczyk and Gabor Csárdi (2014). +- _[Statistical Analysis of Network Data with R](http://www.springer.com/us/book/9781493909827)_, by Eric D. Kolaczyk and Gabor Csárdi ([R package](https://github.com/kolaczyk/sand); 2014). ### Topic-specific @@ -128,6 +130,7 @@ Inspired by [Awesome Deep Learning](https://github.com/ChristosChristofidis/awes > See also [Mangal](http://mangal.io/), an online platform and collection of tools to analyze, archive and share ecological network data ([preprint](http://biorxiv.org/content/early/2015/02/24/002634), [Python package](https://github.com/mangal-wg/pymangal), [R package](https://github.com/mangal-wg/rmangal)). 1. [Barabási and Albert Network Datasets](https://www3.nd.edu/~networks/resources.htm). +- [Bayesian Network Repository](http://www.bnlearn.com/bnrepository/). - [Bill Cosponsorship Networks in European Parliaments](https://github.com/briatte/parlnet). - [Connectome](http://openconnecto.me/graph-services/download/) - Comprehensive maps of neural connections. - [Enron Email Dataset](https://www.cs.cmu.edu/~enron/). @@ -306,6 +309,7 @@ Inspired by [Awesome Deep Learning](https://github.com/ChristosChristofidis/awes > For more awesome R resources, see the [Awesome R](https://github.com/qinwf/awesome-R) and [Awesome R Books](https://github.com/RomanTsegelskyi/rbooks) lists. 1. [Bergm](https://cran.r-project.org/web/packages/Bergm/) - Tools to analyse Bayesian exponential random graph models (BERGM). +- [bnlearn](https://cran.r-project.org/web/packages/bnlearn/) - Tools for [Bayesian network learning and inference](http://www.bnlearn.com/). - [CCAS](https://github.com/matthewjdenny/CCAS) - A statistical model for communication networks. - [concoR](https://github.com/aslez/concoR) - A translation of the CONCOR network blockmodeling algorithm ([blog post](http://badhessian.org/2015/05/concor-in-r/)). - [ContentStructure](https://github.com/matthewjdenny/ContentStructure) - implements an extension to the [Topic-Partitioned Multinetwork Embeddings (TPME) model](http://dirichlet.net/pdf/krafft12topic-partitioned.pdf). @@ -430,6 +434,7 @@ Inspired by [Awesome Deep Learning](https://github.com/ChristosChristofidis/awes 1. [Events in the _Game of Thrones_](http://www.jeromecukier.net/projects/agot/events.html) and [Places in the _Game of Thrones_](http://www.jeromecukier.net/projects/agot/places.html) - Networked chronologies of character alliances, kills and travels in the book series. - [Lessons on Exponential Random Graph Modeling from _Grey’s Anatomy_ hook-ups](http://badhessian.org/2012/09/lessons-on-exponential-random-graph-modeling-from-greys-anatomy-hook-ups/). +- [Analyzing networks of characters in _Love Actually_](http://varianceexplained.org/r/love-actually-network/) - Features a cluster analysis and a [Shiny app](https://dgrtwo.shinyapps.io/love-actually-network/). - [_Star Wars_ Social Networks: The Force Awakens](http://evelinag.com/blog/2016/01-25-social-network-force-awakens/index.html) - Example of a social network analysis written in F#. ### Network Science