Merge remote-tracking branch 'prakhar1989/master'

This commit is contained in:
Julien Perrissin 2016-01-26 08:48:23 +01:00
commit db8b686ed6

View File

@ -31,6 +31,9 @@ Courses
### Systems
- [CIS 198](http://cis198-2016s.github.io/) **Rust Programming** *UPenn* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" />
- This course covers what makes Rust so unique and applies it to practical systems programming problems. Topics covered include traits and generics; memory safety (move semantics, borrowing, and lifetimes); Rusts rich macro system; closures; and concurrency.
- [Assignments](https://github.com/cis198-2016s/homework)
- [CS 61C](http://www-inst.eecs.berkeley.edu/~cs61c/sp15/) **Great Ideas in Computer Architecture (Machine Structures)** *UC Berkeley* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4f9.png" width="20" height="20" alt="Lecture Videos" title="Lecture Videos" /><img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4da.png" width="20" height="20" alt="Readings" title="Readings" />
- [Lecture Videos](https://www.youtube.com/playlist?list=PL-XXv-cvA_iCl2-D-FS5mk0jFF6cYSJs_)
- [Lecture Notes](http://www-inst.eecs.berkeley.edu/~cs61c/sp15/#Calendar)
@ -61,7 +64,8 @@ Courses
- [Assignments](https://courses.engr.illinois.edu/cs241/fa2014/mp.html)
- [Github Page](http://angrave.github.io/sys/#)
- [Crowd Sourced Book](https://github.com/angrave/SystemProgramming/wiki)
- [CS 425](https://courses.engr.illinois.edu/cs425/fa2014/index.html) **Distributed Systems** *Univ of Illinois, Urbana-Champaign* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4f9.png" width="20" height="20" alt="Lecture Videos" title="Lecture Videos" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4da.png" width="20" height="20" alt="Readings" title="Readings" /> - Brilliant set of lectures and reading material covering fundamental concepts in distributed systems such as Vector clocks, Consensus and Paxos. This is the 2014 version by Prof Indranil Gupta.
- [CS 425](https://courses.engr.illinois.edu/cs425/fa2014/index.html) **Distributed Systems** *Univ of Illinois, Urbana-Champaign* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4f9.png" width="20" height="20" alt="Lecture Videos" title="Lecture Videos" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4da.png" width="20" height="20" alt="Readings" title="Readings" />
- Brilliant set of lectures and reading material covering fundamental concepts in distributed systems such as Vector clocks, Consensus and Paxos. This is the 2014 version by Prof Indranil Gupta.
- [Lectures](https://courses.engr.illinois.edu/cs425/fa2014/lectures.html)
- [Assignments](https://courses.engr.illinois.edu/cs425/assignments.html)
- [CS 452](http://www.cgl.uwaterloo.ca/~wmcowan/teaching/cs452/s12/) **Real-Time Programming** *University of Waterloo* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" />
@ -548,9 +552,9 @@ Topics covered include probability theory and Bayesian inference; univariate dis
- [Lectures and Assignments](http://granite.ices.utexas.edu/coursewiki/index.php/Main_Page)
- [CVX 101](https://class.stanford.edu/courses/Engineering/CVX101/Winter2014/info) **Convex Optimization** *Stanford University* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" />
<img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4da.png" width="20" height="20" alt="Readings" title="Readings" />
- The course concentrates on recognizing and solving convex optimization problems that arise in applications. Topics addressed include the following. Convex sets, functions, and optimization problems. Basics of convex analysis. Least-squares, linear and quadratic programs, semidefinite programming, minimax, extremal volume, and other problems. Optimality conditions, duality theory, theorems of alternative, and applications. Interior-point methods. Applications to signal processing, statistics and machine learning, control and mechanical engineering, digital and analog circuit design, and finance.
- [Textbook](http://web.stanford.edu/~boyd/cvxbook/)
- [Lectures and Assignments](https://class.stanford.edu/courses/Engineering/CVX101/Winter2014/courseware/7206c57866504e83821d00b5d3f80793/)
- The course concentrates on recognizing and solving convex optimization problems that arise in applications. Topics addressed include the following. Convex sets, functions, and optimization problems. Basics of convex analysis. Least-squares, linear and quadratic programs, semidefinite programming, minimax, extremal volume, and other problems. Optimality conditions, duality theory, theorems of alternative, and applications. Interior-point methods. Applications to signal processing, statistics and machine learning, control and mechanical engineering, digital and analog circuit design, and finance.
- [Textbook](http://web.stanford.edu/~boyd/cvxbook/)
- [Lectures and Assignments](https://class.stanford.edu/courses/Engineering/CVX101/Winter2014/courseware/7206c57866504e83821d00b5d3f80793/)
- [**Machine Learning: 2014-2015**](https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/) *University of Oxford* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4f9.png" width="20" height="20" alt="Lecture Videos" title="Lecture Videos" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" />
- The course focusses on neural networks and uses the [Torch](https://github.com/torch/torch7/wiki/Cheatsheet) deep learning library (implemented in Lua) for exercises and assignments. Topics include: logistic regression, back-propagation, convolutional neural networks, max-margin learning, siamese networks, recurrent neural networks, LSTMs, hand-writing with recurrent neural networks, variational autoencoders and image generation and reinforcement learning
- [Lecutures and Assignments](https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/)
@ -594,6 +598,14 @@ Topics covered include probability theory and Bayesian inference; univariate dis
- The Web continues to grow in popularity as platform for retail transactions, financial services, and rapidly evolving forms of communication. It is becoming an increasingly attractive target for attackers who wish to compromise users' systems or steal data from other sites. Browser vendors must stay ahead of these attacks by providing features that support secure web applications. This course will study vulnerabilities in existing web browsers and the applications they render, as well as new technologies that enable web applications that were never before possible. The material will be largely based on current research problems, and students will be expected to criticize and improve existing defenses. Topics of study include (but are not limited to) browser encryption, JavaScript security, plug-in security, sandboxing, web mashups, and authentication.
- [CS 259](https://courseware.stanford.edu/pg/courses/331628/cs259-winter-2013) **Security Modeling and Analysis** *Stanford* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4da.png" width="20" height="20" alt="Readings" title="Readings" />
- The course will cover a variety of contemporary network protocols and other systems with security properties. The course goal is to give students hands-on experience in using automated tools and related techniques to analyze and evaluate security mechanisms. To understand security properties and requirements, we will look at several network protocols and their properties, including secrecy, authentication, key establishment, and fairness. In parallel, the course will look at several models and tools used in security analysis and examine their advantages and limitations. In addition to fully automated finite-state model checking techniques, we will also study other approaches, such as constraint solving, process algebras, protocol logics, probabilistic model checking, game theory, and executable models based on logic programming.
- [CSCI 4976](https://github.com/RPISEC/MBE) **Modern Binary Exploitation** *Rensselaer Polytechnic Institute* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" /><img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" />
- This repository contains the materials as developed and used by [RPISEC](http://rpis.ec) to
teach Modern Binary Exploitation at [Rensselaer Polytechnic Institute](http://rpi.edu) in
Spring 2015. This was a university course developed and run solely by students to teach
skills in vulnerability research, reverse engineering, and binary exploitation.
- [Lectures Notes](http://security.cs.rpi.edu/courses/binexp-spring2015/lectures/)
- [Labs](https://github.com/RPISEC/MBE/tree/master/src)
- [Projects](https://github.com/RPISEC/MBE/tree/master/src)
- [CSCI 4976](https://github.com/RPISEC/Malware) **Malware Analysis** *Rensselaer Polytechnic Institute* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" /><img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" />
- This repository contains the materials as developed and used by [RPISEC](http://rpis.ec) to
teach Malware Analysis at [Rensselaer Polytechnic Institute](http://rpi.edu) in
@ -789,7 +801,7 @@ and anti-analysis techniques.
- This is a graduate course in scientific computing created and taught by [Oliver Serang](http://colorfulengineering.org/) in 2014, which covers topics in computer science and statistics with applications from biology. The course is designed top-down, starting with a problem and then deriving a variety of solutions from scratch.
- Topics include memoization, recurrence closed forms, string matching (sorting, hash tables, radix tries, and suffix tries), dynamic programming (e.g. Smith-Waterman and Needleman-Wunsch), Bayesian statistics (e.g. the envelope paradox), graphical models (HMMs, Viterbi, junction tree, belief propagation), FFT, and the probabilistic convolution tree.
- [Lecture videos on Youtube](https://www.youtube.com/user/fillwithlight/videos) and for direct [download](http://mlecture.uni-bremen.de/ml/index.php?option=com_content&view=article&id=233)
- [14-740](http://www.cs.cmu.edu/~prs/15-441-F13/) **Fundamentals of Computer Networks** *CMU* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4f9.png" width="20" height="20" alt="Lecture Videos" title="Lecture Videos" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4da.png" width="20" height="20" alt="Readings" title="Readings" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" />
- [14-740](http://ini740.com/F15/) **Fundamentals of Computer Networks** *CMU* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4f9.png" width="20" height="20" alt="Lecture Videos" title="Lecture Videos" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4da.png" width="20" height="20" alt="Readings" title="Readings" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" />
- This is an introductory course on Networking for graduate students. It follows a top-down approach to teaching Computer Networks, so it starts with the Application layer which most of the students are familiar with and as the course unravels we learn more about transport, network and link layers of the protocol stack.
- As far as prerequisites are concerned - basic computer, programming and probability theory background is required.
- The course site contains links to the lecture videos, reading material and assignments.