remove dead links

This commit is contained in:
Arpit 2023-05-04 18:18:44 +05:30
parent e0b02ce408
commit c5d36040be
1 changed files with 7 additions and 40 deletions

View File

@ -105,11 +105,6 @@ Courses
- [CS 5412](http://www.cs.cornell.edu/Courses/CS5412/2014sp/) **Cloud Computing** *Cornell University* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4da.png" width="20" height="20" alt="Readings" title="Readings" />
- Taught by one of the stalwarts of this field, Prof Ken Birman, this course has a fantastic set of slides that one can go through. The Prof's [book](http://www.amazon.com/Guide-Reliable-Distributed-Systems-High-Assurance/dp/1447124154) is also a gem and recommended as a must read in Google's tutorial on [Distributed System Design](http://www.hpcs.cs.tsukuba.ac.jp/~tatebe/lecture/h23/dsys/dsd-tutorial.html)
- [Slides](http://www.cs.cornell.edu/Courses/CS5412/2014sp/Syllabus.htm)
- [CSCE 3613](http://comp.uark.edu/~wingning/csce3613/csce3613.html) **Operating Systems** *University of Arkansas (Fayetteville)* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4da.png" width="20" height="20" alt="Readings" title="Readings" /> - An introduction to operating systems including topics in system structures, process management, storage management, files, distributed systems, and case studies.
- [Syllabus](http://comp.uark.edu/~wingning/csce3613/CSCE3613.pdf)
- [Assignments](http://comp.uark.edu/~wingning/csce3613/Homework3613.html)
- [Lecture Notes](http://comp.uark.edu/~wingning/csce3613/CourseNote3613.html)
- [Readings](http://comp.uark.edu/~wingning/csce3613/Link3613.html)
- [CSCI-UA.0202: Operating Systems (Undergrad)](http://www.cs.nyu.edu/~mwalfish/classes/15sp/index.html) **Operating Systems** *NYU* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4da.png" width="20" height="20" alt="Readings" title="Readings" />
- NYU's operating system course. It's a fundamental course focusing basic ideas of operating systems, including memory management, process scheduling, file system, ect. It also includes some recommended reading materials. What's more, there are a series of hands-on lab materials, helping you easily understand OS.
- [Assignments](http://www.cs.nyu.edu/~mwalfish/classes/15sp/labs.html)
@ -134,7 +129,7 @@ Courses
- [Lecture slides](https://github.com/patricklam/p4p-2015/tree/master/lectures)
- [ECGR4101/5101](https://webpages.uncc.edu/~jmconrad/EducationalMaterials/index.html) **Embedded Systems using the Renesas RX63N Processor** *University of North Carolina at Charlotte* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4f9.png" width="20" height="20" alt="Lecture Videos" title="Lecture Videos" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4da.png" width="20" height="20" alt="Readings" title="Readings" />
- Introduction to designing microcontroller-based embedded computer systems using assembly and C programs. Examination of Real-time Operating Systems and their impact on performance. Computer engineering applications will be emphasized.
- The goal of this course is to solidify and build upon a students knowledge of computer organization by presenting hands-on experience with microcontrollers. Students will also examine a few sensors that are used in commercial and medical products and learn how to interface them in a microcontroller system.
- The goal of this course is to solidify and build upon a students knowledge of computer organization by presenting hands-on experience with microcontrollers. Students will also examine a few sensors that are used in commercial and medical products and learn how to interface them in a microcontroller system.
- [Lecture Videos](https://www.youtube.com/playlist?list=PLPIqCiMhcdO5gxLJWt_hY5CPMzqg75IU5)
- [Lecture Notes](https://webpages.uncc.edu/~jmconrad/EducationalMaterials/index.html)
- [PODC](http://dcg.ethz.ch/lectures/podc_allstars/) **Principles of Distributed Computing** *ETH-Zurich* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4da.png" width="20" height="20" alt="Readings" title="Readings" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" />
@ -212,7 +207,7 @@ Courses
- Explore the joys of functional programming, using Haskell as a vehicle. The aim of the course will be to allow you to use Haskell to easily and conveniently write practical programs.
- [Previous](http://www.seas.upenn.edu/~cis194/spring13/index.html) semester also available, with more exercises
- [CIS 198](http://cis198-2016s.github.io/) **Rust Programming** *UPenn* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" />
- This course covers what makes Rust so unique and applies it to practical systems programming problems. Topics covered include traits and generics; memory safety (move semantics, borrowing, and lifetimes); Rusts rich macro system; closures; and concurrency.
- This course covers what makes Rust so unique and applies it to practical systems programming problems. Topics covered include traits and generics; memory safety (move semantics, borrowing, and lifetimes); Rusts rich macro system; closures; and concurrency.
- [Assignments](https://github.com/cis198-2016s/homework)
- [CMSC 430](http://www.cs.umd.edu/class/spring2015/cmsc430/) **Introduction to Compilers** *Univ of Maryland* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" />
- The goal of CMSC 430 is to arm students with the ability to design, implement, and extend a programming language. Throughout the course, students will design and implement several related languages, and will explore parsing, syntax querying, dataflow analysis, compilation to bytecode, type systems, and language interoperation.
@ -266,8 +261,6 @@ Courses
- [CS 4400](https://pl.barzilay.org/) **Programming Languages** *Northeastern University* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4da.png" width="20" height="20" alt="Readings" title="Readings" />
- This is a course on the study, design, and implementation of programming languages.
- The course works at two simultaneous levels: first, we will use a programming language that can demonstrate a wide variety of programming paradigms. Second, using this language, we will learn about the mechanics behind programming languages by implementing our own language(s). The two level approach usually means that we will often see how to use a certain feature, and continue by implementing it.
- [Syllabus](https://pl.barzilay.org/syllabus.html)
- [Lecture Notes/Resources](https://pl.barzilay.org/resources.html)
- [CS 4610](http://www.cs.virginia.edu/~weimer/4610/) **Programming Languages and Compilers** *University of Virginia* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" />
- Course that uses OCaml to teach functional programming and programming language design. Each assignment is a part of an interpreter and compiler for an object-oriented language similar to Java, and you are required to use a different language for each assignment (i.e., choose 4 from Python, JS, OCaml, Haskell, Ruby).
- [Lecture Notes](http://www.cs.virginia.edu/~weimer/4610/lectures.html)
@ -326,7 +319,7 @@ Courses
### Algorithms
- [CS 61B](http://datastructur.es/sp16/) **Data Structures** *UC Berkeley* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4f9.png" width="20" height="20" alt="Lecture Videos" title="Lecture Videos" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4da.png" width="20" height="20" alt="Readings" title="Readings" />
- In this course, you will study advanced programming techniques including data structures, encapsulation, abstract data types, interfaces, and algorithms for sorting and searching, and you will get a taste of “software engineering”—the design and implementation of large programs.
- In this course, you will study advanced programming techniques including data structures, encapsulation, abstract data types, interfaces, and algorithms for sorting and searching, and you will get a taste of “software engineering”—the design and implementation of large programs.
- [Full Lecture Materials](http://datastructur.es/sp16/) Lecture of Spring 2016. This website contains full matrials including video links, labs, homeworks, projects. Very good for self-learner. Also a good start for Java. And it includes some other useful resources for Java Documentation, Data Structure Resources, Git/GitHub and Java Development Resources. [Resources](http://datastructur.es/sp16/resources.html)
- [Labs](http://www.cs.berkeley.edu/~jrs/61b/lab/index.html) The link to labs and projects is included in the website.
- [Lecture Videos](https://archive.org/details/ucberkeley-webcast-PL-XXv-cvA_iC2Khb1B5NnbE7SHPQ1-W17)
@ -342,8 +335,6 @@ Courses
- [Lecture Notes, Videos & Assignments](http://theory.stanford.edu/~tim/w16/w16.html) ([Youtube](https://www.youtube.com/playlist?list=PLEGCF-WLh2RJh2yDxlJJjnKswWdoO8gAc))
- [CS 473/573](http://jeffe.cs.illinois.edu/teaching/algorithms/) **Fundamental Algorithms** *Univ of Illinois, Urbana-Champaign* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" />
- Algorithms class covering recursion, randomization, amortization, graph algorithms, network flows and hardness. The lecture notes by Prof. Erikson are comprehensive enough to be a book by themselves. Highly recommended!
- [Lecture Notes](http://web.engr.illinois.edu/~jeffe/teaching/algorithms/all-algorithms.pdf)
- [Labs and Exams](http://web.engr.illinois.edu/~jeffe/teaching/algorithms/all-hwex.pdf)
- [CS 2150](https://github.com/aaronbloomfield/pdr) **Program & Data Representation** *University of Virginia* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" />
- This data structures course introduces C++, linked-lists, stacks, queues, trees, numerical representation, hash tables, priority queues, heaps, huffman coding, graphs, and x86 assembly.
- [Lectures](http://aaronbloomfield.github.io/pdr/slides/)
@ -372,7 +363,6 @@ Courses
- Explores concepts and techniques for design and construction of reliable and maintainable software systems in modern high-level languages; program structure and design; program-correctness approaches, including testing.
- [Lectures, Assignments, and Exams](http://courses.cs.washington.edu/courses/cse331/15sp/#all)
- [CSE 373](http://www3.cs.stonybrook.edu/~skiena/373/) **Analysis of Algorithms** *Stony Brook University* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4f9.png" width="20" height="20" alt="Lecture Videos" title="Lecture Videos" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4da.png" width="20" height="20" alt="Readings" title="Readings" />
- Prof Steven Skiena's no stranger to any student when it comes to algorithms. His seminal [book](http://www.algorist.com/) has been touted by many to be best for [getting that job in Google](http://steve-yegge.blogspot.com/2008/03/get-that-job-at-google.html). In addition, he's also well-known for tutoring students in competitive [programming competitions](http://www.programming-challenges.com/pg.php?page=index). If you're looking to brush up your knowledge on Algorithms, you can't go wrong with this course.
- [Lecture Videos](http://www.cs.sunysb.edu/~algorith/video-lectures/)
- [ECS 122A](http://web.cs.ucdavis.edu/~gusfield/cs122f10/) **Algorithm Design and Analysis** *UC Davis* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4f9.png" width="20" height="20" alt="Lecture Videos" title="Lecture Videos" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" />
- Taught by [Dan Gusfield](http://web.cs.ucdavis.edu/~gusfield/) in 2010, this course is an undergraduate introduction to algorithm design and analysis. It features traditional topics, such as Big Oh notation, as well as an importance on implementing specific algorithms. Also featured are sorting (in linear time), graph algorithms, depth-first search, string matching, dynamic programming, NP-completeness, approximation, and randomization.
@ -434,7 +424,6 @@ Courses
- Links to all lectures notes and assignments are directly on the course page
- [CS 173](https://courses.engr.illinois.edu/cs173/fa2014/A-lecture/index.html) **Discrete Structures** *Univ of Illinois Urbana-Champaign* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4da.png" width="20" height="20" alt="Readings" title="Readings" />
- This course is an introduction to the theoretical side of computer science. In it, you will learn how to construct proofs, read and write literate formal mathematics, get a quick introduction to key theory topics and become familiar with a range of standard mathematics concepts commonly used in computer science.
- [Textbook](http://web.engr.illinois.edu/~mfleck/building-blocks/) Written by the professor. Includes Instructor's Guide.
- [Assignments](https://courses.engr.illinois.edu/cs173/fa2014/A-lecture/Homework/index.html)
- [Exams](https://courses.engr.illinois.edu/cs173/fa2014/A-lecture/Exams/index.html)
- [CS 276](http://www.cs.berkeley.edu/~sanjamg/classes/cs276-fall14/) **Foundations of Cryptography** *UC Berkeley* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" />
@ -597,12 +586,11 @@ Courses
- [Notes / Recaps](http://cse1.net/recaps)
- [Assignments](http://cse1.net/psets)
- [CS-for-all](http://www.cs.hmc.edu/csforall/) **CS for All** *Harvey Mudd College* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4da.png" width="20" height="20" alt="Readings" title="Readings" />
- This book (and course) takes a unique approach to “Intro CS.” In a nutshell, our objective is to provide an introduction to computer science as an intellectually rich and vibrant field rather than focusing exclusively on computer programming. While programming is certainly an important and pervasive element of our approach, we emphasize concepts and problem-solving over syntax and programming language features.
- This book (and course) takes a unique approach to “Intro CS.” In a nutshell, our objective is to provide an introduction to computer science as an intellectually rich and vibrant field rather than focusing exclusively on computer programming. While programming is certainly an important and pervasive element of our approach, we emphasize concepts and problem-solving over syntax and programming language features.
- [Lectures and Other resources](https://www.cs.hmc.edu/twiki/bin/view/ModularCS1)
- [6.001](http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-001-structure-and-interpretation-of-computer-programs-spring-2005/index.htm) **Structure and Interpretation of Computer Programs** *MIT* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4f9.png" width="20" height="20" alt="Lecture Videos" title="Lecture Videos" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" />
- Teaches big-picture computing concepts using the Scheme programming language. Students will implement programs in a variety of different programming paradigms (functional, object-oriented, logical). Heavy emphasis on function composition, code-as-data, control abstraction with continuations, and syntactic abstraction through macros. An excellent course if you are looking to build a mental framework on which to hang your programming knowledge.
- [Lectures](http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-001-structure-and-interpretation-of-computer-programs-spring-2005/video-lectures)
- [Textbook](http://mitpress.mit.edu/sicp/full-text/book/book.html) ([epub](https://github.com/sarabander/sicp), [pdf](https://github.com/sarabander/sicp-pdf))
- [IDE](http://www.neilvandyke.org/racket-sicp/)
- [6.005](http://web.mit.edu/6.005/www/fa16/) **Software Construction, Fall 2016** *MIT* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" />
- This course introduces fundamental principles and techniques of software development. Students learn how to write software that is safe from bugs, easy to understand, and ready for change. Topics include specifications and invariants; testing, test-case generation, and coverage; state machines; abstract data types and representation independence; design patterns for object-oriented programming; concurrent programming, including message passing and shared concurrency, and defending against races and deadlock; and functional programming with immutable data and higher-order functions.
@ -649,7 +637,6 @@ Courses
- [Assignments](http://people.seas.harvard.edu/~minilek/cs229r/fall15/hmwk.html)
- [CS 231n](http://cs231n.stanford.edu/) **Convolutional Neural Networks for Visual Recognition** *Stanford University* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4f9.png" width="20" height="20" alt="Lecture Videos" title="Lecture Videos" />
- Computer Vision has become ubiquitous in our society, with applications in search, image understanding, apps, mapping, medicine, drones, and self-driving cars. This course is a deep dive into details of the deep learning architectures with a focus on learning end-to-end models for these tasks, particularly image classification. During the 10-week course, students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in computer vision.
- [Lecture Notes](http://cs231n.stanford.edu/syllabus.html)
- [Lecture Videos](https://www.youtube.com/watch?v=NfnWJUyUJYU&list=PLkt2uSq6rBVctENoVBg1TpCC7OQi31AlC)
- [Github Page](http://cs231n.github.io/)
- [CS 287](http://www.cs.berkeley.edu/~pabbeel/cs287-fa13/) **Advanced Robotics** *UC Berkeley* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" />
@ -687,7 +674,6 @@ Topics covered include probability theory and Bayesian inference; univariate dis
- Assignments - Assignments are present in the Course Slides
- [EECS E6894](http://llcao.net/cu-deeplearning15/index.html) **Deep Learning for Computer Vision and Natural Language Processing** *Columbia University* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4da.png" width="20" height="20" alt="Readings" title="Readings" />
- This graduate level research class focuses on deep learning techniques for vision and natural language processing problems. It gives an overview of the various deep learning models and techniques, and surveys recent advances in the related fields. This course uses Theano as the main programming tool. GPU programming experiences are preferred although not required. Frequent paper presentations and a heavy programming workload are expected.
- [Readings](http://llcao.net/cu-deeplearning15/reading.html)
- [Assignments](http://llcao.net/cu-deeplearning15/programming_problem.html)
- [Lecture Notes](http://llcao.net/cu-deeplearning15/index.html)
- [EE103](http://stanford.edu/class/ee103/) **Introduction to Matrix Methods** *Stanford University* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4da.png" width="20" height="20" alt="Readings" title="Readings" />
@ -700,7 +686,6 @@ Topics covered include probability theory and Bayesian inference; univariate dis
- There are around 24 hours of lessons, and you should plan to spend around 8 hours a week for 12 weeks to complete the material. The course is based on lessons recorded at the University of San Francisco for the Masters of Science in Data Science program. We assume that you have at least one year of coding experience, and either remember what you learned in high school math, or are prepared to do some independent study to refresh your knowledge.
- [Lecture Videos](http://course.fast.ai/lessonsml1/lessonsml1.html)
- [Lecture Notes](https://medium.com/@hiromi_suenaga/machine-learning-1-lesson-1-84a1dc2b5236)
- [Jupyter Notebooks](https://github.com/fastai/fastai/tree/master/courses/ml1)
- [Info 290](http://www.ischool.berkeley.edu/courses/i290-abdt) **Analyzing Big Data with Twitter** *UC Berkeley school of information* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4f9.png" width="20" height="20" alt="Lecture Videos" title="Lecture Videos" />
- In this course, UC Berkeley professors and Twitter engineers provide lectures on the most cutting-edge algorithms and software tools for data analytics as applied to Twitter's data. Topics include applied natural language processing algorithms such as sentiment analysis, large scale anomaly detection, real-time search, information diffusion and outbreak detection, trend detection in social streams, recommendation algorithms, and advanced frameworks for distributed computing.
- [Lecture Videos](http://www.ischool.berkeley.edu/newsandevents/audiovideo/webcast/21963)
@ -728,8 +713,6 @@ Topics covered include probability theory and Bayesian inference; univariate dis
- [CS246](http://web.stanford.edu/class/cs246/) **Mining Massive Data Sets** *Stanford University* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4f9.png" width="20" height="20" alt="Lecture Videos" title="Lecture Videos" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4da.png" width="20" height="20" alt="Readings" title="Readings" />
- The course will discuss data mining and machine learning algorithms for analyzing very large amounts of data. The emphasis will be on Map Reduce as a tool for creating parallel algorithms that can process very large amounts of data.
- [Lecture Videos](http://www.mmds.org/#mooc)
- [Assignments](http://web.stanford.edu/class/cs246/handouts.html)
- [Lecture notes](http://web.stanford.edu/class/cs246/handouts.html)
- [Readings](http://www.mmds.org/#book)
- [CS276](http://web.stanford.edu/class/cs276/index.html) **Information Retrieval and Web Search** *Stanford University* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4da.png" width="20" height="20" alt="Readings" title="Readings" />
- Basic and advanced techniques for text-based information systems: efficient text indexing; Boolean and vector space retrieval models; evaluation and interface issues; Web search including crawling, link-based algorithms, and Web metadata; text/Web clustering, classification; text mining.
@ -747,10 +730,7 @@ Topics covered include probability theory and Bayesian inference; univariate dis
-------
### Security
- [CIS 4930 / CIS 5930](http://www.cs.fsu.edu/~redwood/OffensiveComputerSecurity/) **Offensive Computer Security** *Florida State University* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4f9.png" width="20" height="20" alt="Lecture Videos" title="Lecture Videos" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" />
- Course taught by [W. Owen Redwood](http://ww2.cs.fsu.edu/~redwood/) and [Xiuwen Liu](http://www.cs.fsu.edu/~liux/). It covers a wide range of computer security topics, starting from Secure C Coding and Reverse Engineering to Penetration Testing, Exploitation and Web Application Hacking, both from the defensive and the offensive point of view.
- [Lectures and Videos](http://www.cs.fsu.edu/~redwood/OffensiveComputerSecurity/lectures.html)
- [Assignments](http://www.cs.fsu.edu/~redwood/OffensiveComputerSecurity/assignments.html)
- [CS 155](https://crypto.stanford.edu/cs155/) **Computer and Network Security** *Stanford* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4da.png" width="20" height="20" alt="Readings" title="Readings" />
- Principles of computer systems security. Attack techniques and how to defend against them. Topics include: network attacks and defenses, operating system holes, application security (web, email, databases), viruses, social engineering attacks, privacy, and digital rights management. Course projects focus on building reliable code. Recommended: Basic Unix. Primarily intended for seniors and first-year graduate students.
- [CS 161](http://www-inst.eecs.berkeley.edu/~cs161/sp15/) **Computer Security** *UC Berkeley* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" />
@ -867,17 +847,12 @@ and anti-analysis techniques.
- [AM 207](http://am207.github.io/2016/index.html) **Monte Carlo Methods and Stochastic Optimization** *Harvard University* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4f9.png" width="20" height="20" alt="Lecture Videos" title="Lecture Videos" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" />
- This course introduces important principles of Monte Carlo techniques and demonstrates the power of these techniques with simple (but very useful) applications. All of this in Python!
- [Lecture Videos](http://cm.dce.harvard.edu/2015/02/24104/publicationListing.shtml)
- [Assignments](http://am207.github.io/2016/homework.html)
- [Lecture Notes](http://am207.github.io/2016/lectures.html)
- [CS 75](http://ocw.tufts.edu/Course/75) **Introduction to Game Development** *Tufts University* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" />
- The course taught by [Ming Y. Chow](http://mchow01.github.io) teaches game development initially in PyGame through Python, before moving on to addressing all facets of game development. Topics addressed include game physics, sprites, animation, game development methodology, sound, testing, MMORPGs and online games, and addressing mobile development in Android, HTML5, and iOS. Most to all of the development is focused on PyGame for learning principles
- [Text Lectures](http://ocw.tufts.edu/Course/75/Learningunits)
- [Assignments](http://ocw.tufts.edu/Course/75/Assignments)
- [Labs](http://ocw.tufts.edu/Course/75/Labs)
- [CS 50](https://cs50.github.io/games/) **Intro to Game Developement** *Harvard University* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4f9.png" width="20" height="20" alt="Lecture Videos" title="Lecture Videos" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" />
- This course picks up where Harvard Colleges [CS50](https://cs50.harvard.edu/) leaves off, focusing on the development of 2D and 3D interactive games. Students explore the design of such childhood games as Super Mario Bros., Legend of Zelda, and Portal in a quest to understand how video games themselves are implemented. Via lectures and hands-on projects, the course explores principles of 2D and 3D graphics, animation, sound, and collision detection using frameworks like Unity and [LÖVE 2D](https://love2d.org/), as well as languages like Lua and C#. By classs end, students will have programmed several of their own games and gained a thorough understanding of the basics of game design and development.
- [Assignments](https://cs50.github.io/games/assignments)
- [Lecture Videos](https://cs50.github.io/games/lectures)
- This course picks up where Harvard Colleges [CS50](https://cs50.harvard.edu/) leaves off, focusing on the development of 2D and 3D interactive games. Students explore the design of such childhood games as Super Mario Bros., Legend of Zelda, and Portal in a quest to understand how video games themselves are implemented. Via lectures and hands-on projects, the course explores principles of 2D and 3D graphics, animation, sound, and collision detection using frameworks like Unity and [LÖVE 2D](https://love2d.org/), as well as languages like Lua and C#. By classs end, students will have programmed several of their own games and gained a thorough understanding of the basics of game design and development.
- [CS 100](https://github.com/mikeizbicki/ucr-cs100) **Open Source Software Construction** *UC Riverside* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" />
- This is a course on how to be a hacker. Your first four homework assignments walk you through the process of building your own unix shell. You'll be developing it as an open source project, and you will collaborate with each other at various points.
- [Github Page](https://github.com/mikeizbicki/ucr-cs100)
@ -893,12 +868,8 @@ and anti-analysis techniques.
- Devices: Access to an Android phone and/or tablet recommended but not required.
- Videos: Videos list can be found [here](http://web.stanford.edu/class/cs193a/videos.shtml)
- Other materials: Some codes, handsout, homework ..... and lecture notes are not downloadable on the site due to login requirement. Please head to my Github repo [here](https://github.com/VoLuong/Materials-CS193A-Android-App-Development-Standford) to download them.
- [CS 193p](https://itunes.apple.com/us/course/developing-ios-7-apps-for/id733644550) **Developing Applications for iOS** *Stanford University* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4f9.png" width="20" height="20" alt="Lecture Videos" title="Lecture Videos" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" />
- Updated for iOS 7. Tools and APIs required to build applications for the iPhone and iPad platform using the iOS SDK. User interface designs for mobile devices and unique user interactions using multi-touch technologies. Object-oriented design using model-view-controller paradigm, memory management, Objective-C programming language. Other topics include: object-oriented database API, animation, multi-threading and performance considerations.
- Prerequisites: C language and object-oriented programming experience
- Recommended: [Programming Abstractions](https://itunes.apple.com/us/course/programming-abstractions/id495054099)
- [Updated courses for iOS8 - Swift](https://itunes.apple.com/us/course/developing-ios-8-apps-swift/id961180099)
- [Updated courses for iOS9 - Swift](https://itunes.apple.com/us/course/developing-ios-9-apps-swift/id1104579961)
- [CS 223A](https://see.stanford.edu/Course/CS223A) **Introduction to Robotics** *Stanford University* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4f9.png" width="20" height="20" alt="Lecture Videos" title="Lecture Videos" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" />
- The purpose of this course is to introduce you to basics of modeling, design, planning, and control of robot systems. In essence, the material treated in this course is a brief survey of relevant results from geometry, kinematics, statics, dynamics, and control.
- [CS 262a](http://www.cs.berkeley.edu/~brewer/cs262/) **Advanced Topics in Computer Systems** *UC Berkeley* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4da.png" width="20" height="20" alt="Readings" title="Readings" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" />
@ -950,7 +921,7 @@ and anti-analysis techniques.
- [Lectures](http://www.cs.cornell.edu/~bindel/class/cs5220-f11/lectures.html)
- [Assignments](http://www.cs.cornell.edu/~bindel/class/cs5220-f11/assignments.html)
- [CS 5540](https://sites.google.com/site/cs5540sp2013/) **Computational Techniques for Analyzing Clinical Data** *Cornell University* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments"/> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4da.png" width="20" height="20" alt="Readings" title="Readings" />
- CS5540 is a masters-level course that covers a wide range of clinical problems and their associated computational challenges. The practice of medicine is filled with digitally accessible information about patients, ranging from EKG readings to MRI images to electronic health records. This poses a huge opportunity for computer tools that make sense out of this data. Computation tools can be used to answer seemingly straightforward questions about a single patient's test results (“Does this patient have a normal heart rhythm?”), or to address vital questions about large populations (“Is there any clinical condition that affects the risks of Alzheimer”). In CS5540 we will look at many of the most important sources of clinical data and discuss the basic computational techniques used for their analysis, ranging in sophistication from current clinical practice to state-of-the-art research projects.
- CS5540 is a masters-level course that covers a wide range of clinical problems and their associated computational challenges. The practice of medicine is filled with digitally accessible information about patients, ranging from EKG readings to MRI images to electronic health records. This poses a huge opportunity for computer tools that make sense out of this data. Computation tools can be used to answer seemingly straightforward questions about a single patient's test results (“Does this patient have a normal heart rhythm?”), or to address vital questions about large populations (“Is there any clinical condition that affects the risks of Alzheimer”). In CS5540 we will look at many of the most important sources of clinical data and discuss the basic computational techniques used for their analysis, ranging in sophistication from current clinical practice to state-of-the-art research projects.
- [Syllabus](https://sites.google.com/site/cs5540sp2013/home/course-description)
- [Lectures](https://sites.google.com/site/cs5540sp2013/lectures)
- [Assignments](https://sites.google.com/site/cs5540sp2013/assignments)
@ -985,10 +956,7 @@ and anti-analysis techniques.
- This course is an introduction to programming for the World Wide Web. Covers use of HTML, CSS, PHP, JavaScript, AJAX, and SQL.
- [Lectures](http://courses.cs.washington.edu/courses/cse154/14au/lectures.shtml#today)
- [Assignments](http://courses.cs.washington.edu/courses/cse154/14au/homework.shtml)
- [ESM 296-4F](http://ucsb-bren.github.io/esm296-4f/) **GIS & Spatial Analysis** *UC Santa Barbara* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" />
- Taught by [James Frew](http://www.bren.ucsb.edu/people/Faculty/james_frew.htm), [Ben Best](http://mgel.env.duke.edu/people/ben-best/), and [Lisa Wedding](http://www.centerforoceansolutions.org/team/lisa-wedding)
- Focuses on specific computational languages (e.g., Python, R, shell) and tools (e.g., GDAL/OGR, InVEST, MGET, ModelBuilder) applied to the spatial analysis of environmental problems
- [GitHub ](http://ucsb-bren.github.io/esm296-4f/) (includes lecture materials and labs)
- [ICS 314](http://philipmjohnson.github.io/ics314f13/) **Software Engineering** *University of Hawaii* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4da.png" width="20" height="20" alt="Readings" title="Readings" />
- Taught by [Philip Johnson](http://philipmjohnson.org/)
- Introduction to software engineering using the ["Athletic Software Engineering" pedagogy](http://philipmjohnson.org/essays/ase-initial-results.html)
@ -1006,10 +974,9 @@ and anti-analysis techniques.
- [Lectures](http://www.schneems.com/ut-rails/)
- [Assignments](http://www.schneems.com/ut-rails/)
- [Videos](https://www.youtube.com/playlist?list=PL7A85FD7803A8CB1F)
- [SCICOMP](http://mlecture.uni-bremen.de/ml/index.php?option=com_content&view=article&id=233) **An Introduction to Efficient Scientific Computation** *Universität Bremen* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4f9.png" width="20" height="20" alt="Lecture Videos" title="Lecture Videos" />
- [SCICOMP](http://mlecture.uni-bremen.de/ml/index.php?option=com_content&view=article&id=233) **An Introduction to Efficient Scientific Computation** *Universität Bremen* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4f9.png" width="20" height="20" alt="Lecture Videos" title="Lecture Videos" />
- This is a graduate course in scientific computing created and taught by [Oliver Serang](http://colorfulengineering.org/) in 2014, which covers topics in computer science and statistics with applications from biology. The course is designed top-down, starting with a problem and then deriving a variety of solutions from scratch.
- Topics include memoization, recurrence closed forms, string matching (sorting, hash tables, radix tries, and suffix tries), dynamic programming (e.g. Smith-Waterman and Needleman-Wunsch), Bayesian statistics (e.g. the envelope paradox), graphical models (HMMs, Viterbi, junction tree, belief propagation), FFT, and the probabilistic convolution tree.
- [Lecture videos on Youtube](https://www.youtube.com/user/fillwithlight/videos) and for direct [download](http://mlecture.uni-bremen.de/ml/index.php?option=com_content&view=article&id=233)
- [14-740](http://www.ini740.rocks/F20) **Fundamentals of Computer Networks** *CMU* <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4f9.png" width="20" height="20" alt="Lecture Videos" title="Lecture Videos" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4bb.png" width="20" height="20" alt="Assignments" title="Assignments" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4da.png" width="20" height="20" alt="Readings" title="Readings" /> <img src="https://assets-cdn.github.com/images/icons/emoji/unicode/1f4dd.png" width="20" height="20" alt="Lecture Notes" title="Lecture Notes" />
- This is an introductory course on Networking for graduate students. It follows a top-down approach to teaching Computer Networks, so it starts with the Application layer which most of the students are familiar with and as the course unravels we learn more about transport, network and link layers of the protocol stack.
- As far as prerequisites are concerned - basic computer, programming and probability theory background is required.