23
README.md
@ -47,6 +47,7 @@ A curated list of awesome deep learning based papers on text detection and recog
|
||||
'18-AAAI | 18/01/04 | [PixelLink: Detecting Scene Text via Instance Segmentation](https://arxiv.org/pdf/1801.01315.pdf) | 0.881 | [0.8519](http://rrc.cvc.uab.es/?ch=4&com=evaluation&view=method_info&task=1&m=30576) | [`*TF(M)`](https://github.com/ZJULearning/pixel_link) [`TF`](https://github.com/BowieHsu/tensorflow_ocr)
|
||||
'18-CVPR | 18/01/05 | [FOTS: Fast Oriented Text Spotting with a Unified Network](https://arxiv.org/pdf/1801.01671.pdf) | [0.925](http://rrc.cvc.uab.es/?ch=2&com=evaluation&view=method_info&task=1&m=34624) | [0.8984](http://rrc.cvc.uab.es/?ch=4&com=evaluation&view=method_info&task=1&m=34625) | [`PYTORCH`](https://github.com/jiangxiluning/FOTS.PyTorch) <br> [`PYTORCH`](https://github.com/xieyufei1993/FOTS) <br> [`VIDEO`](https://www.youtube.com/watch?v=F7TTYlFr2QM) |
|
||||
'18-TIP | 18/01/09 | [TextBoxes++: A Single-Shot Oriented Scene Text Detector](https://arxiv.org/pdf/1801.02765.pdf) | 0.88 | 0.829 <br> (L)[0.8475](http://rrc.cvc.uab.es/?ch=4&com=evaluation&view=method_info&task=1&m=29660) | [`*CAFFE(M)`](https://github.com/MhLiao/TextBoxes_plusplus)
|
||||
'18-CVPR | 8/02/27 | [Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation](ttps://arxiv.org/pdf/1802.08948.pdf) | 0.88 | 0.843 |[`*PYTORCH(M)`](https://github.com/lvpengyuan/corner)
|
||||
'18-CVPR | 18/03/09 | [An end-to-end TextSpotter with Explicit Alighment and Attention](https://arxiv.org/pdf/1803.03474.pdf) | 0.9 | 0.87 |[`*CAFFE(M)`](https://github.com/tonghe90/textspotter)
|
||||
'18-CVPR | 18/03/14 | [Rotation-Sensitive Regression for Oriented Scene Text Detection](https://arxiv.org/pdf/1803.05265.pdf) | 0.89 | 0.838 | [`*CAFFE(M)`](https://github.com/MhLiao/RRD)
|
||||
'18-arXiv | 18/04/08 | [Detecting Multi-Oriented Text with Corner-based Region Proposals](https://arxiv.org/pdf/1804.02690.pdf) | 0.876 | 0.845 | [`*CAFFE(M)`](https://github.com/xhzdeng/crpn)
|
||||
@ -64,6 +65,9 @@ A curated list of awesome deep learning based papers on text detection and recog
|
||||
'19-CVPR | 19/04/13 | [Look More Than Once: An Accurate Detector for Text of Arbitrary Shapes Screen reader support enabled](https://arxiv.org/pdf/1904.06535.pdf) | | 0.877 | |
|
||||
'19-CVPR | 19/06/16 | [Learning Shape-Aware Embedding for Scene Text Detection](http://jiaya.me/papers/textdetection_cvpr19.pdf) | | 0.877 | |
|
||||
'19-CVPR | 19/06/16 | [Arbitrary Shape Scene Text Detection with Adaptive Text Region Representation](https://arxiv.org/pdf/1905.05980.pdf) | 0.917 | 0.876 | |
|
||||
'19-ICCV | 19/08/16 | [Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network](https://arxiv.org/abs/1908.05900) | | 0.829 | |
|
||||
'19-ICCV | 19/09/02 | [Geometry Normalization Networks for Accurate Scene Text Detection](https://arxiv.org/abs/1909.00794) | | 0.8852 | |
|
||||
'19-AAAI | 19/11/20 | [Real-time Scene Text Detection with Differentiable Binarization](https://arxiv.org/abs/1911.08947) | | 0.847 | |
|
||||
<p align='center'>
|
||||
<img src = '/detection_ic13_results.png' height = '550px'>
|
||||
<img src = '/detection_ic15_results.png' height = '550px'>
|
||||
@ -99,11 +103,16 @@ A curated list of awesome deep learning based papers on text detection and recog
|
||||
'18-TPAMI | 18/06/25 | [ASTER: An Attentional Scene Text Recognizer with Flexible Rectification](http://122.205.5.5:8071/UpLoadFiles/Papers/ASTER_PAMI18.pdf) | 0.936 | 0.934 | 0.945 | 0.918 | [`*TF(M)`](https://github.com/bgshih/aster) <br> [`PYTORCH`](https://github.com/ayumiymk/aster.pytorch)
|
||||
'18-ECCV | 18/09/08 | [Synthetically Supervised Feature Learning for Scene Text Recognition](http://openaccess.thecvf.com/content_ECCV_2018/papers/Yang_Liu_Synthetically_Supervised_Feature_ECCV_2018_paper.pdf) | 0.871 | 0.894 | 0.947 | 0.94 |
|
||||
'19-AAAI | 18/09/18 | [Scene Text Recognition from Two-Dimensional Perspective](https://arxiv.org/pdf/1809.06508.pdf) | 0.821 | 0.92 | | 0.914 |
|
||||
'19-AAAI | 18/11/02 | [Show, Attend and Read: A Simple and Strong Baseline for Irregular Text Recognition](https://arxiv.org/pdf/1811.00751.pdf) | 0.845 | 0.915 | | 0.91 | [`*TORCH(M)`](https://github.com/wangpengnorman/SAR-Strong-Baseline-for-Text-Recognition)
|
||||
'19-CVPR | 18/12/14 | [ESIR: End-to-end Scene Text Recognition via Iterative Image Rectification](https://arxiv.org/pdf/1812.05824.pdf) | 0.902 | 0.933 | | 0.913 | [PRJ](https://github.com/fnzhan/ESIR)
|
||||
'19-PR | 19/01/10 | [MORAN: A Multi-Object Rectified Attention Network for Scene Text Recognition](https://arxiv.org/pdf/1901.03003.pdf) | 0.883 | 0.912 | 0.950 | 0.924 | [`*PYTORCH(M)`](https://github.com/Canjie-Luo/MORAN_v2)
|
||||
'19-ICCV | 19/04/03 | [What is wrong with scene text recognition model comparisons? dataset and model analysis](https://arxiv.org/pdf/1904.01906.pdf) | 0.875 | | 0.949 | 0.936 | [`*PYTORCH(M)`](https://github.com/clovaai/deep-text-recognition-benchmark) <br> [`BLOG_KR`](https://data-newbie.tistory.com/156)
|
||||
'19-CVPR | 19/04/18 | [Aggregation Cross-Entropy for Sequence Recognition](https://arxiv.org/pdf/1904.08364.pdf) | 0.826 | 0.823 | 0.921 | 0.897 | [`*PYTORCH`](https://github.com/summerlvsong/Aggregation-Cross-Entropy) |
|
||||
'19-CVPR | 19/06/16 | [Sequence-to-Sequence Domain Adaptation Network for Robust Text Image Recognition](http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhang_Sequence-To-Sequence_Domain_Adaptation_Network_for_Robust_Text_Image_Recognition_CVPR_2019_paper.pdf) | 0.845 | 0.838 | 0.921 | 0.918 | |
|
||||
'19-ICCV | 19/08/06 | [Symmetry-constrained Rectification Network for Scene Text Recognition](https://arxiv.org/abs/1908.01957) | 0.889 | 0.944 | 0.95 | 0.939 |
|
||||
'20-AAAI | 19/12/28 | [TextScanner: Reading Characters in Order for Robust Scene Text Recognition](https://arxiv.org/abs/1912.12422) | 0.895 | 0.926 | | 0.925 |
|
||||
'20-AAAI | 19/12/21 | [Decoupled Attention Network for Text Recognition](https://arxiv.org/abs/1912.10205) | 0.892 | 0.943 | 0.95 | 0.939 | [`*PYTORCH(M)`](https://github.com/Wang-Tianwei/Decoupled-attention-network)
|
||||
'20-AAAI | 20/02/04 | [GTC: Guided Training of CTC](https://arxiv.org/abs/2002.01276) | 0.929 | 0.955 | 0.952 | 0.943 |
|
||||
|
||||
<p align='center'>
|
||||
<img src = '/recognition_ic13_results.png' height = '550px'>
|
||||
@ -132,6 +141,11 @@ A curated list of awesome deep learning based papers on text detection and recog
|
||||
'18-CVPR | 18/03/09 | [An end-to-end TextSpotter with Explicit Alignment and Attention](https://arxiv.org/pdf/1803.03474.pdf) | | 0.86 | 0.63 | [`*CAFFE(M)`](https://github.com/tonghe90/textspotter)
|
||||
'18-TPAMI | 18/06/25 | [ASTER: An Attentional Scene Text Recognizer with Flexible Rectification](http://122.205.5.5:8071/UpLoadFiles/Papers/ASTER_PAMI18.pdf) | | | 0.64 | [`*TF(M)`](https://github.com/bgshih/aster)
|
||||
'18-ECCV | 18/07/06 | [Mask TextSpotter: An End-to-End Trainable Neural Network for Spotting Text with Arbitrary Shapes](https://arxiv.org/pdf/1807.02242.pdf) | | 0.865 | 0.624 |
|
||||
'19-ICCV | 19/08/24 | [Towards Unconstrained End-to-End Text Spotting](https://arxiv.org/pdf/1908.09231.pdf) | | | 0.6994 | [`BLOG_KR`](https://www.notion.so/Towards-Unconstrained-End-to-End-Text-Spotting-0c66c692950f458e9a1323db2a79d143)
|
||||
'19-ICCV | 19/10/17 | [Convolutional Character Networks](https://arxiv.org/abs/1910.07954) | | | 0.7108 | [`*PYTORCH(M)`](https://github.com/MalongTech/research-charnet)
|
||||
'19-ICCV | 19/10/27 | [TextDragon: An End-to-End Framework for Arbitrary Shaped Text Spotting](http://openaccess.thecvf.com/content_ICCV_2019/papers/Feng_TextDragon_An_End-to-End_Framework_for_Arbitrary_Shaped_Text_Spotting_ICCV_2019_paper.pdf) | | | 0.6537 |
|
||||
'20-AAAI | 19/11/21 | [All You Need Is Boundary: Toward Arbitrary-Shaped Text Spotting](https://arxiv.org/pdf/1911.09550) | | 0.841 | 0.641 |
|
||||
'20-AAAI | 20/02/12 | [Text Perceptron: Towards End-to-End Arbitrary-Shaped Text Spotting](https://arxiv.org/abs/2002.06820) | | 0.858 | 0.651 |
|
||||
<p align='center'>
|
||||
<img src = '/end2end_ic13_ic15_results.png' height = '400px'>
|
||||
</p>
|
||||
@ -162,12 +176,21 @@ A curated list of awesome deep learning based papers on text detection and recog
|
||||
'19-AAAI | 19/01/27 | [Hierarchical Encoder with Auxiliary Supervision for Table-to-text Generation: Learning Better Representation for Tables](https://www.aaai.org/Papers/AAAI/2019/AAAI-LiuT.3205.pdf) | TableToText |
|
||||
'19-CVPR | 19/02/25 | [Handwriting Recognition in Low-resource Scripts using Adversarial Learning](https://arxiv.org/pdf/1811.01396.pdf) | Handwritting Recognition | [`TF`](https://github.com/AyanKumarBhunia/Handwriting_Recogition_using_Adversarial_Learning)
|
||||
'19-CVPR | 19/03/27 | [Tightness-aware Evaluation Protocol for Scene Text Detection](https://arxiv.org/pdf/1904.00813.pdf) | Evaluation | [`CODE`](https://github.com/Yuliang-Liu/TIoU-metric)
|
||||
'19-ICCV | 19/05/31 | [cene Text Visual Question Answering](https://arxiv.org/abs/1905.13648) | Dataset | [`ICDAR_DB`](https://rrc.cvc.uab.es/?ch=11)
|
||||
'19-CVPR | 19/06/16 | [DynTypo: Example-based Dynamic Text Effects Transfer](https://menyifang.github.io/projects/DynTypo/DynTypo_files/Paper_DynTypo_CVPR19.pdf) | Text Effects | [`PRJ`](https://menyifang.github.io/projects/DynTypo/DynTypo.html) <br> [`VIDEO`](https://youtu.be/FkFQ6bV1s-o)
|
||||
'19-CVPR | 19/06/16 | [Typography with Decor: Intelligent Text Style Transfer](http://openaccess.thecvf.com/content_CVPR_2019/papers/Wang_Typography_With_Decor_Intelligent_Text_Style_Transfer_CVPR_2019_paper.pdf) | Text Effects | [`*PYTORCH(M)`](https://daooshee.github.io/Typography2019/)
|
||||
'19-CVPR | 19/06/16 | [An Alternative Deep Feature Approach to Line Level Keyword Spotting](http://openaccess.thecvf.com/content_CVPR_2019/papers/Retsinas_An_Alternative_Deep_Feature_Approach_to_Line_Level_Keyword_Spotting_CVPR_2019_paper.pdf) | Kyeword Spotting
|
||||
'19-ICCV | 19/07/23 | [GA-DAN: Geometry-Aware Domain Adaptation Network for Scene Text Detection and Recognition](https://arxiv.org/abs/1907.09653) | Domain Adaptation |
|
||||
'19-ICCV | 19/09/17 | [Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning](https://arxiv.org/abs/1909.07808) | Dataset | [`ICDAR_DB`](https://rrc.cvc.uab.es/?ch=16)
|
||||
'19-ICCV | 19/10/02 | [Large-scale Tag-based Font Retrieval with Generative Feature Learning](https://arxiv.org/pdf/1909.02072.pdf) | Font Retrieval |
|
||||
'19-ICCV | 19/10/27 | [TextPlace: Visual Place Recognition and Topological Localization Through Reading Scene Texts](http://openaccess.thecvf.com/content_ICCV_2019/papers/Hong_TextPlace_Visual_Place_Recognition_and_Topological_Localization_Through_Reading_Scene_ICCV_2019_paper.pdf) | Place Recognition | [`DB`](https://github.com/ziyanghong/dataset)
|
||||
'19-ICCV | 19/10/27 | [DewarpNet: Single-Image Document Unwarping With Stacked 3D and 2D Regression Networks](http://openaccess.thecvf.com/content_ICCV_2019/papers/Das_DewarpNet_Single-Image_Document_Unwarping_With_Stacked_3D_and_2D_Regression_ICCV_2019_paper.pdf) | Document Dewarping | [`*PYTORCH(M)`](https://github.com/cvlab-stonybrook/DewarpNet)
|
||||
|
||||
## Other lists
|
||||
* OCR Paper Curation
|
||||
* [HCIILAB-Detection](https://github.com/HCIILAB/Scene-Text-Detection)
|
||||
* [HCIILAB-Recognition](https://github.com/HCIILAB/Scene-Text-Recognition)
|
||||
* [HCIILAB-End2End](https://github.com/HCIILAB/Scene-Text-End2end)
|
||||
* [whitelok](https://github.com/whitelok/image-text-localization-recognition)
|
||||
* [tangzhenyu](https://github.com/tangzhenyu/Scene-Text-Understanding)
|
||||
* [wanghaisheng](https://github.com/wanghaisheng/awesome-ocr)
|
||||
|
Before Width: | Height: | Size: 86 KiB After Width: | Height: | Size: 19 KiB |
Before Width: | Height: | Size: 45 KiB After Width: | Height: | Size: 17 KiB |
Before Width: | Height: | Size: 13 KiB After Width: | Height: | Size: 16 KiB |
Before Width: | Height: | Size: 70 KiB After Width: | Height: | Size: 26 KiB |
Before Width: | Height: | Size: 57 KiB After Width: | Height: | Size: 17 KiB |
Before Width: | Height: | Size: 60 KiB |
Before Width: | Height: | Size: 53 KiB After Width: | Height: | Size: 19 KiB |
Before Width: | Height: | Size: 75 KiB After Width: | Height: | Size: 18 KiB |
Before Width: | Height: | Size: 16 KiB |