streamline confidential tx

This commit is contained in:
yjjnls 2019-08-12 19:27:58 +08:00
parent 534a17379c
commit ec407c3c39
153 changed files with 256 additions and 34060 deletions

View File

@ -1,531 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package bn256 implements a particular bilinear group at the 128-bit security level.
//
// Bilinear groups are the basis of many of the new cryptographic protocols
// that have been proposed over the past decade. They consist of a triplet of
// groups (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ
// (where gₓ is a generator of the respective group). That function is called
// a pairing function.
//
// This package specifically implements the Optimal Ate pairing over a 256-bit
// Barreto-Naehrig curve as described in
// http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is compatible
// with the implementation described in that paper.
package bn256
import (
"crypto/rand"
"io"
"math/big"
)
// BUG(agl): this implementation is not constant time.
// TODO(agl): keep GF(p²) elements in Mongomery form.
// G1 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G1 struct {
p *curvePoint
}
// RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r.
func RandomG1(r io.Reader) (*big.Int, *G1, error) {
var k *big.Int
var err error
for {
k, err = rand.Int(r, Order)
if err != nil {
return nil, nil, err
}
if k.Sign() > 0 {
break
}
}
return k, new(G1).ScalarBaseMult(k), nil
}
func (g *G1) String() string {
return "bn256.G1" + g.p.String()
}
// CurvePoints returns p's curve points in big integer
func (e *G1) CurvePoints() (*big.Int, *big.Int, *big.Int, *big.Int) {
return e.p.x, e.p.y, e.p.z, e.p.t
}
// Set to identity element on the group.
func (e *G1) SetInfinity() *G1 {
e.p = newCurvePoint(new(bnPool))
e.p.SetInfinity()
return e
}
// ScalarBaseMult sets e to g*k where g is the generator of the group and
// then returns e.
// This method was updated to deal with negative numbers.
func (e *G1) ScalarBaseMult(k *big.Int) *G1 {
if e.p == nil {
e.p = newCurvePoint(nil)
}
cmp := k.Cmp(big.NewInt(0))
if cmp >=0 {
if cmp == 0 {
e.p.SetInfinity()
} else {
e.p.Mul(curveGen, k, new(bnPool))
}
} else {
e.p.Negative(e.p.Mul(curveGen, new(big.Int).Abs(k), new(bnPool)))
}
return e
}
// ScalarMult sets e to a*k and then returns e.
// This method was updated to deal with negative numbers.
func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 {
if e.p == nil {
e.p = newCurvePoint(nil)
}
cmp := k.Cmp(big.NewInt(0))
if cmp >=0 {
if cmp == 0 {
e.p.SetInfinity()
} else {
e.p.Mul(a.p, k, new(bnPool))
}
} else {
e.p.Negative(e.p.Mul(a.p, new(big.Int).Abs(k), new(bnPool)))
}
return e
}
// Add sets e to a+b and then returns e.
// BUG(agl): this function is not complete: a==b fails.
func (e *G1) Add(a, b *G1) *G1 {
if e.p == nil {
e.p = newCurvePoint(nil)
}
e.p.Add(a.p, b.p, new(bnPool))
return e
}
// Neg sets e to -a and then returns e.
func (e *G1) Neg(a *G1) *G1 {
if e.p == nil {
e.p = newCurvePoint(nil)
}
e.p.Negative(a.p)
return e
}
// Marshal converts n to a byte slice.
func (n *G1) Marshal() []byte {
n.p.MakeAffine(nil)
xBytes := new(big.Int).Mod(n.p.x, P).Bytes()
yBytes := new(big.Int).Mod(n.p.y, P).Bytes()
// Each value is a 256-bit number.
const numBytes = 256 / 8
ret := make([]byte, numBytes*2)
copy(ret[1*numBytes-len(xBytes):], xBytes)
copy(ret[2*numBytes-len(yBytes):], yBytes)
return ret
}
// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *G1) Unmarshal(m []byte) (*G1, bool) {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if len(m) != 2*numBytes {
return nil, false
}
if e.p == nil {
e.p = newCurvePoint(nil)
}
e.p.x.SetBytes(m[0*numBytes : 1*numBytes])
e.p.y.SetBytes(m[1*numBytes : 2*numBytes])
if e.p.x.Sign() == 0 && e.p.y.Sign() == 0 {
// This is the point at infinity.
e.p.y.SetInt64(1)
e.p.z.SetInt64(0)
e.p.t.SetInt64(0)
} else {
e.p.z.SetInt64(1)
e.p.t.SetInt64(1)
if !e.p.IsOnCurve() {
return nil, false
}
}
return e, true
}
// G2 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G2 struct {
p *twistPoint
}
// RandomG1 returns x and g₂ˣ where x is a random, non-zero number read from r.
func RandomG2(r io.Reader) (*big.Int, *G2, error) {
var k *big.Int
var err error
for {
k, err = rand.Int(r, Order)
if err != nil {
return nil, nil, err
}
if k.Sign() > 0 {
break
}
}
return k, new(G2).ScalarBaseMult(k), nil
}
func (g *G2) String() string {
return "bn256.G2" + g.p.String()
}
// CurvePoints returns the curve points of p which includes the real
// and imaginary parts of the curve point.
func (e *G2) CurvePoints() (*gfP2, *gfP2, *gfP2, *gfP2) {
return e.p.x, e.p.y, e.p.z, e.p.t
}
// Set to identity element on the group.
func (e *G2) SetInfinity() *G2 {
e.p = newTwistPoint(new(bnPool))
e.p.SetInfinity()
return e
}
// ScalarBaseMult sets e to g*k where g is the generator of the group and
// then returns out.
// This method was updated to deal with negative numbers.
func (e *G2) ScalarBaseMult(k *big.Int) *G2 {
if e.p == nil {
e.p = newTwistPoint(nil)
}
if k.Cmp(big.NewInt(0)) >=0 {
e.p.Mul(twistGen, k, new(bnPool))
} else {
e.p.Negative(e.p.Mul(twistGen, new(big.Int).Abs(k), new(bnPool)), new(bnPool))
}
return e
}
// ScalarMult sets e to a*k and then returns e.
// This method was updated to deal with negative numbers.
func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 {
if e.p == nil {
e.p = newTwistPoint(nil)
}
if k.Cmp(big.NewInt(0)) >=0 {
e.p.Mul(a.p, k, new(bnPool))
} else {
e.p.Negative(e.p.Mul(a.p, new(big.Int).Abs(k), new(bnPool)), new(bnPool))
}
return e
}
// Add sets e to a+b and then returns e.
// BUG(agl): this function is not complete: a==b fails.
func (e *G2) Add(a, b *G2) *G2 {
if e.p == nil {
e.p = newTwistPoint(nil)
}
e.p.Add(a.p, b.p, new(bnPool))
return e
}
// Neg sets e to -a and then returns e.
func (e *G2) Neg(a *G2) *G2 {
if e.p == nil {
e.p = newTwistPoint(nil)
}
e.p.Negative(a.p, new(bnPool))
return e
}
// Marshal converts n into a byte slice.
func (n *G2) Marshal() []byte {
n.p.MakeAffine(nil)
xxBytes := new(big.Int).Mod(n.p.x.x, P).Bytes()
xyBytes := new(big.Int).Mod(n.p.x.y, P).Bytes()
yxBytes := new(big.Int).Mod(n.p.y.x, P).Bytes()
yyBytes := new(big.Int).Mod(n.p.y.y, P).Bytes()
// Each value is a 256-bit number.
const numBytes = 256 / 8
ret := make([]byte, numBytes*4)
copy(ret[1*numBytes-len(xxBytes):], xxBytes)
copy(ret[2*numBytes-len(xyBytes):], xyBytes)
copy(ret[3*numBytes-len(yxBytes):], yxBytes)
copy(ret[4*numBytes-len(yyBytes):], yyBytes)
return ret
}
// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *G2) Unmarshal(m []byte) (*G2, bool) {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if len(m) != 4*numBytes {
return nil, false
}
if e.p == nil {
e.p = newTwistPoint(nil)
}
e.p.x.x.SetBytes(m[0*numBytes : 1*numBytes])
e.p.x.y.SetBytes(m[1*numBytes : 2*numBytes])
e.p.y.x.SetBytes(m[2*numBytes : 3*numBytes])
e.p.y.y.SetBytes(m[3*numBytes : 4*numBytes])
if e.p.x.x.Sign() == 0 &&
e.p.x.y.Sign() == 0 &&
e.p.y.x.Sign() == 0 &&
e.p.y.y.Sign() == 0 {
// This is the point at infinity.
e.p.y.SetOne()
e.p.z.SetZero()
e.p.t.SetZero()
} else {
e.p.z.SetOne()
e.p.t.SetOne()
if !e.p.IsOnCurve() {
return nil, false
}
}
return e, true
}
// GT is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type GT struct {
p *gfP12
}
func (g *GT) String() string {
return "bn256.GT" + g.p.String()
}
// ScalarMult sets e to a*k and then returns e.
func (e *GT) ScalarMult(a *GT, k *big.Int) *GT {
if e.p == nil {
e.p = newGFp12(nil)
}
e.p.Exp(a.p, k, new(bnPool))
return e
}
func (e *GT) Exp(a *GT, k *big.Int) *GT {
var returnValue *GT
if k.Cmp(big.NewInt(0)) >=0 {
returnValue = a.ScalarMult(a, k)
} else {
returnValue = a.Invert(a.ScalarMult(a, new(big.Int).Abs(k)))
}
return returnValue
}
func (e *GT) Invert(a *GT) *GT {
if e.p == nil {
e.p = newGFp12(nil)
}
e.p.Invert(a.p, new(bnPool))
return e
}
// SetZero returns true iff a = 0.
func (e *G1) SetZero() {
e.p.SetInfinity()
}
// IsZero returns true iff a = 0.
func (e *G1) IsZero() bool {
return e.p.IsInfinity()
}
// IsZero returns true iff a = 0.
func (e *G2) IsZero() bool {
return e.p.IsInfinity()
}
// IsZero returns true iff a = 0.
func (e *GT) IsZero() bool {
return e.p.IsZero()
}
// IsOne returns true iff a = 0.
func (e *GT) IsOne() bool {
return e.p.IsOne()
}
// Add sets e to a+b and then returns e.
func (e *GT) Add(a, b *GT) *GT {
if e.p == nil {
e.p = newGFp12(nil)
}
e.p.Mul(a.p, b.p, new(bnPool))
return e
}
// Neg sets e to -a and then returns e.
func (e *GT) Neg(a *GT) *GT {
if e.p == nil {
e.p = newGFp12(nil)
}
e.p.Invert(a.p, new(bnPool))
return e
}
// Marshal converts n into a byte slice.
func (n *GT) Marshal() []byte {
n.p.Minimal()
xxxBytes := n.p.x.x.x.Bytes()
xxyBytes := n.p.x.x.y.Bytes()
xyxBytes := n.p.x.y.x.Bytes()
xyyBytes := n.p.x.y.y.Bytes()
xzxBytes := n.p.x.z.x.Bytes()
xzyBytes := n.p.x.z.y.Bytes()
yxxBytes := n.p.y.x.x.Bytes()
yxyBytes := n.p.y.x.y.Bytes()
yyxBytes := n.p.y.y.x.Bytes()
yyyBytes := n.p.y.y.y.Bytes()
yzxBytes := n.p.y.z.x.Bytes()
yzyBytes := n.p.y.z.y.Bytes()
// Each value is a 256-bit number.
const numBytes = 256 / 8
ret := make([]byte, numBytes*12)
copy(ret[1*numBytes-len(xxxBytes):], xxxBytes)
copy(ret[2*numBytes-len(xxyBytes):], xxyBytes)
copy(ret[3*numBytes-len(xyxBytes):], xyxBytes)
copy(ret[4*numBytes-len(xyyBytes):], xyyBytes)
copy(ret[5*numBytes-len(xzxBytes):], xzxBytes)
copy(ret[6*numBytes-len(xzyBytes):], xzyBytes)
copy(ret[7*numBytes-len(yxxBytes):], yxxBytes)
copy(ret[8*numBytes-len(yxyBytes):], yxyBytes)
copy(ret[9*numBytes-len(yyxBytes):], yyxBytes)
copy(ret[10*numBytes-len(yyyBytes):], yyyBytes)
copy(ret[11*numBytes-len(yzxBytes):], yzxBytes)
copy(ret[12*numBytes-len(yzyBytes):], yzyBytes)
return ret
}
// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *GT) Unmarshal(m []byte) (*GT, bool) {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if len(m) != 12*numBytes {
return nil, false
}
if e.p == nil {
e.p = newGFp12(nil)
}
e.p.x.x.x.SetBytes(m[0*numBytes : 1*numBytes])
e.p.x.x.y.SetBytes(m[1*numBytes : 2*numBytes])
e.p.x.y.x.SetBytes(m[2*numBytes : 3*numBytes])
e.p.x.y.y.SetBytes(m[3*numBytes : 4*numBytes])
e.p.x.z.x.SetBytes(m[4*numBytes : 5*numBytes])
e.p.x.z.y.SetBytes(m[5*numBytes : 6*numBytes])
e.p.y.x.x.SetBytes(m[6*numBytes : 7*numBytes])
e.p.y.x.y.SetBytes(m[7*numBytes : 8*numBytes])
e.p.y.y.x.SetBytes(m[8*numBytes : 9*numBytes])
e.p.y.y.y.SetBytes(m[9*numBytes : 10*numBytes])
e.p.y.z.x.SetBytes(m[10*numBytes : 11*numBytes])
e.p.y.z.y.SetBytes(m[11*numBytes : 12*numBytes])
return e, true
}
// Pair calculates an Optimal Ate pairing.
func Pair(g1 *G1, g2 *G2) *GT {
return &GT{optimalAte(g2.p, g1.p, new(bnPool))}
}
// PairingCheck calculates the Optimal Ate pairing for a set of points.
func PairingCheck(a []*G1, b []*G2) bool {
pool := new(bnPool)
acc := newGFp12(pool)
acc.SetOne()
for i := 0; i < len(a); i++ {
if a[i].p.IsInfinity() || b[i].p.IsInfinity() {
continue
}
acc.Mul(acc, miller(b[i].p, a[i].p, pool), pool)
}
ret := finalExponentiation(acc, pool)
acc.Put(pool)
return ret.IsOne()
}
// bnPool implements a tiny cache of *big.Int objects that's used to reduce the
// number of allocations made during processing.
type bnPool struct {
bns []*big.Int
count int
}
func (pool *bnPool) Get() *big.Int {
if pool == nil {
return new(big.Int)
}
pool.count++
l := len(pool.bns)
if l == 0 {
return new(big.Int)
}
bn := pool.bns[l-1]
pool.bns = pool.bns[:l-1]
return bn
}
func (pool *bnPool) Put(bn *big.Int) {
if pool == nil {
return
}
pool.bns = append(pool.bns, bn)
pool.count--
}
func (pool *bnPool) Count() int {
return pool.count
}

View File

@ -1,304 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
import (
"bytes"
"crypto/rand"
"math/big"
"testing"
)
func TestGFp2Invert(t *testing.T) {
pool := new(bnPool)
a := newGFp2(pool)
a.x.SetString("23423492374", 10)
a.y.SetString("12934872398472394827398470", 10)
inv := newGFp2(pool)
inv.Invert(a, pool)
b := newGFp2(pool).Mul(inv, a, pool)
if b.x.Int64() != 0 || b.y.Int64() != 1 {
t.Fatalf("bad result for a^-1*a: %s %s", b.x, b.y)
}
a.Put(pool)
b.Put(pool)
inv.Put(pool)
if c := pool.Count(); c > 0 {
t.Errorf("Pool count non-zero: %d\n", c)
}
}
func isZero(n *big.Int) bool {
return new(big.Int).Mod(n, P).Int64() == 0
}
func isOne(n *big.Int) bool {
return new(big.Int).Mod(n, P).Int64() == 1
}
func TestGFp6Invert(t *testing.T) {
pool := new(bnPool)
a := newGFp6(pool)
a.x.x.SetString("239487238491", 10)
a.x.y.SetString("2356249827341", 10)
a.y.x.SetString("082659782", 10)
a.y.y.SetString("182703523765", 10)
a.z.x.SetString("978236549263", 10)
a.z.y.SetString("64893242", 10)
inv := newGFp6(pool)
inv.Invert(a, pool)
b := newGFp6(pool).Mul(inv, a, pool)
if !isZero(b.x.x) ||
!isZero(b.x.y) ||
!isZero(b.y.x) ||
!isZero(b.y.y) ||
!isZero(b.z.x) ||
!isOne(b.z.y) {
t.Fatalf("bad result for a^-1*a: %s", b)
}
a.Put(pool)
b.Put(pool)
inv.Put(pool)
if c := pool.Count(); c > 0 {
t.Errorf("Pool count non-zero: %d\n", c)
}
}
func TestGFp12Invert(t *testing.T) {
pool := new(bnPool)
a := newGFp12(pool)
a.x.x.x.SetString("239846234862342323958623", 10)
a.x.x.y.SetString("2359862352529835623", 10)
a.x.y.x.SetString("928836523", 10)
a.x.y.y.SetString("9856234", 10)
a.x.z.x.SetString("235635286", 10)
a.x.z.y.SetString("5628392833", 10)
a.y.x.x.SetString("252936598265329856238956532167968", 10)
a.y.x.y.SetString("23596239865236954178968", 10)
a.y.y.x.SetString("95421692834", 10)
a.y.y.y.SetString("236548", 10)
a.y.z.x.SetString("924523", 10)
a.y.z.y.SetString("12954623", 10)
inv := newGFp12(pool)
inv.Invert(a, pool)
b := newGFp12(pool).Mul(inv, a, pool)
if !isZero(b.x.x.x) ||
!isZero(b.x.x.y) ||
!isZero(b.x.y.x) ||
!isZero(b.x.y.y) ||
!isZero(b.x.z.x) ||
!isZero(b.x.z.y) ||
!isZero(b.y.x.x) ||
!isZero(b.y.x.y) ||
!isZero(b.y.y.x) ||
!isZero(b.y.y.y) ||
!isZero(b.y.z.x) ||
!isOne(b.y.z.y) {
t.Fatalf("bad result for a^-1*a: %s", b)
}
a.Put(pool)
b.Put(pool)
inv.Put(pool)
if c := pool.Count(); c > 0 {
t.Errorf("Pool count non-zero: %d\n", c)
}
}
func TestCurveImpl(t *testing.T) {
pool := new(bnPool)
g := &curvePoint{
pool.Get().SetInt64(1),
pool.Get().SetInt64(-2),
pool.Get().SetInt64(1),
pool.Get().SetInt64(0),
}
x := pool.Get().SetInt64(32498273234)
X := newCurvePoint(pool).Mul(g, x, pool)
y := pool.Get().SetInt64(98732423523)
Y := newCurvePoint(pool).Mul(g, y, pool)
s1 := newCurvePoint(pool).Mul(X, y, pool).MakeAffine(pool)
s2 := newCurvePoint(pool).Mul(Y, x, pool).MakeAffine(pool)
if s1.x.Cmp(s2.x) != 0 ||
s2.x.Cmp(s1.x) != 0 {
t.Errorf("DH points don't match: (%s, %s) (%s, %s)", s1.x, s1.y, s2.x, s2.y)
}
pool.Put(x)
X.Put(pool)
pool.Put(y)
Y.Put(pool)
s1.Put(pool)
s2.Put(pool)
g.Put(pool)
if c := pool.Count(); c > 0 {
t.Errorf("Pool count non-zero: %d\n", c)
}
}
func TestOrderG1(t *testing.T) {
g := new(G1).ScalarBaseMult(Order)
if !g.p.IsInfinity() {
t.Error("G1 has incorrect order")
}
one := new(G1).ScalarBaseMult(new(big.Int).SetInt64(1))
g.Add(g, one)
g.p.MakeAffine(nil)
if g.p.x.Cmp(one.p.x) != 0 || g.p.y.Cmp(one.p.y) != 0 {
t.Errorf("1+0 != 1 in G1")
}
}
func TestOrderG2(t *testing.T) {
g := new(G2).ScalarBaseMult(Order)
if !g.p.IsInfinity() {
t.Error("G2 has incorrect order")
}
one := new(G2).ScalarBaseMult(new(big.Int).SetInt64(1))
g.Add(g, one)
g.p.MakeAffine(nil)
if g.p.x.x.Cmp(one.p.x.x) != 0 ||
g.p.x.y.Cmp(one.p.x.y) != 0 ||
g.p.y.x.Cmp(one.p.y.x) != 0 ||
g.p.y.y.Cmp(one.p.y.y) != 0 {
t.Errorf("1+0 != 1 in G2")
}
}
func TestOrderGT(t *testing.T) {
gt := Pair(&G1{curveGen}, &G2{twistGen})
g := new(GT).ScalarMult(gt, Order)
if !g.p.IsOne() {
t.Error("GT has incorrect order")
}
}
func TestBilinearity(t *testing.T) {
for i := 0; i < 2; i++ {
a, p1, _ := RandomG1(rand.Reader)
b, p2, _ := RandomG2(rand.Reader)
e1 := Pair(p1, p2)
e2 := Pair(&G1{curveGen}, &G2{twistGen})
e2.ScalarMult(e2, a)
e2.ScalarMult(e2, b)
minusE2 := new(GT).Neg(e2)
e1.Add(e1, minusE2)
if !e1.p.IsOne() {
t.Fatalf("bad pairing result: %s", e1)
}
}
}
func TestG1Marshal(t *testing.T) {
g := new(G1).ScalarBaseMult(new(big.Int).SetInt64(1))
form := g.Marshal()
_, ok := new(G1).Unmarshal(form)
if !ok {
t.Fatalf("failed to unmarshal")
}
g.ScalarBaseMult(Order)
form = g.Marshal()
g2, ok := new(G1).Unmarshal(form)
if !ok {
t.Fatalf("failed to unmarshal ∞")
}
if !g2.p.IsInfinity() {
t.Fatalf("∞ unmarshaled incorrectly")
}
}
func TestG2Marshal(t *testing.T) {
g := new(G2).ScalarBaseMult(new(big.Int).SetInt64(1))
form := g.Marshal()
_, ok := new(G2).Unmarshal(form)
if !ok {
t.Fatalf("failed to unmarshal")
}
g.ScalarBaseMult(Order)
form = g.Marshal()
g2, ok := new(G2).Unmarshal(form)
if !ok {
t.Fatalf("failed to unmarshal ∞")
}
if !g2.p.IsInfinity() {
t.Fatalf("∞ unmarshaled incorrectly")
}
}
func TestG1Identity(t *testing.T) {
g := new(G1).ScalarBaseMult(new(big.Int).SetInt64(0))
if !g.p.IsInfinity() {
t.Error("failure")
}
}
func TestG2Identity(t *testing.T) {
g := new(G2).ScalarBaseMult(new(big.Int).SetInt64(0))
if !g.p.IsInfinity() {
t.Error("failure")
}
}
func TestTripartiteDiffieHellman(t *testing.T) {
a, _ := rand.Int(rand.Reader, Order)
b, _ := rand.Int(rand.Reader, Order)
c, _ := rand.Int(rand.Reader, Order)
pa, _ := new(G1).Unmarshal(new(G1).ScalarBaseMult(a).Marshal())
qa, _ := new(G2).Unmarshal(new(G2).ScalarBaseMult(a).Marshal())
pb, _ := new(G1).Unmarshal(new(G1).ScalarBaseMult(b).Marshal())
qb, _ := new(G2).Unmarshal(new(G2).ScalarBaseMult(b).Marshal())
pc, _ := new(G1).Unmarshal(new(G1).ScalarBaseMult(c).Marshal())
qc, _ := new(G2).Unmarshal(new(G2).ScalarBaseMult(c).Marshal())
k1 := Pair(pb, qc)
k1.ScalarMult(k1, a)
k1Bytes := k1.Marshal()
k2 := Pair(pc, qa)
k2.ScalarMult(k2, b)
k2Bytes := k2.Marshal()
k3 := Pair(pa, qb)
k3.ScalarMult(k3, c)
k3Bytes := k3.Marshal()
if !bytes.Equal(k1Bytes, k2Bytes) || !bytes.Equal(k2Bytes, k3Bytes) {
t.Errorf("keys didn't agree")
}
}
func BenchmarkPairing(b *testing.B) {
for i := 0; i < b.N; i++ {
Pair(&G1{curveGen}, &G2{twistGen})
}
}

View File

@ -1,44 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
import (
"math/big"
)
func bigFromBase10(s string) *big.Int {
n, _ := new(big.Int).SetString(s, 10)
return n
}
// u is the BN parameter that determines the prime: 1868033³.
var u = bigFromBase10("4965661367192848881")
// p is a prime over which we form a basic field: 36u⁴+36u³+24u²+6u+1.
var P = bigFromBase10("21888242871839275222246405745257275088696311157297823662689037894645226208583")
// Order is the number of elements in both G₁ and G₂: 36u⁴+36u³+18u²+6u+1.
var Order = bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495617")
// xiToPMinus1Over6 is ξ^((p-1)/6) where ξ = i+9.
var xiToPMinus1Over6 = &gfP2{bigFromBase10("16469823323077808223889137241176536799009286646108169935659301613961712198316"), bigFromBase10("8376118865763821496583973867626364092589906065868298776909617916018768340080")}
// xiToPMinus1Over3 is ξ^((p-1)/3) where ξ = i+9.
var xiToPMinus1Over3 = &gfP2{bigFromBase10("10307601595873709700152284273816112264069230130616436755625194854815875713954"), bigFromBase10("21575463638280843010398324269430826099269044274347216827212613867836435027261")}
// xiToPMinus1Over2 is ξ^((p-1)/2) where ξ = i+9.
var xiToPMinus1Over2 = &gfP2{bigFromBase10("3505843767911556378687030309984248845540243509899259641013678093033130930403"), bigFromBase10("2821565182194536844548159561693502659359617185244120367078079554186484126554")}
// xiToPSquaredMinus1Over3 is ξ^((p²-1)/3) where ξ = i+9.
var xiToPSquaredMinus1Over3 = bigFromBase10("21888242871839275220042445260109153167277707414472061641714758635765020556616")
// xiTo2PSquaredMinus2Over3 is ξ^((2p²-2)/3) where ξ = i+9 (a cubic root of unity, mod p).
var xiTo2PSquaredMinus2Over3 = bigFromBase10("2203960485148121921418603742825762020974279258880205651966")
// xiToPSquaredMinus1Over6 is ξ^((1p²-1)/6) where ξ = i+9 (a cubic root of -1, mod p).
var xiToPSquaredMinus1Over6 = bigFromBase10("21888242871839275220042445260109153167277707414472061641714758635765020556617")
// xiTo2PMinus2Over3 is ξ^((2p-2)/3) where ξ = i+9.
var xiTo2PMinus2Over3 = &gfP2{bigFromBase10("19937756971775647987995932169929341994314640652964949448313374472400716661030"), bigFromBase10("2581911344467009335267311115468803099551665605076196740867805258568234346338")}

View File

@ -1,286 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
import (
"math/big"
)
// curvePoint implements the elliptic curve y²=x³+3. Points are kept in
// Jacobian form and t=z² when valid. G₁ is the set of points of this curve on
// GF(p).
type curvePoint struct {
x, y, z, t *big.Int
}
var curveB = new(big.Int).SetInt64(3)
// curveGen is the generator of G₁.
var curveGen = &curvePoint{
new(big.Int).SetInt64(1),
new(big.Int).SetInt64(-2),
new(big.Int).SetInt64(1),
new(big.Int).SetInt64(1),
}
func newCurvePoint(pool *bnPool) *curvePoint {
return &curvePoint{
pool.Get(),
pool.Get(),
pool.Get(),
pool.Get(),
}
}
func (c *curvePoint) String() string {
c.MakeAffine(new(bnPool))
return "(" + c.x.String() + ", " + c.y.String() + ")"
}
func (c *curvePoint) Put(pool *bnPool) {
pool.Put(c.x)
pool.Put(c.y)
pool.Put(c.z)
pool.Put(c.t)
}
func (c *curvePoint) Set(a *curvePoint) {
c.x.Set(a.x)
c.y.Set(a.y)
c.z.Set(a.z)
c.t.Set(a.t)
}
// IsOnCurve returns true iff c is on the curve where c must be in affine form.
func (c *curvePoint) IsOnCurve() bool {
yy := new(big.Int).Mul(c.y, c.y)
xxx := new(big.Int).Mul(c.x, c.x)
xxx.Mul(xxx, c.x)
yy.Sub(yy, xxx)
yy.Sub(yy, curveB)
if yy.Sign() < 0 || yy.Cmp(P) >= 0 {
yy.Mod(yy, P)
}
return yy.Sign() == 0
}
func (c *curvePoint) SetInfinity() {
c.z.SetInt64(0)
}
func (c *curvePoint) IsInfinity() bool {
return c.z.Sign() == 0
}
func (c *curvePoint) Add(a, b *curvePoint, pool *bnPool) {
if a.IsInfinity() {
c.Set(b)
return
}
if b.IsInfinity() {
c.Set(a)
return
}
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
// Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2]
// by [u1:s1:z1·z2] and [u2:s2:z1·z2]
// where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³
z1z1 := pool.Get().Mul(a.z, a.z)
z1z1.Mod(z1z1, P)
z2z2 := pool.Get().Mul(b.z, b.z)
z2z2.Mod(z2z2, P)
u1 := pool.Get().Mul(a.x, z2z2)
u1.Mod(u1, P)
u2 := pool.Get().Mul(b.x, z1z1)
u2.Mod(u2, P)
t := pool.Get().Mul(b.z, z2z2)
t.Mod(t, P)
s1 := pool.Get().Mul(a.y, t)
s1.Mod(s1, P)
t.Mul(a.z, z1z1)
t.Mod(t, P)
s2 := pool.Get().Mul(b.y, t)
s2.Mod(s2, P)
// Compute x = (2h)²(s²-u1-u2)
// where s = (s2-s1)/(u2-u1) is the slope of the line through
// (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below.
// This is also:
// 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1)
// = r² - j - 2v
// with the notations below.
h := pool.Get().Sub(u2, u1)
xEqual := h.Sign() == 0
t.Add(h, h)
// i = 4h²
i := pool.Get().Mul(t, t)
i.Mod(i, P)
// j = 4h³
j := pool.Get().Mul(h, i)
j.Mod(j, P)
t.Sub(s2, s1)
yEqual := t.Sign() == 0
if xEqual && yEqual {
c.Double(a, pool)
return
}
r := pool.Get().Add(t, t)
v := pool.Get().Mul(u1, i)
v.Mod(v, P)
// t4 = 4(s2-s1)²
t4 := pool.Get().Mul(r, r)
t4.Mod(t4, P)
t.Add(v, v)
t6 := pool.Get().Sub(t4, j)
c.x.Sub(t6, t)
// Set y = -(2h)³(s1 + s*(x/4h²-u1))
// This is also
// y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j
t.Sub(v, c.x) // t7
t4.Mul(s1, j) // t8
t4.Mod(t4, P)
t6.Add(t4, t4) // t9
t4.Mul(r, t) // t10
t4.Mod(t4, P)
c.y.Sub(t4, t6)
// Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2
t.Add(a.z, b.z) // t11
t4.Mul(t, t) // t12
t4.Mod(t4, P)
t.Sub(t4, z1z1) // t13
t4.Sub(t, z2z2) // t14
c.z.Mul(t4, h)
c.z.Mod(c.z, P)
pool.Put(z1z1)
pool.Put(z2z2)
pool.Put(u1)
pool.Put(u2)
pool.Put(t)
pool.Put(s1)
pool.Put(s2)
pool.Put(h)
pool.Put(i)
pool.Put(j)
pool.Put(r)
pool.Put(v)
pool.Put(t4)
pool.Put(t6)
}
func (c *curvePoint) Double(a *curvePoint, pool *bnPool) {
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
A := pool.Get().Mul(a.x, a.x)
A.Mod(A, P)
B := pool.Get().Mul(a.y, a.y)
B.Mod(B, P)
C_ := pool.Get().Mul(B, B)
C_.Mod(C_, P)
t := pool.Get().Add(a.x, B)
t2 := pool.Get().Mul(t, t)
t2.Mod(t2, P)
t.Sub(t2, A)
t2.Sub(t, C_)
d := pool.Get().Add(t2, t2)
t.Add(A, A)
e := pool.Get().Add(t, A)
f := pool.Get().Mul(e, e)
f.Mod(f, P)
t.Add(d, d)
c.x.Sub(f, t)
t.Add(C_, C_)
t2.Add(t, t)
t.Add(t2, t2)
c.y.Sub(d, c.x)
t2.Mul(e, c.y)
t2.Mod(t2, P)
c.y.Sub(t2, t)
t.Mul(a.y, a.z)
t.Mod(t, P)
c.z.Add(t, t)
pool.Put(A)
pool.Put(B)
pool.Put(C_)
pool.Put(t)
pool.Put(t2)
pool.Put(d)
pool.Put(e)
pool.Put(f)
}
func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int, pool *bnPool) *curvePoint {
sum := newCurvePoint(pool)
sum.SetInfinity()
t := newCurvePoint(pool)
for i := scalar.BitLen(); i >= 0; i-- {
t.Double(sum, pool)
if scalar.Bit(i) != 0 {
sum.Add(t, a, pool)
} else {
sum.Set(t)
}
}
c.Set(sum)
sum.Put(pool)
t.Put(pool)
return c
}
func (c *curvePoint) MakeAffine(pool *bnPool) *curvePoint {
if words := c.z.Bits(); len(words) == 1 && words[0] == 1 {
return c
}
if c.IsInfinity() {
c.x.SetInt64(0)
c.y.SetInt64(1)
c.z.SetInt64(0)
c.t.SetInt64(0)
return c
}
zInv := pool.Get().ModInverse(c.z, P)
t := pool.Get().Mul(c.y, zInv)
t.Mod(t, P)
zInv2 := pool.Get().Mul(zInv, zInv)
zInv2.Mod(zInv2, P)
c.y.Mul(t, zInv2)
c.y.Mod(c.y, P)
t.Mul(c.x, zInv2)
t.Mod(t, P)
c.x.Set(t)
c.z.SetInt64(1)
c.t.SetInt64(1)
pool.Put(zInv)
pool.Put(t)
pool.Put(zInv2)
return c
}
func (c *curvePoint) Negative(a *curvePoint) {
c.x.Set(a.x)
c.y.Neg(a.y)
c.z.Set(a.z)
c.t.SetInt64(0)
}

View File

@ -1,200 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
// For details of the algorithms used, see "Multiplication and Squaring on
// Pairing-Friendly Fields, Devegili et al.
// http://eprint.iacr.org/2006/471.pdf.
import (
"math/big"
)
// gfP12 implements the field of size p¹² as a quadratic extension of gfP6
// where ω²=τ.
type gfP12 struct {
x, y *gfP6 // value is xω + y
}
func newGFp12(pool *bnPool) *gfP12 {
return &gfP12{newGFp6(pool), newGFp6(pool)}
}
func (e *gfP12) String() string {
return "(" + e.x.String() + "," + e.y.String() + ")"
}
func (e *gfP12) Put(pool *bnPool) {
e.x.Put(pool)
e.y.Put(pool)
}
func (e *gfP12) Set(a *gfP12) *gfP12 {
e.x.Set(a.x)
e.y.Set(a.y)
return e
}
func (e *gfP12) SetZero() *gfP12 {
e.x.SetZero()
e.y.SetZero()
return e
}
func (e *gfP12) SetOne() *gfP12 {
e.x.SetZero()
e.y.SetOne()
return e
}
func (e *gfP12) Minimal() {
e.x.Minimal()
e.y.Minimal()
}
func (e *gfP12) IsZero() bool {
e.Minimal()
return e.x.IsZero() && e.y.IsZero()
}
func (e *gfP12) IsOne() bool {
e.Minimal()
return e.x.IsZero() && e.y.IsOne()
}
func (e *gfP12) Conjugate(a *gfP12) *gfP12 {
e.x.Negative(a.x)
e.y.Set(a.y)
return a
}
func (e *gfP12) Negative(a *gfP12) *gfP12 {
e.x.Negative(a.x)
e.y.Negative(a.y)
return e
}
// Frobenius computes (xω+y)^p = x^p ω·ξ^((p-1)/6) + y^p
func (e *gfP12) Frobenius(a *gfP12, pool *bnPool) *gfP12 {
e.x.Frobenius(a.x, pool)
e.y.Frobenius(a.y, pool)
e.x.MulScalar(e.x, xiToPMinus1Over6, pool)
return e
}
// FrobeniusP2 computes (xω+y)^p² = x^p² ω·ξ^((p²-1)/6) + y^p²
func (e *gfP12) FrobeniusP2(a *gfP12, pool *bnPool) *gfP12 {
e.x.FrobeniusP2(a.x)
e.x.MulGFP(e.x, xiToPSquaredMinus1Over6)
e.y.FrobeniusP2(a.y)
return e
}
func (e *gfP12) Add(a, b *gfP12) *gfP12 {
e.x.Add(a.x, b.x)
e.y.Add(a.y, b.y)
return e
}
func (e *gfP12) Sub(a, b *gfP12) *gfP12 {
e.x.Sub(a.x, b.x)
e.y.Sub(a.y, b.y)
return e
}
func (e *gfP12) Mul(a, b *gfP12, pool *bnPool) *gfP12 {
tx := newGFp6(pool)
tx.Mul(a.x, b.y, pool)
t := newGFp6(pool)
t.Mul(b.x, a.y, pool)
tx.Add(tx, t)
ty := newGFp6(pool)
ty.Mul(a.y, b.y, pool)
t.Mul(a.x, b.x, pool)
t.MulTau(t, pool)
e.y.Add(ty, t)
e.x.Set(tx)
tx.Put(pool)
ty.Put(pool)
t.Put(pool)
return e
}
func (e *gfP12) MulScalar(a *gfP12, b *gfP6, pool *bnPool) *gfP12 {
e.x.Mul(e.x, b, pool)
e.y.Mul(e.y, b, pool)
return e
}
func (c *gfP12) Exp(a *gfP12, power *big.Int, pool *bnPool) *gfP12 {
sum := newGFp12(pool)
sum.SetOne()
t := newGFp12(pool)
for i := power.BitLen() - 1; i >= 0; i-- {
t.Square(sum, pool)
if power.Bit(i) != 0 {
sum.Mul(t, a, pool)
} else {
sum.Set(t)
}
}
c.Set(sum)
sum.Put(pool)
t.Put(pool)
return c
}
func (e *gfP12) Square(a *gfP12, pool *bnPool) *gfP12 {
// Complex squaring algorithm
v0 := newGFp6(pool)
v0.Mul(a.x, a.y, pool)
t := newGFp6(pool)
t.MulTau(a.x, pool)
t.Add(a.y, t)
ty := newGFp6(pool)
ty.Add(a.x, a.y)
ty.Mul(ty, t, pool)
ty.Sub(ty, v0)
t.MulTau(v0, pool)
ty.Sub(ty, t)
e.y.Set(ty)
e.x.Double(v0)
v0.Put(pool)
t.Put(pool)
ty.Put(pool)
return e
}
func (e *gfP12) Invert(a *gfP12, pool *bnPool) *gfP12 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
t1 := newGFp6(pool)
t2 := newGFp6(pool)
t1.Square(a.x, pool)
t2.Square(a.y, pool)
t1.MulTau(t1, pool)
t1.Sub(t2, t1)
t2.Invert(t1, pool)
e.x.Negative(a.x)
e.y.Set(a.y)
e.MulScalar(e, t2, pool)
t1.Put(pool)
t2.Put(pool)
return e
}

View File

@ -1,227 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
// For details of the algorithms used, see "Multiplication and Squaring on
// Pairing-Friendly Fields, Devegili et al.
// http://eprint.iacr.org/2006/471.pdf.
import (
"math/big"
)
// gfP2 implements a field of size p² as a quadratic extension of the base
// field where i²=-1.
type gfP2 struct {
x, y *big.Int // value is xi+y.
}
func newGFp2(pool *bnPool) *gfP2 {
return &gfP2{pool.Get(), pool.Get()}
}
func (e *gfP2) String() string {
x := new(big.Int).Mod(e.x, P)
y := new(big.Int).Mod(e.y, P)
return "(" + x.String() + "," + y.String() + ")"
}
func (e *gfP2) Put(pool *bnPool) {
pool.Put(e.x)
pool.Put(e.y)
}
func (e *gfP2) Set(a *gfP2) *gfP2 {
e.x.Set(a.x)
e.y.Set(a.y)
return e
}
func (e *gfP2) SetZero() *gfP2 {
e.x.SetInt64(0)
e.y.SetInt64(0)
return e
}
func (e *gfP2) SetOne() *gfP2 {
e.x.SetInt64(0)
e.y.SetInt64(1)
return e
}
func (e *gfP2) Minimal() {
if e.x.Sign() < 0 || e.x.Cmp(P) >= 0 {
e.x.Mod(e.x, P)
}
if e.y.Sign() < 0 || e.y.Cmp(P) >= 0 {
e.y.Mod(e.y, P)
}
}
func (e *gfP2) IsZero() bool {
return e.x.Sign() == 0 && e.y.Sign() == 0
}
func (e *gfP2) IsOne() bool {
if e.x.Sign() != 0 {
return false
}
words := e.y.Bits()
return len(words) == 1 && words[0] == 1
}
func (e *gfP2) Conjugate(a *gfP2) *gfP2 {
e.y.Set(a.y)
e.x.Neg(a.x)
return e
}
func (e *gfP2) Negative(a *gfP2) *gfP2 {
e.x.Neg(a.x)
e.y.Neg(a.y)
return e
}
func (e *gfP2) Add(a, b *gfP2) *gfP2 {
e.x.Add(a.x, b.x)
e.y.Add(a.y, b.y)
return e
}
func (e *gfP2) Sub(a, b *gfP2) *gfP2 {
e.x.Sub(a.x, b.x)
e.y.Sub(a.y, b.y)
return e
}
func (e *gfP2) Double(a *gfP2) *gfP2 {
e.x.Lsh(a.x, 1)
e.y.Lsh(a.y, 1)
return e
}
func (c *gfP2) Exp(a *gfP2, power *big.Int, pool *bnPool) *gfP2 {
sum := newGFp2(pool)
sum.SetOne()
t := newGFp2(pool)
for i := power.BitLen() - 1; i >= 0; i-- {
t.Square(sum, pool)
if power.Bit(i) != 0 {
sum.Mul(t, a, pool)
} else {
sum.Set(t)
}
}
c.Set(sum)
sum.Put(pool)
t.Put(pool)
return c
}
// See "Multiplication and Squaring in Pairing-Friendly Fields",
// http://eprint.iacr.org/2006/471.pdf
func (e *gfP2) Mul(a, b *gfP2, pool *bnPool) *gfP2 {
tx := pool.Get().Mul(a.x, b.y)
t := pool.Get().Mul(b.x, a.y)
tx.Add(tx, t)
tx.Mod(tx, P)
ty := pool.Get().Mul(a.y, b.y)
t.Mul(a.x, b.x)
ty.Sub(ty, t)
e.y.Mod(ty, P)
e.x.Set(tx)
pool.Put(tx)
pool.Put(ty)
pool.Put(t)
return e
}
func (e *gfP2) MulScalar(a *gfP2, b *big.Int) *gfP2 {
e.x.Mul(a.x, b)
e.y.Mul(a.y, b)
return e
}
// MulXi sets e=ξa where ξ=i+9 and then returns e.
func (e *gfP2) MulXi(a *gfP2, pool *bnPool) *gfP2 {
// (xi+y)(i+3) = (9x+y)i+(9y-x)
tx := pool.Get().Lsh(a.x, 3)
tx.Add(tx, a.x)
tx.Add(tx, a.y)
ty := pool.Get().Lsh(a.y, 3)
ty.Add(ty, a.y)
ty.Sub(ty, a.x)
e.x.Set(tx)
e.y.Set(ty)
pool.Put(tx)
pool.Put(ty)
return e
}
func (e *gfP2) Square(a *gfP2, pool *bnPool) *gfP2 {
// Complex squaring algorithm:
// (xi+b)² = (x+y)(y-x) + 2*i*x*y
t1 := pool.Get().Sub(a.y, a.x)
t2 := pool.Get().Add(a.x, a.y)
ty := pool.Get().Mul(t1, t2)
ty.Mod(ty, P)
t1.Mul(a.x, a.y)
t1.Lsh(t1, 1)
e.x.Mod(t1, P)
e.y.Set(ty)
pool.Put(t1)
pool.Put(t2)
pool.Put(ty)
return e
}
func (e *gfP2) Invert(a *gfP2, pool *bnPool) *gfP2 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
t := pool.Get()
t.Mul(a.y, a.y)
t2 := pool.Get()
t2.Mul(a.x, a.x)
t.Add(t, t2)
inv := pool.Get()
inv.ModInverse(t, P)
e.x.Neg(a.x)
e.x.Mul(e.x, inv)
e.x.Mod(e.x, P)
e.y.Mul(a.y, inv)
e.y.Mod(e.y, P)
pool.Put(t)
pool.Put(t2)
pool.Put(inv)
return e
}
func (e *gfP2) Real() *big.Int {
return e.x
}
func (e *gfP2) Imag() *big.Int {
return e.y
}

View File

@ -1,296 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
// For details of the algorithms used, see "Multiplication and Squaring on
// Pairing-Friendly Fields, Devegili et al.
// http://eprint.iacr.org/2006/471.pdf.
import (
"math/big"
)
// gfP6 implements the field of size p⁶ as a cubic extension of gfP2 where τ³=ξ
// and ξ=i+9.
type gfP6 struct {
x, y, z *gfP2 // value is xτ² + yτ + z
}
func newGFp6(pool *bnPool) *gfP6 {
return &gfP6{newGFp2(pool), newGFp2(pool), newGFp2(pool)}
}
func (e *gfP6) String() string {
return "(" + e.x.String() + "," + e.y.String() + "," + e.z.String() + ")"
}
func (e *gfP6) Put(pool *bnPool) {
e.x.Put(pool)
e.y.Put(pool)
e.z.Put(pool)
}
func (e *gfP6) Set(a *gfP6) *gfP6 {
e.x.Set(a.x)
e.y.Set(a.y)
e.z.Set(a.z)
return e
}
func (e *gfP6) SetZero() *gfP6 {
e.x.SetZero()
e.y.SetZero()
e.z.SetZero()
return e
}
func (e *gfP6) SetOne() *gfP6 {
e.x.SetZero()
e.y.SetZero()
e.z.SetOne()
return e
}
func (e *gfP6) Minimal() {
e.x.Minimal()
e.y.Minimal()
e.z.Minimal()
}
func (e *gfP6) IsZero() bool {
return e.x.IsZero() && e.y.IsZero() && e.z.IsZero()
}
func (e *gfP6) IsOne() bool {
return e.x.IsZero() && e.y.IsZero() && e.z.IsOne()
}
func (e *gfP6) Negative(a *gfP6) *gfP6 {
e.x.Negative(a.x)
e.y.Negative(a.y)
e.z.Negative(a.z)
return e
}
func (e *gfP6) Frobenius(a *gfP6, pool *bnPool) *gfP6 {
e.x.Conjugate(a.x)
e.y.Conjugate(a.y)
e.z.Conjugate(a.z)
e.x.Mul(e.x, xiTo2PMinus2Over3, pool)
e.y.Mul(e.y, xiToPMinus1Over3, pool)
return e
}
// FrobeniusP2 computes (xτ²+yτ+z)^(p²) = xτ^(2p²) + yτ^(p²) + z
func (e *gfP6) FrobeniusP2(a *gfP6) *gfP6 {
// τ^(2p²) = τ²τ^(2p²-2) = τ²ξ^((2p²-2)/3)
e.x.MulScalar(a.x, xiTo2PSquaredMinus2Over3)
// τ^(p²) = ττ^(p²-1) = τξ^((p²-1)/3)
e.y.MulScalar(a.y, xiToPSquaredMinus1Over3)
e.z.Set(a.z)
return e
}
func (e *gfP6) Add(a, b *gfP6) *gfP6 {
e.x.Add(a.x, b.x)
e.y.Add(a.y, b.y)
e.z.Add(a.z, b.z)
return e
}
func (e *gfP6) Sub(a, b *gfP6) *gfP6 {
e.x.Sub(a.x, b.x)
e.y.Sub(a.y, b.y)
e.z.Sub(a.z, b.z)
return e
}
func (e *gfP6) Double(a *gfP6) *gfP6 {
e.x.Double(a.x)
e.y.Double(a.y)
e.z.Double(a.z)
return e
}
func (e *gfP6) Mul(a, b *gfP6, pool *bnPool) *gfP6 {
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Section 4, Karatsuba method.
// http://eprint.iacr.org/2006/471.pdf
v0 := newGFp2(pool)
v0.Mul(a.z, b.z, pool)
v1 := newGFp2(pool)
v1.Mul(a.y, b.y, pool)
v2 := newGFp2(pool)
v2.Mul(a.x, b.x, pool)
t0 := newGFp2(pool)
t0.Add(a.x, a.y)
t1 := newGFp2(pool)
t1.Add(b.x, b.y)
tz := newGFp2(pool)
tz.Mul(t0, t1, pool)
tz.Sub(tz, v1)
tz.Sub(tz, v2)
tz.MulXi(tz, pool)
tz.Add(tz, v0)
t0.Add(a.y, a.z)
t1.Add(b.y, b.z)
ty := newGFp2(pool)
ty.Mul(t0, t1, pool)
ty.Sub(ty, v0)
ty.Sub(ty, v1)
t0.MulXi(v2, pool)
ty.Add(ty, t0)
t0.Add(a.x, a.z)
t1.Add(b.x, b.z)
tx := newGFp2(pool)
tx.Mul(t0, t1, pool)
tx.Sub(tx, v0)
tx.Add(tx, v1)
tx.Sub(tx, v2)
e.x.Set(tx)
e.y.Set(ty)
e.z.Set(tz)
t0.Put(pool)
t1.Put(pool)
tx.Put(pool)
ty.Put(pool)
tz.Put(pool)
v0.Put(pool)
v1.Put(pool)
v2.Put(pool)
return e
}
func (e *gfP6) MulScalar(a *gfP6, b *gfP2, pool *bnPool) *gfP6 {
e.x.Mul(a.x, b, pool)
e.y.Mul(a.y, b, pool)
e.z.Mul(a.z, b, pool)
return e
}
func (e *gfP6) MulGFP(a *gfP6, b *big.Int) *gfP6 {
e.x.MulScalar(a.x, b)
e.y.MulScalar(a.y, b)
e.z.MulScalar(a.z, b)
return e
}
// MulTau computes τ·(aτ²+bτ+c) = bτ²+cτ+aξ
func (e *gfP6) MulTau(a *gfP6, pool *bnPool) {
tz := newGFp2(pool)
tz.MulXi(a.x, pool)
ty := newGFp2(pool)
ty.Set(a.y)
e.y.Set(a.z)
e.x.Set(ty)
e.z.Set(tz)
tz.Put(pool)
ty.Put(pool)
}
func (e *gfP6) Square(a *gfP6, pool *bnPool) *gfP6 {
v0 := newGFp2(pool).Square(a.z, pool)
v1 := newGFp2(pool).Square(a.y, pool)
v2 := newGFp2(pool).Square(a.x, pool)
c0 := newGFp2(pool).Add(a.x, a.y)
c0.Square(c0, pool)
c0.Sub(c0, v1)
c0.Sub(c0, v2)
c0.MulXi(c0, pool)
c0.Add(c0, v0)
c1 := newGFp2(pool).Add(a.y, a.z)
c1.Square(c1, pool)
c1.Sub(c1, v0)
c1.Sub(c1, v1)
xiV2 := newGFp2(pool).MulXi(v2, pool)
c1.Add(c1, xiV2)
c2 := newGFp2(pool).Add(a.x, a.z)
c2.Square(c2, pool)
c2.Sub(c2, v0)
c2.Add(c2, v1)
c2.Sub(c2, v2)
e.x.Set(c2)
e.y.Set(c1)
e.z.Set(c0)
v0.Put(pool)
v1.Put(pool)
v2.Put(pool)
c0.Put(pool)
c1.Put(pool)
c2.Put(pool)
xiV2.Put(pool)
return e
}
func (e *gfP6) Invert(a *gfP6, pool *bnPool) *gfP6 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
// Here we can give a short explanation of how it works: let j be a cubic root of
// unity in GF(p²) so that 1+j+j²=0.
// Then (xτ² + yτ + z)(xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
// = (xτ² + yτ + z)(Cτ²+Bτ+A)
// = (x³ξ²+y³ξ+z³-3ξxyz) = F is an element of the base field (the norm).
//
// On the other hand (xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
// = τ²(y²-ξxz) + τ(ξx²-yz) + (z²-ξxy)
//
// So that's why A = (z²-ξxy), B = (ξx²-yz), C = (y²-ξxz)
t1 := newGFp2(pool)
A := newGFp2(pool)
A.Square(a.z, pool)
t1.Mul(a.x, a.y, pool)
t1.MulXi(t1, pool)
A.Sub(A, t1)
B := newGFp2(pool)
B.Square(a.x, pool)
B.MulXi(B, pool)
t1.Mul(a.y, a.z, pool)
B.Sub(B, t1)
C_ := newGFp2(pool)
C_.Square(a.y, pool)
t1.Mul(a.x, a.z, pool)
C_.Sub(C_, t1)
F := newGFp2(pool)
F.Mul(C_, a.y, pool)
F.MulXi(F, pool)
t1.Mul(A, a.z, pool)
F.Add(F, t1)
t1.Mul(B, a.x, pool)
t1.MulXi(t1, pool)
F.Add(F, t1)
F.Invert(F, pool)
e.x.Mul(C_, F, pool)
e.y.Mul(B, F, pool)
e.z.Mul(A, F, pool)
t1.Put(pool)
A.Put(pool)
B.Put(pool)
C_.Put(pool)
F.Put(pool)
return e
}

View File

@ -1,71 +0,0 @@
package bn256
import (
"testing"
"crypto/rand"
)
func TestRandomG2Marshal(t *testing.T) {
for i := 0; i < 10; i++ {
n, g2, err := RandomG2(rand.Reader)
if err != nil {
t.Error(err)
continue
}
t.Logf("%d: %x\n", n, g2.Marshal())
}
}
func TestPairings(t *testing.T) {
a1 := new(G1).ScalarBaseMult(bigFromBase10("1"))
a2 := new(G1).ScalarBaseMult(bigFromBase10("2"))
a37 := new(G1).ScalarBaseMult(bigFromBase10("37"))
an1 := new(G1).ScalarBaseMult(bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495616"))
b0 := new(G2).ScalarBaseMult(bigFromBase10("0"))
b1 := new(G2).ScalarBaseMult(bigFromBase10("1"))
b2 := new(G2).ScalarBaseMult(bigFromBase10("2"))
b27 := new(G2).ScalarBaseMult(bigFromBase10("27"))
b999 := new(G2).ScalarBaseMult(bigFromBase10("999"))
bn1 := new(G2).ScalarBaseMult(bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495616"))
p1 := Pair(a1, b1)
pn1 := Pair(a1, bn1)
np1 := Pair(an1, b1)
if pn1.String() != np1.String() {
t.Error("Pairing mismatch: e(a, -b) != e(-a, b)")
}
if !PairingCheck([]*G1{a1, an1}, []*G2{b1, b1}) {
t.Error("MultiAte check gave false negative!")
}
p0 := new(GT).Add(p1, pn1)
p0_2 := Pair(a1, b0)
if p0.String() != p0_2.String() {
t.Error("Pairing mismatch: e(a, b) * e(a, -b) != 1")
}
p0_3 := new(GT).ScalarMult(p1, bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495617"))
if p0.String() != p0_3.String() {
t.Error("Pairing mismatch: e(a, b) has wrong order")
}
p2 := Pair(a2, b1)
p2_2 := Pair(a1, b2)
p2_3 := new(GT).ScalarMult(p1, bigFromBase10("2"))
if p2.String() != p2_2.String() {
t.Error("Pairing mismatch: e(a, b * 2) != e(a * 2, b)")
}
if p2.String() != p2_3.String() {
t.Error("Pairing mismatch: e(a, b * 2) != e(a, b) ** 2")
}
if p2.String() == p1.String() {
t.Error("Pairing is degenerate!")
}
if PairingCheck([]*G1{a1, a1}, []*G2{b1, b1}) {
t.Error("MultiAte check gave false positive!")
}
p999 := Pair(a37, b27)
p999_2 := Pair(a1, b999)
if p999.String() != p999_2.String() {
t.Error("Pairing mismatch: e(a * 37, b * 27) != e(a, b * 999)")
}
}

View File

@ -1,397 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
func lineFunctionAdd(r, p *twistPoint, q *curvePoint, r2 *gfP2, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) {
// See the mixed addition algorithm from "Faster Computation of the
// Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
B := newGFp2(pool).Mul(p.x, r.t, pool)
D := newGFp2(pool).Add(p.y, r.z)
D.Square(D, pool)
D.Sub(D, r2)
D.Sub(D, r.t)
D.Mul(D, r.t, pool)
H := newGFp2(pool).Sub(B, r.x)
I := newGFp2(pool).Square(H, pool)
E := newGFp2(pool).Add(I, I)
E.Add(E, E)
J := newGFp2(pool).Mul(H, E, pool)
L1 := newGFp2(pool).Sub(D, r.y)
L1.Sub(L1, r.y)
V := newGFp2(pool).Mul(r.x, E, pool)
rOut = newTwistPoint(pool)
rOut.x.Square(L1, pool)
rOut.x.Sub(rOut.x, J)
rOut.x.Sub(rOut.x, V)
rOut.x.Sub(rOut.x, V)
rOut.z.Add(r.z, H)
rOut.z.Square(rOut.z, pool)
rOut.z.Sub(rOut.z, r.t)
rOut.z.Sub(rOut.z, I)
t := newGFp2(pool).Sub(V, rOut.x)
t.Mul(t, L1, pool)
t2 := newGFp2(pool).Mul(r.y, J, pool)
t2.Add(t2, t2)
rOut.y.Sub(t, t2)
rOut.t.Square(rOut.z, pool)
t.Add(p.y, rOut.z)
t.Square(t, pool)
t.Sub(t, r2)
t.Sub(t, rOut.t)
t2.Mul(L1, p.x, pool)
t2.Add(t2, t2)
a = newGFp2(pool)
a.Sub(t2, t)
c = newGFp2(pool)
c.MulScalar(rOut.z, q.y)
c.Add(c, c)
b = newGFp2(pool)
b.SetZero()
b.Sub(b, L1)
b.MulScalar(b, q.x)
b.Add(b, b)
B.Put(pool)
D.Put(pool)
H.Put(pool)
I.Put(pool)
E.Put(pool)
J.Put(pool)
L1.Put(pool)
V.Put(pool)
t.Put(pool)
t2.Put(pool)
return
}
func lineFunctionDouble(r *twistPoint, q *curvePoint, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) {
// See the doubling algorithm for a=0 from "Faster Computation of the
// Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
A := newGFp2(pool).Square(r.x, pool)
B := newGFp2(pool).Square(r.y, pool)
C_ := newGFp2(pool).Square(B, pool)
D := newGFp2(pool).Add(r.x, B)
D.Square(D, pool)
D.Sub(D, A)
D.Sub(D, C_)
D.Add(D, D)
E := newGFp2(pool).Add(A, A)
E.Add(E, A)
G := newGFp2(pool).Square(E, pool)
rOut = newTwistPoint(pool)
rOut.x.Sub(G, D)
rOut.x.Sub(rOut.x, D)
rOut.z.Add(r.y, r.z)
rOut.z.Square(rOut.z, pool)
rOut.z.Sub(rOut.z, B)
rOut.z.Sub(rOut.z, r.t)
rOut.y.Sub(D, rOut.x)
rOut.y.Mul(rOut.y, E, pool)
t := newGFp2(pool).Add(C_, C_)
t.Add(t, t)
t.Add(t, t)
rOut.y.Sub(rOut.y, t)
rOut.t.Square(rOut.z, pool)
t.Mul(E, r.t, pool)
t.Add(t, t)
b = newGFp2(pool)
b.SetZero()
b.Sub(b, t)
b.MulScalar(b, q.x)
a = newGFp2(pool)
a.Add(r.x, E)
a.Square(a, pool)
a.Sub(a, A)
a.Sub(a, G)
t.Add(B, B)
t.Add(t, t)
a.Sub(a, t)
c = newGFp2(pool)
c.Mul(rOut.z, r.t, pool)
c.Add(c, c)
c.MulScalar(c, q.y)
A.Put(pool)
B.Put(pool)
C_.Put(pool)
D.Put(pool)
E.Put(pool)
G.Put(pool)
t.Put(pool)
return
}
func mulLine(ret *gfP12, a, b, c *gfP2, pool *bnPool) {
a2 := newGFp6(pool)
a2.x.SetZero()
a2.y.Set(a)
a2.z.Set(b)
a2.Mul(a2, ret.x, pool)
t3 := newGFp6(pool).MulScalar(ret.y, c, pool)
t := newGFp2(pool)
t.Add(b, c)
t2 := newGFp6(pool)
t2.x.SetZero()
t2.y.Set(a)
t2.z.Set(t)
ret.x.Add(ret.x, ret.y)
ret.y.Set(t3)
ret.x.Mul(ret.x, t2, pool)
ret.x.Sub(ret.x, a2)
ret.x.Sub(ret.x, ret.y)
a2.MulTau(a2, pool)
ret.y.Add(ret.y, a2)
a2.Put(pool)
t3.Put(pool)
t2.Put(pool)
t.Put(pool)
}
// sixuPlus2NAF is 6u+2 in non-adjacent form.
var sixuPlus2NAF = []int8{0, 0, 0, 1, 0, 1, 0, -1, 0, 0, 1, -1, 0, 0, 1, 0,
0, 1, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 0, 0, 1, 1,
1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1,
1, 0, 0, -1, 0, 0, 0, 1, 1, 0, -1, 0, 0, 1, 0, 1, 1}
// miller implements the Miller loop for calculating the Optimal Ate pairing.
// See algorithm 1 from http://cryptojedi.org/papers/dclxvi-20100714.pdf
func miller(q *twistPoint, p *curvePoint, pool *bnPool) *gfP12 {
ret := newGFp12(pool)
ret.SetOne()
aAffine := newTwistPoint(pool)
aAffine.Set(q)
aAffine.MakeAffine(pool)
bAffine := newCurvePoint(pool)
bAffine.Set(p)
bAffine.MakeAffine(pool)
minusA := newTwistPoint(pool)
minusA.Negative(aAffine, pool)
r := newTwistPoint(pool)
r.Set(aAffine)
r2 := newGFp2(pool)
r2.Square(aAffine.y, pool)
for i := len(sixuPlus2NAF) - 1; i > 0; i-- {
a, b, c, newR := lineFunctionDouble(r, bAffine, pool)
if i != len(sixuPlus2NAF)-1 {
ret.Square(ret, pool)
}
mulLine(ret, a, b, c, pool)
a.Put(pool)
b.Put(pool)
c.Put(pool)
r.Put(pool)
r = newR
switch sixuPlus2NAF[i-1] {
case 1:
a, b, c, newR = lineFunctionAdd(r, aAffine, bAffine, r2, pool)
case -1:
a, b, c, newR = lineFunctionAdd(r, minusA, bAffine, r2, pool)
default:
continue
}
mulLine(ret, a, b, c, pool)
a.Put(pool)
b.Put(pool)
c.Put(pool)
r.Put(pool)
r = newR
}
// In order to calculate Q1 we have to convert q from the sextic twist
// to the full GF(p^12) group, apply the Frobenius there, and convert
// back.
//
// The twist isomorphism is (x', y') -> (xω², yω³). If we consider just
// x for a moment, then after applying the Frobenius, we have x̄ω^(2p)
// where x̄ is the conjugate of x. If we are going to apply the inverse
// isomorphism we need a value with a single coefficient of ω² so we
// rewrite this as x̄ω^(2p-2)ω². ξ⁶ = ω and, due to the construction of
// p, 2p-2 is a multiple of six. Therefore we can rewrite as
// x̄ξ^((p-1)/3)ω² and applying the inverse isomorphism eliminates the
// ω².
//
// A similar argument can be made for the y value.
q1 := newTwistPoint(pool)
q1.x.Conjugate(aAffine.x)
q1.x.Mul(q1.x, xiToPMinus1Over3, pool)
q1.y.Conjugate(aAffine.y)
q1.y.Mul(q1.y, xiToPMinus1Over2, pool)
q1.z.SetOne()
q1.t.SetOne()
// For Q2 we are applying the p² Frobenius. The two conjugations cancel
// out and we are left only with the factors from the isomorphism. In
// the case of x, we end up with a pure number which is why
// xiToPSquaredMinus1Over3 is ∈ GF(p). With y we get a factor of -1. We
// ignore this to end up with -Q2.
minusQ2 := newTwistPoint(pool)
minusQ2.x.MulScalar(aAffine.x, xiToPSquaredMinus1Over3)
minusQ2.y.Set(aAffine.y)
minusQ2.z.SetOne()
minusQ2.t.SetOne()
r2.Square(q1.y, pool)
a, b, c, newR := lineFunctionAdd(r, q1, bAffine, r2, pool)
mulLine(ret, a, b, c, pool)
a.Put(pool)
b.Put(pool)
c.Put(pool)
r.Put(pool)
r = newR
r2.Square(minusQ2.y, pool)
a, b, c, newR = lineFunctionAdd(r, minusQ2, bAffine, r2, pool)
mulLine(ret, a, b, c, pool)
a.Put(pool)
b.Put(pool)
c.Put(pool)
r.Put(pool)
r = newR
aAffine.Put(pool)
bAffine.Put(pool)
minusA.Put(pool)
r.Put(pool)
r2.Put(pool)
return ret
}
// finalExponentiation computes the (p¹²-1)/Order-th power of an element of
// GF(p¹²) to obtain an element of GT (steps 13-15 of algorithm 1 from
// http://cryptojedi.org/papers/dclxvi-20100714.pdf)
func finalExponentiation(in *gfP12, pool *bnPool) *gfP12 {
t1 := newGFp12(pool)
// This is the p^6-Frobenius
t1.x.Negative(in.x)
t1.y.Set(in.y)
inv := newGFp12(pool)
inv.Invert(in, pool)
t1.Mul(t1, inv, pool)
t2 := newGFp12(pool).FrobeniusP2(t1, pool)
t1.Mul(t1, t2, pool)
fp := newGFp12(pool).Frobenius(t1, pool)
fp2 := newGFp12(pool).FrobeniusP2(t1, pool)
fp3 := newGFp12(pool).Frobenius(fp2, pool)
fu, fu2, fu3 := newGFp12(pool), newGFp12(pool), newGFp12(pool)
fu.Exp(t1, u, pool)
fu2.Exp(fu, u, pool)
fu3.Exp(fu2, u, pool)
y3 := newGFp12(pool).Frobenius(fu, pool)
fu2p := newGFp12(pool).Frobenius(fu2, pool)
fu3p := newGFp12(pool).Frobenius(fu3, pool)
y2 := newGFp12(pool).FrobeniusP2(fu2, pool)
y0 := newGFp12(pool)
y0.Mul(fp, fp2, pool)
y0.Mul(y0, fp3, pool)
y1, y4, y5 := newGFp12(pool), newGFp12(pool), newGFp12(pool)
y1.Conjugate(t1)
y5.Conjugate(fu2)
y3.Conjugate(y3)
y4.Mul(fu, fu2p, pool)
y4.Conjugate(y4)
y6 := newGFp12(pool)
y6.Mul(fu3, fu3p, pool)
y6.Conjugate(y6)
t0 := newGFp12(pool)
t0.Square(y6, pool)
t0.Mul(t0, y4, pool)
t0.Mul(t0, y5, pool)
t1.Mul(y3, y5, pool)
t1.Mul(t1, t0, pool)
t0.Mul(t0, y2, pool)
t1.Square(t1, pool)
t1.Mul(t1, t0, pool)
t1.Square(t1, pool)
t0.Mul(t1, y1, pool)
t1.Mul(t1, y0, pool)
t0.Square(t0, pool)
t0.Mul(t0, t1, pool)
inv.Put(pool)
t1.Put(pool)
t2.Put(pool)
fp.Put(pool)
fp2.Put(pool)
fp3.Put(pool)
fu.Put(pool)
fu2.Put(pool)
fu3.Put(pool)
fu2p.Put(pool)
fu3p.Put(pool)
y0.Put(pool)
y1.Put(pool)
y2.Put(pool)
y3.Put(pool)
y4.Put(pool)
y5.Put(pool)
y6.Put(pool)
return t0
}
func optimalAte(a *twistPoint, b *curvePoint, pool *bnPool) *gfP12 {
e := miller(a, b, pool)
ret := finalExponentiation(e, pool)
e.Put(pool)
if a.IsInfinity() || b.IsInfinity() {
ret.SetOne()
}
return ret
}

View File

@ -1,249 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
import (
"math/big"
)
// twistPoint implements the elliptic curve y²=x³+3/ξ over GF(p²). Points are
// kept in Jacobian form and t=z² when valid. The group G₂ is the set of
// n-torsion points of this curve over GF(p²) (where n = Order)
type twistPoint struct {
x, y, z, t *gfP2
}
var twistB = &gfP2{
bigFromBase10("266929791119991161246907387137283842545076965332900288569378510910307636690"),
bigFromBase10("19485874751759354771024239261021720505790618469301721065564631296452457478373"),
}
// twistGen is the generator of group G₂.
var twistGen = &twistPoint{
&gfP2{
bigFromBase10("11559732032986387107991004021392285783925812861821192530917403151452391805634"),
bigFromBase10("10857046999023057135944570762232829481370756359578518086990519993285655852781"),
},
&gfP2{
bigFromBase10("4082367875863433681332203403145435568316851327593401208105741076214120093531"),
bigFromBase10("8495653923123431417604973247489272438418190587263600148770280649306958101930"),
},
&gfP2{
bigFromBase10("0"),
bigFromBase10("1"),
},
&gfP2{
bigFromBase10("0"),
bigFromBase10("1"),
},
}
func newTwistPoint(pool *bnPool) *twistPoint {
return &twistPoint{
newGFp2(pool),
newGFp2(pool),
newGFp2(pool),
newGFp2(pool),
}
}
func (c *twistPoint) String() string {
return "(" + c.x.String() + ", " + c.y.String() + ", " + c.z.String() + ")"
}
func (c *twistPoint) Put(pool *bnPool) {
c.x.Put(pool)
c.y.Put(pool)
c.z.Put(pool)
c.t.Put(pool)
}
func (c *twistPoint) Set(a *twistPoint) {
c.x.Set(a.x)
c.y.Set(a.y)
c.z.Set(a.z)
c.t.Set(a.t)
}
// IsOnCurve returns true iff c is on the curve where c must be in affine form.
func (c *twistPoint) IsOnCurve() bool {
pool := new(bnPool)
yy := newGFp2(pool).Square(c.y, pool)
xxx := newGFp2(pool).Square(c.x, pool)
xxx.Mul(xxx, c.x, pool)
yy.Sub(yy, xxx)
yy.Sub(yy, twistB)
yy.Minimal()
return yy.x.Sign() == 0 && yy.y.Sign() == 0
}
func (c *twistPoint) SetInfinity() {
c.z.SetZero()
}
func (c *twistPoint) IsInfinity() bool {
return c.z.IsZero()
}
func (c *twistPoint) Add(a, b *twistPoint, pool *bnPool) {
// For additional comments, see the same function in curve.go.
if a.IsInfinity() {
c.Set(b)
return
}
if b.IsInfinity() {
c.Set(a)
return
}
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
z1z1 := newGFp2(pool).Square(a.z, pool)
z2z2 := newGFp2(pool).Square(b.z, pool)
u1 := newGFp2(pool).Mul(a.x, z2z2, pool)
u2 := newGFp2(pool).Mul(b.x, z1z1, pool)
t := newGFp2(pool).Mul(b.z, z2z2, pool)
s1 := newGFp2(pool).Mul(a.y, t, pool)
t.Mul(a.z, z1z1, pool)
s2 := newGFp2(pool).Mul(b.y, t, pool)
h := newGFp2(pool).Sub(u2, u1)
xEqual := h.IsZero()
t.Add(h, h)
i := newGFp2(pool).Square(t, pool)
j := newGFp2(pool).Mul(h, i, pool)
t.Sub(s2, s1)
yEqual := t.IsZero()
if xEqual && yEqual {
c.Double(a, pool)
return
}
r := newGFp2(pool).Add(t, t)
v := newGFp2(pool).Mul(u1, i, pool)
t4 := newGFp2(pool).Square(r, pool)
t.Add(v, v)
t6 := newGFp2(pool).Sub(t4, j)
c.x.Sub(t6, t)
t.Sub(v, c.x) // t7
t4.Mul(s1, j, pool) // t8
t6.Add(t4, t4) // t9
t4.Mul(r, t, pool) // t10
c.y.Sub(t4, t6)
t.Add(a.z, b.z) // t11
t4.Square(t, pool) // t12
t.Sub(t4, z1z1) // t13
t4.Sub(t, z2z2) // t14
c.z.Mul(t4, h, pool)
z1z1.Put(pool)
z2z2.Put(pool)
u1.Put(pool)
u2.Put(pool)
t.Put(pool)
s1.Put(pool)
s2.Put(pool)
h.Put(pool)
i.Put(pool)
j.Put(pool)
r.Put(pool)
v.Put(pool)
t4.Put(pool)
t6.Put(pool)
}
func (c *twistPoint) Double(a *twistPoint, pool *bnPool) {
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
A := newGFp2(pool).Square(a.x, pool)
B := newGFp2(pool).Square(a.y, pool)
C_ := newGFp2(pool).Square(B, pool)
t := newGFp2(pool).Add(a.x, B)
t2 := newGFp2(pool).Square(t, pool)
t.Sub(t2, A)
t2.Sub(t, C_)
d := newGFp2(pool).Add(t2, t2)
t.Add(A, A)
e := newGFp2(pool).Add(t, A)
f := newGFp2(pool).Square(e, pool)
t.Add(d, d)
c.x.Sub(f, t)
t.Add(C_, C_)
t2.Add(t, t)
t.Add(t2, t2)
c.y.Sub(d, c.x)
t2.Mul(e, c.y, pool)
c.y.Sub(t2, t)
t.Mul(a.y, a.z, pool)
c.z.Add(t, t)
A.Put(pool)
B.Put(pool)
C_.Put(pool)
t.Put(pool)
t2.Put(pool)
d.Put(pool)
e.Put(pool)
f.Put(pool)
}
func (c *twistPoint) Mul(a *twistPoint, scalar *big.Int, pool *bnPool) *twistPoint {
sum := newTwistPoint(pool)
sum.SetInfinity()
t := newTwistPoint(pool)
for i := scalar.BitLen(); i >= 0; i-- {
t.Double(sum, pool)
if scalar.Bit(i) != 0 {
sum.Add(t, a, pool)
} else {
sum.Set(t)
}
}
c.Set(sum)
sum.Put(pool)
t.Put(pool)
return c
}
func (c *twistPoint) MakeAffine(pool *bnPool) *twistPoint {
if c.z.IsOne() {
return c
}
zInv := newGFp2(pool).Invert(c.z, pool)
t := newGFp2(pool).Mul(c.y, zInv, pool)
zInv2 := newGFp2(pool).Square(zInv, pool)
c.y.Mul(t, zInv2, pool)
t.Mul(c.x, zInv2, pool)
c.x.Set(t)
c.z.SetOne()
c.t.SetOne()
zInv.Put(pool)
t.Put(pool)
zInv2.Put(pool)
return c
}
func (c *twistPoint) Negative(a *twistPoint, pool *bnPool) {
c.x.Set(a.x)
c.y.SetZero()
c.y.Sub(c.y, a.y)
c.z.Set(a.z)
c.t.SetZero()
}

View File

@ -1,316 +0,0 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Copyright 2011 ThePiachu. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
// * The name of ThePiachu may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package secp256k1
import (
"crypto/elliptic"
"math/big"
"sync"
"unsafe"
"github.com/ethereum/go-ethereum/common/math"
)
/*
#include "libsecp256k1/include/secp256k1.h"
extern int secp256k1_pubkey_scalar_mul(const secp256k1_context* ctx, const unsigned char *point, const unsigned char *scalar);
*/
import "C"
// This code is from https://github.com/ThePiachu/GoBit and implements
// several Koblitz elliptic curves over prime fields.
//
// The curve methods, internally, on Jacobian coordinates. For a given
// (x, y) position on the curve, the Jacobian coordinates are (x1, y1,
// z1) where x = x1/z1² and y = y1/z1³. The greatest speedups come
// when the whole calculation can be performed within the transform
// (as in ScalarMult and ScalarBaseMult). But even for Add and Double,
// it's faster to apply and reverse the transform than to operate in
// affine coordinates.
// A BitCurve represents a Koblitz Curve with a=0.
// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
type BitCurve struct {
P *big.Int // the order of the underlying field
N *big.Int // the order of the base point
B *big.Int // the constant of the BitCurve equation
Gx, Gy *big.Int // (x,y) of the base point
BitSize int // the size of the underlying field
}
func (BitCurve *BitCurve) Params() *elliptic.CurveParams {
return &elliptic.CurveParams{
P: BitCurve.P,
N: BitCurve.N,
B: BitCurve.B,
Gx: BitCurve.Gx,
Gy: BitCurve.Gy,
BitSize: BitCurve.BitSize,
}
}
// IsOnBitCurve returns true if the given (x,y) lies on the BitCurve.
func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool {
// y² = x³ + b
y2 := new(big.Int).Mul(y, y) //y²
y2.Mod(y2, BitCurve.P) //y²%P
x3 := new(big.Int).Mul(x, x) //x²
x3.Mul(x3, x) //x³
x3.Add(x3, BitCurve.B) //x³+B
x3.Mod(x3, BitCurve.P) //(x³+B)%P
return x3.Cmp(y2) == 0
}
//TODO: double check if the function is okay
// affineFromJacobian reverses the Jacobian transform. See the comment at the
// top of the file.
func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
if z.Sign() == 0 {
return new(big.Int), new(big.Int)
}
zinv := new(big.Int).ModInverse(z, BitCurve.P)
zinvsq := new(big.Int).Mul(zinv, zinv)
xOut = new(big.Int).Mul(x, zinvsq)
xOut.Mod(xOut, BitCurve.P)
zinvsq.Mul(zinvsq, zinv)
yOut = new(big.Int).Mul(y, zinvsq)
yOut.Mod(yOut, BitCurve.P)
return
}
// Add returns the sum of (x1,y1) and (x2,y2)
func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
z := new(big.Int).SetInt64(1)
return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z))
}
// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
// (x2, y2, z2) and returns their sum, also in Jacobian form.
func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
z1z1 := new(big.Int).Mul(z1, z1)
z1z1.Mod(z1z1, BitCurve.P)
z2z2 := new(big.Int).Mul(z2, z2)
z2z2.Mod(z2z2, BitCurve.P)
u1 := new(big.Int).Mul(x1, z2z2)
u1.Mod(u1, BitCurve.P)
u2 := new(big.Int).Mul(x2, z1z1)
u2.Mod(u2, BitCurve.P)
h := new(big.Int).Sub(u2, u1)
if h.Sign() == -1 {
h.Add(h, BitCurve.P)
}
i := new(big.Int).Lsh(h, 1)
i.Mul(i, i)
j := new(big.Int).Mul(h, i)
s1 := new(big.Int).Mul(y1, z2)
s1.Mul(s1, z2z2)
s1.Mod(s1, BitCurve.P)
s2 := new(big.Int).Mul(y2, z1)
s2.Mul(s2, z1z1)
s2.Mod(s2, BitCurve.P)
r := new(big.Int).Sub(s2, s1)
if r.Sign() == -1 {
r.Add(r, BitCurve.P)
}
r.Lsh(r, 1)
v := new(big.Int).Mul(u1, i)
x3 := new(big.Int).Set(r)
x3.Mul(x3, x3)
x3.Sub(x3, j)
x3.Sub(x3, v)
x3.Sub(x3, v)
x3.Mod(x3, BitCurve.P)
y3 := new(big.Int).Set(r)
v.Sub(v, x3)
y3.Mul(y3, v)
s1.Mul(s1, j)
s1.Lsh(s1, 1)
y3.Sub(y3, s1)
y3.Mod(y3, BitCurve.P)
z3 := new(big.Int).Add(z1, z2)
z3.Mul(z3, z3)
z3.Sub(z3, z1z1)
if z3.Sign() == -1 {
z3.Add(z3, BitCurve.P)
}
z3.Sub(z3, z2z2)
if z3.Sign() == -1 {
z3.Add(z3, BitCurve.P)
}
z3.Mul(z3, h)
z3.Mod(z3, BitCurve.P)
return x3, y3, z3
}
// Double returns 2*(x,y)
func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
z1 := new(big.Int).SetInt64(1)
return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1))
}
// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
// returns its double, also in Jacobian form.
func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
a := new(big.Int).Mul(x, x) //X1²
b := new(big.Int).Mul(y, y) //Y1²
c := new(big.Int).Mul(b, b) //B²
d := new(big.Int).Add(x, b) //X1+B
d.Mul(d, d) //(X1+B)²
d.Sub(d, a) //(X1+B)²-A
d.Sub(d, c) //(X1+B)²-A-C
d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C)
e := new(big.Int).Mul(big.NewInt(3), a) //3*A
f := new(big.Int).Mul(e, e) //E²
x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D
x3.Sub(f, x3) //F-2*D
x3.Mod(x3, BitCurve.P)
y3 := new(big.Int).Sub(d, x3) //D-X3
y3.Mul(e, y3) //E*(D-X3)
y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C
y3.Mod(y3, BitCurve.P)
z3 := new(big.Int).Mul(y, z) //Y1*Z1
z3.Mul(big.NewInt(2), z3) //3*Y1*Z1
z3.Mod(z3, BitCurve.P)
return x3, y3, z3
}
func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
// Ensure scalar is exactly 32 bytes. We pad always, even if
// scalar is 32 bytes long, to avoid a timing side channel.
if len(scalar) > 32 {
panic("can't handle scalars > 256 bits")
}
// NOTE: potential timing issue
padded := make([]byte, 32)
copy(padded[32-len(scalar):], scalar)
scalar = padded
// Do the multiplication in C, updating point.
point := make([]byte, 64)
math.ReadBits(Bx, point[:32])
math.ReadBits(By, point[32:])
pointPtr := (*C.uchar)(unsafe.Pointer(&point[0]))
scalarPtr := (*C.uchar)(unsafe.Pointer(&scalar[0]))
res := C.secp256k1_pubkey_scalar_mul(context, pointPtr, scalarPtr)
// Unpack the result and clear temporaries.
x := new(big.Int).SetBytes(point[:32])
y := new(big.Int).SetBytes(point[32:])
for i := range point {
point[i] = 0
}
for i := range padded {
scalar[i] = 0
}
if res != 1 {
return nil, nil
}
return x, y
}
// ScalarBaseMult returns k*G, where G is the base point of the group and k is
// an integer in big-endian form.
func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k)
}
// Marshal converts a point into the form specified in section 4.3.6 of ANSI
// X9.62.
func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte {
byteLen := (BitCurve.BitSize + 7) >> 3
ret := make([]byte, 1+2*byteLen)
ret[0] = 4 // uncompressed point
xBytes := x.Bytes()
copy(ret[1+byteLen-len(xBytes):], xBytes)
yBytes := y.Bytes()
copy(ret[1+2*byteLen-len(yBytes):], yBytes)
return ret
}
// Unmarshal converts a point, serialised by Marshal, into an x, y pair. On
// error, x = nil.
func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) {
byteLen := (BitCurve.BitSize + 7) >> 3
if len(data) != 1+2*byteLen {
return
}
if data[0] != 4 { // uncompressed form
return
}
x = new(big.Int).SetBytes(data[1 : 1+byteLen])
y = new(big.Int).SetBytes(data[1+byteLen:])
return
}
var (
initonce sync.Once
theCurve *BitCurve
)
// S256 returns a BitCurve which implements secp256k1 (see SEC 2 section 2.7.1)
func S256() *BitCurve {
initonce.Do(func() {
// See SEC 2 section 2.7.1
// curve parameters taken from:
// http://www.secg.org/collateral/sec2_final.pdf
theCurve = new(BitCurve)
theCurve.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16)
theCurve.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16)
theCurve.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16)
theCurve.Gx, _ = new(big.Int).SetString("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16)
theCurve.Gy, _ = new(big.Int).SetString("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16)
theCurve.BitSize = 256
})
return theCurve
}

View File

@ -1,245 +0,0 @@
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// secp256k1_context_create_sign_verify creates a context for signing and signature verification.
static secp256k1_context* secp256k1_context_create_sign_verify() {
return secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
}
// secp256k1_ecdsa_recover_pubkey recovers the public key of an encoded compact signature.
//
// Returns: 1: recovery was successful
// 0: recovery was not successful
// Args: ctx: pointer to a context object (cannot be NULL)
// Out: pubkey_out: the serialized 65-byte public key of the signer (cannot be NULL)
// In: sigdata: pointer to a 65-byte signature with the recovery id at the end (cannot be NULL)
// msgdata: pointer to a 32-byte message (cannot be NULL)
static int secp256k1_ecdsa_recover_pubkey(
const secp256k1_context* ctx,
unsigned char *pubkey_out,
const unsigned char *sigdata,
const unsigned char *msgdata
) {
secp256k1_ecdsa_recoverable_signature sig;
secp256k1_pubkey pubkey;
if (!secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &sig, sigdata, (int)sigdata[64])) {
return 0;
}
if (!secp256k1_ecdsa_recover(ctx, &pubkey, &sig, msgdata)) {
return 0;
}
size_t outputlen = 65;
return secp256k1_ec_pubkey_serialize(ctx, pubkey_out, &outputlen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
}
// secp256k1_pubkey_scalar_mul multiplies a point by a scalar in constant time.
//
// Returns: 1: multiplication was successful
// 0: scalar was invalid (zero or overflow)
// Args: ctx: pointer to a context object (cannot be NULL)
// Out: point: the multiplied point (usually secret)
// In: point: pointer to a 64-byte public point,
// encoded as two 256bit big-endian numbers.
// scalar: a 32-byte scalar with which to multiply the point
int secp256k1_pubkey_scalar_mul(const secp256k1_context* ctx, unsigned char *point, const unsigned char *scalar) {
int ret = 0;
int overflow = 0;
secp256k1_fe feX, feY;
secp256k1_gej res;
secp256k1_ge ge;
secp256k1_scalar s;
ARG_CHECK(point != NULL);
ARG_CHECK(scalar != NULL);
(void)ctx;
secp256k1_fe_set_b32(&feX, point);
secp256k1_fe_set_b32(&feY, point+32);
secp256k1_ge_set_xy(&ge, &feX, &feY);
secp256k1_scalar_set_b32(&s, scalar, &overflow);
if (overflow || secp256k1_scalar_is_zero(&s)) {
ret = 0;
} else {
secp256k1_ecmult_const(&res, &ge, &s, 256);
secp256k1_ge_set_gej(&ge, &res);
/* Note: can't use secp256k1_pubkey_save here because it is not constant time. */
secp256k1_fe_normalize(&ge.x);
secp256k1_fe_normalize(&ge.y);
secp256k1_fe_get_b32(point, &ge.x);
secp256k1_fe_get_b32(point+32, &ge.y);
ret = 1;
}
secp256k1_scalar_clear(&s);
return ret;
}
void test_rangeproof() {
size_t nbits, n_commits;
//bench_bulletproof_rangeproof_t *data;
/////////////////////////////////////////////////////////////
bench_bulletproof_t odata;
bench_bulletproof_rangeproof_t rp_data;
odata.blind_gen = secp256k1_generator_const_g;
odata.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
odata.scratch = secp256k1_scratch_space_create(odata.ctx, 1024 * 1024 * 1024);
odata.generators = secp256k1_bulletproof_generators_create(odata.ctx, &odata.blind_gen, 64 * 1024);
rp_data.common = &odata;
//run_rangeproof_test(&rp_data, 8, 1);
/////////////////////////////////////////////////////////////
nbits = 8;
n_commits = 1;
/////////////////////////////////////////////////////////////
char str[64];
(&rp_data)->nbits = nbits;
(&rp_data)->n_commits = n_commits;
(&rp_data)->common->iters = 100;
(&rp_data)->common->n_proofs = 1;
sprintf(str, "bulletproof_prove, %i, %i, 0, ", (int)nbits, (int) n_commits);
//run_benchmark(str, bench_bulletproof_rangeproof_prove, bench_bulletproof_rangeproof_setup, bench_bulletproof_rangeproof_teardown, (void *)&rp_data, 5, 25);
/////////////////////////////////////////////////////////////
if (bench_bulletproof_rangeproof_setup != NULL) {
bench_bulletproof_rangeproof_setup(&rp_data);
}
bench_bulletproof_rangeproof_prove(&rp_data);
if (bench_bulletproof_rangeproof_teardown != NULL) {
bench_bulletproof_rangeproof_teardown(&rp_data);
}
/////////////////////////////////////////////////////////////
if (bench_bulletproof_rangeproof_setup != NULL) {
bench_bulletproof_rangeproof_setup(&rp_data);
}
bench_bulletproof_rangeproof_verify(&rp_data);
if (bench_bulletproof_rangeproof_teardown != NULL) {
bench_bulletproof_rangeproof_teardown(&rp_data);
}
/////////////////////////////////////////////////////////////
}
static void counting_illegal_callback_fn(const char* str, void* data) {
int32_t *p;
(void)str;
p = data;
(*p)++;
}
typedef struct {
size_t nbits;
secp256k1_context *ctx_none;
secp256k1_context *ctx_both;
secp256k1_scratch *scratch;
secp256k1_bulletproof_generators *gens;
unsigned char *proof;
size_t plen;
uint64_t value;
const unsigned char **blind_ptr;
secp256k1_generator *value_gen;
const unsigned char *blind;
secp256k1_pedersen_commitment *pcommit;
} zkrp_t;
void myprint(char *message, zkrp_t *dt) {
int i, len;
len = (int) dt->plen;
printf("================== %s =================\n", message);
printf("DT: %p\n", dt);
printf("DT->nbits: %zd\n", dt->nbits);
printf("DT->ctx_none: %p\n", dt->ctx_none);
printf("DT->ctx_both: %p\n", dt->ctx_both);
printf("DT->scratch: %p\n", dt->scratch);
printf("DT->gens: %p\n", dt->gens);
printf("DT->proof: %p\n", dt->proof);
printf("DT->proof:\n");
printf("[");
for (i=0; i<len; i++) {
printf("%d ", dt->proof[i]);
}
printf("]\n");
printf("DT->plen: %zd\n", dt->plen);
printf("DT->value: %lu\n", dt->value);
printf("DT->blind: %p\n", dt->blind);
printf("DT->pcommit: %p\n", dt->pcommit);
}
// setup should receive as input the range [A,B)
// and output a set of parameters
// - nbits means the interval is given by [0,2^nbits)
// - for now nbits must be in dt
void setup_rangeproof(zkrp_t *dt) {
secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
secp256k1_context *both = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
secp256k1_scratch *scratch = secp256k1_scratch_space_create(both, 1024 * 1024);
secp256k1_generator *value_gen = malloc(sizeof(secp256k1_generator));
unsigned char blind[32] = " i am not a blinding factor ";
dt->ctx_none = none;
dt->ctx_both = both;
dt->scratch = scratch;
dt->value_gen = value_gen;
dt->blind = (unsigned char*)malloc(sizeof(unsigned char) * 32);
strncpy(blind, dt->blind, 32);
dt->blind_ptr = malloc(sizeof(unsigned char*));
dt->blind_ptr[0] = dt->blind;
CHECK(secp256k1_generator_generate(dt->ctx_both, dt->value_gen, dt->blind) != 0);
}
void deallocate_memory(zkrp_t *dt) {
// TODO realloc everything....
}
// prove should receive as input parameters and the commitment
// and output the proof
void prove_rangeproof(zkrp_t *dt) {
printf("Prove result: %d\n", (secp256k1_bulletproof_rangeproof_prove(dt->ctx_both, dt->scratch, dt->gens, dt->proof, &(dt->plen), &(dt->value), NULL, dt->blind_ptr, 1, dt->value_gen, dt->nbits, dt->blind, NULL, 0) == 1));
}
// verify should receive as input parameters and proof
// and output true or false
int verify_rangeproof(zkrp_t *dt) {
printf("Verification result: %d\n", (secp256k1_bulletproof_rangeproof_verify(dt->ctx_both, dt->scratch, dt->gens, dt->proof, dt->plen, NULL, dt->pcommit, 1, dt->nbits, dt->value_gen, NULL, 0) == 1));
return 1;
}
// commit should receive parameters and value as input
// and output the commitment
void commit_rangeproof(zkrp_t *dt) {
secp256k1_bulletproof_generators *gens;
secp256k1_pedersen_commitment *pcommit = malloc(sizeof(secp256k1_pedersen_commitment));
// TODO: value as input
uint64_t value = 255;
CHECK(secp256k1_pedersen_commit(dt->ctx_both, pcommit, dt->blind, value, dt->value_gen, &secp256k1_generator_const_h) != 0);
gens = secp256k1_bulletproof_generators_create(dt->ctx_none, &secp256k1_generator_const_h, 256);
CHECK(gens != NULL);
dt->gens = gens;
dt->proof = (unsigned char*)malloc(2000);
dt->plen = 2000;
dt->value = value;
dt->pcommit = pcommit;
}

View File

@ -1,207 +0,0 @@
ACLOCAL_AMFLAGS = -I build-aux/m4
lib_LTLIBRARIES = libsecp256k1.la
if USE_JNI
JNI_LIB = libsecp256k1_jni.la
noinst_LTLIBRARIES = $(JNI_LIB)
else
JNI_LIB =
endif
include_HEADERS = include/secp256k1.h
noinst_HEADERS =
noinst_HEADERS += src/scalar.h
noinst_HEADERS += src/scalar_4x64.h
noinst_HEADERS += src/scalar_8x32.h
noinst_HEADERS += src/scalar_low.h
noinst_HEADERS += src/scalar_impl.h
noinst_HEADERS += src/scalar_4x64_impl.h
noinst_HEADERS += src/scalar_8x32_impl.h
noinst_HEADERS += src/scalar_low_impl.h
noinst_HEADERS += src/group.h
noinst_HEADERS += src/group_impl.h
noinst_HEADERS += src/num_gmp.h
noinst_HEADERS += src/num_gmp_impl.h
noinst_HEADERS += src/ecdsa.h
noinst_HEADERS += src/ecdsa_impl.h
noinst_HEADERS += src/eckey.h
noinst_HEADERS += src/eckey_impl.h
noinst_HEADERS += src/ecmult.h
noinst_HEADERS += src/ecmult_impl.h
noinst_HEADERS += src/ecmult_const.h
noinst_HEADERS += src/ecmult_const_impl.h
noinst_HEADERS += src/ecmult_gen.h
noinst_HEADERS += src/ecmult_gen_impl.h
noinst_HEADERS += src/num.h
noinst_HEADERS += src/num_impl.h
noinst_HEADERS += src/field_10x26.h
noinst_HEADERS += src/field_10x26_impl.h
noinst_HEADERS += src/field_5x52.h
noinst_HEADERS += src/field_5x52_impl.h
noinst_HEADERS += src/field_5x52_int128_impl.h
noinst_HEADERS += src/field_5x52_asm_impl.h
noinst_HEADERS += src/java/org_bitcoin_NativeSecp256k1.h
noinst_HEADERS += src/java/org_bitcoin_Secp256k1Context.h
noinst_HEADERS += src/util.h
noinst_HEADERS += src/scratch.h
noinst_HEADERS += src/scratch_impl.h
noinst_HEADERS += src/testrand.h
noinst_HEADERS += src/testrand_impl.h
noinst_HEADERS += src/hash.h
noinst_HEADERS += src/hash_impl.h
noinst_HEADERS += src/field.h
noinst_HEADERS += src/field_impl.h
noinst_HEADERS += src/bench.h
noinst_HEADERS += contrib/lax_der_parsing.h
noinst_HEADERS += contrib/lax_der_parsing.c
noinst_HEADERS += contrib/lax_der_privatekey_parsing.h
noinst_HEADERS += contrib/lax_der_privatekey_parsing.c
if USE_EXTERNAL_ASM
COMMON_LIB = libsecp256k1_common.la
noinst_LTLIBRARIES = $(COMMON_LIB)
else
COMMON_LIB =
endif
pkgconfigdir = $(libdir)/pkgconfig
pkgconfig_DATA = libsecp256k1.pc
if USE_EXTERNAL_ASM
if USE_ASM_ARM
libsecp256k1_common_la_SOURCES = src/asm/field_10x26_arm.s
endif
endif
libsecp256k1_la_SOURCES = src/secp256k1.c
libsecp256k1_la_CPPFLAGS = -DSECP256K1_BUILD -I$(top_srcdir)/include -I$(top_srcdir)/src $(SECP_INCLUDES)
libsecp256k1_la_LIBADD = $(JNI_LIB) $(SECP_LIBS) $(COMMON_LIB)
libsecp256k1_jni_la_SOURCES = src/java/org_bitcoin_NativeSecp256k1.c src/java/org_bitcoin_Secp256k1Context.c
libsecp256k1_jni_la_CPPFLAGS = -DSECP256K1_BUILD $(JNI_INCLUDES)
noinst_PROGRAMS =
if USE_BENCHMARK
noinst_PROGRAMS += bench_verify bench_sign bench_internal bench_ecmult
bench_verify_SOURCES = src/bench_verify.c
bench_verify_LDADD = libsecp256k1.la $(SECP_LIBS) $(SECP_TEST_LIBS) $(COMMON_LIB)
bench_sign_SOURCES = src/bench_sign.c
bench_sign_LDADD = libsecp256k1.la $(SECP_LIBS) $(SECP_TEST_LIBS) $(COMMON_LIB)
bench_internal_SOURCES = src/bench_internal.c
bench_internal_LDADD = $(SECP_LIBS) $(COMMON_LIB)
bench_internal_CPPFLAGS = -DSECP256K1_BUILD $(SECP_INCLUDES)
bench_ecmult_SOURCES = src/bench_ecmult.c
bench_ecmult_LDADD = $(SECP_LIBS) $(COMMON_LIB)
bench_ecmult_CPPFLAGS = -DSECP256K1_BUILD $(SECP_INCLUDES)
endif
TESTS =
if USE_TESTS
noinst_PROGRAMS += tests
tests_SOURCES = src/tests.c
tests_CPPFLAGS = -DSECP256K1_BUILD -I$(top_srcdir)/src -I$(top_srcdir)/include $(SECP_INCLUDES) $(SECP_TEST_INCLUDES)
if !ENABLE_COVERAGE
tests_CPPFLAGS += -DVERIFY
endif
tests_LDADD = $(SECP_LIBS) $(SECP_TEST_LIBS) $(COMMON_LIB)
tests_LDFLAGS = -static
TESTS += tests
endif
if USE_EXHAUSTIVE_TESTS
noinst_PROGRAMS += exhaustive_tests
exhaustive_tests_SOURCES = src/tests_exhaustive.c
exhaustive_tests_CPPFLAGS = -DSECP256K1_BUILD -I$(top_srcdir)/src $(SECP_INCLUDES)
if !ENABLE_COVERAGE
exhaustive_tests_CPPFLAGS += -DVERIFY
endif
exhaustive_tests_LDADD = $(SECP_LIBS)
exhaustive_tests_LDFLAGS = -static
TESTS += exhaustive_tests
endif
JAVAROOT=src/java
JAVAORG=org/bitcoin
JAVA_GUAVA=$(srcdir)/$(JAVAROOT)/guava/guava-18.0.jar
CLASSPATH_ENV=CLASSPATH=$(JAVA_GUAVA)
JAVA_FILES= \
$(JAVAROOT)/$(JAVAORG)/NativeSecp256k1.java \
$(JAVAROOT)/$(JAVAORG)/NativeSecp256k1Test.java \
$(JAVAROOT)/$(JAVAORG)/NativeSecp256k1Util.java \
$(JAVAROOT)/$(JAVAORG)/Secp256k1Context.java
if USE_JNI
$(JAVA_GUAVA):
@echo Guava is missing. Fetch it via: \
wget https://search.maven.org/remotecontent?filepath=com/google/guava/guava/18.0/guava-18.0.jar -O $(@)
@false
.stamp-java: $(JAVA_FILES)
@echo Compiling $^
$(AM_V_at)$(CLASSPATH_ENV) javac $^
@touch $@
if USE_TESTS
check-java: libsecp256k1.la $(JAVA_GUAVA) .stamp-java
$(AM_V_at)java -Djava.library.path="./:./src:./src/.libs:.libs/" -cp "$(JAVA_GUAVA):$(JAVAROOT)" $(JAVAORG)/NativeSecp256k1Test
endif
endif
if USE_ECMULT_STATIC_PRECOMPUTATION
CPPFLAGS_FOR_BUILD +=-I$(top_srcdir)
CFLAGS_FOR_BUILD += -Wall -Wextra -Wno-unused-function
gen_context_OBJECTS = gen_context.o
gen_context_BIN = gen_context$(BUILD_EXEEXT)
gen_%.o: src/gen_%.c
$(CC_FOR_BUILD) $(CPPFLAGS_FOR_BUILD) $(CFLAGS_FOR_BUILD) -c $< -o $@
$(gen_context_BIN): $(gen_context_OBJECTS)
$(CC_FOR_BUILD) $^ -o $@
$(libsecp256k1_la_OBJECTS): src/ecmult_static_context.h
$(tests_OBJECTS): src/ecmult_static_context.h
$(bench_internal_OBJECTS): src/ecmult_static_context.h
$(bench_ecmult_OBJECTS): src/ecmult_static_context.h
src/ecmult_static_context.h: $(gen_context_BIN)
./$(gen_context_BIN)
CLEANFILES = $(gen_context_BIN) src/ecmult_static_context.h $(JAVAROOT)/$(JAVAORG)/*.class .stamp-java
endif
EXTRA_DIST = autogen.sh src/gen_context.c src/basic-config.h $(JAVA_FILES)
if ENABLE_MODULE_ECDH
include src/modules/ecdh/Makefile.am.include
endif
if ENABLE_MODULE_RECOVERY
include src/modules/recovery/Makefile.am.include
endif
if ENABLE_MODULE_GENERATOR
include src/modules/generator/Makefile.am.include
endif
if ENABLE_MODULE_COMMITMENT
include src/modules/commitment/Makefile.am.include
endif
if ENABLE_MODULE_RANGEPROOF
include src/modules/rangeproof/Makefile.am.include
endif
if ENABLE_MODULE_BULLETPROOF
include src/modules/bulletproofs/Makefile.am.include
endif
if ENABLE_MODULE_WHITELIST
include src/modules/whitelist/Makefile.am.include
endif
if ENABLE_MODULE_SURJECTIONPROOF
include src/modules/surjection/Makefile.am.include
endif

View File

@ -1,145 +0,0 @@
# ===========================================================================
# https://www.gnu.org/software/autoconf-archive/ax_jni_include_dir.html
# ===========================================================================
#
# SYNOPSIS
#
# AX_JNI_INCLUDE_DIR
#
# DESCRIPTION
#
# AX_JNI_INCLUDE_DIR finds include directories needed for compiling
# programs using the JNI interface.
#
# JNI include directories are usually in the Java distribution. This is
# deduced from the value of $JAVA_HOME, $JAVAC, or the path to "javac", in
# that order. When this macro completes, a list of directories is left in
# the variable JNI_INCLUDE_DIRS.
#
# Example usage follows:
#
# AX_JNI_INCLUDE_DIR
#
# for JNI_INCLUDE_DIR in $JNI_INCLUDE_DIRS
# do
# CPPFLAGS="$CPPFLAGS -I$JNI_INCLUDE_DIR"
# done
#
# If you want to force a specific compiler:
#
# - at the configure.in level, set JAVAC=yourcompiler before calling
# AX_JNI_INCLUDE_DIR
#
# - at the configure level, setenv JAVAC
#
# Note: This macro can work with the autoconf M4 macros for Java programs.
# This particular macro is not part of the original set of macros.
#
# LICENSE
#
# Copyright (c) 2008 Don Anderson <dda@sleepycat.com>
#
# Copying and distribution of this file, with or without modification, are
# permitted in any medium without royalty provided the copyright notice
# and this notice are preserved. This file is offered as-is, without any
# warranty.
#serial 14
AU_ALIAS([AC_JNI_INCLUDE_DIR], [AX_JNI_INCLUDE_DIR])
AC_DEFUN([AX_JNI_INCLUDE_DIR],[
JNI_INCLUDE_DIRS=""
if test "x$JAVA_HOME" != x; then
_JTOPDIR="$JAVA_HOME"
else
if test "x$JAVAC" = x; then
JAVAC=javac
fi
AC_PATH_PROG([_ACJNI_JAVAC], [$JAVAC], [no])
if test "x$_ACJNI_JAVAC" = xno; then
AC_MSG_WARN([cannot find JDK; try setting \$JAVAC or \$JAVA_HOME])
fi
_ACJNI_FOLLOW_SYMLINKS("$_ACJNI_JAVAC")
_JTOPDIR=`echo "$_ACJNI_FOLLOWED" | sed -e 's://*:/:g' -e 's:/[[^/]]*$::'`
fi
case "$host_os" in
darwin*) # Apple Java headers are inside the Xcode bundle.
macos_version=$(sw_vers -productVersion | sed -n -e 's/^@<:@0-9@:>@*.\(@<:@0-9@:>@*\).@<:@0-9@:>@*/\1/p')
if @<:@ "$macos_version" -gt "7" @:>@; then
_JTOPDIR="$(xcrun --show-sdk-path)/System/Library/Frameworks/JavaVM.framework"
_JINC="$_JTOPDIR/Headers"
else
_JTOPDIR="/System/Library/Frameworks/JavaVM.framework"
_JINC="$_JTOPDIR/Headers"
fi
;;
*) _JINC="$_JTOPDIR/include";;
esac
_AS_ECHO_LOG([_JTOPDIR=$_JTOPDIR])
_AS_ECHO_LOG([_JINC=$_JINC])
# On Mac OS X 10.6.4, jni.h is a symlink:
# /System/Library/Frameworks/JavaVM.framework/Versions/Current/Headers/jni.h
# -> ../../CurrentJDK/Headers/jni.h.
AC_CACHE_CHECK(jni headers, ac_cv_jni_header_path,
[
if test -f "$_JINC/jni.h"; then
ac_cv_jni_header_path="$_JINC"
JNI_INCLUDE_DIRS="$JNI_INCLUDE_DIRS $ac_cv_jni_header_path"
else
_JTOPDIR=`echo "$_JTOPDIR" | sed -e 's:/[[^/]]*$::'`
if test -f "$_JTOPDIR/include/jni.h"; then
ac_cv_jni_header_path="$_JTOPDIR/include"
JNI_INCLUDE_DIRS="$JNI_INCLUDE_DIRS $ac_cv_jni_header_path"
else
ac_cv_jni_header_path=none
fi
fi
])
# get the likely subdirectories for system specific java includes
case "$host_os" in
bsdi*) _JNI_INC_SUBDIRS="bsdos";;
freebsd*) _JNI_INC_SUBDIRS="freebsd";;
darwin*) _JNI_INC_SUBDIRS="darwin";;
linux*) _JNI_INC_SUBDIRS="linux genunix";;
osf*) _JNI_INC_SUBDIRS="alpha";;
solaris*) _JNI_INC_SUBDIRS="solaris";;
mingw*) _JNI_INC_SUBDIRS="win32";;
cygwin*) _JNI_INC_SUBDIRS="win32";;
*) _JNI_INC_SUBDIRS="genunix";;
esac
if test "x$ac_cv_jni_header_path" != "xnone"; then
# add any subdirectories that are present
for JINCSUBDIR in $_JNI_INC_SUBDIRS
do
if test -d "$_JTOPDIR/include/$JINCSUBDIR"; then
JNI_INCLUDE_DIRS="$JNI_INCLUDE_DIRS $_JTOPDIR/include/$JINCSUBDIR"
fi
done
fi
])
# _ACJNI_FOLLOW_SYMLINKS <path>
# Follows symbolic links on <path>,
# finally setting variable _ACJNI_FOLLOWED
# ----------------------------------------
AC_DEFUN([_ACJNI_FOLLOW_SYMLINKS],[
# find the include directory relative to the javac executable
_cur="$1"
while ls -ld "$_cur" 2>/dev/null | grep " -> " >/dev/null; do
AC_MSG_CHECKING([symlink for $_cur])
_slink=`ls -ld "$_cur" | sed 's/.* -> //'`
case "$_slink" in
/*) _cur="$_slink";;
# 'X' avoids triggering unwanted echo options.
*) _cur=`echo "X$_cur" | sed -e 's/^X//' -e 's:[[^/]]*$::'`"$_slink";;
esac
AC_MSG_RESULT([$_cur])
done
_ACJNI_FOLLOWED="$_cur"
])# _ACJNI

View File

@ -1,68 +0,0 @@
dnl libsecp25k1 helper checks
AC_DEFUN([SECP_INT128_CHECK],[
has_int128=$ac_cv_type___int128
])
dnl escape "$0x" below using the m4 quadrigaph @S|@, and escape it again with a \ for the shell.
AC_DEFUN([SECP_64BIT_ASM_CHECK],[
AC_MSG_CHECKING(for x86_64 assembly availability)
AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
#include <stdint.h>]],[[
uint64_t a = 11, tmp;
__asm__ __volatile__("movq \@S|@0x100000000,%1; mulq %%rsi" : "+a"(a) : "S"(tmp) : "cc", "%rdx");
]])],[has_64bit_asm=yes],[has_64bit_asm=no])
AC_MSG_RESULT([$has_64bit_asm])
])
dnl
AC_DEFUN([SECP_OPENSSL_CHECK],[
has_libcrypto=no
m4_ifdef([PKG_CHECK_MODULES],[
PKG_CHECK_MODULES([CRYPTO], [libcrypto], [has_libcrypto=yes],[has_libcrypto=no])
if test x"$has_libcrypto" = x"yes"; then
TEMP_LIBS="$LIBS"
LIBS="$LIBS $CRYPTO_LIBS"
AC_CHECK_LIB(crypto, main,[AC_DEFINE(HAVE_LIBCRYPTO,1,[Define this symbol if libcrypto is installed])],[has_libcrypto=no])
LIBS="$TEMP_LIBS"
fi
])
if test x$has_libcrypto = xno; then
AC_CHECK_HEADER(openssl/crypto.h,[
AC_CHECK_LIB(crypto, main,[
has_libcrypto=yes
CRYPTO_LIBS=-lcrypto
AC_DEFINE(HAVE_LIBCRYPTO,1,[Define this symbol if libcrypto is installed])
])
])
LIBS=
fi
if test x"$has_libcrypto" = x"yes" && test x"$has_openssl_ec" = x; then
AC_MSG_CHECKING(for EC functions in libcrypto)
AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
#include <openssl/ec.h>
#include <openssl/ecdsa.h>
#include <openssl/obj_mac.h>]],[[
EC_KEY *eckey = EC_KEY_new_by_curve_name(NID_secp256k1);
ECDSA_sign(0, NULL, 0, NULL, NULL, eckey);
ECDSA_verify(0, NULL, 0, NULL, 0, eckey);
EC_KEY_free(eckey);
ECDSA_SIG *sig_openssl;
sig_openssl = ECDSA_SIG_new();
ECDSA_SIG_free(sig_openssl);
]])],[has_openssl_ec=yes],[has_openssl_ec=no])
AC_MSG_RESULT([$has_openssl_ec])
fi
])
dnl
AC_DEFUN([SECP_GMP_CHECK],[
if test x"$has_gmp" != x"yes"; then
CPPFLAGS_TEMP="$CPPFLAGS"
CPPFLAGS="$GMP_CPPFLAGS $CPPFLAGS"
LIBS_TEMP="$LIBS"
LIBS="$GMP_LIBS $LIBS"
AC_CHECK_HEADER(gmp.h,[AC_CHECK_LIB(gmp, __gmpz_init,[has_gmp=yes; GMP_LIBS="$GMP_LIBS -lgmp"; AC_DEFINE(HAVE_LIBGMP,1,[Define this symbol if libgmp is installed])])])
CPPFLAGS="$CPPFLAGS_TEMP"
LIBS="$LIBS_TEMP"
fi
])

View File

@ -1,618 +0,0 @@
AC_PREREQ([2.60])
AC_INIT([libsecp256k1],[0.1])
AC_CONFIG_AUX_DIR([build-aux])
AC_CONFIG_MACRO_DIR([build-aux/m4])
AC_CANONICAL_HOST
AH_TOP([#ifndef LIBSECP256K1_CONFIG_H])
AH_TOP([#define LIBSECP256K1_CONFIG_H])
AH_BOTTOM([#endif /*LIBSECP256K1_CONFIG_H*/])
AM_INIT_AUTOMAKE([foreign subdir-objects])
LT_INIT
dnl make the compilation flags quiet unless V=1 is used
m4_ifdef([AM_SILENT_RULES], [AM_SILENT_RULES([yes])])
PKG_PROG_PKG_CONFIG
AC_PATH_TOOL(AR, ar)
AC_PATH_TOOL(RANLIB, ranlib)
AC_PATH_TOOL(STRIP, strip)
AX_PROG_CC_FOR_BUILD
if test "x$CFLAGS" = "x"; then
CFLAGS="-g"
fi
AM_PROG_CC_C_O
AC_PROG_CC_C89
if test x"$ac_cv_prog_cc_c89" = x"no"; then
AC_MSG_ERROR([c89 compiler support required])
fi
AM_PROG_AS
case $host_os in
*darwin*)
if test x$cross_compiling != xyes; then
AC_PATH_PROG([BREW],brew,)
if test x$BREW != x; then
dnl These Homebrew packages may be keg-only, meaning that they won't be found
dnl in expected paths because they may conflict with system files. Ask
dnl Homebrew where each one is located, then adjust paths accordingly.
openssl_prefix=`$BREW --prefix openssl 2>/dev/null`
gmp_prefix=`$BREW --prefix gmp 2>/dev/null`
if test x$openssl_prefix != x; then
PKG_CONFIG_PATH="$openssl_prefix/lib/pkgconfig:$PKG_CONFIG_PATH"
export PKG_CONFIG_PATH
fi
if test x$gmp_prefix != x; then
GMP_CPPFLAGS="-I$gmp_prefix/include"
GMP_LIBS="-L$gmp_prefix/lib"
fi
else
AC_PATH_PROG([PORT],port,)
dnl if homebrew isn't installed and macports is, add the macports default paths
dnl as a last resort.
if test x$PORT != x; then
CPPFLAGS="$CPPFLAGS -isystem /opt/local/include"
LDFLAGS="$LDFLAGS -L/opt/local/lib"
fi
fi
fi
;;
esac
CFLAGS="$CFLAGS -W"
warn_CFLAGS="-std=c89 -pedantic -Wall -Wextra -Wcast-align -Wnested-externs -Wshadow -Wstrict-prototypes -Wno-unused-function -Wno-long-long -Wno-overlength-strings"
saved_CFLAGS="$CFLAGS"
CFLAGS="$CFLAGS $warn_CFLAGS"
AC_MSG_CHECKING([if ${CC} supports ${warn_CFLAGS}])
AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char foo;]])],
[ AC_MSG_RESULT([yes]) ],
[ AC_MSG_RESULT([no])
CFLAGS="$saved_CFLAGS"
])
saved_CFLAGS="$CFLAGS"
CFLAGS="$CFLAGS -fvisibility=hidden"
AC_MSG_CHECKING([if ${CC} supports -fvisibility=hidden])
AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char foo;]])],
[ AC_MSG_RESULT([yes]) ],
[ AC_MSG_RESULT([no])
CFLAGS="$saved_CFLAGS"
])
AC_ARG_ENABLE(benchmark,
AS_HELP_STRING([--enable-benchmark],[compile benchmark (default is yes)]),
[use_benchmark=$enableval],
[use_benchmark=yes])
AC_ARG_ENABLE(coverage,
AS_HELP_STRING([--enable-coverage],[enable compiler flags to support kcov coverage analysis]),
[enable_coverage=$enableval],
[enable_coverage=no])
AC_ARG_ENABLE(tests,
AS_HELP_STRING([--enable-tests],[compile tests (default is yes)]),
[use_tests=$enableval],
[use_tests=yes])
AC_ARG_ENABLE(openssl_tests,
AS_HELP_STRING([--enable-openssl-tests],[enable OpenSSL tests, if OpenSSL is available (default is auto)]),
[enable_openssl_tests=$enableval],
[enable_openssl_tests=auto])
AC_ARG_ENABLE(experimental,
AS_HELP_STRING([--enable-experimental],[allow experimental configure options (default is no)]),
[use_experimental=$enableval],
[use_experimental=no])
AC_ARG_ENABLE(exhaustive_tests,
AS_HELP_STRING([--enable-exhaustive-tests],[compile exhaustive tests (default is yes)]),
[use_exhaustive_tests=$enableval],
[use_exhaustive_tests=yes])
AC_ARG_ENABLE(endomorphism,
AS_HELP_STRING([--enable-endomorphism],[enable endomorphism (default is no)]),
[use_endomorphism=$enableval],
[use_endomorphism=no])
AC_ARG_ENABLE(ecmult_static_precomputation,
AS_HELP_STRING([--enable-ecmult-static-precomputation],[enable precomputed ecmult table for signing (default is yes)]),
[use_ecmult_static_precomputation=$enableval],
[use_ecmult_static_precomputation=auto])
AC_ARG_ENABLE(module_ecdh,
AS_HELP_STRING([--enable-module-ecdh],[enable ECDH shared secret computation (experimental)]),
[enable_module_ecdh=$enableval],
[enable_module_ecdh=no])
AC_ARG_ENABLE(module_recovery,
AS_HELP_STRING([--enable-module-recovery],[enable ECDSA pubkey recovery module (default is no)]),
[enable_module_recovery=$enableval],
[enable_module_recovery=no])
AC_ARG_ENABLE(module_generator,
AS_HELP_STRING([--enable-module-generator],[enable NUMS generator module (default is no)]),
[enable_module_generator=$enableval],
[enable_module_generator=no])
AC_ARG_ENABLE(module_commitment,
AS_HELP_STRING([--enable-module-commitment],[enable Pedersen commitments module (default is no)]),
[enable_module_commitment=$enableval],
[enable_module_commitment=no])
AC_ARG_ENABLE(module_rangeproof,
AS_HELP_STRING([--enable-module-rangeproof],[enable zero-knowledge range proofs module (default is no)]),
[enable_module_rangeproof=$enableval],
[enable_module_rangeproof=no])
AC_ARG_ENABLE(module_bulletproof,
AS_HELP_STRING([--enable-module-bulletproof],[enable Pedersen / zero-knowledge bulletproofs module (default is no)]),
[enable_module_bulletproof=$enableval],
[enable_module_bulletproof=no])
AC_ARG_ENABLE(module_whitelist,
AS_HELP_STRING([--enable-module-whitelist],[enable key whitelisting module (default is no)]),
[enable_module_whitelist=$enableval],
[enable_module_whitelist=no])
AC_ARG_ENABLE(jni,
AS_HELP_STRING([--enable-jni],[enable libsecp256k1_jni (default is no)]),
[use_jni=$enableval],
[use_jni=no])
AC_ARG_ENABLE(module_surjectionproof,
AS_HELP_STRING([--enable-module-surjectionproof],[enable surjection proof module (default is no)]),
[enable_module_surjectionproof=$enableval],
[enable_module_surjectionproof=no])
AC_ARG_WITH([field], [AS_HELP_STRING([--with-field=64bit|32bit|auto],
[Specify Field Implementation. Default is auto])],[req_field=$withval], [req_field=auto])
AC_ARG_WITH([bignum], [AS_HELP_STRING([--with-bignum=gmp|no|auto],
[Specify Bignum Implementation. Default is auto])],[req_bignum=$withval], [req_bignum=auto])
AC_ARG_WITH([scalar], [AS_HELP_STRING([--with-scalar=64bit|32bit|auto],
[Specify scalar implementation. Default is auto])],[req_scalar=$withval], [req_scalar=auto])
AC_ARG_WITH([asm], [AS_HELP_STRING([--with-asm=x86_64|arm|no|auto]
[Specify assembly optimizations to use. Default is auto (experimental: arm)])],[req_asm=$withval], [req_asm=auto])
AC_CHECK_TYPES([__int128])
AC_MSG_CHECKING([for __builtin_expect])
AC_COMPILE_IFELSE([AC_LANG_SOURCE([[void myfunc() {__builtin_expect(0,0);}]])],
[ AC_MSG_RESULT([yes]);AC_DEFINE(HAVE_BUILTIN_EXPECT,1,[Define this symbol if __builtin_expect is available]) ],
[ AC_MSG_RESULT([no])
])
if test x"$enable_coverage" = x"yes"; then
AC_DEFINE(COVERAGE, 1, [Define this symbol to compile out all VERIFY code])
CFLAGS="$CFLAGS -O0 --coverage"
LDFLAGS="--coverage"
else
CFLAGS="$CFLAGS -O3"
fi
AC_MSG_CHECKING([for __builtin_popcount])
AC_COMPILE_IFELSE([AC_LANG_SOURCE([[void myfunc() {__builtin_popcount(0);}]])],
[ AC_MSG_RESULT([yes]);AC_DEFINE(HAVE_BUILTIN_POPCOUNT,1,[Define this symbol if __builtin_popcount is available]) ],
[ AC_MSG_RESULT([no])
])
if test x"$use_ecmult_static_precomputation" != x"no"; then
save_cross_compiling=$cross_compiling
cross_compiling=no
TEMP_CC="$CC"
CC="$CC_FOR_BUILD"
AC_MSG_CHECKING([native compiler: ${CC_FOR_BUILD}])
AC_RUN_IFELSE(
[AC_LANG_PROGRAM([], [return 0])],
[working_native_cc=yes],
[working_native_cc=no],[dnl])
CC="$TEMP_CC"
cross_compiling=$save_cross_compiling
if test x"$working_native_cc" = x"no"; then
set_precomp=no
if test x"$use_ecmult_static_precomputation" = x"yes"; then
AC_MSG_ERROR([${CC_FOR_BUILD} does not produce working binaries. Please set CC_FOR_BUILD])
else
AC_MSG_RESULT([${CC_FOR_BUILD} does not produce working binaries. Please set CC_FOR_BUILD])
fi
else
AC_MSG_RESULT([ok])
set_precomp=yes
fi
else
set_precomp=no
fi
AC_MSG_CHECKING([for __builtin_clzll])
AC_COMPILE_IFELSE([AC_LANG_SOURCE([[void myfunc() { __builtin_clzll(1);}]])],
[ AC_MSG_RESULT([yes]);AC_DEFINE(HAVE_BUILTIN_CLZLL,1,[Define this symbol if __builtin_clzll is available]) ],
[ AC_MSG_RESULT([no])
])
if test x"$req_asm" = x"auto"; then
SECP_64BIT_ASM_CHECK
if test x"$has_64bit_asm" = x"yes"; then
set_asm=x86_64
fi
if test x"$set_asm" = x; then
set_asm=no
fi
else
set_asm=$req_asm
case $set_asm in
x86_64)
SECP_64BIT_ASM_CHECK
if test x"$has_64bit_asm" != x"yes"; then
AC_MSG_ERROR([x86_64 assembly optimization requested but not available])
fi
;;
arm)
;;
no)
;;
*)
AC_MSG_ERROR([invalid assembly optimization selection])
;;
esac
fi
if test x"$req_field" = x"auto"; then
if test x"set_asm" = x"x86_64"; then
set_field=64bit
fi
if test x"$set_field" = x; then
SECP_INT128_CHECK
if test x"$has_int128" = x"yes"; then
set_field=64bit
fi
fi
if test x"$set_field" = x; then
set_field=32bit
fi
else
set_field=$req_field
case $set_field in
64bit)
if test x"$set_asm" != x"x86_64"; then
SECP_INT128_CHECK
if test x"$has_int128" != x"yes"; then
AC_MSG_ERROR([64bit field explicitly requested but neither __int128 support or x86_64 assembly available])
fi
fi
;;
32bit)
;;
*)
AC_MSG_ERROR([invalid field implementation selection])
;;
esac
fi
if test x"$req_scalar" = x"auto"; then
SECP_INT128_CHECK
if test x"$has_int128" = x"yes"; then
set_scalar=64bit
fi
if test x"$set_scalar" = x; then
set_scalar=32bit
fi
else
set_scalar=$req_scalar
case $set_scalar in
64bit)
SECP_INT128_CHECK
if test x"$has_int128" != x"yes"; then
AC_MSG_ERROR([64bit scalar explicitly requested but __int128 support not available])
fi
;;
32bit)
;;
*)
AC_MSG_ERROR([invalid scalar implementation selected])
;;
esac
fi
if test x"$req_bignum" = x"auto"; then
SECP_GMP_CHECK
if test x"$has_gmp" = x"yes"; then
set_bignum=gmp
fi
if test x"$set_bignum" = x; then
set_bignum=no
fi
else
set_bignum=$req_bignum
case $set_bignum in
gmp)
SECP_GMP_CHECK
if test x"$has_gmp" != x"yes"; then
AC_MSG_ERROR([gmp bignum explicitly requested but libgmp not available])
fi
;;
no)
;;
*)
AC_MSG_ERROR([invalid bignum implementation selection])
;;
esac
fi
# select assembly optimization
use_external_asm=no
case $set_asm in
x86_64)
AC_DEFINE(USE_ASM_X86_64, 1, [Define this symbol to enable x86_64 assembly optimizations])
;;
arm)
use_external_asm=yes
;;
no)
;;
*)
AC_MSG_ERROR([invalid assembly optimizations])
;;
esac
# select field implementation
case $set_field in
64bit)
AC_DEFINE(USE_FIELD_5X52, 1, [Define this symbol to use the FIELD_5X52 implementation])
;;
32bit)
AC_DEFINE(USE_FIELD_10X26, 1, [Define this symbol to use the FIELD_10X26 implementation])
;;
*)
AC_MSG_ERROR([invalid field implementation])
;;
esac
# select bignum implementation
case $set_bignum in
gmp)
AC_DEFINE(HAVE_LIBGMP, 1, [Define this symbol if libgmp is installed])
AC_DEFINE(USE_NUM_GMP, 1, [Define this symbol to use the gmp implementation for num])
AC_DEFINE(USE_FIELD_INV_NUM, 1, [Define this symbol to use the num-based field inverse implementation])
AC_DEFINE(USE_SCALAR_INV_NUM, 1, [Define this symbol to use the num-based scalar inverse implementation])
;;
no)
AC_DEFINE(USE_NUM_NONE, 1, [Define this symbol to use no num implementation])
AC_DEFINE(USE_FIELD_INV_BUILTIN, 1, [Define this symbol to use the native field inverse implementation])
AC_DEFINE(USE_SCALAR_INV_BUILTIN, 1, [Define this symbol to use the native scalar inverse implementation])
;;
*)
AC_MSG_ERROR([invalid bignum implementation])
;;
esac
#select scalar implementation
case $set_scalar in
64bit)
AC_DEFINE(USE_SCALAR_4X64, 1, [Define this symbol to use the 4x64 scalar implementation])
;;
32bit)
AC_DEFINE(USE_SCALAR_8X32, 1, [Define this symbol to use the 8x32 scalar implementation])
;;
*)
AC_MSG_ERROR([invalid scalar implementation])
;;
esac
if test x"$use_tests" = x"yes"; then
SECP_OPENSSL_CHECK
if test x"$has_openssl_ec" = x"yes"; then
if test x"$enable_openssl_tests" != x"no"; then
AC_DEFINE(ENABLE_OPENSSL_TESTS, 1, [Define this symbol if OpenSSL EC functions are available])
SECP_TEST_INCLUDES="$SSL_CFLAGS $CRYPTO_CFLAGS"
SECP_TEST_LIBS="$CRYPTO_LIBS"
case $host in
*mingw*)
SECP_TEST_LIBS="$SECP_TEST_LIBS -lgdi32"
;;
esac
fi
else
if test x"$enable_openssl_tests" = x"yes"; then
AC_MSG_ERROR([OpenSSL tests requested but OpenSSL with EC support is not available])
fi
fi
else
if test x"$enable_openssl_tests" = x"yes"; then
AC_MSG_ERROR([OpenSSL tests requested but tests are not enabled])
fi
fi
if test x"$use_jni" != x"no"; then
AX_JNI_INCLUDE_DIR
have_jni_dependencies=yes
if test x"$enable_module_ecdh" = x"no"; then
have_jni_dependencies=no
fi
if test "x$JNI_INCLUDE_DIRS" = "x"; then
have_jni_dependencies=no
fi
if test "x$have_jni_dependencies" = "xno"; then
if test x"$use_jni" = x"yes"; then
AC_MSG_ERROR([jni support explicitly requested but headers/dependencies were not found. Enable ECDH and try again.])
fi
AC_MSG_WARN([jni headers/dependencies not found. jni support disabled])
use_jni=no
else
use_jni=yes
for JNI_INCLUDE_DIR in $JNI_INCLUDE_DIRS; do
JNI_INCLUDES="$JNI_INCLUDES -I$JNI_INCLUDE_DIR"
done
fi
fi
if test x"$set_bignum" = x"gmp"; then
SECP_LIBS="$SECP_LIBS $GMP_LIBS"
SECP_INCLUDES="$SECP_INCLUDES $GMP_CPPFLAGS"
fi
if test x"$use_endomorphism" = x"yes"; then
AC_DEFINE(USE_ENDOMORPHISM, 1, [Define this symbol to use endomorphism optimization])
fi
if test x"$set_precomp" = x"yes"; then
AC_DEFINE(USE_ECMULT_STATIC_PRECOMPUTATION, 1, [Define this symbol to use a statically generated ecmult table])
fi
if test x"$enable_module_ecdh" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_ECDH, 1, [Define this symbol to enable the ECDH module])
fi
if test x"$enable_module_recovery" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_RECOVERY, 1, [Define this symbol to enable the ECDSA pubkey recovery module])
fi
if test x"$enable_module_generator" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_GENERATOR, 1, [Define this symbol to enable the NUMS generator module])
fi
if test x"$enable_module_commitment" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_COMMITMENT, 1, [Define this symbol to enable the Pedersen commitment module])
fi
if test x"$enable_module_rangeproof" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_RANGEPROOF, 1, [Define this symbol to enable the zero knowledge range proof module])
fi
if test x"$enable_module_bulletproof" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_BULLETPROOF, 1, [Define this symbol to enable the Pedersen / zero knowledge bulletproof module])
fi
if test x"$enable_module_whitelist" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_WHITELIST, 1, [Define this symbol to enable the key whitelisting module])
fi
if test x"$enable_module_surjectionproof" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_SURJECTIONPROOF, 1, [Define this symbol to enable the surjection proof module])
fi
AC_C_BIGENDIAN()
if test x"$use_external_asm" = x"yes"; then
AC_DEFINE(USE_EXTERNAL_ASM, 1, [Define this symbol if an external (non-inline) assembly implementation is used])
fi
AC_MSG_NOTICE([Using static precomputation: $set_precomp])
AC_MSG_NOTICE([Using assembly optimizations: $set_asm])
AC_MSG_NOTICE([Using field implementation: $set_field])
AC_MSG_NOTICE([Using bignum implementation: $set_bignum])
AC_MSG_NOTICE([Using scalar implementation: $set_scalar])
AC_MSG_NOTICE([Using endomorphism optimizations: $use_endomorphism])
AC_MSG_NOTICE([Building benchmarks: $use_benchmark])
AC_MSG_NOTICE([Building for coverage analysis: $enable_coverage])
AC_MSG_NOTICE([Building ECDH module: $enable_module_ecdh])
AC_MSG_NOTICE([Building ECDSA pubkey recovery module: $enable_module_recovery])
AC_MSG_NOTICE([Using jni: $use_jni])
if test x"$enable_experimental" = x"yes"; then
AC_MSG_NOTICE([******])
AC_MSG_NOTICE([WARNING: experimental build])
AC_MSG_NOTICE([Experimental features do not have stable APIs or properties, and may not be safe for production use.])
AC_MSG_NOTICE([Building ECDH module: $enable_module_ecdh])
AC_MSG_NOTICE([Building NUMS generator module: $enable_module_generator])
AC_MSG_NOTICE([Building Pedersen commitment module: $enable_module_commitment])
AC_MSG_NOTICE([Building range proof module: $enable_module_rangeproof])
AC_MSG_NOTICE([Building bulletproof module: $enable_module_bulletproof])
AC_MSG_NOTICE([Building key whitelisting module: $enable_module_whitelist])
AC_MSG_NOTICE([Building surjection proof module: $enable_module_surjectionproof])
AC_MSG_NOTICE([******])
if test x"$enable_module_generator" != x"yes"; then
if test x"$enable_module_commitment" = x"yes"; then
AC_MSG_ERROR([Commitment module requires the generator module. Use --enable-module-generator to allow.])
fi
if test x"$enable_module_bulletproof" = x"yes"; then
AC_MSG_ERROR([Bulletproof module requires the generator module. Use --enable-module-generator to allow.])
fi
fi
if test x"$enable_module_commitment" != x"yes"; then
if test x"$enable_module_rangeproof" = x"yes"; then
AC_MSG_ERROR([Rangeproof module requires the commitment module. Use --enable-module-commitment to allow.])
fi
if test x"$enable_module_bulletproof" = x"yes"; then
AC_MSG_ERROR([Bulletproof module requires the commitment module. Use --enable-module-commitment to allow.])
fi
fi
if test x"$enable_module_rangeproof" != x"yes"; then
if test x"$enable_module_whitelist" = x"yes"; then
AC_MSG_ERROR([Whitelist module requires the rangeproof module. Use --enable-module-rangeproof to allow.])
fi
if test x"$enable_module_surjectionproof" = x"yes"; then
AC_MSG_ERROR([Surjection proof module requires the rangeproof module. Use --enable-module-rangeproof to allow.])
fi
fi
else
if test x"$enable_module_ecdh" = x"yes"; then
AC_MSG_ERROR([ECDH module is experimental. Use --enable-experimental to allow.])
fi
if test x"$set_asm" = x"arm"; then
AC_MSG_ERROR([ARM assembly optimization is experimental. Use --enable-experimental to allow.])
fi
if test x"$enable_module_generator" = x"yes"; then
AC_MSG_ERROR([NUMS generator module is experimental. Use --enable-experimental to allow.])
fi
if test x"$enable_module_commitment" = x"yes"; then
AC_MSG_ERROR([Pedersen commitment module is experimental. Use --enable-experimental to allow.])
fi
if test x"$enable_module_rangeproof" = x"yes"; then
AC_MSG_ERROR([Range proof module is experimental. Use --enable-experimental to allow.])
fi
if test x"$enable_module_bulletproof" = x"yes"; then
AC_MSG_ERROR([Bulletproof module is experimental. Use --enable-experimental to allow.])
fi
if test x"$enable_module_whitelist" = x"yes"; then
AC_MSG_ERROR([Key whitelisting module is experimental. Use --enable-experimental to allow.])
fi
if test x"$enable_module_surjectionproof" = x"yes"; then
AC_MSG_ERROR([Surjection proof module is experimental. Use --enable-experimental to allow.])
fi
fi
AC_CONFIG_HEADERS([src/libsecp256k1-config.h])
AC_CONFIG_FILES([Makefile libsecp256k1.pc])
AC_SUBST(JNI_INCLUDES)
AC_SUBST(SECP_INCLUDES)
AC_SUBST(SECP_LIBS)
AC_SUBST(SECP_TEST_LIBS)
AC_SUBST(SECP_TEST_INCLUDES)
AM_CONDITIONAL([ENABLE_COVERAGE], [test x"$enable_coverage" = x"yes"])
AM_CONDITIONAL([USE_TESTS], [test x"$use_tests" != x"no"])
AM_CONDITIONAL([USE_EXHAUSTIVE_TESTS], [test x"$use_exhaustive_tests" != x"no"])
AM_CONDITIONAL([USE_BENCHMARK], [test x"$use_benchmark" = x"yes"])
AM_CONDITIONAL([USE_ECMULT_STATIC_PRECOMPUTATION], [test x"$set_precomp" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_ECDH], [test x"$enable_module_ecdh" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_RECOVERY], [test x"$enable_module_recovery" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_GENERATOR], [test x"$enable_module_generator" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_COMMITMENT], [test x"$enable_module_commitment" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_RANGEPROOF], [test x"$enable_module_rangeproof" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_BULLETPROOF], [test x"$enable_module_bulletproof" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_WHITELIST], [test x"$enable_module_whitelist" = x"yes"])
AM_CONDITIONAL([USE_JNI], [test x"$use_jni" == x"yes"])
AM_CONDITIONAL([USE_EXTERNAL_ASM], [test x"$use_external_asm" = x"yes"])
AM_CONDITIONAL([USE_ASM_ARM], [test x"$set_asm" = x"arm"])
AM_CONDITIONAL([ENABLE_MODULE_SURJECTIONPROOF], [test x"$enable_module_surjectionproof" = x"yes"])
dnl make sure nothing new is exported so that we don't break the cache
PKGCONFIG_PATH_TEMP="$PKG_CONFIG_PATH"
unset PKG_CONFIG_PATH
PKG_CONFIG_PATH="$PKGCONFIG_PATH_TEMP"
AC_OUTPUT

View File

@ -1,91 +0,0 @@
/**********************************************************************
* Copyright (c) 2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
/****
* Please do not link this file directly. It is not part of the libsecp256k1
* project and does not promise any stability in its API, functionality or
* presence. Projects which use this code should instead copy this header
* and its accompanying .c file directly into their codebase.
****/
/* This file defines a function that parses DER with various errors and
* violations. This is not a part of the library itself, because the allowed
* violations are chosen arbitrarily and do not follow or establish any
* standard.
*
* In many places it matters that different implementations do not only accept
* the same set of valid signatures, but also reject the same set of signatures.
* The only means to accomplish that is by strictly obeying a standard, and not
* accepting anything else.
*
* Nonetheless, sometimes there is a need for compatibility with systems that
* use signatures which do not strictly obey DER. The snippet below shows how
* certain violations are easily supported. You may need to adapt it.
*
* Do not use this for new systems. Use well-defined DER or compact signatures
* instead if you have the choice (see secp256k1_ecdsa_signature_parse_der and
* secp256k1_ecdsa_signature_parse_compact).
*
* The supported violations are:
* - All numbers are parsed as nonnegative integers, even though X.609-0207
* section 8.3.3 specifies that integers are always encoded as two's
* complement.
* - Integers can have length 0, even though section 8.3.1 says they can't.
* - Integers with overly long padding are accepted, violation section
* 8.3.2.
* - 127-byte long length descriptors are accepted, even though section
* 8.1.3.5.c says that they are not.
* - Trailing garbage data inside or after the signature is ignored.
* - The length descriptor of the sequence is ignored.
*
* Compared to for example OpenSSL, many violations are NOT supported:
* - Using overly long tag descriptors for the sequence or integers inside,
* violating section 8.1.2.2.
* - Encoding primitive integers as constructed values, violating section
* 8.3.1.
*/
#ifndef SECP256K1_CONTRIB_LAX_DER_PARSING_H
#define SECP256K1_CONTRIB_LAX_DER_PARSING_H
#include <secp256k1.h>
#ifdef __cplusplus
extern "C" {
#endif
/** Parse a signature in "lax DER" format
*
* Returns: 1 when the signature could be parsed, 0 otherwise.
* Args: ctx: a secp256k1 context object
* Out: sig: a pointer to a signature object
* In: input: a pointer to the signature to be parsed
* inputlen: the length of the array pointed to be input
*
* This function will accept any valid DER encoded signature, even if the
* encoded numbers are out of range. In addition, it will accept signatures
* which violate the DER spec in various ways. Its purpose is to allow
* validation of the Bitcoin blockchain, which includes non-DER signatures
* from before the network rules were updated to enforce DER. Note that
* the set of supported violations is a strict subset of what OpenSSL will
* accept.
*
* After the call, sig will always be initialized. If parsing failed or the
* encoded numbers are out of range, signature validation with it is
* guaranteed to fail for every message and public key.
*/
int ecdsa_signature_parse_der_lax(
const secp256k1_context* ctx,
secp256k1_ecdsa_signature* sig,
const unsigned char *input,
size_t inputlen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_CONTRIB_LAX_DER_PARSING_H */

View File

@ -1,90 +0,0 @@
/**********************************************************************
* Copyright (c) 2014, 2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
/****
* Please do not link this file directly. It is not part of the libsecp256k1
* project and does not promise any stability in its API, functionality or
* presence. Projects which use this code should instead copy this header
* and its accompanying .c file directly into their codebase.
****/
/* This file contains code snippets that parse DER private keys with
* various errors and violations. This is not a part of the library
* itself, because the allowed violations are chosen arbitrarily and
* do not follow or establish any standard.
*
* It also contains code to serialize private keys in a compatible
* manner.
*
* These functions are meant for compatibility with applications
* that require BER encoded keys. When working with secp256k1-specific
* code, the simple 32-byte private keys normally used by the
* library are sufficient.
*/
#ifndef SECP256K1_CONTRIB_BER_PRIVATEKEY_H
#define SECP256K1_CONTRIB_BER_PRIVATEKEY_H
#include <secp256k1.h>
#ifdef __cplusplus
extern "C" {
#endif
/** Export a private key in DER format.
*
* Returns: 1 if the private key was valid.
* Args: ctx: pointer to a context object, initialized for signing (cannot
* be NULL)
* Out: privkey: pointer to an array for storing the private key in BER.
* Should have space for 279 bytes, and cannot be NULL.
* privkeylen: Pointer to an int where the length of the private key in
* privkey will be stored.
* In: seckey: pointer to a 32-byte secret key to export.
* compressed: 1 if the key should be exported in
* compressed format, 0 otherwise
*
* This function is purely meant for compatibility with applications that
* require BER encoded keys. When working with secp256k1-specific code, the
* simple 32-byte private keys are sufficient.
*
* Note that this function does not guarantee correct DER output. It is
* guaranteed to be parsable by secp256k1_ec_privkey_import_der
*/
SECP256K1_WARN_UNUSED_RESULT int ec_privkey_export_der(
const secp256k1_context* ctx,
unsigned char *privkey,
size_t *privkeylen,
const unsigned char *seckey,
int compressed
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Import a private key in DER format.
* Returns: 1 if a private key was extracted.
* Args: ctx: pointer to a context object (cannot be NULL).
* Out: seckey: pointer to a 32-byte array for storing the private key.
* (cannot be NULL).
* In: privkey: pointer to a private key in DER format (cannot be NULL).
* privkeylen: length of the DER private key pointed to be privkey.
*
* This function will accept more than just strict DER, and even allow some BER
* violations. The public key stored inside the DER-encoded private key is not
* verified for correctness, nor are the curve parameters. Use this function
* only if you know in advance it is supposed to contain a secp256k1 private
* key.
*/
SECP256K1_WARN_UNUSED_RESULT int ec_privkey_import_der(
const secp256k1_context* ctx,
unsigned char *seckey,
const unsigned char *privkey,
size_t privkeylen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_CONTRIB_BER_PRIVATEKEY_H */

View File

@ -1,654 +0,0 @@
#ifndef SECP256K1_H
#define SECP256K1_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stddef.h>
/* These rules specify the order of arguments in API calls:
*
* 1. Context pointers go first, followed by output arguments, combined
* output/input arguments, and finally input-only arguments.
* 2. Array lengths always immediately the follow the argument whose length
* they describe, even if this violates rule 1.
* 3. Within the OUT/OUTIN/IN groups, pointers to data that is typically generated
* later go first. This means: signatures, public nonces, private nonces,
* messages, public keys, secret keys, tweaks.
* 4. Arguments that are not data pointers go last, from more complex to less
* complex: function pointers, algorithm names, messages, void pointers,
* counts, flags, booleans.
* 5. Opaque data pointers follow the function pointer they are to be passed to.
*/
/** Opaque data structure that holds context information (precomputed tables etc.).
*
* The purpose of context structures is to cache large precomputed data tables
* that are expensive to construct, and also to maintain the randomization data
* for blinding.
*
* Do not create a new context object for each operation, as construction is
* far slower than all other API calls (~100 times slower than an ECDSA
* verification).
*
* A constructed context can safely be used from multiple threads
* simultaneously, but API call that take a non-const pointer to a context
* need exclusive access to it. In particular this is the case for
* secp256k1_context_destroy and secp256k1_context_randomize.
*
* Regarding randomization, either do it once at creation time (in which case
* you do not need any locking for the other calls), or use a read-write lock.
*/
typedef struct secp256k1_context_struct secp256k1_context;
/** Opaque data structure that holds rewriteable "scratch space"
*
* The purpose of this structure is to replace dynamic memory allocations,
* because we target architectures where this may not be available. It is
* essentially a resizable (within specified parameters) block of bytes,
* which is initially created either by memory allocation or TODO as a pointer
* into some fixed rewritable space.
*
* Unlike the context object, this cannot safely be shared between threads
* without additional synchronization logic.
*/
typedef struct secp256k1_scratch_space_struct secp256k1_scratch_space;
/** Opaque data structure that holds a parsed and valid public key.
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 64 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage, transmission, or
* comparison, use secp256k1_ec_pubkey_serialize and secp256k1_ec_pubkey_parse.
*/
typedef struct {
unsigned char data[64];
} secp256k1_pubkey;
/** Opaque data structured that holds a parsed ECDSA signature.
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 64 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage, transmission, or
* comparison, use the secp256k1_ecdsa_signature_serialize_* and
* secp256k1_ecdsa_signature_parse_* functions.
*/
typedef struct {
unsigned char data[64];
} secp256k1_ecdsa_signature;
/** A pointer to a function to deterministically generate a nonce.
*
* Returns: 1 if a nonce was successfully generated. 0 will cause signing to fail.
* Out: nonce32: pointer to a 32-byte array to be filled by the function.
* In: msg32: the 32-byte message hash being verified (will not be NULL)
* key32: pointer to a 32-byte secret key (will not be NULL)
* algo16: pointer to a 16-byte array describing the signature
* algorithm (will be NULL for ECDSA for compatibility).
* data: Arbitrary data pointer that is passed through.
* attempt: how many iterations we have tried to find a nonce.
* This will almost always be 0, but different attempt values
* are required to result in a different nonce.
*
* Except for test cases, this function should compute some cryptographic hash of
* the message, the algorithm, the key and the attempt.
*/
typedef int (*secp256k1_nonce_function)(
unsigned char *nonce32,
const unsigned char *msg32,
const unsigned char *key32,
const unsigned char *algo16,
void *data,
unsigned int attempt
);
# if !defined(SECP256K1_GNUC_PREREQ)
# if defined(__GNUC__)&&defined(__GNUC_MINOR__)
# define SECP256K1_GNUC_PREREQ(_maj,_min) \
((__GNUC__<<16)+__GNUC_MINOR__>=((_maj)<<16)+(_min))
# else
# define SECP256K1_GNUC_PREREQ(_maj,_min) 0
# endif
# endif
# if (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L) )
# if SECP256K1_GNUC_PREREQ(2,7)
# define SECP256K1_INLINE __inline__
# elif (defined(_MSC_VER))
# define SECP256K1_INLINE __inline
# else
# define SECP256K1_INLINE
# endif
# else
# define SECP256K1_INLINE inline
# endif
#ifndef SECP256K1_API
# if defined(_WIN32)
# ifdef SECP256K1_BUILD
# define SECP256K1_API __declspec(dllexport)
# else
# define SECP256K1_API
# endif
# elif defined(__GNUC__) && defined(SECP256K1_BUILD)
# define SECP256K1_API __attribute__ ((visibility ("default")))
# else
# define SECP256K1_API
# endif
#endif
/**Warning attributes
* NONNULL is not used if SECP256K1_BUILD is set to avoid the compiler optimizing out
* some paranoid null checks. */
# if defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4)
# define SECP256K1_WARN_UNUSED_RESULT __attribute__ ((__warn_unused_result__))
# else
# define SECP256K1_WARN_UNUSED_RESULT
# endif
# if !defined(SECP256K1_BUILD) && defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4)
# define SECP256K1_ARG_NONNULL(_x) __attribute__ ((__nonnull__(_x)))
# else
# define SECP256K1_ARG_NONNULL(_x)
# endif
/** All flags' lower 8 bits indicate what they're for. Do not use directly. */
#define SECP256K1_FLAGS_TYPE_MASK ((1 << 8) - 1)
#define SECP256K1_FLAGS_TYPE_CONTEXT (1 << 0)
#define SECP256K1_FLAGS_TYPE_COMPRESSION (1 << 1)
/** The higher bits contain the actual data. Do not use directly. */
#define SECP256K1_FLAGS_BIT_CONTEXT_VERIFY (1 << 8)
#define SECP256K1_FLAGS_BIT_CONTEXT_SIGN (1 << 9)
#define SECP256K1_FLAGS_BIT_COMPRESSION (1 << 8)
/** Flags to pass to secp256k1_context_create. */
#define SECP256K1_CONTEXT_VERIFY (SECP256K1_FLAGS_TYPE_CONTEXT | SECP256K1_FLAGS_BIT_CONTEXT_VERIFY)
#define SECP256K1_CONTEXT_SIGN (SECP256K1_FLAGS_TYPE_CONTEXT | SECP256K1_FLAGS_BIT_CONTEXT_SIGN)
#define SECP256K1_CONTEXT_NONE (SECP256K1_FLAGS_TYPE_CONTEXT)
/** Flag to pass to secp256k1_ec_pubkey_serialize and secp256k1_ec_privkey_export. */
#define SECP256K1_EC_COMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION | SECP256K1_FLAGS_BIT_COMPRESSION)
#define SECP256K1_EC_UNCOMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION)
/** Prefix byte used to tag various encoded curvepoints for specific purposes */
#define SECP256K1_TAG_PUBKEY_EVEN 0x02
#define SECP256K1_TAG_PUBKEY_ODD 0x03
#define SECP256K1_TAG_PUBKEY_UNCOMPRESSED 0x04
#define SECP256K1_TAG_PUBKEY_HYBRID_EVEN 0x06
#define SECP256K1_TAG_PUBKEY_HYBRID_ODD 0x07
/** Create a secp256k1 context object.
*
* Returns: a newly created context object.
* In: flags: which parts of the context to initialize.
*
* See also secp256k1_context_randomize.
*/
SECP256K1_API secp256k1_context* secp256k1_context_create(
unsigned int flags
) SECP256K1_WARN_UNUSED_RESULT;
/** Copies a secp256k1 context object.
*
* Returns: a newly created context object.
* Args: ctx: an existing context to copy (cannot be NULL)
*/
SECP256K1_API secp256k1_context* secp256k1_context_clone(
const secp256k1_context* ctx
) SECP256K1_ARG_NONNULL(1) SECP256K1_WARN_UNUSED_RESULT;
/** Destroy a secp256k1 context object.
*
* The context pointer may not be used afterwards.
* Args: ctx: an existing context to destroy (cannot be NULL)
*/
SECP256K1_API void secp256k1_context_destroy(
secp256k1_context* ctx
);
/** Set a callback function to be called when an illegal argument is passed to
* an API call. It will only trigger for violations that are mentioned
* explicitly in the header.
*
* The philosophy is that these shouldn't be dealt with through a
* specific return value, as calling code should not have branches to deal with
* the case that this code itself is broken.
*
* On the other hand, during debug stage, one would want to be informed about
* such mistakes, and the default (crashing) may be inadvisable.
* When this callback is triggered, the API function called is guaranteed not
* to cause a crash, though its return value and output arguments are
* undefined.
*
* Args: ctx: an existing context object (cannot be NULL)
* In: fun: a pointer to a function to call when an illegal argument is
* passed to the API, taking a message and an opaque pointer
* (NULL restores a default handler that calls abort).
* data: the opaque pointer to pass to fun above.
*/
SECP256K1_API void secp256k1_context_set_illegal_callback(
secp256k1_context* ctx,
void (*fun)(const char* message, void* data),
const void* data
) SECP256K1_ARG_NONNULL(1);
/** Set a callback function to be called when an internal consistency check
* fails. The default is crashing.
*
* This can only trigger in case of a hardware failure, miscompilation,
* memory corruption, serious bug in the library, or other error would can
* otherwise result in undefined behaviour. It will not trigger due to mere
* incorrect usage of the API (see secp256k1_context_set_illegal_callback
* for that). After this callback returns, anything may happen, including
* crashing.
*
* Args: ctx: an existing context object (cannot be NULL)
* In: fun: a pointer to a function to call when an internal error occurs,
* taking a message and an opaque pointer (NULL restores a default
* handler that calls abort).
* data: the opaque pointer to pass to fun above.
*/
SECP256K1_API void secp256k1_context_set_error_callback(
secp256k1_context* ctx,
void (*fun)(const char* message, void* data),
const void* data
) SECP256K1_ARG_NONNULL(1);
/** Create a secp256k1 scratch space object.
*
* Returns: a newly created scratch space.
* Args: ctx: an existing context object (cannot be NULL)
* In: max_size: maximum amount of memory to allocate
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT secp256k1_scratch_space* secp256k1_scratch_space_create(
const secp256k1_context* ctx,
size_t max_size
) SECP256K1_ARG_NONNULL(1);
/** Destroy a secp256k1 scratch space.
*
* The pointer may not be used afterwards.
* Args: scratch: space to destroy
*/
SECP256K1_API void secp256k1_scratch_space_destroy(
secp256k1_scratch_space* scratch
);
/** Parse a variable-length public key into the pubkey object.
*
* Returns: 1 if the public key was fully valid.
* 0 if the public key could not be parsed or is invalid.
* Args: ctx: a secp256k1 context object.
* Out: pubkey: pointer to a pubkey object. If 1 is returned, it is set to a
* parsed version of input. If not, its value is undefined.
* In: input: pointer to a serialized public key
* inputlen: length of the array pointed to by input
*
* This function supports parsing compressed (33 bytes, header byte 0x02 or
* 0x03), uncompressed (65 bytes, header byte 0x04), or hybrid (65 bytes, header
* byte 0x06 or 0x07) format public keys.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_parse(
const secp256k1_context* ctx,
secp256k1_pubkey* pubkey,
const unsigned char *input,
size_t inputlen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize a pubkey object into a serialized byte sequence.
*
* Returns: 1 always.
* Args: ctx: a secp256k1 context object.
* Out: output: a pointer to a 65-byte (if compressed==0) or 33-byte (if
* compressed==1) byte array to place the serialized key
* in.
* In/Out: outputlen: a pointer to an integer which is initially set to the
* size of output, and is overwritten with the written
* size.
* In: pubkey: a pointer to a secp256k1_pubkey containing an
* initialized public key.
* flags: SECP256K1_EC_COMPRESSED if serialization should be in
* compressed format, otherwise SECP256K1_EC_UNCOMPRESSED.
*/
SECP256K1_API int secp256k1_ec_pubkey_serialize(
const secp256k1_context* ctx,
unsigned char *output,
size_t *outputlen,
const secp256k1_pubkey* pubkey,
unsigned int flags
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Parse an ECDSA signature in compact (64 bytes) format.
*
* Returns: 1 when the signature could be parsed, 0 otherwise.
* Args: ctx: a secp256k1 context object
* Out: sig: a pointer to a signature object
* In: input64: a pointer to the 64-byte array to parse
*
* The signature must consist of a 32-byte big endian R value, followed by a
* 32-byte big endian S value. If R or S fall outside of [0..order-1], the
* encoding is invalid. R and S with value 0 are allowed in the encoding.
*
* After the call, sig will always be initialized. If parsing failed or R or
* S are zero, the resulting sig value is guaranteed to fail validation for any
* message and public key.
*/
SECP256K1_API int secp256k1_ecdsa_signature_parse_compact(
const secp256k1_context* ctx,
secp256k1_ecdsa_signature* sig,
const unsigned char *input64
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Parse a DER ECDSA signature.
*
* Returns: 1 when the signature could be parsed, 0 otherwise.
* Args: ctx: a secp256k1 context object
* Out: sig: a pointer to a signature object
* In: input: a pointer to the signature to be parsed
* inputlen: the length of the array pointed to be input
*
* This function will accept any valid DER encoded signature, even if the
* encoded numbers are out of range.
*
* After the call, sig will always be initialized. If parsing failed or the
* encoded numbers are out of range, signature validation with it is
* guaranteed to fail for every message and public key.
*/
SECP256K1_API int secp256k1_ecdsa_signature_parse_der(
const secp256k1_context* ctx,
secp256k1_ecdsa_signature* sig,
const unsigned char *input,
size_t inputlen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize an ECDSA signature in DER format.
*
* Returns: 1 if enough space was available to serialize, 0 otherwise
* Args: ctx: a secp256k1 context object
* Out: output: a pointer to an array to store the DER serialization
* In/Out: outputlen: a pointer to a length integer. Initially, this integer
* should be set to the length of output. After the call
* it will be set to the length of the serialization (even
* if 0 was returned).
* In: sig: a pointer to an initialized signature object
*/
SECP256K1_API int secp256k1_ecdsa_signature_serialize_der(
const secp256k1_context* ctx,
unsigned char *output,
size_t *outputlen,
const secp256k1_ecdsa_signature* sig
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Serialize an ECDSA signature in compact (64 byte) format.
*
* Returns: 1
* Args: ctx: a secp256k1 context object
* Out: output64: a pointer to a 64-byte array to store the compact serialization
* In: sig: a pointer to an initialized signature object
*
* See secp256k1_ecdsa_signature_parse_compact for details about the encoding.
*/
SECP256K1_API int secp256k1_ecdsa_signature_serialize_compact(
const secp256k1_context* ctx,
unsigned char *output64,
const secp256k1_ecdsa_signature* sig
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Verify an ECDSA signature.
*
* Returns: 1: correct signature
* 0: incorrect or unparseable signature
* Args: ctx: a secp256k1 context object, initialized for verification.
* In: sig: the signature being verified (cannot be NULL)
* msg32: the 32-byte message hash being verified (cannot be NULL)
* pubkey: pointer to an initialized public key to verify with (cannot be NULL)
*
* To avoid accepting malleable signatures, only ECDSA signatures in lower-S
* form are accepted.
*
* If you need to accept ECDSA signatures from sources that do not obey this
* rule, apply secp256k1_ecdsa_signature_normalize to the signature prior to
* validation, but be aware that doing so results in malleable signatures.
*
* For details, see the comments for that function.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify(
const secp256k1_context* ctx,
const secp256k1_ecdsa_signature *sig,
const unsigned char *msg32,
const secp256k1_pubkey *pubkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Convert a signature to a normalized lower-S form.
*
* Returns: 1 if sigin was not normalized, 0 if it already was.
* Args: ctx: a secp256k1 context object
* Out: sigout: a pointer to a signature to fill with the normalized form,
* or copy if the input was already normalized. (can be NULL if
* you're only interested in whether the input was already
* normalized).
* In: sigin: a pointer to a signature to check/normalize (cannot be NULL,
* can be identical to sigout)
*
* With ECDSA a third-party can forge a second distinct signature of the same
* message, given a single initial signature, but without knowing the key. This
* is done by negating the S value modulo the order of the curve, 'flipping'
* the sign of the random point R which is not included in the signature.
*
* Forgery of the same message isn't universally problematic, but in systems
* where message malleability or uniqueness of signatures is important this can
* cause issues. This forgery can be blocked by all verifiers forcing signers
* to use a normalized form.
*
* The lower-S form reduces the size of signatures slightly on average when
* variable length encodings (such as DER) are used and is cheap to verify,
* making it a good choice. Security of always using lower-S is assured because
* anyone can trivially modify a signature after the fact to enforce this
* property anyway.
*
* The lower S value is always between 0x1 and
* 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0,
* inclusive.
*
* No other forms of ECDSA malleability are known and none seem likely, but
* there is no formal proof that ECDSA, even with this additional restriction,
* is free of other malleability. Commonly used serialization schemes will also
* accept various non-unique encodings, so care should be taken when this
* property is required for an application.
*
* The secp256k1_ecdsa_sign function will by default create signatures in the
* lower-S form, and secp256k1_ecdsa_verify will not accept others. In case
* signatures come from a system that cannot enforce this property,
* secp256k1_ecdsa_signature_normalize must be called before verification.
*/
SECP256K1_API int secp256k1_ecdsa_signature_normalize(
const secp256k1_context* ctx,
secp256k1_ecdsa_signature *sigout,
const secp256k1_ecdsa_signature *sigin
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(3);
/** An implementation of RFC6979 (using HMAC-SHA256) as nonce generation function.
* If a data pointer is passed, it is assumed to be a pointer to 32 bytes of
* extra entropy.
*/
SECP256K1_API extern const secp256k1_nonce_function secp256k1_nonce_function_rfc6979;
/** A default safe nonce generation function (currently equal to secp256k1_nonce_function_rfc6979). */
SECP256K1_API extern const secp256k1_nonce_function secp256k1_nonce_function_default;
/** Create an ECDSA signature.
*
* Returns: 1: signature created
* 0: the nonce generation function failed, or the private key was invalid.
* Args: ctx: pointer to a context object, initialized for signing (cannot be NULL)
* Out: sig: pointer to an array where the signature will be placed (cannot be NULL)
* In: msg32: the 32-byte message hash being signed (cannot be NULL)
* seckey: pointer to a 32-byte secret key (cannot be NULL)
* noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used
* ndata: pointer to arbitrary data used by the nonce generation function (can be NULL)
*
* The created signature is always in lower-S form. See
* secp256k1_ecdsa_signature_normalize for more details.
*/
SECP256K1_API int secp256k1_ecdsa_sign(
const secp256k1_context* ctx,
secp256k1_ecdsa_signature *sig,
const unsigned char *msg32,
const unsigned char *seckey,
secp256k1_nonce_function noncefp,
const void *ndata
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Verify an ECDSA secret key.
*
* Returns: 1: secret key is valid
* 0: secret key is invalid
* Args: ctx: pointer to a context object (cannot be NULL)
* In: seckey: pointer to a 32-byte secret key (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_verify(
const secp256k1_context* ctx,
const unsigned char *seckey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
/** Compute the public key for a secret key.
*
* Returns: 1: secret was valid, public key stores
* 0: secret was invalid, try again
* Args: ctx: pointer to a context object, initialized for signing (cannot be NULL)
* Out: pubkey: pointer to the created public key (cannot be NULL)
* In: seckey: pointer to a 32-byte private key (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_create(
const secp256k1_context* ctx,
secp256k1_pubkey *pubkey,
const unsigned char *seckey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Negates a private key in place.
*
* Returns: 1 always
* Args: ctx: pointer to a context object
* In/Out: seckey: pointer to the 32-byte private key to be negated (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_negate(
const secp256k1_context* ctx,
unsigned char *seckey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
/** Negates a public key in place.
*
* Returns: 1 always
* Args: ctx: pointer to a context object
* In/Out: pubkey: pointer to the public key to be negated (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_negate(
const secp256k1_context* ctx,
secp256k1_pubkey *pubkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
/** Tweak a private key by adding tweak to it.
* Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
* uniformly random 32-byte arrays, or if the resulting private key
* would be invalid (only when the tweak is the complement of the
* private key). 1 otherwise.
* Args: ctx: pointer to a context object (cannot be NULL).
* In/Out: seckey: pointer to a 32-byte private key.
* In: tweak: pointer to a 32-byte tweak.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_add(
const secp256k1_context* ctx,
unsigned char *seckey,
const unsigned char *tweak
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Tweak a public key by adding tweak times the generator to it.
* Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
* uniformly random 32-byte arrays, or if the resulting public key
* would be invalid (only when the tweak is the complement of the
* corresponding private key). 1 otherwise.
* Args: ctx: pointer to a context object initialized for validation
* (cannot be NULL).
* In/Out: pubkey: pointer to a public key object.
* In: tweak: pointer to a 32-byte tweak.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_add(
const secp256k1_context* ctx,
secp256k1_pubkey *pubkey,
const unsigned char *tweak
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Tweak a private key by multiplying it by a tweak.
* Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
* uniformly random 32-byte arrays, or equal to zero. 1 otherwise.
* Args: ctx: pointer to a context object (cannot be NULL).
* In/Out: seckey: pointer to a 32-byte private key.
* In: tweak: pointer to a 32-byte tweak.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_mul(
const secp256k1_context* ctx,
unsigned char *seckey,
const unsigned char *tweak
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Tweak a public key by multiplying it by a tweak value.
* Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
* uniformly random 32-byte arrays, or equal to zero. 1 otherwise.
* Args: ctx: pointer to a context object initialized for validation
* (cannot be NULL).
* In/Out: pubkey: pointer to a public key obkect.
* In: tweak: pointer to a 32-byte tweak.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_mul(
const secp256k1_context* ctx,
secp256k1_pubkey *pubkey,
const unsigned char *tweak
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Updates the context randomization to protect against side-channel leakage.
* Returns: 1: randomization successfully updated
* 0: error
* Args: ctx: pointer to a context object (cannot be NULL)
* In: seed32: pointer to a 32-byte random seed (NULL resets to initial state)
*
* While secp256k1 code is written to be constant-time no matter what secret
* values are, it's possible that a future compiler may output code which isn't,
* and also that the CPU may not emit the same radio frequencies or draw the same
* amount power for all values.
*
* This function provides a seed which is combined into the blinding value: that
* blinding value is added before each multiplication (and removed afterwards) so
* that it does not affect function results, but shields against attacks which
* rely on any input-dependent behaviour.
*
* You should call this after secp256k1_context_create or
* secp256k1_context_clone, and may call this repeatedly afterwards.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_context_randomize(
secp256k1_context* ctx,
const unsigned char *seed32
) SECP256K1_ARG_NONNULL(1);
/** Add a number of public keys together.
* Returns: 1: the sum of the public keys is valid.
* 0: the sum of the public keys is not valid.
* Args: ctx: pointer to a context object
* Out: out: pointer to a public key object for placing the resulting public key
* (cannot be NULL)
* In: ins: pointer to array of pointers to public keys (cannot be NULL)
* n: the number of public keys to add together (must be at least 1)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_combine(
const secp256k1_context* ctx,
secp256k1_pubkey *out,
const secp256k1_pubkey * const * ins,
size_t n
) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_H */

View File

@ -1,176 +0,0 @@
#ifndef _SECP256K1_BULLETPROOF_
# define _SECP256K1_BULLETPROOF_
# include "secp256k1.h"
# include "secp256k1_generator.h"
# include "secp256k1_rangeproof.h"
# ifdef __cplusplus
extern "C" {
# endif
/** Opaque structure representing a large number of NUMS generators */
typedef struct secp256k1_bulletproof_generators secp256k1_bulletproof_generators;
/* Maximum depth of 31 lets us validate an aggregate of 2^25 64-bit proofs */
#define SECP256K1_BULLETPROOF_MAX_DEPTH 31
/* Size of a hypothetical 31-depth rangeproof, in bytes */
#define SECP256K1_BULLETPROOF_MAX_PROOF (160 + 36*32 + 7)
/** Allocates and initializes a list of NUMS generators, along with precomputation data
* Returns a list of generators, or NULL if allocation failed.
* Args: ctx: pointer to a context object (cannot be NULL)
* In: blinding_gen: generator that blinding factors will be multiplied by (cannot be NULL)
* n: number of NUMS generators to produce
*/
SECP256K1_API secp256k1_bulletproof_generators *secp256k1_bulletproof_generators_create(
const secp256k1_context* ctx,
const secp256k1_generator *blinding_gen,
size_t n
) SECP256K1_ARG_NONNULL(1);
/** Destroys a list of NUMS generators, freeing allocated memory
* Args: ctx: pointer to a context object (cannot be NULL)
* gen: pointer to the generator set to be destroyed
*/
SECP256K1_API void secp256k1_bulletproof_generators_destroy(
const secp256k1_context* ctx,
secp256k1_bulletproof_generators *gen
) SECP256K1_ARG_NONNULL(1);
/** Verifies a single bulletproof (aggregate) rangeproof
* Returns: 1: rangeproof was valid
* 0: rangeproof was invalid, or out of memory
* Args: ctx: pointer to a context object initialized for verification (cannot be NULL)
* scratch: scratch space with enough memory for verification (cannot be NULL)
* gens: generator set with at least 2*nbits*n_commits many generators (cannot be NULL)
* In: proof: byte-serialized rangeproof (cannot be NULL)
* plen: length of the proof
* min_value: array of minimum values to prove ranges above, or NULL for all-zeroes
* commit: array of pedersen commitment that this rangeproof is over (cannot be NULL)
* n_commits: number of commitments in the above array (cannot be 0)
* nbits: number of bits proven for each range
* value_gen: generator multiplied by value in pedersen commitments (cannot be NULL)
* extra_commit: additonal data committed to by the rangeproof (may be NULL if `extra_commit_len` is 0)
* extra_commit_len: length of additional data
*/
SECP256K1_WARN_UNUSED_RESULT SECP256K1_API int secp256k1_bulletproof_rangeproof_verify(
const secp256k1_context* ctx,
secp256k1_scratch_space* scratch,
const secp256k1_bulletproof_generators *gens,
const unsigned char* proof,
size_t plen,
const uint64_t* min_value,
const secp256k1_pedersen_commitment* commit,
size_t n_commits,
size_t nbits,
const secp256k1_generator* value_gen,
const unsigned char* extra_commit,
size_t extra_commit_len
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(7) SECP256K1_ARG_NONNULL(10);
/** Batch-verifies multiple bulletproof (aggregate) rangeproofs of the same size using same generator
* Returns: 1: all rangeproofs were valid
* 0: some rangeproof was invalid, or out of memory
* Args: ctx: pointer to a context object initialized for verification (cannot be NULL)
* scratch: scratch space with enough memory for verification (cannot be NULL)
* gens: generator set with at least 2*nbits*n_commits many generators (cannot be NULL)
* In: proof: array of byte-serialized rangeproofs (cannot be NULL)
* n_proofs: number of proofs in the above array, and number of arrays in the `commit` array
* plen: length of every individual proof
* min_value: array of arrays of minimum values to prove ranges above, or NULL for all-zeroes
* commit: array of arrays of pedersen commitment that the rangeproofs is over (cannot be NULL)
* n_commits: number of commitments in each element of the above array (cannot be 0)
* nbits: number of bits in each proof
* value_gen: generator multiplied by value in pedersen commitments (cannot be NULL)
* extra_commit: additonal data committed to by the rangeproof (may be NULL if `extra_commit_len` is 0)
* extra_commit_len: array of lengths of additional data
*/
SECP256K1_WARN_UNUSED_RESULT SECP256K1_API int secp256k1_bulletproof_rangeproof_verify_multi(
const secp256k1_context* ctx,
secp256k1_scratch_space* scratch,
const secp256k1_bulletproof_generators *gens,
const unsigned char* const* proof,
size_t n_proofs,
size_t plen,
const uint64_t* const* min_value,
const secp256k1_pedersen_commitment* const* commit,
size_t n_commits,
size_t nbits,
const secp256k1_generator* value_gen,
const unsigned char* const* extra_commit,
size_t *extra_commit_len
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(8);
/** Extracts the value and blinding factor from a single-commit rangeproof given a secret nonce
* Returns: 1: value and blinding factor were extracted and matched the input commit
* 0: one of the above was not true, extraction failed
* Args: ctx: pointer to a context object (cannot be NULL)
* gens: generator set used to make original proof (cannot be NULL)
* Out: value: pointer to value that will be extracted
* blind: pointer to 32-byte array for blinding factor to be extracted
* In: proof: byte-serialized rangeproof (cannot be NULL)
* plen: length of every individual proof
* min_value: minimum value that the proof ranges over
* commit: pedersen commitment that the rangeproof is over (cannot be NULL)
* value_gen: generator multiplied by value in pedersen commitments (cannot be NULL)
* nonce: random 32-byte seed used to derive blinding factors (cannot be NULL)
* extra_commit: additonal data committed to by the rangeproof
* extra_commit_len: length of additional data
*/
SECP256K1_WARN_UNUSED_RESULT SECP256K1_API int secp256k1_bulletproof_rangeproof_rewind(
const secp256k1_context* ctx,
const secp256k1_bulletproof_generators* gens,
uint64_t* value,
unsigned char* blind,
const unsigned char* proof,
size_t plen,
uint64_t min_value,
const secp256k1_pedersen_commitment* commit,
const secp256k1_generator* value_gen,
const unsigned char* nonce,
const unsigned char* extra_commit,
size_t extra_commit_len
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(8) SECP256K1_ARG_NONNULL(9);
/** Produces an aggregate Bulletproof rangeproof for a set of Pedersen commitments
* Returns: 1: rangeproof was successfully created
* 0: rangeproof could not be created, or out of memory
* Args: ctx: pointer to a context object initialized for signing and verification (cannot be NULL)
* scratch: scratch space with enough memory for verification (cannot be NULL)
* gens: generator set with at least 2*nbits*n_commits many generators (cannot be NULL)
* Out: proof: byte-serialized rangeproof (cannot be NULL)
* In/out: plen: pointer to size of `proof`, to be replaced with actual length of proof (cannot be NULL)
* In: value: array of values committed by the Pedersen commitments (cannot be NULL)
* min_value: array of minimum values to prove ranges above, or NULL for all-zeroes
* blind: array of blinding factors of the Pedersen commitments (cannot be NULL)
* n_commits: number of entries in the `value` and `blind` arrays
* value_gen: generator multiplied by value in pedersen commitments (cannot be NULL)
* nbits: number of bits proven for each range
* nonce: random 32-byte seed used to derive blinding factors (cannot be NULL)
* extra_commit: additonal data committed to by the rangeproof
* extra_commit_len: length of additional data
*/
SECP256K1_WARN_UNUSED_RESULT SECP256K1_API int secp256k1_bulletproof_rangeproof_prove(
const secp256k1_context* ctx,
secp256k1_scratch_space* scratch,
const secp256k1_bulletproof_generators *gens,
unsigned char* proof,
size_t* plen,
const uint64_t *value,
const uint64_t *min_value,
const unsigned char* const* blind,
size_t n_commits,
const secp256k1_generator* value_gen,
size_t nbits,
const unsigned char* nonce,
const unsigned char* extra_commit,
size_t extra_commit_len
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(6) SECP256K1_ARG_NONNULL(8) SECP256K1_ARG_NONNULL(10) SECP256K1_ARG_NONNULL(12);
# ifdef __cplusplus
}
# endif
#endif

View File

@ -1,164 +0,0 @@
#ifndef _SECP256K1_COMMITMENT_
# define _SECP256K1_COMMITMENT_
# include "secp256k1.h"
# include "secp256k1_generator.h"
# ifdef __cplusplus
extern "C" {
# endif
#include <stdint.h>
/** Opaque data structure that stores a Pedersen commitment
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 33 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage or transmission, use
* secp256k1_pedersen_commitment_serialize and secp256k1_pedersen_commitment_parse.
*/
typedef struct {
unsigned char data[33];
} secp256k1_pedersen_commitment;
/** Parse a 33-byte commitment into a commitment object.
*
* Returns: 1 if input contains a valid commitment.
* Args: ctx: a secp256k1 context object.
* Out: commit: pointer to the output commitment object
* In: input: pointer to a 33-byte serialized commitment key
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_pedersen_commitment_parse(
const secp256k1_context* ctx,
secp256k1_pedersen_commitment* commit,
const unsigned char *input
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize a commitment object into a serialized byte sequence.
*
* Returns: 1 always.
* Args: ctx: a secp256k1 context object.
* Out: output: a pointer to a 33-byte byte array
* In: commit: a pointer to a secp256k1_pedersen_commitment containing an
* initialized commitment
*/
SECP256K1_API int secp256k1_pedersen_commitment_serialize(
const secp256k1_context* ctx,
unsigned char *output,
const secp256k1_pedersen_commitment* commit
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Initialize a context for usage with Pedersen commitments. */
void secp256k1_pedersen_context_initialize(secp256k1_context* ctx);
/** Generate a Pedersen commitment.
* Returns 1: Commitment successfully created.
* 0: Error. The blinding factor is larger than the group order
* (probability for random 32 byte number < 2^-127) or results in the
* point at infinity. Retry with a different factor.
* In: ctx: pointer to a context object (cannot be NULL)
* blind: pointer to a 32-byte blinding factor (cannot be NULL)
* value: unsigned 64-bit integer value to commit to.
* value_gen: value generator 'h'
* blind_gen: blinding factor generator 'g'
* Out: commit: pointer to the commitment (cannot be NULL)
*
* Blinding factors can be generated and verified in the same way as secp256k1 private keys for ECDSA.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_pedersen_commit(
const secp256k1_context* ctx,
secp256k1_pedersen_commitment *commit,
const unsigned char *blind,
uint64_t value,
const secp256k1_generator *value_gen,
const secp256k1_generator *blind_gen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(6);
/** Computes the sum of multiple positive and negative blinding factors.
* Returns 1: Sum successfully computed.
* 0: Error. A blinding factor is larger than the group order
* (probability for random 32 byte number < 2^-127). Retry with
* different factors.
* In: ctx: pointer to a context object (cannot be NULL)
* blinds: pointer to pointers to 32-byte character arrays for blinding factors. (cannot be NULL)
* n: number of factors pointed to by blinds.
* npositive: how many of the input factors should be treated with a positive sign.
* Out: blind_out: pointer to a 32-byte array for the sum (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_pedersen_blind_sum(
const secp256k1_context* ctx,
unsigned char *blind_out,
const unsigned char * const *blinds,
size_t n,
size_t npositive
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Verify a tally of Pedersen commitments
* Returns 1: commitments successfully sum to zero.
* 0: Commitments do not sum to zero or other error.
* In: ctx: pointer to a context object (cannot be NULL)
* pos: pointer to array of pointers to the commitments. (cannot be NULL if `n_pos` is non-zero)
* n_pos: number of commitments pointed to by `pos`.
* neg: pointer to array of pointers to the negative commitments. (cannot be NULL if `n_neg` is non-zero)
* n_neg: number of commitments pointed to by `neg`.
*
* This computes sum(pos[0..n_pos)) - sum(neg[0..n_neg)) == 0.
*
* A Pedersen commitment is xG + vA where G and A are generators for the secp256k1 group and x is a blinding factor,
* while v is the committed value. For a collection of commitments to sum to zero, for each distinct generator
* A all blinding factors and all values must sum to zero.
*
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_pedersen_verify_tally(
const secp256k1_context* ctx,
const secp256k1_pedersen_commitment * const* pos,
size_t n_pos,
const secp256k1_pedersen_commitment * const* neg,
size_t n_neg
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4);
/** Sets the final Pedersen blinding factor correctly when the generators themselves
* have blinding factors.
*
* Consider a generator of the form A' = A + rG, where A is the "real" generator
* but A' is the generator provided to verifiers. Then a Pedersen commitment
* P = vA' + r'G really has the form vA + (vr + r')G. To get all these (vr + r')
* to sum to zero for multiple commitments, we take three arrays consisting of
* the `v`s, `r`s, and `r'`s, respectively called `value`s, `generator_blind`s
* and `blinding_factor`s, and sum them.
*
* The function then subtracts the sum of all (vr + r') from the last element
* of the `blinding_factor` array, setting the total sum to zero.
*
* Returns 1: Blinding factor successfully computed.
* 0: Error. A blinding_factor or generator_blind are larger than the group
* order (probability for random 32 byte number < 2^-127). Retry with
* different values.
*
* In: ctx: pointer to a context object
* value: array of asset values, `v` in the above paragraph.
* May not be NULL unless `n_total` is 0.
* generator_blind: array of asset blinding factors, `r` in the above paragraph
* May not be NULL unless `n_total` is 0.
* n_total: Total size of the above arrays
* n_inputs: How many of the initial array elements represent commitments that
* will be negated in the final sum
* In/Out: blinding_factor: array of commitment blinding factors, `r'` in the above paragraph
* May not be NULL unless `n_total` is 0.
* the last value will be modified to get the total sum to zero.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_pedersen_blind_generator_blind_sum(
const secp256k1_context* ctx,
const uint64_t *value,
const unsigned char* const* generator_blind,
unsigned char* const* blinding_factor,
size_t n_total,
size_t n_inputs
);
# ifdef __cplusplus
}
# endif
#endif

View File

@ -1,31 +0,0 @@
#ifndef SECP256K1_ECDH_H
#define SECP256K1_ECDH_H
#include "secp256k1.h"
#ifdef __cplusplus
extern "C" {
#endif
/** Compute an EC Diffie-Hellman secret in constant time
* Returns: 1: exponentiation was successful
* 0: scalar was invalid (zero or overflow)
* Args: ctx: pointer to a context object (cannot be NULL)
* Out: result: a 32-byte array which will be populated by an ECDH
* secret computed from the point and scalar
* In: pubkey: a pointer to a secp256k1_pubkey containing an
* initialized public key
* privkey: a 32-byte scalar with which to multiply the point
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdh(
const secp256k1_context* ctx,
unsigned char *result,
const secp256k1_pubkey *pubkey,
const unsigned char *privkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_ECDH_H */

View File

@ -1,102 +0,0 @@
#ifndef _SECP256K1_GENERATOR_
# define _SECP256K1_GENERATOR_
# include "secp256k1.h"
# ifdef __cplusplus
extern "C" {
# endif
#include <stdint.h>
/** Opaque data structure that stores a base point
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 33 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage or transmission, use
* the secp256k1_generator_serialize_*.
*
* Furthermore, it is guaranteed to identical points will have identical
* representation, so they can be memcmp'ed.
*/
typedef struct {
unsigned char data[33];
} secp256k1_generator;
/** Standard secp256k1 generator G */
extern const secp256k1_generator secp256k1_generator_const_g;
/** Alternate secp256k1 generator from Elements Alpha */
extern const secp256k1_generator secp256k1_generator_const_h;
/** Parse a 33-byte generator byte sequence into a generator object.
*
* Returns: 1 if input contains a valid generator.
* Args: ctx: a secp256k1 context object.
* Out: commit: pointer to the output generator object
* In: input: pointer to a 33-byte serialized generator
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_generator_parse(
const secp256k1_context* ctx,
secp256k1_generator* commit,
const unsigned char *input
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize a 33-byte generator into a serialized byte sequence.
*
* Returns: 1 always.
* Args: ctx: a secp256k1 context object.
* Out: output: a pointer to a 33-byte byte array
* In: commit: a pointer to a generator
*/
SECP256K1_API int secp256k1_generator_serialize(
const secp256k1_context* ctx,
unsigned char *output,
const secp256k1_generator* commit
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Generate a generator for the curve.
*
* Returns: 0 in the highly unlikely case the seed is not acceptable,
* 1 otherwise.
* Args: ctx: a secp256k1 context object
* Out: gen: a generator object
* In: seed32: a 32-byte seed
*
* If succesful, a valid generator will be placed in gen. The produced
* generators are distributed uniformly over the curve, and will not have a
* known dicrete logarithm with respect to any other generator produced,
* or to the base generator G.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_generator_generate(
const secp256k1_context* ctx,
secp256k1_generator* gen,
const unsigned char *seed32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Generate a blinded generator for the curve.
*
* Returns: 0 in the highly unlikely case the seed is not acceptable or when
* blind is out of range. 1 otherwise.
* Args: ctx: a secp256k1 context object, initialized for signing
* Out: gen: a generator object
* In: seed32: a 32-byte seed
* blind32: a 32-byte secret value to blind the generator with.
*
* The result is equivalent to first calling secp256k1_generator_generate,
* converting the result to a public key, calling secp256k1_ec_pubkey_tweak_add,
* and then converting back to generator form.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_generator_generate_blinded(
const secp256k1_context* ctx,
secp256k1_generator* gen,
const unsigned char *key32,
const unsigned char *blind32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
# ifdef __cplusplus
}
# endif
#endif

View File

@ -1,144 +0,0 @@
#ifndef _SECP256K1_RANGEPROOF_
# define _SECP256K1_RANGEPROOF_
# include "secp256k1.h"
# include "secp256k1_generator.h"
# include "secp256k1_commitment.h"
# ifdef __cplusplus
extern "C" {
# endif
#include <stdint.h>
/** Verify a proof that a committed value is within a range.
* Returns 1: Value is within the range [0..2^64), the specifically proven range is in the min/max value outputs.
* 0: Proof failed or other error.
* In: ctx: pointer to a context object, initialized for range-proof and commitment (cannot be NULL)
* commit: the commitment being proved. (cannot be NULL)
* proof: pointer to character array with the proof. (cannot be NULL)
* plen: length of proof in bytes.
* extra_commit: additional data covered in rangeproof signature
* extra_commit_len: length of extra_commit byte array (0 if NULL)
* gen: additional generator 'h'
* Out: min_value: pointer to a unsigned int64 which will be updated with the minimum value that commit could have. (cannot be NULL)
* max_value: pointer to a unsigned int64 which will be updated with the maximum value that commit could have. (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_rangeproof_verify(
const secp256k1_context* ctx,
uint64_t *min_value,
uint64_t *max_value,
const secp256k1_pedersen_commitment *commit,
const unsigned char *proof,
size_t plen,
const unsigned char *extra_commit,
size_t extra_commit_len,
const secp256k1_generator* gen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(9);
/** Verify a range proof proof and rewind the proof to recover information sent by its author.
* Returns 1: Value is within the range [0..2^64), the specifically proven range is in the min/max value outputs, and the value and blinding were recovered.
* 0: Proof failed, rewind failed, or other error.
* In: ctx: pointer to a context object, initialized for range-proof and Pedersen commitment (cannot be NULL)
* commit: the commitment being proved. (cannot be NULL)
* proof: pointer to character array with the proof. (cannot be NULL)
* plen: length of proof in bytes.
* nonce: 32-byte secret nonce used by the prover (cannot be NULL)
* extra_commit: additional data covered in rangeproof signature
* extra_commit_len: length of extra_commit byte array (0 if NULL)
* gen: additional generator 'h'
* In/Out: blind_out: storage for the 32-byte blinding factor used for the commitment
* value_out: pointer to an unsigned int64 which has the exact value of the commitment.
* message_out: pointer to a 4096 byte character array to receive message data from the proof author.
* outlen: length of message data written to message_out.
* min_value: pointer to an unsigned int64 which will be updated with the minimum value that commit could have. (cannot be NULL)
* max_value: pointer to an unsigned int64 which will be updated with the maximum value that commit could have. (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_rangeproof_rewind(
const secp256k1_context* ctx,
unsigned char *blind_out,
uint64_t *value_out,
unsigned char *message_out,
size_t *outlen,
const unsigned char *nonce,
uint64_t *min_value,
uint64_t *max_value,
const secp256k1_pedersen_commitment *commit,
const unsigned char *proof,
size_t plen,
const unsigned char *extra_commit,
size_t extra_commit_len,
const secp256k1_generator *gen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(6) SECP256K1_ARG_NONNULL(7) SECP256K1_ARG_NONNULL(8) SECP256K1_ARG_NONNULL(9) SECP256K1_ARG_NONNULL(10) SECP256K1_ARG_NONNULL(14);
/** Author a proof that a committed value is within a range.
* Returns 1: Proof successfully created.
* 0: Error
* In: ctx: pointer to a context object, initialized for range-proof, signing, and Pedersen commitment (cannot be NULL)
* proof: pointer to array to receive the proof, can be up to 5134 bytes. (cannot be NULL)
* min_value: constructs a proof where the verifer can tell the minimum value is at least the specified amount.
* commit: the commitment being proved.
* blind: 32-byte blinding factor used by commit.
* nonce: 32-byte secret nonce used to initialize the proof (value can be reverse-engineered out of the proof if this secret is known.)
* exp: Base-10 exponent. Digits below above will be made public, but the proof will be made smaller. Allowed range is -1 to 18.
* (-1 is a special case that makes the value public. 0 is the most private.)
* min_bits: Number of bits of the value to keep private. (0 = auto/minimal, - 64).
* value: Actual value of the commitment.
* message: pointer to a byte array of data to be embedded in the rangeproof that can be recovered by rewinding the proof
* msg_len: size of the message to be embedded in the rangeproof
* extra_commit: additional data to be covered in rangeproof signature
* extra_commit_len: length of extra_commit byte array (0 if NULL)
* gen: additional generator 'h'
* In/out: plen: point to an integer with the size of the proof buffer and the size of the constructed proof.
*
* If min_value or exp is non-zero then the value must be on the range [0, 2^63) to prevent the proof range from spanning past 2^64.
*
* If exp is -1 the value is revealed by the proof (e.g. it proves that the proof is a blinding of a specific value, without revealing the blinding key.)
*
* This can randomly fail with probability around one in 2^100. If this happens, buy a lottery ticket and retry with a different nonce or blinding.
*
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_rangeproof_sign(
const secp256k1_context* ctx,
unsigned char *proof,
size_t *plen,
uint64_t min_value,
const secp256k1_pedersen_commitment *commit,
const unsigned char *blind,
const unsigned char *nonce,
int exp,
int min_bits,
uint64_t value,
const unsigned char *message,
size_t msg_len,
const unsigned char *extra_commit,
size_t extra_commit_len,
const secp256k1_generator *gen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(6) SECP256K1_ARG_NONNULL(7) SECP256K1_ARG_NONNULL(15);
/** Extract some basic information from a range-proof.
* Returns 1: Information successfully extracted.
* 0: Decode failed.
* In: ctx: pointer to a context object
* proof: pointer to character array with the proof.
* plen: length of proof in bytes.
* Out: exp: Exponent used in the proof (-1 means the value isn't private).
* mantissa: Number of bits covered by the proof.
* min_value: pointer to an unsigned int64 which will be updated with the minimum value that commit could have. (cannot be NULL)
* max_value: pointer to an unsigned int64 which will be updated with the maximum value that commit could have. (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_rangeproof_info(
const secp256k1_context* ctx,
int *exp,
int *mantissa,
uint64_t *min_value,
uint64_t *max_value,
const unsigned char *proof,
size_t plen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5);
# ifdef __cplusplus
}
# endif
#endif

View File

@ -1,110 +0,0 @@
#ifndef SECP256K1_RECOVERY_H
#define SECP256K1_RECOVERY_H
#include "secp256k1.h"
#ifdef __cplusplus
extern "C" {
#endif
/** Opaque data structured that holds a parsed ECDSA signature,
* supporting pubkey recovery.
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 65 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage or transmission, use
* the secp256k1_ecdsa_signature_serialize_* and
* secp256k1_ecdsa_signature_parse_* functions.
*
* Furthermore, it is guaranteed that identical signatures (including their
* recoverability) will have identical representation, so they can be
* memcmp'ed.
*/
typedef struct {
unsigned char data[65];
} secp256k1_ecdsa_recoverable_signature;
/** Parse a compact ECDSA signature (64 bytes + recovery id).
*
* Returns: 1 when the signature could be parsed, 0 otherwise
* Args: ctx: a secp256k1 context object
* Out: sig: a pointer to a signature object
* In: input64: a pointer to a 64-byte compact signature
* recid: the recovery id (0, 1, 2 or 3)
*/
SECP256K1_API int secp256k1_ecdsa_recoverable_signature_parse_compact(
const secp256k1_context* ctx,
secp256k1_ecdsa_recoverable_signature* sig,
const unsigned char *input64,
int recid
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Convert a recoverable signature into a normal signature.
*
* Returns: 1
* Out: sig: a pointer to a normal signature (cannot be NULL).
* In: sigin: a pointer to a recoverable signature (cannot be NULL).
*/
SECP256K1_API int secp256k1_ecdsa_recoverable_signature_convert(
const secp256k1_context* ctx,
secp256k1_ecdsa_signature* sig,
const secp256k1_ecdsa_recoverable_signature* sigin
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize an ECDSA signature in compact format (64 bytes + recovery id).
*
* Returns: 1
* Args: ctx: a secp256k1 context object
* Out: output64: a pointer to a 64-byte array of the compact signature (cannot be NULL)
* recid: a pointer to an integer to hold the recovery id (can be NULL).
* In: sig: a pointer to an initialized signature object (cannot be NULL)
*/
SECP256K1_API int secp256k1_ecdsa_recoverable_signature_serialize_compact(
const secp256k1_context* ctx,
unsigned char *output64,
int *recid,
const secp256k1_ecdsa_recoverable_signature* sig
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Create a recoverable ECDSA signature.
*
* Returns: 1: signature created
* 0: the nonce generation function failed, or the private key was invalid.
* Args: ctx: pointer to a context object, initialized for signing (cannot be NULL)
* Out: sig: pointer to an array where the signature will be placed (cannot be NULL)
* In: msg32: the 32-byte message hash being signed (cannot be NULL)
* seckey: pointer to a 32-byte secret key (cannot be NULL)
* noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used
* ndata: pointer to arbitrary data used by the nonce generation function (can be NULL)
*/
SECP256K1_API int secp256k1_ecdsa_sign_recoverable(
const secp256k1_context* ctx,
secp256k1_ecdsa_recoverable_signature *sig,
const unsigned char *msg32,
const unsigned char *seckey,
secp256k1_nonce_function noncefp,
const void *ndata
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Recover an ECDSA public key from a signature.
*
* Returns: 1: public key successfully recovered (which guarantees a correct signature).
* 0: otherwise.
* Args: ctx: pointer to a context object, initialized for verification (cannot be NULL)
* Out: pubkey: pointer to the recovered public key (cannot be NULL)
* In: sig: pointer to initialized signature that supports pubkey recovery (cannot be NULL)
* msg32: the 32-byte message hash assumed to be signed (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_recover(
const secp256k1_context* ctx,
secp256k1_pubkey *pubkey,
const secp256k1_ecdsa_recoverable_signature *sig,
const unsigned char *msg32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_RECOVERY_H */

View File

@ -1,212 +0,0 @@
#ifndef _SECP256K1_SURJECTIONPROOF_
#define _SECP256K1_SURJECTIONPROOF_
#include "secp256k1.h"
#include "secp256k1_rangeproof.h"
#ifdef __cplusplus
extern "C" {
#endif
/** Maximum number of inputs that may be given in a surjection proof */
#define SECP256K1_SURJECTIONPROOF_MAX_N_INPUTS 256
/** Number of bytes a serialized surjection proof requires given the
* number of inputs and the number of used inputs.
*/
#define SECP256K1_SURJECTIONPROOF_SERIALIZATION_BYTES(n_inputs, n_used_inputs) \
(2 + (n_inputs + 7)/8 + 32 * (1 + (n_used_inputs)))
/** Maximum number of bytes a serialized surjection proof requires. */
#define SECP256K1_SURJECTIONPROOF_SERIALIZATION_BYTES_MAX \
SECP256K1_SURJECTIONPROOF_SERIALIZATION_BYTES(SECP256K1_SURJECTIONPROOF_MAX_N_INPUTS, SECP256K1_SURJECTIONPROOF_MAX_N_INPUTS)
/** Opaque data structure that holds a parsed surjection proof
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. Nor is
* it guaranteed to have any particular size, nor that identical proofs
* will have identical representation. (That is, memcmp may return nonzero
* even for identical proofs.)
*
* To obtain these properties, instead use secp256k1_surjectionproof_parse
* and secp256k1_surjectionproof_serialize to encode/decode proofs into a
* well-defined format.
*
* The representation is exposed to allow creation of these objects on the
* stack; please *do not* use these internals directly.
*/
typedef struct {
#ifdef VERIFY
/** Mark whether this proof has gone through `secp256k1_surjectionproof_initialize` */
int initialized;
#endif
/** Total number of input asset tags */
size_t n_inputs;
/** Bitmap of which input tags are used in the surjection proof */
unsigned char used_inputs[SECP256K1_SURJECTIONPROOF_MAX_N_INPUTS / 8];
/** Borromean signature: e0, scalars */
unsigned char data[32 * (1 + SECP256K1_SURJECTIONPROOF_MAX_N_INPUTS)];
} secp256k1_surjectionproof;
/** Parse a surjection proof
*
* Returns: 1 when the proof could be parsed, 0 otherwise.
* Args: ctx: a secp256k1 context object
* Out: proof: a pointer to a proof object
* In: input: a pointer to the array to parse
* inputlen: length of the array pointed to by input
*
* The proof must consist of:
* - A 2-byte little-endian total input count `n`
* - A ceil(n/8)-byte bitmap indicating which inputs are used.
* - A big-endian 32-byte borromean signature e0 value
* - `m` big-endian 32-byte borromean signature s values, where `m`
* is the number of set bits in the bitmap
*/
SECP256K1_API int secp256k1_surjectionproof_parse(
const secp256k1_context* ctx,
secp256k1_surjectionproof *proof,
const unsigned char *input,
size_t inputlen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize a surjection proof
*
* Returns: 1 if enough space was available to serialize, 0 otherwise
* Args: ctx: a secp256k1 context object
* Out: output: a pointer to an array to store the serialization
* In/Out: outputlen: a pointer to an integer which is initially set to the
* size of output, and is overwritten with the written
* size.
* In: proof: a pointer to an initialized proof object
*
* See secp256k1_surjectionproof_parse for details about the encoding.
*/
SECP256K1_API int secp256k1_surjectionproof_serialize(
const secp256k1_context* ctx,
unsigned char *output,
size_t *outputlen,
const secp256k1_surjectionproof *proof
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Data structure that holds a fixed asset tag.
*
* This data type is *not* opaque. It will always be 32 bytes of whatever
* data the API user wants to use as an asset tag. Its contents have no
* semantic meaning to libsecp whatsoever.
*/
typedef struct {
unsigned char data[32];
} secp256k1_fixed_asset_tag;
/** Returns the total number of inputs a proof expects to be over.
*
* Returns: the number of inputs for the given proof
* In: ctx: pointer to a context object
* proof: a pointer to a proof object
*/
SECP256K1_API size_t secp256k1_surjectionproof_n_total_inputs(
const secp256k1_context* ctx,
const secp256k1_surjectionproof* proof
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
/** Returns the actual number of inputs that a proof uses
*
* Returns: the number of inputs for the given proof
* In: ctx: pointer to a context object
* proof: a pointer to a proof object
*/
SECP256K1_API size_t secp256k1_surjectionproof_n_used_inputs(
const secp256k1_context* ctx,
const secp256k1_surjectionproof* proof
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
/** Returns the total size this proof would take, in bytes, when serialized
*
* Returns: the total size
* In: ctx: pointer to a context object
* proof: a pointer to a proof object
*/
SECP256K1_API size_t secp256k1_surjectionproof_serialized_size(
const secp256k1_context* ctx,
const secp256k1_surjectionproof* proof
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
/** Surjection proof initialization function; decides on inputs to use
* Returns 0: inputs could not be selected
* n: inputs were selected after n iterations of random selection
*
* In: ctx: pointer to a context object
* fixed_input_tags: fixed input tags `A_i` for all inputs. (If the fixed tag is not known,
* e.g. in a coinjoin with others' inputs, an ephemeral tag can be given;
* this won't match the output tag but might be used in the anonymity set.)
* n_input_tags: the number of entries in the fixed_input_tags array
* n_input_tags_to_use: the number of inputs to select randomly to put in the anonymity set
* fixed_output_tag: fixed output tag
* max_n_iterations: the maximum number of iterations to do before giving up
* random_seed32: a random seed to be used for input selection
* Out: proof: The proof whose bitvector will be initialized. In case of failure,
* the state of the proof is undefined.
* input_index: The index of the actual input that is secretly mapped to the output
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_surjectionproof_initialize(
const secp256k1_context* ctx,
secp256k1_surjectionproof* proof,
size_t *input_index,
const secp256k1_fixed_asset_tag* fixed_input_tags,
const size_t n_input_tags,
const size_t n_input_tags_to_use,
const secp256k1_fixed_asset_tag* fixed_output_tag,
const size_t n_max_iterations,
const unsigned char *random_seed32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(7);
/** Surjection proof generation function
* Returns 0: proof could not be created
* 1: proof was successfully created
*
* In: ctx: pointer to a context object, initialized for signing and verification
* ephemeral_input_tags: the ephemeral asset tag of all inputs
* n_ephemeral_input_tags: the number of entries in the ephemeral_input_tags array
* ephemeral_output_tag: the ephemeral asset tag of the output
* input_index: the index of the input that actually maps to the output
* input_blinding_key: the blinding key of the input
* output_blinding_key: the blinding key of the output
* In/Out: proof: The produced surjection proof. Must have already gone through `secp256k1_surjectionproof_initialize`
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_surjectionproof_generate(
const secp256k1_context* ctx,
secp256k1_surjectionproof* proof,
const secp256k1_generator* ephemeral_input_tags,
size_t n_ephemeral_input_tags,
const secp256k1_generator* ephemeral_output_tag,
size_t input_index,
const unsigned char *input_blinding_key,
const unsigned char *output_blinding_key
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(7) SECP256K1_ARG_NONNULL(8);
/** Surjection proof verification function
* Returns 0: proof was invalid
* 1: proof was valid
*
* In: ctx: pointer to a context object, initialized for signing and verification
* proof: proof to be verified
* ephemeral_input_tags: the ephemeral asset tag of all inputs
* n_ephemeral_input_tags: the number of entries in the ephemeral_input_tags array
* ephemeral_output_tag: the ephemeral asset tag of the output
*/
SECP256K1_API int secp256k1_surjectionproof_verify(
const secp256k1_context* ctx,
const secp256k1_surjectionproof* proof,
const secp256k1_generator* ephemeral_input_tags,
size_t n_ephemeral_input_tags,
const secp256k1_generator* ephemeral_output_tag
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(5);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -1,152 +0,0 @@
/**********************************************************************
* Copyright (c) 2016 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_WHITELIST_
#define _SECP256K1_WHITELIST_
#include "secp256k1.h"
#ifdef __cplusplus
extern "C" {
#endif
#define SECP256K1_WHITELIST_MAX_N_KEYS 256
/** Opaque data structure that holds a parsed whitelist proof
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. Nor is
* it guaranteed to have any particular size, nor that identical signatures
* will have identical representation. (That is, memcmp may return nonzero
* even for identical signatures.)
*
* To obtain these properties, instead use secp256k1_whitelist_signature_parse
* and secp256k1_whitelist_signature_serialize to encode/decode signatures
* into a well-defined format.
*
* The representation is exposed to allow creation of these objects on the
* stack; please *do not* use these internals directly. To learn the number
* of keys for a signature, use `secp256k1_whitelist_signature_n_keys`.
*/
typedef struct {
size_t n_keys;
/* e0, scalars */
unsigned char data[32 * (1 + SECP256K1_WHITELIST_MAX_N_KEYS)];
} secp256k1_whitelist_signature;
/** Parse a whitelist signature
*
* Returns: 1 when the signature could be parsed, 0 otherwise.
* Args: ctx: a secp256k1 context object
* Out: sig: a pointer to a signature object
* In: input: a pointer to the array to parse
* input_len: the length of the above array
*
* The signature must consist of a 1-byte n_keys value, followed by a 32-byte
* big endian e0 value, followed by n_keys many 32-byte big endian s values.
* If n_keys falls outside of [0..SECP256K1_WHITELIST_MAX_N_KEYS] the encoding
* is invalid.
*
* The total length of the input array must therefore be 33 + 32 * n_keys.
* If the length `input_len` does not match this value, parsing will fail.
*
* After the call, sig will always be initialized. If parsing failed or any
* scalar values overflow or are zero, the resulting sig value is guaranteed
* to fail validation for any set of keys.
*/
SECP256K1_API int secp256k1_whitelist_signature_parse(
const secp256k1_context* ctx,
secp256k1_whitelist_signature *sig,
const unsigned char *input,
size_t input_len
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Returns the number of keys a signature expects to have.
*
* Returns: the number of keys for the given signature
* In: sig: a pointer to a signature object
*/
SECP256K1_API size_t secp256k1_whitelist_signature_n_keys(
const secp256k1_whitelist_signature *sig
) SECP256K1_ARG_NONNULL(1);
/** Serialize a whitelist signature
*
* Returns: 1
* Args: ctx: a secp256k1 context object
* Out: output64: a pointer to an array to store the serialization
* In/Out: output_len: length of the above array, updated with the actual serialized length
* In: sig: a pointer to an initialized signature object
*
* See secp256k1_whitelist_signature_parse for details about the encoding.
*/
SECP256K1_API int secp256k1_whitelist_signature_serialize(
const secp256k1_context* ctx,
unsigned char *output,
size_t *output_len,
const secp256k1_whitelist_signature *sig
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Compute a whitelist signature
* Returns 1: signature was successfully created
* 0: signature was not successfully created
* In: ctx: pointer to a context object, initialized for signing and verification
* online_pubkeys: list of all online pubkeys
* offline_pubkeys: list of all offline pubkeys
* n_keys: the number of entries in each of the above two arrays
* sub_pubkey: the key to be whitelisted
* online_seckey: the secret key to the signer's online pubkey
* summed_seckey: the secret key to the sum of (whitelisted key, signer's offline pubkey)
* index: the signer's index in the lists of keys
* noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used
* ndata: pointer to arbitrary data used by the nonce generation function (can be NULL)
* Out: sig: The produced signature.
*
* The signatures are of the list of all passed pubkeys in the order
* ( whitelist, online_1, offline_1, online_2, offline_2, ... )
* The verification key list consists of
* online_i + H(offline_i + whitelist)(offline_i + whitelist)
* for each public key pair (offline_i, offline_i). Here H means sha256 of the
* compressed serialization of the key.
*/
SECP256K1_API int secp256k1_whitelist_sign(
const secp256k1_context* ctx,
secp256k1_whitelist_signature *sig,
const secp256k1_pubkey *online_pubkeys,
const secp256k1_pubkey *offline_pubkeys,
const size_t n_keys,
const secp256k1_pubkey *sub_pubkey,
const unsigned char *online_seckey,
const unsigned char *summed_seckey,
const size_t index,
secp256k1_nonce_function noncefp,
const void *noncedata
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(6) SECP256K1_ARG_NONNULL(7) SECP256K1_ARG_NONNULL(8);
/** Verify a whitelist signature
* Returns 1: signature is valid
* 0: signature is not valid
* In: ctx: pointer to a context object, initialized for signing and verification
* sig: the signature to be verified
* online_pubkeys: list of all online pubkeys
* offline_pubkeys: list of all offline pubkeys
* n_keys: the number of entries in each of the above two arrays
* sub_pubkey: the key to be whitelisted
*/
SECP256K1_API int secp256k1_whitelist_verify(
const secp256k1_context* ctx,
const secp256k1_whitelist_signature *sig,
const secp256k1_pubkey *online_pubkeys,
const secp256k1_pubkey *offline_pubkeys,
const size_t n_keys,
const secp256k1_pubkey *sub_pubkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(6);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -1,322 +0,0 @@
# This code supports verifying group implementations which have branches
# or conditional statements (like cmovs), by allowing each execution path
# to independently set assumptions on input or intermediary variables.
#
# The general approach is:
# * A constraint is a tuple of two sets of symbolic expressions:
# the first of which are required to evaluate to zero, the second of which
# are required to evaluate to nonzero.
# - A constraint is said to be conflicting if any of its nonzero expressions
# is in the ideal with basis the zero expressions (in other words: when the
# zero expressions imply that one of the nonzero expressions are zero).
# * There is a list of laws that describe the intended behaviour, including
# laws for addition and doubling. Each law is called with the symbolic point
# coordinates as arguments, and returns:
# - A constraint describing the assumptions under which it is applicable,
# called "assumeLaw"
# - A constraint describing the requirements of the law, called "require"
# * Implementations are transliterated into functions that operate as well on
# algebraic input points, and are called once per combination of branches
# executed. Each execution returns:
# - A constraint describing the assumptions this implementation requires
# (such as Z1=1), called "assumeFormula"
# - A constraint describing the assumptions this specific branch requires,
# but which is by construction guaranteed to cover the entire space by
# merging the results from all branches, called "assumeBranch"
# - The result of the computation
# * All combinations of laws with implementation branches are tried, and:
# - If the combination of assumeLaw, assumeFormula, and assumeBranch results
# in a conflict, it means this law does not apply to this branch, and it is
# skipped.
# - For others, we try to prove the require constraints hold, assuming the
# information in assumeLaw + assumeFormula + assumeBranch, and if this does
# not succeed, we fail.
# + To prove an expression is zero, we check whether it belongs to the
# ideal with the assumed zero expressions as basis. This test is exact.
# + To prove an expression is nonzero, we check whether each of its
# factors is contained in the set of nonzero assumptions' factors.
# This test is not exact, so various combinations of original and
# reduced expressions' factors are tried.
# - If we succeed, we print out the assumptions from assumeFormula that
# weren't implied by assumeLaw already. Those from assumeBranch are skipped,
# as we assume that all constraints in it are complementary with each other.
#
# Based on the sage verification scripts used in the Explicit-Formulas Database
# by Tanja Lange and others, see http://hyperelliptic.org/EFD
class fastfrac:
"""Fractions over rings."""
def __init__(self,R,top,bot=1):
"""Construct a fractional, given a ring, a numerator, and denominator."""
self.R = R
if parent(top) == ZZ or parent(top) == R:
self.top = R(top)
self.bot = R(bot)
elif top.__class__ == fastfrac:
self.top = top.top
self.bot = top.bot * bot
else:
self.top = R(numerator(top))
self.bot = R(denominator(top)) * bot
def iszero(self,I):
"""Return whether this fraction is zero given an ideal."""
return self.top in I and self.bot not in I
def reduce(self,assumeZero):
zero = self.R.ideal(map(numerator, assumeZero))
return fastfrac(self.R, zero.reduce(self.top)) / fastfrac(self.R, zero.reduce(self.bot))
def __add__(self,other):
"""Add two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top + self.bot * other,self.bot)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.bot + self.bot * other.top,self.bot * other.bot)
return NotImplemented
def __sub__(self,other):
"""Subtract two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top - self.bot * other,self.bot)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.bot - self.bot * other.top,self.bot * other.bot)
return NotImplemented
def __neg__(self):
"""Return the negation of a fraction."""
return fastfrac(self.R,-self.top,self.bot)
def __mul__(self,other):
"""Multiply two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top * other,self.bot)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.top,self.bot * other.bot)
return NotImplemented
def __rmul__(self,other):
"""Multiply something else with a fraction."""
return self.__mul__(other)
def __div__(self,other):
"""Divide two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top,self.bot * other)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.bot,self.bot * other.top)
return NotImplemented
def __pow__(self,other):
"""Compute a power of a fraction."""
if parent(other) == ZZ:
if other < 0:
# Negative powers require flipping top and bottom
return fastfrac(self.R,self.bot ^ (-other),self.top ^ (-other))
else:
return fastfrac(self.R,self.top ^ other,self.bot ^ other)
return NotImplemented
def __str__(self):
return "fastfrac((" + str(self.top) + ") / (" + str(self.bot) + "))"
def __repr__(self):
return "%s" % self
def numerator(self):
return self.top
class constraints:
"""A set of constraints, consisting of zero and nonzero expressions.
Constraints can either be used to express knowledge or a requirement.
Both the fields zero and nonzero are maps from expressions to description
strings. The expressions that are the keys in zero are required to be zero,
and the expressions that are the keys in nonzero are required to be nonzero.
Note that (a != 0) and (b != 0) is the same as (a*b != 0), so all keys in
nonzero could be multiplied into a single key. This is often much less
efficient to work with though, so we keep them separate inside the
constraints. This allows higher-level code to do fast checks on the individual
nonzero elements, or combine them if needed for stronger checks.
We can't multiply the different zero elements, as it would suffice for one of
the factors to be zero, instead of all of them. Instead, the zero elements are
typically combined into an ideal first.
"""
def __init__(self, **kwargs):
if 'zero' in kwargs:
self.zero = dict(kwargs['zero'])
else:
self.zero = dict()
if 'nonzero' in kwargs:
self.nonzero = dict(kwargs['nonzero'])
else:
self.nonzero = dict()
def negate(self):
return constraints(zero=self.nonzero, nonzero=self.zero)
def __add__(self, other):
zero = self.zero.copy()
zero.update(other.zero)
nonzero = self.nonzero.copy()
nonzero.update(other.nonzero)
return constraints(zero=zero, nonzero=nonzero)
def __str__(self):
return "constraints(zero=%s,nonzero=%s)" % (self.zero, self.nonzero)
def __repr__(self):
return "%s" % self
def conflicts(R, con):
"""Check whether any of the passed non-zero assumptions is implied by the zero assumptions"""
zero = R.ideal(map(numerator, con.zero))
if 1 in zero:
return True
# First a cheap check whether any of the individual nonzero terms conflict on
# their own.
for nonzero in con.nonzero:
if nonzero.iszero(zero):
return True
# It can be the case that entries in the nonzero set do not individually
# conflict with the zero set, but their combination does. For example, knowing
# that either x or y is zero is equivalent to having x*y in the zero set.
# Having x or y individually in the nonzero set is not a conflict, but both
# simultaneously is, so that is the right thing to check for.
if reduce(lambda a,b: a * b, con.nonzero, fastfrac(R, 1)).iszero(zero):
return True
return False
def get_nonzero_set(R, assume):
"""Calculate a simple set of nonzero expressions"""
zero = R.ideal(map(numerator, assume.zero))
nonzero = set()
for nz in map(numerator, assume.nonzero):
for (f,n) in nz.factor():
nonzero.add(f)
rnz = zero.reduce(nz)
for (f,n) in rnz.factor():
nonzero.add(f)
return nonzero
def prove_nonzero(R, exprs, assume):
"""Check whether an expression is provably nonzero, given assumptions"""
zero = R.ideal(map(numerator, assume.zero))
nonzero = get_nonzero_set(R, assume)
expl = set()
ok = True
for expr in exprs:
if numerator(expr) in zero:
return (False, [exprs[expr]])
allexprs = reduce(lambda a,b: numerator(a)*numerator(b), exprs, 1)
for (f, n) in allexprs.factor():
if f not in nonzero:
ok = False
if ok:
return (True, None)
ok = True
for (f, n) in zero.reduce(numerator(allexprs)).factor():
if f not in nonzero:
ok = False
if ok:
return (True, None)
ok = True
for expr in exprs:
for (f,n) in numerator(expr).factor():
if f not in nonzero:
ok = False
if ok:
return (True, None)
ok = True
for expr in exprs:
for (f,n) in zero.reduce(numerator(expr)).factor():
if f not in nonzero:
expl.add(exprs[expr])
if expl:
return (False, list(expl))
else:
return (True, None)
def prove_zero(R, exprs, assume):
"""Check whether all of the passed expressions are provably zero, given assumptions"""
r, e = prove_nonzero(R, dict(map(lambda x: (fastfrac(R, x.bot, 1), exprs[x]), exprs)), assume)
if not r:
return (False, map(lambda x: "Possibly zero denominator: %s" % x, e))
zero = R.ideal(map(numerator, assume.zero))
nonzero = prod(x for x in assume.nonzero)
expl = []
for expr in exprs:
if not expr.iszero(zero):
expl.append(exprs[expr])
if not expl:
return (True, None)
return (False, expl)
def describe_extra(R, assume, assumeExtra):
"""Describe what assumptions are added, given existing assumptions"""
zerox = assume.zero.copy()
zerox.update(assumeExtra.zero)
zero = R.ideal(map(numerator, assume.zero))
zeroextra = R.ideal(map(numerator, zerox))
nonzero = get_nonzero_set(R, assume)
ret = set()
# Iterate over the extra zero expressions
for base in assumeExtra.zero:
if base not in zero:
add = []
for (f, n) in numerator(base).factor():
if f not in nonzero:
add += ["%s" % f]
if add:
ret.add((" * ".join(add)) + " = 0 [%s]" % assumeExtra.zero[base])
# Iterate over the extra nonzero expressions
for nz in assumeExtra.nonzero:
nzr = zeroextra.reduce(numerator(nz))
if nzr not in zeroextra:
for (f,n) in nzr.factor():
if zeroextra.reduce(f) not in nonzero:
ret.add("%s != 0" % zeroextra.reduce(f))
return ", ".join(x for x in ret)
def check_symbolic(R, assumeLaw, assumeAssert, assumeBranch, require):
"""Check a set of zero and nonzero requirements, given a set of zero and nonzero assumptions"""
assume = assumeLaw + assumeAssert + assumeBranch
if conflicts(R, assume):
# This formula does not apply
return None
describe = describe_extra(R, assumeLaw + assumeBranch, assumeAssert)
ok, msg = prove_zero(R, require.zero, assume)
if not ok:
return "FAIL, %s fails (assuming %s)" % (str(msg), describe)
res, expl = prove_nonzero(R, require.nonzero, assume)
if not res:
return "FAIL, %s fails (assuming %s)" % (str(expl), describe)
if describe != "":
return "OK (assuming %s)" % describe
else:
return "OK"
def concrete_verify(c):
for k in c.zero:
if k != 0:
return (False, c.zero[k])
for k in c.nonzero:
if k == 0:
return (False, c.nonzero[k])
return (True, None)

View File

@ -1,51 +0,0 @@
### http://www.di.ens.fr/~fouque/pub/latincrypt12.pdf
# Parameters for secp256k1
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
a = 0
b = 7
F = FiniteField (p)
C = EllipticCurve ([F(a), F(b)])
def svdw(t):
sqrt_neg_3 = F(-3).nth_root(2)
## Compute candidate x values
w = sqrt_neg_3 * t / (1 + b + t^2)
x = [ F(0), F(0), F(0) ]
x[0] = (-1 + sqrt_neg_3) / 2 - t * w
x[1] = -1 - x[0]
x[2] = 1 + 1 / w^2
print
print "On %2d" % t
print " x1 %064x" % x[0]
print " x2 %064x" % x[1]
print " x3 %064x" % x[2]
## Select which to use
alph = jacobi_symbol(x[0]^3 + b, p)
beta = jacobi_symbol(x[1]^3 + b, p)
if alph == 1 and beta == 1:
i = 0
elif alph == 1 and beta == -1:
i = 0
elif alph == -1 and beta == 1:
i = 1
elif alph == -1 and beta == -1:
i = 2
else:
print "Help! I don't understand Python!"
## Expand to full point
sign = 1 - 2 * (int(F(t)) % 2)
ret_x = x[i]
ret_y = sign * F(x[i]^3 + b).nth_root(2)
return C.point((ret_x, ret_y))
## main
for i in range(1, 11):
res = svdw(i)
print "Result: %064x %064x" % res.xy()

View File

@ -1,919 +0,0 @@
@ vim: set tabstop=8 softtabstop=8 shiftwidth=8 noexpandtab syntax=armasm:
/**********************************************************************
* Copyright (c) 2014 Wladimir J. van der Laan *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
/*
ARM implementation of field_10x26 inner loops.
Note:
- To avoid unnecessary loads and make use of available registers, two
'passes' have every time been interleaved, with the odd passes accumulating c' and d'
which will be added to c and d respectively in the even passes
*/
.syntax unified
.arch armv7-a
@ eabi attributes - see readelf -A
.eabi_attribute 8, 1 @ Tag_ARM_ISA_use = yes
.eabi_attribute 9, 0 @ Tag_Thumb_ISA_use = no
.eabi_attribute 10, 0 @ Tag_FP_arch = none
.eabi_attribute 24, 1 @ Tag_ABI_align_needed = 8-byte
.eabi_attribute 25, 1 @ Tag_ABI_align_preserved = 8-byte, except leaf SP
.eabi_attribute 30, 2 @ Tag_ABI_optimization_goals = Aggressive Speed
.eabi_attribute 34, 1 @ Tag_CPU_unaligned_access = v6
.text
@ Field constants
.set field_R0, 0x3d10
.set field_R1, 0x400
.set field_not_M, 0xfc000000 @ ~M = ~0x3ffffff
.align 2
.global secp256k1_fe_mul_inner
.type secp256k1_fe_mul_inner, %function
@ Arguments:
@ r0 r Restrict: can overlap with a, not with b
@ r1 a
@ r2 b
@ Stack (total 4+10*4 = 44)
@ sp + #0 saved 'r' pointer
@ sp + #4 + 4*X t0,t1,t2,t3,t4,t5,t6,t7,u8,t9
secp256k1_fe_mul_inner:
stmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r14}
sub sp, sp, #48 @ frame=44 + alignment
str r0, [sp, #0] @ save result address, we need it only at the end
/******************************************
* Main computation code.
******************************************
Allocation:
r0,r14,r7,r8 scratch
r1 a (pointer)
r2 b (pointer)
r3:r4 c
r5:r6 d
r11:r12 c'
r9:r10 d'
Note: do not write to r[] here, it may overlap with a[]
*/
/* A - interleaved with B */
ldr r7, [r1, #0*4] @ a[0]
ldr r8, [r2, #9*4] @ b[9]
ldr r0, [r1, #1*4] @ a[1]
umull r5, r6, r7, r8 @ d = a[0] * b[9]
ldr r14, [r2, #8*4] @ b[8]
umull r9, r10, r0, r8 @ d' = a[1] * b[9]
ldr r7, [r1, #2*4] @ a[2]
umlal r5, r6, r0, r14 @ d += a[1] * b[8]
ldr r8, [r2, #7*4] @ b[7]
umlal r9, r10, r7, r14 @ d' += a[2] * b[8]
ldr r0, [r1, #3*4] @ a[3]
umlal r5, r6, r7, r8 @ d += a[2] * b[7]
ldr r14, [r2, #6*4] @ b[6]
umlal r9, r10, r0, r8 @ d' += a[3] * b[7]
ldr r7, [r1, #4*4] @ a[4]
umlal r5, r6, r0, r14 @ d += a[3] * b[6]
ldr r8, [r2, #5*4] @ b[5]
umlal r9, r10, r7, r14 @ d' += a[4] * b[6]
ldr r0, [r1, #5*4] @ a[5]
umlal r5, r6, r7, r8 @ d += a[4] * b[5]
ldr r14, [r2, #4*4] @ b[4]
umlal r9, r10, r0, r8 @ d' += a[5] * b[5]
ldr r7, [r1, #6*4] @ a[6]
umlal r5, r6, r0, r14 @ d += a[5] * b[4]
ldr r8, [r2, #3*4] @ b[3]
umlal r9, r10, r7, r14 @ d' += a[6] * b[4]
ldr r0, [r1, #7*4] @ a[7]
umlal r5, r6, r7, r8 @ d += a[6] * b[3]
ldr r14, [r2, #2*4] @ b[2]
umlal r9, r10, r0, r8 @ d' += a[7] * b[3]
ldr r7, [r1, #8*4] @ a[8]
umlal r5, r6, r0, r14 @ d += a[7] * b[2]
ldr r8, [r2, #1*4] @ b[1]
umlal r9, r10, r7, r14 @ d' += a[8] * b[2]
ldr r0, [r1, #9*4] @ a[9]
umlal r5, r6, r7, r8 @ d += a[8] * b[1]
ldr r14, [r2, #0*4] @ b[0]
umlal r9, r10, r0, r8 @ d' += a[9] * b[1]
ldr r7, [r1, #0*4] @ a[0]
umlal r5, r6, r0, r14 @ d += a[9] * b[0]
@ r7,r14 used in B
bic r0, r5, field_not_M @ t9 = d & M
str r0, [sp, #4 + 4*9]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
/* B */
umull r3, r4, r7, r14 @ c = a[0] * b[0]
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u0 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u0 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t0 = c & M
str r14, [sp, #4 + 0*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u0 * R1
umlal r3, r4, r0, r14
/* C - interleaved with D */
ldr r7, [r1, #0*4] @ a[0]
ldr r8, [r2, #2*4] @ b[2]
ldr r14, [r2, #1*4] @ b[1]
umull r11, r12, r7, r8 @ c' = a[0] * b[2]
ldr r0, [r1, #1*4] @ a[1]
umlal r3, r4, r7, r14 @ c += a[0] * b[1]
ldr r8, [r2, #0*4] @ b[0]
umlal r11, r12, r0, r14 @ c' += a[1] * b[1]
ldr r7, [r1, #2*4] @ a[2]
umlal r3, r4, r0, r8 @ c += a[1] * b[0]
ldr r14, [r2, #9*4] @ b[9]
umlal r11, r12, r7, r8 @ c' += a[2] * b[0]
ldr r0, [r1, #3*4] @ a[3]
umlal r5, r6, r7, r14 @ d += a[2] * b[9]
ldr r8, [r2, #8*4] @ b[8]
umull r9, r10, r0, r14 @ d' = a[3] * b[9]
ldr r7, [r1, #4*4] @ a[4]
umlal r5, r6, r0, r8 @ d += a[3] * b[8]
ldr r14, [r2, #7*4] @ b[7]
umlal r9, r10, r7, r8 @ d' += a[4] * b[8]
ldr r0, [r1, #5*4] @ a[5]
umlal r5, r6, r7, r14 @ d += a[4] * b[7]
ldr r8, [r2, #6*4] @ b[6]
umlal r9, r10, r0, r14 @ d' += a[5] * b[7]
ldr r7, [r1, #6*4] @ a[6]
umlal r5, r6, r0, r8 @ d += a[5] * b[6]
ldr r14, [r2, #5*4] @ b[5]
umlal r9, r10, r7, r8 @ d' += a[6] * b[6]
ldr r0, [r1, #7*4] @ a[7]
umlal r5, r6, r7, r14 @ d += a[6] * b[5]
ldr r8, [r2, #4*4] @ b[4]
umlal r9, r10, r0, r14 @ d' += a[7] * b[5]
ldr r7, [r1, #8*4] @ a[8]
umlal r5, r6, r0, r8 @ d += a[7] * b[4]
ldr r14, [r2, #3*4] @ b[3]
umlal r9, r10, r7, r8 @ d' += a[8] * b[4]
ldr r0, [r1, #9*4] @ a[9]
umlal r5, r6, r7, r14 @ d += a[8] * b[3]
ldr r8, [r2, #2*4] @ b[2]
umlal r9, r10, r0, r14 @ d' += a[9] * b[3]
umlal r5, r6, r0, r8 @ d += a[9] * b[2]
bic r0, r5, field_not_M @ u1 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u1 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t1 = c & M
str r14, [sp, #4 + 1*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u1 * R1
umlal r3, r4, r0, r14
/* D */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u2 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u2 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t2 = c & M
str r14, [sp, #4 + 2*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u2 * R1
umlal r3, r4, r0, r14
/* E - interleaved with F */
ldr r7, [r1, #0*4] @ a[0]
ldr r8, [r2, #4*4] @ b[4]
umull r11, r12, r7, r8 @ c' = a[0] * b[4]
ldr r8, [r2, #3*4] @ b[3]
umlal r3, r4, r7, r8 @ c += a[0] * b[3]
ldr r7, [r1, #1*4] @ a[1]
umlal r11, r12, r7, r8 @ c' += a[1] * b[3]
ldr r8, [r2, #2*4] @ b[2]
umlal r3, r4, r7, r8 @ c += a[1] * b[2]
ldr r7, [r1, #2*4] @ a[2]
umlal r11, r12, r7, r8 @ c' += a[2] * b[2]
ldr r8, [r2, #1*4] @ b[1]
umlal r3, r4, r7, r8 @ c += a[2] * b[1]
ldr r7, [r1, #3*4] @ a[3]
umlal r11, r12, r7, r8 @ c' += a[3] * b[1]
ldr r8, [r2, #0*4] @ b[0]
umlal r3, r4, r7, r8 @ c += a[3] * b[0]
ldr r7, [r1, #4*4] @ a[4]
umlal r11, r12, r7, r8 @ c' += a[4] * b[0]
ldr r8, [r2, #9*4] @ b[9]
umlal r5, r6, r7, r8 @ d += a[4] * b[9]
ldr r7, [r1, #5*4] @ a[5]
umull r9, r10, r7, r8 @ d' = a[5] * b[9]
ldr r8, [r2, #8*4] @ b[8]
umlal r5, r6, r7, r8 @ d += a[5] * b[8]
ldr r7, [r1, #6*4] @ a[6]
umlal r9, r10, r7, r8 @ d' += a[6] * b[8]
ldr r8, [r2, #7*4] @ b[7]
umlal r5, r6, r7, r8 @ d += a[6] * b[7]
ldr r7, [r1, #7*4] @ a[7]
umlal r9, r10, r7, r8 @ d' += a[7] * b[7]
ldr r8, [r2, #6*4] @ b[6]
umlal r5, r6, r7, r8 @ d += a[7] * b[6]
ldr r7, [r1, #8*4] @ a[8]
umlal r9, r10, r7, r8 @ d' += a[8] * b[6]
ldr r8, [r2, #5*4] @ b[5]
umlal r5, r6, r7, r8 @ d += a[8] * b[5]
ldr r7, [r1, #9*4] @ a[9]
umlal r9, r10, r7, r8 @ d' += a[9] * b[5]
ldr r8, [r2, #4*4] @ b[4]
umlal r5, r6, r7, r8 @ d += a[9] * b[4]
bic r0, r5, field_not_M @ u3 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u3 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t3 = c & M
str r14, [sp, #4 + 3*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u3 * R1
umlal r3, r4, r0, r14
/* F */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u4 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u4 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t4 = c & M
str r14, [sp, #4 + 4*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u4 * R1
umlal r3, r4, r0, r14
/* G - interleaved with H */
ldr r7, [r1, #0*4] @ a[0]
ldr r8, [r2, #6*4] @ b[6]
ldr r14, [r2, #5*4] @ b[5]
umull r11, r12, r7, r8 @ c' = a[0] * b[6]
ldr r0, [r1, #1*4] @ a[1]
umlal r3, r4, r7, r14 @ c += a[0] * b[5]
ldr r8, [r2, #4*4] @ b[4]
umlal r11, r12, r0, r14 @ c' += a[1] * b[5]
ldr r7, [r1, #2*4] @ a[2]
umlal r3, r4, r0, r8 @ c += a[1] * b[4]
ldr r14, [r2, #3*4] @ b[3]
umlal r11, r12, r7, r8 @ c' += a[2] * b[4]
ldr r0, [r1, #3*4] @ a[3]
umlal r3, r4, r7, r14 @ c += a[2] * b[3]
ldr r8, [r2, #2*4] @ b[2]
umlal r11, r12, r0, r14 @ c' += a[3] * b[3]
ldr r7, [r1, #4*4] @ a[4]
umlal r3, r4, r0, r8 @ c += a[3] * b[2]
ldr r14, [r2, #1*4] @ b[1]
umlal r11, r12, r7, r8 @ c' += a[4] * b[2]
ldr r0, [r1, #5*4] @ a[5]
umlal r3, r4, r7, r14 @ c += a[4] * b[1]
ldr r8, [r2, #0*4] @ b[0]
umlal r11, r12, r0, r14 @ c' += a[5] * b[1]
ldr r7, [r1, #6*4] @ a[6]
umlal r3, r4, r0, r8 @ c += a[5] * b[0]
ldr r14, [r2, #9*4] @ b[9]
umlal r11, r12, r7, r8 @ c' += a[6] * b[0]
ldr r0, [r1, #7*4] @ a[7]
umlal r5, r6, r7, r14 @ d += a[6] * b[9]
ldr r8, [r2, #8*4] @ b[8]
umull r9, r10, r0, r14 @ d' = a[7] * b[9]
ldr r7, [r1, #8*4] @ a[8]
umlal r5, r6, r0, r8 @ d += a[7] * b[8]
ldr r14, [r2, #7*4] @ b[7]
umlal r9, r10, r7, r8 @ d' += a[8] * b[8]
ldr r0, [r1, #9*4] @ a[9]
umlal r5, r6, r7, r14 @ d += a[8] * b[7]
ldr r8, [r2, #6*4] @ b[6]
umlal r9, r10, r0, r14 @ d' += a[9] * b[7]
umlal r5, r6, r0, r8 @ d += a[9] * b[6]
bic r0, r5, field_not_M @ u5 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u5 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t5 = c & M
str r14, [sp, #4 + 5*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u5 * R1
umlal r3, r4, r0, r14
/* H */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u6 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u6 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t6 = c & M
str r14, [sp, #4 + 6*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u6 * R1
umlal r3, r4, r0, r14
/* I - interleaved with J */
ldr r8, [r2, #8*4] @ b[8]
ldr r7, [r1, #0*4] @ a[0]
ldr r14, [r2, #7*4] @ b[7]
umull r11, r12, r7, r8 @ c' = a[0] * b[8]
ldr r0, [r1, #1*4] @ a[1]
umlal r3, r4, r7, r14 @ c += a[0] * b[7]
ldr r8, [r2, #6*4] @ b[6]
umlal r11, r12, r0, r14 @ c' += a[1] * b[7]
ldr r7, [r1, #2*4] @ a[2]
umlal r3, r4, r0, r8 @ c += a[1] * b[6]
ldr r14, [r2, #5*4] @ b[5]
umlal r11, r12, r7, r8 @ c' += a[2] * b[6]
ldr r0, [r1, #3*4] @ a[3]
umlal r3, r4, r7, r14 @ c += a[2] * b[5]
ldr r8, [r2, #4*4] @ b[4]
umlal r11, r12, r0, r14 @ c' += a[3] * b[5]
ldr r7, [r1, #4*4] @ a[4]
umlal r3, r4, r0, r8 @ c += a[3] * b[4]
ldr r14, [r2, #3*4] @ b[3]
umlal r11, r12, r7, r8 @ c' += a[4] * b[4]
ldr r0, [r1, #5*4] @ a[5]
umlal r3, r4, r7, r14 @ c += a[4] * b[3]
ldr r8, [r2, #2*4] @ b[2]
umlal r11, r12, r0, r14 @ c' += a[5] * b[3]
ldr r7, [r1, #6*4] @ a[6]
umlal r3, r4, r0, r8 @ c += a[5] * b[2]
ldr r14, [r2, #1*4] @ b[1]
umlal r11, r12, r7, r8 @ c' += a[6] * b[2]
ldr r0, [r1, #7*4] @ a[7]
umlal r3, r4, r7, r14 @ c += a[6] * b[1]
ldr r8, [r2, #0*4] @ b[0]
umlal r11, r12, r0, r14 @ c' += a[7] * b[1]
ldr r7, [r1, #8*4] @ a[8]
umlal r3, r4, r0, r8 @ c += a[7] * b[0]
ldr r14, [r2, #9*4] @ b[9]
umlal r11, r12, r7, r8 @ c' += a[8] * b[0]
ldr r0, [r1, #9*4] @ a[9]
umlal r5, r6, r7, r14 @ d += a[8] * b[9]
ldr r8, [r2, #8*4] @ b[8]
umull r9, r10, r0, r14 @ d' = a[9] * b[9]
umlal r5, r6, r0, r8 @ d += a[9] * b[8]
bic r0, r5, field_not_M @ u7 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u7 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t7 = c & M
str r14, [sp, #4 + 7*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u7 * R1
umlal r3, r4, r0, r14
/* J */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u8 = d & M
str r0, [sp, #4 + 8*4]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u8 * R0
umlal r3, r4, r0, r14
/******************************************
* compute and write back result
******************************************
Allocation:
r0 r
r3:r4 c
r5:r6 d
r7 t0
r8 t1
r9 t2
r11 u8
r12 t9
r1,r2,r10,r14 scratch
Note: do not read from a[] after here, it may overlap with r[]
*/
ldr r0, [sp, #0]
add r1, sp, #4 + 3*4 @ r[3..7] = t3..7, r11=u8, r12=t9
ldmia r1, {r2,r7,r8,r9,r10,r11,r12}
add r1, r0, #3*4
stmia r1, {r2,r7,r8,r9,r10}
bic r2, r3, field_not_M @ r[8] = c & M
str r2, [r0, #8*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u8 * R1
umlal r3, r4, r11, r14
movw r14, field_R0 @ c += d * R0
umlal r3, r4, r5, r14
adds r3, r3, r12 @ c += t9
adc r4, r4, #0
add r1, sp, #4 + 0*4 @ r7,r8,r9 = t0,t1,t2
ldmia r1, {r7,r8,r9}
ubfx r2, r3, #0, #22 @ r[9] = c & (M >> 4)
str r2, [r0, #9*4]
mov r3, r3, lsr #22 @ c >>= 22
orr r3, r3, r4, asl #10
mov r4, r4, lsr #22
movw r14, field_R1 << 4 @ c += d * (R1 << 4)
umlal r3, r4, r5, r14
movw r14, field_R0 >> 4 @ d = c * (R0 >> 4) + t0 (64x64 multiply+add)
umull r5, r6, r3, r14 @ d = c.lo * (R0 >> 4)
adds r5, r5, r7 @ d.lo += t0
mla r6, r14, r4, r6 @ d.hi += c.hi * (R0 >> 4)
adc r6, r6, 0 @ d.hi += carry
bic r2, r5, field_not_M @ r[0] = d & M
str r2, [r0, #0*4]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R1 >> 4 @ d += c * (R1 >> 4) + t1 (64x64 multiply+add)
umull r1, r2, r3, r14 @ tmp = c.lo * (R1 >> 4)
adds r5, r5, r8 @ d.lo += t1
adc r6, r6, #0 @ d.hi += carry
adds r5, r5, r1 @ d.lo += tmp.lo
mla r2, r14, r4, r2 @ tmp.hi += c.hi * (R1 >> 4)
adc r6, r6, r2 @ d.hi += carry + tmp.hi
bic r2, r5, field_not_M @ r[1] = d & M
str r2, [r0, #1*4]
mov r5, r5, lsr #26 @ d >>= 26 (ignore hi)
orr r5, r5, r6, asl #6
add r5, r5, r9 @ d += t2
str r5, [r0, #2*4] @ r[2] = d
add sp, sp, #48
ldmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, pc}
.size secp256k1_fe_mul_inner, .-secp256k1_fe_mul_inner
.align 2
.global secp256k1_fe_sqr_inner
.type secp256k1_fe_sqr_inner, %function
@ Arguments:
@ r0 r Can overlap with a
@ r1 a
@ Stack (total 4+10*4 = 44)
@ sp + #0 saved 'r' pointer
@ sp + #4 + 4*X t0,t1,t2,t3,t4,t5,t6,t7,u8,t9
secp256k1_fe_sqr_inner:
stmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r14}
sub sp, sp, #48 @ frame=44 + alignment
str r0, [sp, #0] @ save result address, we need it only at the end
/******************************************
* Main computation code.
******************************************
Allocation:
r0,r14,r2,r7,r8 scratch
r1 a (pointer)
r3:r4 c
r5:r6 d
r11:r12 c'
r9:r10 d'
Note: do not write to r[] here, it may overlap with a[]
*/
/* A interleaved with B */
ldr r0, [r1, #1*4] @ a[1]*2
ldr r7, [r1, #0*4] @ a[0]
mov r0, r0, asl #1
ldr r14, [r1, #9*4] @ a[9]
umull r3, r4, r7, r7 @ c = a[0] * a[0]
ldr r8, [r1, #8*4] @ a[8]
mov r7, r7, asl #1
umull r5, r6, r7, r14 @ d = a[0]*2 * a[9]
ldr r7, [r1, #2*4] @ a[2]*2
umull r9, r10, r0, r14 @ d' = a[1]*2 * a[9]
ldr r14, [r1, #7*4] @ a[7]
umlal r5, r6, r0, r8 @ d += a[1]*2 * a[8]
mov r7, r7, asl #1
ldr r0, [r1, #3*4] @ a[3]*2
umlal r9, r10, r7, r8 @ d' += a[2]*2 * a[8]
ldr r8, [r1, #6*4] @ a[6]
umlal r5, r6, r7, r14 @ d += a[2]*2 * a[7]
mov r0, r0, asl #1
ldr r7, [r1, #4*4] @ a[4]*2
umlal r9, r10, r0, r14 @ d' += a[3]*2 * a[7]
ldr r14, [r1, #5*4] @ a[5]
mov r7, r7, asl #1
umlal r5, r6, r0, r8 @ d += a[3]*2 * a[6]
umlal r9, r10, r7, r8 @ d' += a[4]*2 * a[6]
umlal r5, r6, r7, r14 @ d += a[4]*2 * a[5]
umlal r9, r10, r14, r14 @ d' += a[5] * a[5]
bic r0, r5, field_not_M @ t9 = d & M
str r0, [sp, #4 + 9*4]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
/* B */
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u0 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u0 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t0 = c & M
str r14, [sp, #4 + 0*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u0 * R1
umlal r3, r4, r0, r14
/* C interleaved with D */
ldr r0, [r1, #0*4] @ a[0]*2
ldr r14, [r1, #1*4] @ a[1]
mov r0, r0, asl #1
ldr r8, [r1, #2*4] @ a[2]
umlal r3, r4, r0, r14 @ c += a[0]*2 * a[1]
mov r7, r8, asl #1 @ a[2]*2
umull r11, r12, r14, r14 @ c' = a[1] * a[1]
ldr r14, [r1, #9*4] @ a[9]
umlal r11, r12, r0, r8 @ c' += a[0]*2 * a[2]
ldr r0, [r1, #3*4] @ a[3]*2
ldr r8, [r1, #8*4] @ a[8]
umlal r5, r6, r7, r14 @ d += a[2]*2 * a[9]
mov r0, r0, asl #1
ldr r7, [r1, #4*4] @ a[4]*2
umull r9, r10, r0, r14 @ d' = a[3]*2 * a[9]
ldr r14, [r1, #7*4] @ a[7]
umlal r5, r6, r0, r8 @ d += a[3]*2 * a[8]
mov r7, r7, asl #1
ldr r0, [r1, #5*4] @ a[5]*2
umlal r9, r10, r7, r8 @ d' += a[4]*2 * a[8]
ldr r8, [r1, #6*4] @ a[6]
mov r0, r0, asl #1
umlal r5, r6, r7, r14 @ d += a[4]*2 * a[7]
umlal r9, r10, r0, r14 @ d' += a[5]*2 * a[7]
umlal r5, r6, r0, r8 @ d += a[5]*2 * a[6]
umlal r9, r10, r8, r8 @ d' += a[6] * a[6]
bic r0, r5, field_not_M @ u1 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u1 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t1 = c & M
str r14, [sp, #4 + 1*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u1 * R1
umlal r3, r4, r0, r14
/* D */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u2 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u2 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t2 = c & M
str r14, [sp, #4 + 2*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u2 * R1
umlal r3, r4, r0, r14
/* E interleaved with F */
ldr r7, [r1, #0*4] @ a[0]*2
ldr r0, [r1, #1*4] @ a[1]*2
ldr r14, [r1, #2*4] @ a[2]
mov r7, r7, asl #1
ldr r8, [r1, #3*4] @ a[3]
ldr r2, [r1, #4*4]
umlal r3, r4, r7, r8 @ c += a[0]*2 * a[3]
mov r0, r0, asl #1
umull r11, r12, r7, r2 @ c' = a[0]*2 * a[4]
mov r2, r2, asl #1 @ a[4]*2
umlal r11, r12, r0, r8 @ c' += a[1]*2 * a[3]
ldr r8, [r1, #9*4] @ a[9]
umlal r3, r4, r0, r14 @ c += a[1]*2 * a[2]
ldr r0, [r1, #5*4] @ a[5]*2
umlal r11, r12, r14, r14 @ c' += a[2] * a[2]
ldr r14, [r1, #8*4] @ a[8]
mov r0, r0, asl #1
umlal r5, r6, r2, r8 @ d += a[4]*2 * a[9]
ldr r7, [r1, #6*4] @ a[6]*2
umull r9, r10, r0, r8 @ d' = a[5]*2 * a[9]
mov r7, r7, asl #1
ldr r8, [r1, #7*4] @ a[7]
umlal r5, r6, r0, r14 @ d += a[5]*2 * a[8]
umlal r9, r10, r7, r14 @ d' += a[6]*2 * a[8]
umlal r5, r6, r7, r8 @ d += a[6]*2 * a[7]
umlal r9, r10, r8, r8 @ d' += a[7] * a[7]
bic r0, r5, field_not_M @ u3 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u3 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t3 = c & M
str r14, [sp, #4 + 3*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u3 * R1
umlal r3, r4, r0, r14
/* F */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u4 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u4 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t4 = c & M
str r14, [sp, #4 + 4*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u4 * R1
umlal r3, r4, r0, r14
/* G interleaved with H */
ldr r7, [r1, #0*4] @ a[0]*2
ldr r0, [r1, #1*4] @ a[1]*2
mov r7, r7, asl #1
ldr r8, [r1, #5*4] @ a[5]
ldr r2, [r1, #6*4] @ a[6]
umlal r3, r4, r7, r8 @ c += a[0]*2 * a[5]
ldr r14, [r1, #4*4] @ a[4]
mov r0, r0, asl #1
umull r11, r12, r7, r2 @ c' = a[0]*2 * a[6]
ldr r7, [r1, #2*4] @ a[2]*2
umlal r11, r12, r0, r8 @ c' += a[1]*2 * a[5]
mov r7, r7, asl #1
ldr r8, [r1, #3*4] @ a[3]
umlal r3, r4, r0, r14 @ c += a[1]*2 * a[4]
mov r0, r2, asl #1 @ a[6]*2
umlal r11, r12, r7, r14 @ c' += a[2]*2 * a[4]
ldr r14, [r1, #9*4] @ a[9]
umlal r3, r4, r7, r8 @ c += a[2]*2 * a[3]
ldr r7, [r1, #7*4] @ a[7]*2
umlal r11, r12, r8, r8 @ c' += a[3] * a[3]
mov r7, r7, asl #1
ldr r8, [r1, #8*4] @ a[8]
umlal r5, r6, r0, r14 @ d += a[6]*2 * a[9]
umull r9, r10, r7, r14 @ d' = a[7]*2 * a[9]
umlal r5, r6, r7, r8 @ d += a[7]*2 * a[8]
umlal r9, r10, r8, r8 @ d' += a[8] * a[8]
bic r0, r5, field_not_M @ u5 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u5 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t5 = c & M
str r14, [sp, #4 + 5*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u5 * R1
umlal r3, r4, r0, r14
/* H */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u6 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u6 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t6 = c & M
str r14, [sp, #4 + 6*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u6 * R1
umlal r3, r4, r0, r14
/* I interleaved with J */
ldr r7, [r1, #0*4] @ a[0]*2
ldr r0, [r1, #1*4] @ a[1]*2
mov r7, r7, asl #1
ldr r8, [r1, #7*4] @ a[7]
ldr r2, [r1, #8*4] @ a[8]
umlal r3, r4, r7, r8 @ c += a[0]*2 * a[7]
ldr r14, [r1, #6*4] @ a[6]
mov r0, r0, asl #1
umull r11, r12, r7, r2 @ c' = a[0]*2 * a[8]
ldr r7, [r1, #2*4] @ a[2]*2
umlal r11, r12, r0, r8 @ c' += a[1]*2 * a[7]
ldr r8, [r1, #5*4] @ a[5]
umlal r3, r4, r0, r14 @ c += a[1]*2 * a[6]
ldr r0, [r1, #3*4] @ a[3]*2
mov r7, r7, asl #1
umlal r11, r12, r7, r14 @ c' += a[2]*2 * a[6]
ldr r14, [r1, #4*4] @ a[4]
mov r0, r0, asl #1
umlal r3, r4, r7, r8 @ c += a[2]*2 * a[5]
mov r2, r2, asl #1 @ a[8]*2
umlal r11, r12, r0, r8 @ c' += a[3]*2 * a[5]
umlal r3, r4, r0, r14 @ c += a[3]*2 * a[4]
umlal r11, r12, r14, r14 @ c' += a[4] * a[4]
ldr r8, [r1, #9*4] @ a[9]
umlal r5, r6, r2, r8 @ d += a[8]*2 * a[9]
@ r8 will be used in J
bic r0, r5, field_not_M @ u7 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u7 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t7 = c & M
str r14, [sp, #4 + 7*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u7 * R1
umlal r3, r4, r0, r14
/* J */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
umlal r5, r6, r8, r8 @ d += a[9] * a[9]
bic r0, r5, field_not_M @ u8 = d & M
str r0, [sp, #4 + 8*4]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u8 * R0
umlal r3, r4, r0, r14
/******************************************
* compute and write back result
******************************************
Allocation:
r0 r
r3:r4 c
r5:r6 d
r7 t0
r8 t1
r9 t2
r11 u8
r12 t9
r1,r2,r10,r14 scratch
Note: do not read from a[] after here, it may overlap with r[]
*/
ldr r0, [sp, #0]
add r1, sp, #4 + 3*4 @ r[3..7] = t3..7, r11=u8, r12=t9
ldmia r1, {r2,r7,r8,r9,r10,r11,r12}
add r1, r0, #3*4
stmia r1, {r2,r7,r8,r9,r10}
bic r2, r3, field_not_M @ r[8] = c & M
str r2, [r0, #8*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u8 * R1
umlal r3, r4, r11, r14
movw r14, field_R0 @ c += d * R0
umlal r3, r4, r5, r14
adds r3, r3, r12 @ c += t9
adc r4, r4, #0
add r1, sp, #4 + 0*4 @ r7,r8,r9 = t0,t1,t2
ldmia r1, {r7,r8,r9}
ubfx r2, r3, #0, #22 @ r[9] = c & (M >> 4)
str r2, [r0, #9*4]
mov r3, r3, lsr #22 @ c >>= 22
orr r3, r3, r4, asl #10
mov r4, r4, lsr #22
movw r14, field_R1 << 4 @ c += d * (R1 << 4)
umlal r3, r4, r5, r14
movw r14, field_R0 >> 4 @ d = c * (R0 >> 4) + t0 (64x64 multiply+add)
umull r5, r6, r3, r14 @ d = c.lo * (R0 >> 4)
adds r5, r5, r7 @ d.lo += t0
mla r6, r14, r4, r6 @ d.hi += c.hi * (R0 >> 4)
adc r6, r6, 0 @ d.hi += carry
bic r2, r5, field_not_M @ r[0] = d & M
str r2, [r0, #0*4]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R1 >> 4 @ d += c * (R1 >> 4) + t1 (64x64 multiply+add)
umull r1, r2, r3, r14 @ tmp = c.lo * (R1 >> 4)
adds r5, r5, r8 @ d.lo += t1
adc r6, r6, #0 @ d.hi += carry
adds r5, r5, r1 @ d.lo += tmp.lo
mla r2, r14, r4, r2 @ tmp.hi += c.hi * (R1 >> 4)
adc r6, r6, r2 @ d.hi += carry + tmp.hi
bic r2, r5, field_not_M @ r[1] = d & M
str r2, [r0, #1*4]
mov r5, r5, lsr #26 @ d >>= 26 (ignore hi)
orr r5, r5, r6, asl #6
add r5, r5, r9 @ d += t2
str r5, [r0, #2*4] @ r[2] = d
add sp, sp, #48
ldmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, pc}
.size secp256k1_fe_sqr_inner, .-secp256k1_fe_sqr_inner

View File

@ -1,33 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_BASIC_CONFIG_H
#define SECP256K1_BASIC_CONFIG_H
#ifdef USE_BASIC_CONFIG
#undef USE_ASM_X86_64
#undef USE_ENDOMORPHISM
#undef USE_FIELD_10X26
#undef USE_FIELD_5X52
#undef USE_FIELD_INV_BUILTIN
#undef USE_FIELD_INV_NUM
#undef USE_NUM_GMP
#undef USE_NUM_NONE
#undef USE_SCALAR_4X64
#undef USE_SCALAR_8X32
#undef USE_SCALAR_INV_BUILTIN
#undef USE_SCALAR_INV_NUM
#define USE_NUM_NONE 1
#define USE_FIELD_INV_BUILTIN 1
#define USE_SCALAR_INV_BUILTIN 1
#define USE_FIELD_10X26 1
#define USE_SCALAR_8X32 1
#endif /* USE_BASIC_CONFIG */
#endif /* SECP256K1_BASIC_CONFIG_H */

View File

@ -1,82 +0,0 @@
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_BENCH_H
#define SECP256K1_BENCH_H
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "sys/time.h"
static double gettimedouble(void) {
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_usec * 0.000001 + tv.tv_sec;
}
void print_number(double x) {
double y = x;
int c = 0;
if (y < 0.0) {
y = -y;
}
while (y > 0 && y < 100.0) {
y *= 10.0;
c++;
}
printf("%.*f", c, x);
}
void run_benchmark(char *name, void (*benchmark)(void*), void (*setup)(void*), void (*teardown)(void*), void* data, int count, int iter) {
int i;
double min = HUGE_VAL;
double sum = 0.0;
double max = 0.0;
for (i = 0; i < count; i++) {
double begin, total;
if (setup != NULL) {
setup(data);
}
begin = gettimedouble();
benchmark(data);
total = gettimedouble() - begin;
if (teardown != NULL) {
teardown(data);
}
if (total < min) {
min = total;
}
if (total > max) {
max = total;
}
sum += total;
}
printf("%s: min ", name);
print_number(min * 1000000.0 / iter);
printf("us / avg ");
print_number((sum / count) * 1000000.0 / iter);
printf("us / max ");
print_number(max * 1000000.0 / iter);
printf("us\n");
}
int have_flag(int argc, char** argv, char *flag) {
char** argm = argv + argc;
argv++;
if (argv == argm) {
return 1;
}
while (argv != NULL && argv != argm) {
if (strcmp(*argv, flag) == 0) {
return 1;
}
argv++;
}
return 0;
}
#endif /* SECP256K1_BENCH_H */

View File

@ -1,243 +0,0 @@
/**********************************************************************
* Copyright (c) 2017 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include <stdint.h>
#include "include/secp256k1_generator.h"
#include "include/secp256k1_commitment.h"
#include "include/secp256k1_bulletproofs.h"
#include "util.h"
#include "bench.h"
#define MAX_PROOF_SIZE 2000
typedef struct {
secp256k1_context *ctx;
secp256k1_scratch_space *scratch;
unsigned char nonce[32];
unsigned char **proof;
secp256k1_bulletproof_generators *generators;
secp256k1_generator *value_gen;
secp256k1_generator blind_gen;
size_t n_proofs;
size_t plen;
size_t iters;
} bench_bulletproof_t;
typedef struct {
bench_bulletproof_t *common;
secp256k1_pedersen_commitment **commit;
const unsigned char **blind;
size_t *value;
size_t n_commits;
size_t nbits;
} bench_bulletproof_rangeproof_t;
static void bench_bulletproof_common_setup(bench_bulletproof_t *data) {
size_t i;
const unsigned char nonce[32] = "my kingdom for some randomness!!";
const unsigned char genbd[32] = "yet more blinding, for the asset";
memcpy(data->nonce, nonce, 32);
data->proof = (unsigned char **)malloc(data->n_proofs * sizeof(*data->proof));
data->value_gen = (secp256k1_generator *)malloc(data->n_proofs * sizeof(*data->value_gen));
for (i = 0; i < data->n_proofs; i++) {
data->proof[i] = (unsigned char *)malloc(MAX_PROOF_SIZE);
CHECK(secp256k1_generator_generate(data->ctx, &data->value_gen[i], genbd));
}
data->plen = MAX_PROOF_SIZE;
}
static void bench_bulletproof_rangeproof_setup(void* arg) {
bench_bulletproof_rangeproof_t *data = (bench_bulletproof_rangeproof_t*)arg;
size_t i;
size_t v;
unsigned char blind[32] = "and my kingdom too for a blinder";
bench_bulletproof_common_setup (data->common);
data->commit = (secp256k1_pedersen_commitment **)malloc(data->common->n_proofs * sizeof(*data->commit));
data->blind = (const unsigned char **)malloc(data->n_commits * sizeof(*data->blind));
data->value = (size_t *)malloc(data->n_commits * sizeof(*data->commit));
for (i = 0; i < data->common->n_proofs; i++) {
data->commit[i] = (secp256k1_pedersen_commitment *)malloc(data->n_commits * sizeof(*data->commit[i]));
}
for (i = 0; i < data->n_commits; i++) {
data->blind[i] = malloc(32);
blind[0] = i;
blind[1] = i >> 8;
memcpy((unsigned char*) data->blind[i], blind, 32);
data->value[i] = i * 17;
CHECK(secp256k1_pedersen_commit(data->common->ctx, &data->commit[0][i], data->blind[i], data->value[i], &data->common->value_gen[0], &data->common->blind_gen));
}
for (i = 1; i < data->common->n_proofs; i++) {
memcpy(data->commit[i], data->commit[0], data->n_commits * sizeof(*data->commit[0]));
}
CHECK(secp256k1_bulletproof_rangeproof_prove(data->common->ctx, data->common->scratch, data->common->generators, data->common->proof[0], &data->common->plen, data->value, NULL, data->blind, data->n_commits, data->common->value_gen, data->nbits, data->common->nonce, NULL, 0) == 1);
for (i = 1; i < data->common->n_proofs; i++) {
memcpy(data->common->proof[i], data->common->proof[0], data->common->plen);
CHECK(secp256k1_bulletproof_rangeproof_verify(data->common->ctx, data->common->scratch, data->common->generators, data->common->proof[i], data->common->plen, NULL, data->commit[i], data->n_commits, data->nbits, &data->common->value_gen[0], NULL, 0) == 1);
}
CHECK(secp256k1_bulletproof_rangeproof_verify(data->common->ctx, data->common->scratch, data->common->generators, data->common->proof[0], data->common->plen, NULL, data->commit[0], data->n_commits, data->nbits, data->common->value_gen, NULL, 0) == 1);
CHECK(secp256k1_bulletproof_rangeproof_verify_multi(data->common->ctx, data->common->scratch, data->common->generators, (const unsigned char **) data->common->proof, data->common->n_proofs, data->common->plen, NULL, (const secp256k1_pedersen_commitment **) data->commit, data->n_commits, data->nbits, data->common->value_gen, NULL, 0) == 1);
if (data->n_commits == 1) {
CHECK(secp256k1_bulletproof_rangeproof_rewind(data->common->ctx, data->common->generators, &v, blind, data->common->proof[0], data->common->plen, 0, data->commit[0], &data->common->value_gen[0], data->common->nonce, NULL, 0) == 1);
}
}
static void bench_bulletproof_common_teardown(bench_bulletproof_t *data) {
size_t i;
for (i = 0; i < data->n_proofs; i++) {
free(data->proof[i]);
}
free(data->proof);
free(data->value_gen);
}
static void bench_bulletproof_rangeproof_teardown(void* arg) {
bench_bulletproof_rangeproof_t *data = (bench_bulletproof_rangeproof_t*)arg;
size_t i;
if (data->blind != NULL) {
for (i = 0; i < data->n_commits; i++) {
free((unsigned char*) data->blind[i]);
}
}
if (data->commit != NULL) {
for (i = 0; i < data->common->n_proofs; i++) {
free(data->commit[i]);
}
free(data->commit);
}
free(data->blind);
free(data->value);
bench_bulletproof_common_teardown(data->common);
}
static void bench_bulletproof_rangeproof_prove(void* arg) {
bench_bulletproof_rangeproof_t *data = (bench_bulletproof_rangeproof_t*)arg;
size_t i;
for (i = 0; i < 25; i++) {
CHECK(secp256k1_bulletproof_rangeproof_prove(data->common->ctx, data->common->scratch, data->common->generators, data->common->proof[0], &data->common->plen, data->value, NULL, data->blind, data->n_commits, data->common->value_gen, data->nbits, data->common->nonce, NULL, 0) == 1);
}
}
static void bench_bulletproof_rangeproof_verify(void* arg) {
size_t i;
bench_bulletproof_rangeproof_t *data = (bench_bulletproof_rangeproof_t*)arg;
for (i = 0; i < data->common->iters; i++) {
CHECK(secp256k1_bulletproof_rangeproof_verify_multi(data->common->ctx, data->common->scratch, data->common->generators, (const unsigned char **) data->common->proof, data->common->n_proofs, data->common->plen, NULL, (const secp256k1_pedersen_commitment **) data->commit, data->n_commits, data->nbits, data->common->value_gen, NULL, 0) == 1);
}
}
static void bench_bulletproof_rangeproof_rewind_succeed(void* arg) {
size_t i;
size_t v;
unsigned char blind[32];
bench_bulletproof_rangeproof_t *data = (bench_bulletproof_rangeproof_t*)arg;
for (i = 0; i < data->common->iters; i++) {
CHECK(secp256k1_bulletproof_rangeproof_rewind(data->common->ctx, data->common->generators, &v, blind, data->common->proof[0], data->common->plen, 0, data->commit[0], &data->common->value_gen[0], data->common->nonce, NULL, 0) == 1);
}
}
static void bench_bulletproof_rangeproof_rewind_fail(void* arg) {
size_t i;
size_t v;
unsigned char blind[32];
bench_bulletproof_rangeproof_t *data = (bench_bulletproof_rangeproof_t*)arg;
data->common->nonce[0] ^= 1;
for (i = 0; i < data->common->iters; i++) {
CHECK(secp256k1_bulletproof_rangeproof_rewind(data->common->ctx, data->common->generators, &v, blind, data->common->proof[0], data->common->plen, 0, data->commit[0], &data->common->value_gen[0], data->common->nonce, NULL, 0) == 0);
}
data->common->nonce[0] ^= 1;
}
static void run_rangeproof_test(bench_bulletproof_rangeproof_t *data, size_t nbits, size_t n_commits) {
char str[64];
data->nbits = nbits;
data->n_commits = n_commits;
data->common->iters = 100;
data->common->n_proofs = 1;
sprintf(str, "bulletproof_prove, %i, %i, 0, ", (int)nbits, (int) n_commits);
run_benchmark(str, bench_bulletproof_rangeproof_prove, bench_bulletproof_rangeproof_setup, bench_bulletproof_rangeproof_teardown, (void *)data, 5, 25);
data->common->n_proofs = 1;
sprintf(str, "bulletproof_verify, %i, %i, 1, ", (int)nbits, (int) n_commits);
run_benchmark(str, bench_bulletproof_rangeproof_verify, bench_bulletproof_rangeproof_setup, bench_bulletproof_rangeproof_teardown, (void *)data, 5, data->common->iters);
if (n_commits == 1) {
sprintf(str, "bulletproof_rewind_succeed, %i, ", (int)nbits);
run_benchmark(str, bench_bulletproof_rangeproof_rewind_succeed, bench_bulletproof_rangeproof_setup, bench_bulletproof_rangeproof_teardown, (void *)data, 5, data->common->iters);
sprintf(str, "bulletproof_rewind_fail, %i, ", (int)nbits);
run_benchmark(str, bench_bulletproof_rangeproof_rewind_fail, bench_bulletproof_rangeproof_setup, bench_bulletproof_rangeproof_teardown, (void *)data, 5, data->common->iters);
}
data->common->n_proofs = 2;
sprintf(str, "bulletproof_verify, %i, %i, 2, ", (int)nbits, (int) n_commits);
run_benchmark(str, bench_bulletproof_rangeproof_verify, bench_bulletproof_rangeproof_setup, bench_bulletproof_rangeproof_teardown, (void *)data, 5, data->common->iters);
data->common->iters = 10;
data->common->n_proofs = 50;
sprintf(str, "bulletproof_verify, %i, %i, 50, ", (int)nbits, (int) n_commits);
run_benchmark(str, bench_bulletproof_rangeproof_verify, bench_bulletproof_rangeproof_setup, bench_bulletproof_rangeproof_teardown, (void *)data, 5, data->common->iters);
data->common->iters = 1;
data->common->n_proofs = 100;
sprintf(str, "bulletproof_verify, %i, %i, 100, ", (int)nbits, (int) n_commits);
run_benchmark(str, bench_bulletproof_rangeproof_verify, bench_bulletproof_rangeproof_setup, bench_bulletproof_rangeproof_teardown, (void *)data, 5, data->common->iters);
data->common->n_proofs = 500;
sprintf(str, "bulletproof_verify, %i, %i, 500, ", (int)nbits, (int) n_commits);
run_benchmark(str, bench_bulletproof_rangeproof_verify, bench_bulletproof_rangeproof_setup, bench_bulletproof_rangeproof_teardown, (void *)data, 5, data->common->iters);
data->common->n_proofs = 1000;
sprintf(str, "bulletproof_verify, %i, %i, 1000, ", (int)nbits, (int) n_commits);
run_benchmark(str, bench_bulletproof_rangeproof_verify, bench_bulletproof_rangeproof_setup, bench_bulletproof_rangeproof_teardown, (void *)data, 5, data->common->iters);
}
/*int main(void) {
bench_bulletproof_t data;
bench_bulletproof_rangeproof_t rp_data;
data.blind_gen = secp256k1_generator_const_g;
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
data.scratch = secp256k1_scratch_space_create(data.ctx, 1024 * 1024 * 1024);
data.generators = secp256k1_bulletproof_generators_create(data.ctx, &data.blind_gen, 64 * 1024);
rp_data.common = &data;
run_rangeproof_test(&rp_data, 8, 1);
run_rangeproof_test(&rp_data, 16, 1);
run_rangeproof_test(&rp_data, 32, 1);
run_rangeproof_test(&rp_data, 64, 1);
run_rangeproof_test(&rp_data, 64, 2);
run_rangeproof_test(&rp_data, 64, 4);
run_rangeproof_test(&rp_data, 64, 8);
run_rangeproof_test(&rp_data, 64, 16);
run_rangeproof_test(&rp_data, 64, 32);
run_rangeproof_test(&rp_data, 64, 64);
run_rangeproof_test(&rp_data, 64, 128);
run_rangeproof_test(&rp_data, 64, 256);
run_rangeproof_test(&rp_data, 64, 512);
// to add more, increase the number of generators above in `data.generators = ...`
secp256k1_bulletproof_generators_destroy(data.ctx, data.generators);
secp256k1_scratch_space_destroy(data.scratch);
secp256k1_context_destroy(data.ctx);
return 0;
}*/

View File

@ -1,54 +0,0 @@
/**********************************************************************
* Copyright (c) 2015 Pieter Wuille, Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include <string.h>
#include "include/secp256k1.h"
#include "include/secp256k1_ecdh.h"
#include "util.h"
#include "bench.h"
typedef struct {
secp256k1_context *ctx;
secp256k1_pubkey point;
unsigned char scalar[32];
} bench_ecdh_data;
static void bench_ecdh_setup(void* arg) {
int i;
bench_ecdh_data *data = (bench_ecdh_data*)arg;
const unsigned char point[] = {
0x03,
0x54, 0x94, 0xc1, 0x5d, 0x32, 0x09, 0x97, 0x06,
0xc2, 0x39, 0x5f, 0x94, 0x34, 0x87, 0x45, 0xfd,
0x75, 0x7c, 0xe3, 0x0e, 0x4e, 0x8c, 0x90, 0xfb,
0xa2, 0xba, 0xd1, 0x84, 0xf8, 0x83, 0xc6, 0x9f
};
/* create a context with no capabilities */
data->ctx = secp256k1_context_create(SECP256K1_FLAGS_TYPE_CONTEXT);
for (i = 0; i < 32; i++) {
data->scalar[i] = i + 1;
}
CHECK(secp256k1_ec_pubkey_parse(data->ctx, &data->point, point, sizeof(point)) == 1);
}
static void bench_ecdh(void* arg) {
int i;
unsigned char res[32];
bench_ecdh_data *data = (bench_ecdh_data*)arg;
for (i = 0; i < 20000; i++) {
CHECK(secp256k1_ecdh(data->ctx, res, &data->point, data->scalar) == 1);
}
}
int main(void) {
bench_ecdh_data data;
run_benchmark("ecdh", bench_ecdh, bench_ecdh_setup, NULL, &data, 10, 20000);
return 0;
}

View File

@ -1,196 +0,0 @@
/**********************************************************************
* Copyright (c) 2017 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include <stdio.h>
#include "include/secp256k1.h"
#include "util.h"
#include "hash_impl.h"
#include "num_impl.h"
#include "field_impl.h"
#include "group_impl.h"
#include "scalar_impl.h"
#include "ecmult_impl.h"
#include "bench.h"
#include "secp256k1.c"
#define POINTS 32768
#define ITERS 10000
typedef struct {
/* Setup once in advance */
secp256k1_context* ctx;
secp256k1_scratch_space* scratch;
secp256k1_scalar* scalars;
secp256k1_ge* pubkeys;
secp256k1_scalar* seckeys;
secp256k1_gej* expected_output;
secp256k1_ecmult_multi_func ecmult_multi;
/* Changes per test */
size_t count;
int includes_g;
/* Changes per test iteration */
size_t offset1;
size_t offset2;
/* Test output. */
secp256k1_gej* output;
} bench_data;
static int bench_callback(secp256k1_scalar* sc, secp256k1_ge* ge, size_t idx, void* arg) {
bench_data* data = (bench_data*)arg;
if (data->includes_g) ++idx;
if (idx == 0) {
*sc = data->scalars[data->offset1];
*ge = secp256k1_ge_const_g;
} else {
*sc = data->scalars[(data->offset1 + idx) % POINTS];
*ge = data->pubkeys[(data->offset2 + idx - 1) % POINTS];
}
return 1;
}
static void bench_ecmult(void* arg) {
bench_data* data = (bench_data*)arg;
size_t count = data->count;
int includes_g = data->includes_g;
size_t iters = 1 + ITERS / count;
size_t iter;
for (iter = 0; iter < iters; ++iter) {
data->ecmult_multi(&data->ctx->ecmult_ctx, data->scratch, &data->output[iter], data->includes_g ? &data->scalars[data->offset1] : NULL, bench_callback, arg, count - includes_g);
data->offset1 = (data->offset1 + count) % POINTS;
data->offset2 = (data->offset2 + count - 1) % POINTS;
}
}
static void bench_ecmult_setup(void* arg) {
bench_data* data = (bench_data*)arg;
data->offset1 = (data->count * 0x537b7f6f + 0x8f66a481) % POINTS;
data->offset2 = (data->count * 0x7f6f537b + 0x6a1a8f49) % POINTS;
}
static void bench_ecmult_teardown(void* arg) {
bench_data* data = (bench_data*)arg;
size_t iters = 1 + ITERS / data->count;
size_t iter;
/* Verify the results in teardown, to avoid doing comparisons while benchmarking. */
for (iter = 0; iter < iters; ++iter) {
secp256k1_gej tmp;
secp256k1_gej_add_var(&tmp, &data->output[iter], &data->expected_output[iter], NULL);
CHECK(secp256k1_gej_is_infinity(&tmp));
}
}
static void generate_scalar(uint32_t num, secp256k1_scalar* scalar) {
secp256k1_sha256 sha256;
unsigned char c[11] = {'e', 'c', 'm', 'u', 'l', 't', 0, 0, 0, 0};
unsigned char buf[32];
int overflow = 0;
c[6] = num;
c[7] = num >> 8;
c[8] = num >> 16;
c[9] = num >> 24;
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, c, sizeof(c));
secp256k1_sha256_finalize(&sha256, buf);
secp256k1_scalar_set_b32(scalar, buf, &overflow);
CHECK(!overflow);
}
static void run_test(bench_data* data, size_t count, int includes_g) {
char str[32];
static const secp256k1_scalar zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
size_t iters = 1 + ITERS / count;
size_t iter;
data->count = count;
data->includes_g = includes_g;
/* Compute (the negation of) the expected results directly. */
data->offset1 = (data->count * 0x537b7f6f + 0x8f66a481) % POINTS;
data->offset2 = (data->count * 0x7f6f537b + 0x6a1a8f49) % POINTS;
for (iter = 0; iter < iters; ++iter) {
secp256k1_scalar tmp;
secp256k1_scalar total = data->scalars[(data->offset1++) % POINTS];
size_t i = 0;
for (i = 0; i + 1 < count; ++i) {
secp256k1_scalar_mul(&tmp, &data->seckeys[(data->offset2++) % POINTS], &data->scalars[(data->offset1++) % POINTS]);
secp256k1_scalar_add(&total, &total, &tmp);
}
secp256k1_scalar_negate(&total, &total);
secp256k1_ecmult(&data->ctx->ecmult_ctx, &data->expected_output[iter], NULL, &zero, &total);
}
/* Run the benchmark. */
sprintf(str, includes_g ? "ecmult_%ig" : "ecmult_%i", (int)count);
run_benchmark(str, bench_ecmult, bench_ecmult_setup, bench_ecmult_teardown, data, 10, count * (1 + ITERS / count));
}
int main(int argc, char **argv) {
bench_data data;
int i, p;
secp256k1_gej* pubkeys_gej;
size_t scratch_size;
if (argc > 1) {
if(have_flag(argc, argv, "pippenger_wnaf")) {
printf("Using pippenger_wnaf:\n");
data.ecmult_multi = secp256k1_ecmult_pippenger_batch_single;
} else if(have_flag(argc, argv, "strauss_wnaf")) {
printf("Using strauss_wnaf:\n");
data.ecmult_multi = secp256k1_ecmult_strauss_batch_single;
}
} else {
data.ecmult_multi = secp256k1_ecmult_multi_var;
}
/* Allocate stuff */
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
scratch_size = secp256k1_strauss_scratch_size(POINTS) + STRAUSS_SCRATCH_OBJECTS*16;
data.scratch = secp256k1_scratch_space_create(data.ctx, scratch_size);
data.scalars = malloc(sizeof(secp256k1_scalar) * POINTS);
data.seckeys = malloc(sizeof(secp256k1_scalar) * POINTS);
data.pubkeys = malloc(sizeof(secp256k1_ge) * POINTS);
data.expected_output = malloc(sizeof(secp256k1_gej) * (ITERS + 1));
data.output = malloc(sizeof(secp256k1_gej) * (ITERS + 1));
/* Generate a set of scalars, and private/public keypairs. */
pubkeys_gej = malloc(sizeof(secp256k1_gej) * POINTS);
secp256k1_gej_set_ge(&pubkeys_gej[0], &secp256k1_ge_const_g);
secp256k1_scalar_set_int(&data.seckeys[0], 1);
for (i = 0; i < POINTS; ++i) {
generate_scalar(i, &data.scalars[i]);
if (i) {
secp256k1_gej_double_var(&pubkeys_gej[i], &pubkeys_gej[i - 1], NULL);
secp256k1_scalar_add(&data.seckeys[i], &data.seckeys[i - 1], &data.seckeys[i - 1]);
}
}
secp256k1_ge_set_all_gej_var(data.pubkeys, pubkeys_gej, POINTS, &data.ctx->error_callback);
free(pubkeys_gej);
for (i = 1; i <= 8; ++i) {
run_test(&data, i, 1);
}
for (p = 0; p <= 11; ++p) {
for (i = 9; i <= 16; ++i) {
run_test(&data, i << p, 1);
}
}
secp256k1_context_destroy(data.ctx);
secp256k1_scratch_space_destroy(data.scratch);
free(data.scalars);
free(data.pubkeys);
free(data.seckeys);
free(data.output);
free(data.expected_output);
return(0);
}

View File

@ -1,59 +0,0 @@
/**********************************************************************
* Copyright (c) 2016 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include <stdint.h>
#include <string.h>
#include "include/secp256k1_generator.h"
#include "util.h"
#include "bench.h"
typedef struct {
secp256k1_context* ctx;
unsigned char key[32];
unsigned char blind[32];
} bench_generator_t;
static void bench_generator_setup(void* arg) {
bench_generator_t *data = (bench_generator_t*)arg;
memset(data->key, 0x31, 32);
memset(data->blind, 0x13, 32);
}
static void bench_generator_generate(void* arg) {
int i;
bench_generator_t *data = (bench_generator_t*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_generator gen;
CHECK(secp256k1_generator_generate(data->ctx, &gen, data->key));
data->key[i & 31]++;
}
}
static void bench_generator_generate_blinded(void* arg) {
int i;
bench_generator_t *data = (bench_generator_t*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_generator gen;
CHECK(secp256k1_generator_generate_blinded(data->ctx, &gen, data->key, data->blind));
data->key[1 + (i & 30)]++;
data->blind[1 + (i & 30)]++;
}
}
int main(void) {
bench_generator_t data;
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
run_benchmark("generator_generate", bench_generator_generate, bench_generator_setup, NULL, &data, 10, 20000);
run_benchmark("generator_generate_blinded", bench_generator_generate_blinded, bench_generator_setup, NULL, &data, 10, 20000);
secp256k1_context_destroy(data.ctx);
return 0;
}

View File

@ -1,367 +0,0 @@
/**********************************************************************
* Copyright (c) 2014-2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include <stdio.h>
#include "include/secp256k1.h"
#include "util.h"
#include "hash_impl.h"
#include "num_impl.h"
#include "field_impl.h"
#include "group_impl.h"
#include "scalar_impl.h"
#include "ecmult_const_impl.h"
#include "ecmult_impl.h"
#include "bench.h"
#include "secp256k1.c"
typedef struct {
secp256k1_scalar scalar_x, scalar_y;
secp256k1_fe fe_x, fe_y;
secp256k1_ge ge_x, ge_y;
secp256k1_gej gej_x, gej_y;
unsigned char data[64];
int wnaf[256];
} bench_inv;
void bench_setup(void* arg) {
bench_inv *data = (bench_inv*)arg;
static const unsigned char init_x[32] = {
0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13,
0x17, 0x1d, 0x1f, 0x25, 0x29, 0x2b, 0x2f, 0x35,
0x3b, 0x3d, 0x43, 0x47, 0x49, 0x4f, 0x53, 0x59,
0x61, 0x65, 0x67, 0x6b, 0x6d, 0x71, 0x7f, 0x83
};
static const unsigned char init_y[32] = {
0x82, 0x83, 0x85, 0x87, 0x8b, 0x8d, 0x81, 0x83,
0x97, 0xad, 0xaf, 0xb5, 0xb9, 0xbb, 0xbf, 0xc5,
0xdb, 0xdd, 0xe3, 0xe7, 0xe9, 0xef, 0xf3, 0xf9,
0x11, 0x15, 0x17, 0x1b, 0x1d, 0xb1, 0xbf, 0xd3
};
secp256k1_scalar_set_b32(&data->scalar_x, init_x, NULL);
secp256k1_scalar_set_b32(&data->scalar_y, init_y, NULL);
secp256k1_fe_set_b32(&data->fe_x, init_x);
secp256k1_fe_set_b32(&data->fe_y, init_y);
CHECK(secp256k1_ge_set_xo_var(&data->ge_x, &data->fe_x, 0));
CHECK(secp256k1_ge_set_xo_var(&data->ge_y, &data->fe_y, 1));
secp256k1_gej_set_ge(&data->gej_x, &data->ge_x);
secp256k1_gej_set_ge(&data->gej_y, &data->ge_y);
memcpy(data->data, init_x, 32);
memcpy(data->data + 32, init_y, 32);
}
void bench_scalar_add(void* arg) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < 2000000; i++) {
secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
}
}
void bench_scalar_negate(void* arg) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < 2000000; i++) {
secp256k1_scalar_negate(&data->scalar_x, &data->scalar_x);
}
}
void bench_scalar_sqr(void* arg) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < 200000; i++) {
secp256k1_scalar_sqr(&data->scalar_x, &data->scalar_x);
}
}
void bench_scalar_mul(void* arg) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < 200000; i++) {
secp256k1_scalar_mul(&data->scalar_x, &data->scalar_x, &data->scalar_y);
}
}
#ifdef USE_ENDOMORPHISM
void bench_scalar_split(void* arg) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_scalar l, r;
secp256k1_scalar_split_lambda(&l, &r, &data->scalar_x);
secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
}
}
#endif
void bench_scalar_inverse(void* arg) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < 2000; i++) {
secp256k1_scalar_inverse(&data->scalar_x, &data->scalar_x);
secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
}
}
void bench_scalar_inverse_var(void* arg) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < 2000; i++) {
secp256k1_scalar_inverse_var(&data->scalar_x, &data->scalar_x);
secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
}
}
void bench_field_normalize(void* arg) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < 2000000; i++) {
secp256k1_fe_normalize(&data->fe_x);
}
}
void bench_field_normalize_weak(void* arg) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < 2000000; i++) {
secp256k1_fe_normalize_weak(&data->fe_x);
}
}
void bench_field_mul(void* arg) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < 200000; i++) {
secp256k1_fe_mul(&data->fe_x, &data->fe_x, &data->fe_y);
}
}
void bench_field_sqr(void* arg) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < 200000; i++) {
secp256k1_fe_sqr(&data->fe_x, &data->fe_x);
}
}
void bench_field_inverse(void* arg) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_fe_inv(&data->fe_x, &data->fe_x);
secp256k1_fe_add(&data->fe_x, &data->fe_y);
}
}
void bench_field_inverse_var(void* arg) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_fe_inv_var(&data->fe_x, &data->fe_x);
secp256k1_fe_add(&data->fe_x, &data->fe_y);
}
}
void bench_field_sqrt(void* arg) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_fe_sqrt(&data->fe_x, &data->fe_x);
secp256k1_fe_add(&data->fe_x, &data->fe_y);
}
}
void bench_group_double_var(void* arg) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < 200000; i++) {
secp256k1_gej_double_var(&data->gej_x, &data->gej_x, NULL);
}
}
void bench_group_add_var(void* arg) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < 200000; i++) {
secp256k1_gej_add_var(&data->gej_x, &data->gej_x, &data->gej_y, NULL);
}
}
void bench_group_add_affine(void* arg) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < 200000; i++) {
secp256k1_gej_add_ge(&data->gej_x, &data->gej_x, &data->ge_y);
}
}
void bench_group_add_affine_var(void* arg) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < 200000; i++) {
secp256k1_gej_add_ge_var(&data->gej_x, &data->gej_x, &data->ge_y, NULL);
}
}
void bench_group_jacobi_var(void* arg) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_gej_has_quad_y_var(&data->gej_x);
}
}
void bench_ecmult_wnaf(void* arg) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_ecmult_wnaf(data->wnaf, 256, &data->scalar_x, WINDOW_A);
secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
}
}
void bench_wnaf_const(void* arg) {
int i;
bench_inv *data = (bench_inv*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_wnaf_const(data->wnaf, data->scalar_x, WINDOW_A, 256);
secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
}
}
void bench_sha256(void* arg) {
int i;
bench_inv *data = (bench_inv*)arg;
secp256k1_sha256 sha;
for (i = 0; i < 20000; i++) {
secp256k1_sha256_initialize(&sha);
secp256k1_sha256_write(&sha, data->data, 32);
secp256k1_sha256_finalize(&sha, data->data);
}
}
void bench_hmac_sha256(void* arg) {
int i;
bench_inv *data = (bench_inv*)arg;
secp256k1_hmac_sha256 hmac;
for (i = 0; i < 20000; i++) {
secp256k1_hmac_sha256_initialize(&hmac, data->data, 32);
secp256k1_hmac_sha256_write(&hmac, data->data, 32);
secp256k1_hmac_sha256_finalize(&hmac, data->data);
}
}
void bench_rfc6979_hmac_sha256(void* arg) {
int i;
bench_inv *data = (bench_inv*)arg;
secp256k1_rfc6979_hmac_sha256 rng;
for (i = 0; i < 20000; i++) {
secp256k1_rfc6979_hmac_sha256_initialize(&rng, data->data, 64);
secp256k1_rfc6979_hmac_sha256_generate(&rng, data->data, 32);
}
}
void bench_context_verify(void* arg) {
int i;
(void)arg;
for (i = 0; i < 20; i++) {
secp256k1_context_destroy(secp256k1_context_create(SECP256K1_CONTEXT_VERIFY));
}
}
void bench_context_sign(void* arg) {
int i;
(void)arg;
for (i = 0; i < 200; i++) {
secp256k1_context_destroy(secp256k1_context_create(SECP256K1_CONTEXT_SIGN));
}
}
#ifndef USE_NUM_NONE
void bench_num_jacobi(void* arg) {
int i;
bench_inv *data = (bench_inv*)arg;
secp256k1_num nx, norder;
secp256k1_scalar_get_num(&nx, &data->scalar_x);
secp256k1_scalar_order_get_num(&norder);
secp256k1_scalar_get_num(&norder, &data->scalar_y);
for (i = 0; i < 200000; i++) {
secp256k1_num_jacobi(&nx, &norder);
}
}
#endif
int main(int argc, char **argv) {
bench_inv data;
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "add")) run_benchmark("scalar_add", bench_scalar_add, bench_setup, NULL, &data, 10, 2000000);
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "negate")) run_benchmark("scalar_negate", bench_scalar_negate, bench_setup, NULL, &data, 10, 2000000);
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "sqr")) run_benchmark("scalar_sqr", bench_scalar_sqr, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "mul")) run_benchmark("scalar_mul", bench_scalar_mul, bench_setup, NULL, &data, 10, 200000);
#ifdef USE_ENDOMORPHISM
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "split")) run_benchmark("scalar_split", bench_scalar_split, bench_setup, NULL, &data, 10, 20000);
#endif
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse", bench_scalar_inverse, bench_setup, NULL, &data, 10, 2000);
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse_var", bench_scalar_inverse_var, bench_setup, NULL, &data, 10, 2000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize", bench_field_normalize, bench_setup, NULL, &data, 10, 2000000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize_weak", bench_field_normalize_weak, bench_setup, NULL, &data, 10, 2000000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "sqr")) run_benchmark("field_sqr", bench_field_sqr, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "mul")) run_benchmark("field_mul", bench_field_mul, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse", bench_field_inverse, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse_var", bench_field_inverse_var, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt")) run_benchmark("field_sqrt", bench_field_sqrt, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "double")) run_benchmark("group_double_var", bench_group_double_var, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_var", bench_group_add_var, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine", bench_group_add_affine, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine_var", bench_group_add_affine_var, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "jacobi")) run_benchmark("group_jacobi_var", bench_group_jacobi_var, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("wnaf_const", bench_wnaf_const, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("ecmult_wnaf", bench_ecmult_wnaf, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "sha256")) run_benchmark("hash_sha256", bench_sha256, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "hmac")) run_benchmark("hash_hmac_sha256", bench_hmac_sha256, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "rng6979")) run_benchmark("hash_rfc6979_hmac_sha256", bench_rfc6979_hmac_sha256, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "context") || have_flag(argc, argv, "verify")) run_benchmark("context_verify", bench_context_verify, bench_setup, NULL, &data, 10, 20);
if (have_flag(argc, argv, "context") || have_flag(argc, argv, "sign")) run_benchmark("context_sign", bench_context_sign, bench_setup, NULL, &data, 10, 200);
#ifndef USE_NUM_NONE
if (have_flag(argc, argv, "num") || have_flag(argc, argv, "jacobi")) run_benchmark("num_jacobi", bench_num_jacobi, bench_setup, NULL, &data, 10, 200000);
#endif
return 0;
}

View File

@ -1,64 +0,0 @@
/**********************************************************************
* Copyright (c) 2014, 2015 Pieter Wuille, Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include <stdint.h>
#include "include/secp256k1_commitment.h"
#include "include/secp256k1_rangeproof.h"
#include "util.h"
#include "bench.h"
typedef struct {
secp256k1_context* ctx;
secp256k1_pedersen_commitment commit;
unsigned char proof[5134];
unsigned char blind[32];
size_t len;
int min_bits;
uint64_t v;
} bench_rangeproof_t;
static void bench_rangeproof_setup(void* arg) {
int i;
uint64_t minv;
uint64_t maxv;
bench_rangeproof_t *data = (bench_rangeproof_t*)arg;
data->v = 0;
for (i = 0; i < 32; i++) data->blind[i] = i + 1;
CHECK(secp256k1_pedersen_commit(data->ctx, &data->commit, data->blind, data->v, &secp256k1_generator_const_h, &secp256k1_generator_const_g));
data->len = 5134;
CHECK(secp256k1_rangeproof_sign(data->ctx, data->proof, &data->len, 0, &data->commit, data->blind, (const unsigned char*)&data->commit, 0, data->min_bits, data->v, NULL, 0, NULL, 0, &secp256k1_generator_const_h));
CHECK(secp256k1_rangeproof_verify(data->ctx, &minv, &maxv, &data->commit, data->proof, data->len, NULL, 0, &secp256k1_generator_const_h));
}
static void bench_rangeproof(void* arg) {
int i;
bench_rangeproof_t *data = (bench_rangeproof_t*)arg;
for (i = 0; i < 1000; i++) {
int j;
uint64_t minv;
uint64_t maxv;
j = secp256k1_rangeproof_verify(data->ctx, &minv, &maxv, &data->commit, data->proof, data->len, NULL, 0, &secp256k1_generator_const_h);
for (j = 0; j < 4; j++) {
data->proof[j + 2 + 32 *((data->min_bits + 1) >> 1) - 4] = (i >> 8)&255;
}
}
}
int main(void) {
bench_rangeproof_t data;
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
data.min_bits = 32;
run_benchmark("rangeproof_verify_bit", bench_rangeproof, bench_rangeproof_setup, NULL, &data, 10, 1000 * data.min_bits);
secp256k1_context_destroy(data.ctx);
return 0;
}

View File

@ -1,60 +0,0 @@
/**********************************************************************
* Copyright (c) 2014-2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include "include/secp256k1.h"
#include "include/secp256k1_recovery.h"
#include "util.h"
#include "bench.h"
typedef struct {
secp256k1_context *ctx;
unsigned char msg[32];
unsigned char sig[64];
} bench_recover_data;
void bench_recover(void* arg) {
int i;
bench_recover_data *data = (bench_recover_data*)arg;
secp256k1_pubkey pubkey;
unsigned char pubkeyc[33];
for (i = 0; i < 20000; i++) {
int j;
size_t pubkeylen = 33;
secp256k1_ecdsa_recoverable_signature sig;
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(data->ctx, &sig, data->sig, i % 2));
CHECK(secp256k1_ecdsa_recover(data->ctx, &pubkey, &sig, data->msg));
CHECK(secp256k1_ec_pubkey_serialize(data->ctx, pubkeyc, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED));
for (j = 0; j < 32; j++) {
data->sig[j + 32] = data->msg[j]; /* Move former message to S. */
data->msg[j] = data->sig[j]; /* Move former R to message. */
data->sig[j] = pubkeyc[j + 1]; /* Move recovered pubkey X coordinate to R (which must be a valid X coordinate). */
}
}
}
void bench_recover_setup(void* arg) {
int i;
bench_recover_data *data = (bench_recover_data*)arg;
for (i = 0; i < 32; i++) {
data->msg[i] = 1 + i;
}
for (i = 0; i < 64; i++) {
data->sig[i] = 65 + i;
}
}
int main(void) {
bench_recover_data data;
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY);
run_benchmark("ecdsa_recover", bench_recover, bench_recover_setup, NULL, &data, 10, 20000);
secp256k1_context_destroy(data.ctx);
return 0;
}

View File

@ -1,56 +0,0 @@
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include "include/secp256k1.h"
#include "util.h"
#include "bench.h"
typedef struct {
secp256k1_context* ctx;
unsigned char msg[32];
unsigned char key[32];
} bench_sign;
static void bench_sign_setup(void* arg) {
int i;
bench_sign *data = (bench_sign*)arg;
for (i = 0; i < 32; i++) {
data->msg[i] = i + 1;
}
for (i = 0; i < 32; i++) {
data->key[i] = i + 65;
}
}
static void bench_sign_run(void* arg) {
int i;
bench_sign *data = (bench_sign*)arg;
unsigned char sig[74];
for (i = 0; i < 20000; i++) {
size_t siglen = 74;
int j;
secp256k1_ecdsa_signature signature;
CHECK(secp256k1_ecdsa_sign(data->ctx, &signature, data->msg, data->key, NULL, NULL));
CHECK(secp256k1_ecdsa_signature_serialize_der(data->ctx, sig, &siglen, &signature));
for (j = 0; j < 32; j++) {
data->msg[j] = sig[j];
data->key[j] = sig[j + 32];
}
}
}
int main(void) {
bench_sign data;
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
run_benchmark("ecdsa_sign", bench_sign_run, bench_sign_setup, NULL, &data, 10, 20000);
secp256k1_context_destroy(data.ctx);
return 0;
}

View File

@ -1,112 +0,0 @@
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include <stdio.h>
#include <string.h>
#include "include/secp256k1.h"
#include "util.h"
#include "bench.h"
#ifdef ENABLE_OPENSSL_TESTS
#include <openssl/bn.h>
#include <openssl/ecdsa.h>
#include <openssl/obj_mac.h>
#endif
typedef struct {
secp256k1_context *ctx;
unsigned char msg[32];
unsigned char key[32];
unsigned char sig[72];
size_t siglen;
unsigned char pubkey[33];
size_t pubkeylen;
#ifdef ENABLE_OPENSSL_TESTS
EC_GROUP* ec_group;
#endif
} benchmark_verify_t;
static void benchmark_verify(void* arg) {
int i;
benchmark_verify_t* data = (benchmark_verify_t*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_pubkey pubkey;
secp256k1_ecdsa_signature sig;
data->sig[data->siglen - 1] ^= (i & 0xFF);
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
CHECK(secp256k1_ec_pubkey_parse(data->ctx, &pubkey, data->pubkey, data->pubkeylen) == 1);
CHECK(secp256k1_ecdsa_signature_parse_der(data->ctx, &sig, data->sig, data->siglen) == 1);
CHECK(secp256k1_ecdsa_verify(data->ctx, &sig, data->msg, &pubkey) == (i == 0));
data->sig[data->siglen - 1] ^= (i & 0xFF);
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
}
}
#ifdef ENABLE_OPENSSL_TESTS
static void benchmark_verify_openssl(void* arg) {
int i;
benchmark_verify_t* data = (benchmark_verify_t*)arg;
for (i = 0; i < 20000; i++) {
data->sig[data->siglen - 1] ^= (i & 0xFF);
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
{
EC_KEY *pkey = EC_KEY_new();
const unsigned char *pubkey = &data->pubkey[0];
int result;
CHECK(pkey != NULL);
result = EC_KEY_set_group(pkey, data->ec_group);
CHECK(result);
result = (o2i_ECPublicKey(&pkey, &pubkey, data->pubkeylen)) != NULL;
CHECK(result);
result = ECDSA_verify(0, &data->msg[0], sizeof(data->msg), &data->sig[0], data->siglen, pkey) == (i == 0);
CHECK(result);
EC_KEY_free(pkey);
}
data->sig[data->siglen - 1] ^= (i & 0xFF);
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
}
}
#endif
int main(void) {
int i;
secp256k1_pubkey pubkey;
secp256k1_ecdsa_signature sig;
benchmark_verify_t data;
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
for (i = 0; i < 32; i++) {
data.msg[i] = 1 + i;
}
for (i = 0; i < 32; i++) {
data.key[i] = 33 + i;
}
data.siglen = 72;
CHECK(secp256k1_ecdsa_sign(data.ctx, &sig, data.msg, data.key, NULL, NULL));
CHECK(secp256k1_ecdsa_signature_serialize_der(data.ctx, data.sig, &data.siglen, &sig));
CHECK(secp256k1_ec_pubkey_create(data.ctx, &pubkey, data.key));
data.pubkeylen = 33;
CHECK(secp256k1_ec_pubkey_serialize(data.ctx, data.pubkey, &data.pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED) == 1);
run_benchmark("ecdsa_verify", benchmark_verify, NULL, NULL, &data, 10, 20000);
#ifdef ENABLE_OPENSSL_TESTS
data.ec_group = EC_GROUP_new_by_curve_name(NID_secp256k1);
run_benchmark("ecdsa_verify_openssl", benchmark_verify_openssl, NULL, NULL, &data, 10, 20000);
EC_GROUP_free(data.ec_group);
#endif
secp256k1_context_destroy(data.ctx);
return 0;
}

View File

@ -1,104 +0,0 @@
/**********************************************************************
* Copyright (c) 2017 Jonas Nick *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include <stdio.h>
#include "include/secp256k1.h"
#include "include/secp256k1_whitelist.h"
#include "bench.h"
#include "util.h"
#include "hash_impl.h"
#include "num_impl.h"
#include "scalar_impl.h"
#include "testrand_impl.h"
#define MAX_N_KEYS 30
typedef struct {
secp256k1_context* ctx;
unsigned char online_seckey[MAX_N_KEYS][32];
unsigned char summed_seckey[MAX_N_KEYS][32];
secp256k1_pubkey online_pubkeys[MAX_N_KEYS];
secp256k1_pubkey offline_pubkeys[MAX_N_KEYS];
unsigned char csub[32];
secp256k1_pubkey sub_pubkey;
secp256k1_whitelist_signature sig;
size_t n_keys;
} bench_data;
static void bench_whitelist(void* arg) {
bench_data* data = (bench_data*)arg;
CHECK(secp256k1_whitelist_verify(data->ctx, &data->sig, data->online_pubkeys, data->offline_pubkeys, data->n_keys, &data->sub_pubkey) == 1);
}
static void bench_whitelist_setup(void* arg) {
bench_data* data = (bench_data*)arg;
int i = 0;
CHECK(secp256k1_whitelist_sign(data->ctx, &data->sig, data->online_pubkeys, data->offline_pubkeys, data->n_keys, &data->sub_pubkey, data->online_seckey[i], data->summed_seckey[i], i, NULL, NULL));
}
static void run_test(bench_data* data) {
char str[32];
sprintf(str, "whitelist_%i", (int)data->n_keys);
run_benchmark(str, bench_whitelist, bench_whitelist_setup, NULL, data, 100, 1);
}
void random_scalar_order(secp256k1_scalar *num) {
do {
unsigned char b32[32];
int overflow = 0;
secp256k1_rand256(b32);
secp256k1_scalar_set_b32(num, b32, &overflow);
if (overflow || secp256k1_scalar_is_zero(num)) {
continue;
}
break;
} while(1);
}
int main(void) {
bench_data data;
size_t i;
size_t n_keys = 30;
secp256k1_scalar ssub;
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
/* Start with subkey */
random_scalar_order(&ssub);
secp256k1_scalar_get_b32(data.csub, &ssub);
CHECK(secp256k1_ec_seckey_verify(data.ctx, data.csub) == 1);
CHECK(secp256k1_ec_pubkey_create(data.ctx, &data.sub_pubkey, data.csub) == 1);
/* Then offline and online whitelist keys */
for (i = 0; i < n_keys; i++) {
secp256k1_scalar son, soff;
/* Create two keys */
random_scalar_order(&son);
secp256k1_scalar_get_b32(data.online_seckey[i], &son);
CHECK(secp256k1_ec_seckey_verify(data.ctx, data.online_seckey[i]) == 1);
CHECK(secp256k1_ec_pubkey_create(data.ctx, &data.online_pubkeys[i], data.online_seckey[i]) == 1);
random_scalar_order(&soff);
secp256k1_scalar_get_b32(data.summed_seckey[i], &soff);
CHECK(secp256k1_ec_seckey_verify(data.ctx, data.summed_seckey[i]) == 1);
CHECK(secp256k1_ec_pubkey_create(data.ctx, &data.offline_pubkeys[i], data.summed_seckey[i]) == 1);
/* Make summed_seckey correspond to the sum of offline_pubkey and sub_pubkey */
secp256k1_scalar_add(&soff, &soff, &ssub);
secp256k1_scalar_get_b32(data.summed_seckey[i], &soff);
CHECK(secp256k1_ec_seckey_verify(data.ctx, data.summed_seckey[i]) == 1);
}
/* Run test */
for (i = 1; i <= n_keys; ++i) {
data.n_keys = i;
run_test(&data);
}
secp256k1_context_destroy(data.ctx);
return(0);
}

View File

@ -1,21 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_ECDSA_H
#define SECP256K1_ECDSA_H
#include <stddef.h>
#include "scalar.h"
#include "group.h"
#include "ecmult.h"
static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *r, secp256k1_scalar *s, const unsigned char *sig, size_t size);
static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar *r, const secp256k1_scalar *s);
static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const secp256k1_scalar* r, const secp256k1_scalar* s, const secp256k1_ge *pubkey, const secp256k1_scalar *message);
static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar* r, secp256k1_scalar* s, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid);
#endif /* SECP256K1_ECDSA_H */

View File

@ -1,313 +0,0 @@
/**********************************************************************
* Copyright (c) 2013-2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_ECDSA_IMPL_H
#define SECP256K1_ECDSA_IMPL_H
#include "scalar.h"
#include "field.h"
#include "group.h"
#include "ecmult.h"
#include "ecmult_gen.h"
#include "ecdsa.h"
/** Group order for secp256k1 defined as 'n' in "Standards for Efficient Cryptography" (SEC2) 2.7.1
* sage: for t in xrange(1023, -1, -1):
* .. p = 2**256 - 2**32 - t
* .. if p.is_prime():
* .. print '%x'%p
* .. break
* 'fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f'
* sage: a = 0
* sage: b = 7
* sage: F = FiniteField (p)
* sage: '%x' % (EllipticCurve ([F (a), F (b)]).order())
* 'fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141'
*/
static const secp256k1_fe secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CONST(
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
0xBAAEDCE6UL, 0xAF48A03BUL, 0xBFD25E8CUL, 0xD0364141UL
);
/** Difference between field and order, values 'p' and 'n' values defined in
* "Standards for Efficient Cryptography" (SEC2) 2.7.1.
* sage: p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
* sage: a = 0
* sage: b = 7
* sage: F = FiniteField (p)
* sage: '%x' % (p - EllipticCurve ([F (a), F (b)]).order())
* '14551231950b75fc4402da1722fc9baee'
*/
static const secp256k1_fe secp256k1_ecdsa_const_p_minus_order = SECP256K1_FE_CONST(
0, 0, 0, 1, 0x45512319UL, 0x50B75FC4UL, 0x402DA172UL, 0x2FC9BAEEUL
);
static int secp256k1_der_read_len(const unsigned char **sigp, const unsigned char *sigend) {
int lenleft, b1;
size_t ret = 0;
if (*sigp >= sigend) {
return -1;
}
b1 = *((*sigp)++);
if (b1 == 0xFF) {
/* X.690-0207 8.1.3.5.c the value 0xFF shall not be used. */
return -1;
}
if ((b1 & 0x80) == 0) {
/* X.690-0207 8.1.3.4 short form length octets */
return b1;
}
if (b1 == 0x80) {
/* Indefinite length is not allowed in DER. */
return -1;
}
/* X.690-207 8.1.3.5 long form length octets */
lenleft = b1 & 0x7F;
if (lenleft > sigend - *sigp) {
return -1;
}
if (**sigp == 0) {
/* Not the shortest possible length encoding. */
return -1;
}
if ((size_t)lenleft > sizeof(size_t)) {
/* The resulting length would exceed the range of a size_t, so
* certainly longer than the passed array size.
*/
return -1;
}
while (lenleft > 0) {
ret = (ret << 8) | **sigp;
if (ret + lenleft > (size_t)(sigend - *sigp)) {
/* Result exceeds the length of the passed array. */
return -1;
}
(*sigp)++;
lenleft--;
}
if (ret < 128) {
/* Not the shortest possible length encoding. */
return -1;
}
return ret;
}
static int secp256k1_der_parse_integer(secp256k1_scalar *r, const unsigned char **sig, const unsigned char *sigend) {
int overflow = 0;
unsigned char ra[32] = {0};
int rlen;
if (*sig == sigend || **sig != 0x02) {
/* Not a primitive integer (X.690-0207 8.3.1). */
return 0;
}
(*sig)++;
rlen = secp256k1_der_read_len(sig, sigend);
if (rlen <= 0 || (*sig) + rlen > sigend) {
/* Exceeds bounds or not at least length 1 (X.690-0207 8.3.1). */
return 0;
}
if (**sig == 0x00 && rlen > 1 && (((*sig)[1]) & 0x80) == 0x00) {
/* Excessive 0x00 padding. */
return 0;
}
if (**sig == 0xFF && rlen > 1 && (((*sig)[1]) & 0x80) == 0x80) {
/* Excessive 0xFF padding. */
return 0;
}
if ((**sig & 0x80) == 0x80) {
/* Negative. */
overflow = 1;
}
while (rlen > 0 && **sig == 0) {
/* Skip leading zero bytes */
rlen--;
(*sig)++;
}
if (rlen > 32) {
overflow = 1;
}
if (!overflow) {
memcpy(ra + 32 - rlen, *sig, rlen);
secp256k1_scalar_set_b32(r, ra, &overflow);
}
if (overflow) {
secp256k1_scalar_set_int(r, 0);
}
(*sig) += rlen;
return 1;
}
static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *rr, secp256k1_scalar *rs, const unsigned char *sig, size_t size) {
const unsigned char *sigend = sig + size;
int rlen;
if (sig == sigend || *(sig++) != 0x30) {
/* The encoding doesn't start with a constructed sequence (X.690-0207 8.9.1). */
return 0;
}
rlen = secp256k1_der_read_len(&sig, sigend);
if (rlen < 0 || sig + rlen > sigend) {
/* Tuple exceeds bounds */
return 0;
}
if (sig + rlen != sigend) {
/* Garbage after tuple. */
return 0;
}
if (!secp256k1_der_parse_integer(rr, &sig, sigend)) {
return 0;
}
if (!secp256k1_der_parse_integer(rs, &sig, sigend)) {
return 0;
}
if (sig != sigend) {
/* Trailing garbage inside tuple. */
return 0;
}
return 1;
}
static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar* ar, const secp256k1_scalar* as) {
unsigned char r[33] = {0}, s[33] = {0};
unsigned char *rp = r, *sp = s;
size_t lenR = 33, lenS = 33;
secp256k1_scalar_get_b32(&r[1], ar);
secp256k1_scalar_get_b32(&s[1], as);
while (lenR > 1 && rp[0] == 0 && rp[1] < 0x80) { lenR--; rp++; }
while (lenS > 1 && sp[0] == 0 && sp[1] < 0x80) { lenS--; sp++; }
if (*size < 6+lenS+lenR) {
*size = 6 + lenS + lenR;
return 0;
}
*size = 6 + lenS + lenR;
sig[0] = 0x30;
sig[1] = 4 + lenS + lenR;
sig[2] = 0x02;
sig[3] = lenR;
memcpy(sig+4, rp, lenR);
sig[4+lenR] = 0x02;
sig[5+lenR] = lenS;
memcpy(sig+lenR+6, sp, lenS);
return 1;
}
static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar *sigs, const secp256k1_ge *pubkey, const secp256k1_scalar *message) {
unsigned char c[32];
secp256k1_scalar sn, u1, u2;
#if !defined(EXHAUSTIVE_TEST_ORDER)
secp256k1_fe xr;
#endif
secp256k1_gej pubkeyj;
secp256k1_gej pr;
if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) {
return 0;
}
secp256k1_scalar_inverse_var(&sn, sigs);
secp256k1_scalar_mul(&u1, &sn, message);
secp256k1_scalar_mul(&u2, &sn, sigr);
secp256k1_gej_set_ge(&pubkeyj, pubkey);
secp256k1_ecmult(ctx, &pr, &pubkeyj, &u2, &u1);
if (secp256k1_gej_is_infinity(&pr)) {
return 0;
}
#if defined(EXHAUSTIVE_TEST_ORDER)
{
secp256k1_scalar computed_r;
secp256k1_ge pr_ge;
secp256k1_ge_set_gej(&pr_ge, &pr);
secp256k1_fe_normalize(&pr_ge.x);
secp256k1_fe_get_b32(c, &pr_ge.x);
secp256k1_scalar_set_b32(&computed_r, c, NULL);
return secp256k1_scalar_eq(sigr, &computed_r);
}
#else
secp256k1_scalar_get_b32(c, sigr);
secp256k1_fe_set_b32(&xr, c);
/** We now have the recomputed R point in pr, and its claimed x coordinate (modulo n)
* in xr. Naively, we would extract the x coordinate from pr (requiring a inversion modulo p),
* compute the remainder modulo n, and compare it to xr. However:
*
* xr == X(pr) mod n
* <=> exists h. (xr + h * n < p && xr + h * n == X(pr))
* [Since 2 * n > p, h can only be 0 or 1]
* <=> (xr == X(pr)) || (xr + n < p && xr + n == X(pr))
* [In Jacobian coordinates, X(pr) is pr.x / pr.z^2 mod p]
* <=> (xr == pr.x / pr.z^2 mod p) || (xr + n < p && xr + n == pr.x / pr.z^2 mod p)
* [Multiplying both sides of the equations by pr.z^2 mod p]
* <=> (xr * pr.z^2 mod p == pr.x) || (xr + n < p && (xr + n) * pr.z^2 mod p == pr.x)
*
* Thus, we can avoid the inversion, but we have to check both cases separately.
* secp256k1_gej_eq_x implements the (xr * pr.z^2 mod p == pr.x) test.
*/
if (secp256k1_gej_eq_x_var(&xr, &pr)) {
/* xr * pr.z^2 mod p == pr.x, so the signature is valid. */
return 1;
}
if (secp256k1_fe_cmp_var(&xr, &secp256k1_ecdsa_const_p_minus_order) >= 0) {
/* xr + n >= p, so we can skip testing the second case. */
return 0;
}
secp256k1_fe_add(&xr, &secp256k1_ecdsa_const_order_as_fe);
if (secp256k1_gej_eq_x_var(&xr, &pr)) {
/* (xr + n) * pr.z^2 mod p == pr.x, so the signature is valid. */
return 1;
}
return 0;
#endif
}
static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid) {
unsigned char b[32];
secp256k1_gej rp;
secp256k1_ge r;
secp256k1_scalar n;
int overflow = 0;
secp256k1_ecmult_gen(ctx, &rp, nonce);
secp256k1_ge_set_gej(&r, &rp);
secp256k1_fe_normalize(&r.x);
secp256k1_fe_normalize(&r.y);
secp256k1_fe_get_b32(b, &r.x);
secp256k1_scalar_set_b32(sigr, b, &overflow);
/* These two conditions should be checked before calling */
VERIFY_CHECK(!secp256k1_scalar_is_zero(sigr));
VERIFY_CHECK(overflow == 0);
if (recid) {
/* The overflow condition is cryptographically unreachable as hitting it requires finding the discrete log
* of some P where P.x >= order, and only 1 in about 2^127 points meet this criteria.
*/
*recid = (overflow ? 2 : 0) | (secp256k1_fe_is_odd(&r.y) ? 1 : 0);
}
secp256k1_scalar_mul(&n, sigr, seckey);
secp256k1_scalar_add(&n, &n, message);
secp256k1_scalar_inverse(sigs, nonce);
secp256k1_scalar_mul(sigs, sigs, &n);
secp256k1_scalar_clear(&n);
secp256k1_gej_clear(&rp);
secp256k1_ge_clear(&r);
if (secp256k1_scalar_is_zero(sigs)) {
return 0;
}
if (secp256k1_scalar_is_high(sigs)) {
secp256k1_scalar_negate(sigs, sigs);
if (recid) {
*recid ^= 1;
}
}
return 1;
}
#endif /* SECP256K1_ECDSA_IMPL_H */

View File

@ -1,25 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_ECKEY_H
#define SECP256K1_ECKEY_H
#include <stddef.h>
#include "group.h"
#include "scalar.h"
#include "ecmult.h"
#include "ecmult_gen.h"
static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char *pub, size_t size);
static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *pub, size_t *size, int compressed);
static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar *key, const secp256k1_scalar *tweak);
static int secp256k1_eckey_pubkey_tweak_add(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak);
static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar *key, const secp256k1_scalar *tweak);
static int secp256k1_eckey_pubkey_tweak_mul(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak);
#endif /* SECP256K1_ECKEY_H */

View File

@ -1,100 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_ECKEY_IMPL_H
#define SECP256K1_ECKEY_IMPL_H
#include "eckey.h"
#include "scalar.h"
#include "field.h"
#include "group.h"
#include "ecmult_gen.h"
static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char *pub, size_t size) {
if (size == 33 && (pub[0] == SECP256K1_TAG_PUBKEY_EVEN || pub[0] == SECP256K1_TAG_PUBKEY_ODD)) {
secp256k1_fe x;
return secp256k1_fe_set_b32(&x, pub+1) && secp256k1_ge_set_xo_var(elem, &x, pub[0] == SECP256K1_TAG_PUBKEY_ODD);
} else if (size == 65 && (pub[0] == 0x04 || pub[0] == 0x06 || pub[0] == 0x07)) {
secp256k1_fe x, y;
if (!secp256k1_fe_set_b32(&x, pub+1) || !secp256k1_fe_set_b32(&y, pub+33)) {
return 0;
}
secp256k1_ge_set_xy(elem, &x, &y);
if ((pub[0] == SECP256K1_TAG_PUBKEY_HYBRID_EVEN || pub[0] == SECP256K1_TAG_PUBKEY_HYBRID_ODD) &&
secp256k1_fe_is_odd(&y) != (pub[0] == SECP256K1_TAG_PUBKEY_HYBRID_ODD)) {
return 0;
}
return secp256k1_ge_is_valid_var(elem);
} else {
return 0;
}
}
static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *pub, size_t *size, int compressed) {
if (secp256k1_ge_is_infinity(elem)) {
return 0;
}
secp256k1_fe_normalize_var(&elem->x);
secp256k1_fe_normalize_var(&elem->y);
secp256k1_fe_get_b32(&pub[1], &elem->x);
if (compressed) {
*size = 33;
pub[0] = secp256k1_fe_is_odd(&elem->y) ? SECP256K1_TAG_PUBKEY_ODD : SECP256K1_TAG_PUBKEY_EVEN;
} else {
*size = 65;
pub[0] = SECP256K1_TAG_PUBKEY_UNCOMPRESSED;
secp256k1_fe_get_b32(&pub[33], &elem->y);
}
return 1;
}
static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar *key, const secp256k1_scalar *tweak) {
secp256k1_scalar_add(key, key, tweak);
if (secp256k1_scalar_is_zero(key)) {
return 0;
}
return 1;
}
static int secp256k1_eckey_pubkey_tweak_add(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak) {
secp256k1_gej pt;
secp256k1_scalar one;
secp256k1_gej_set_ge(&pt, key);
secp256k1_scalar_set_int(&one, 1);
secp256k1_ecmult(ctx, &pt, &pt, &one, tweak);
if (secp256k1_gej_is_infinity(&pt)) {
return 0;
}
secp256k1_ge_set_gej(key, &pt);
return 1;
}
static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar *key, const secp256k1_scalar *tweak) {
if (secp256k1_scalar_is_zero(tweak)) {
return 0;
}
secp256k1_scalar_mul(key, key, tweak);
return 1;
}
static int secp256k1_eckey_pubkey_tweak_mul(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak) {
secp256k1_scalar zero;
secp256k1_gej pt;
if (secp256k1_scalar_is_zero(tweak)) {
return 0;
}
secp256k1_scalar_set_int(&zero, 0);
secp256k1_gej_set_ge(&pt, key);
secp256k1_ecmult(ctx, &pt, &pt, tweak, &zero);
secp256k1_ge_set_gej(key, &pt);
return 1;
}
#endif /* SECP256K1_ECKEY_IMPL_H */

View File

@ -1,47 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014, 2017 Pieter Wuille, Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_ECMULT_H
#define SECP256K1_ECMULT_H
#include "num.h"
#include "group.h"
#include "scalar.h"
#include "scratch.h"
typedef struct {
/* For accelerating the computation of a*P + b*G: */
secp256k1_ge_storage (*pre_g)[]; /* odd multiples of the generator */
#ifdef USE_ENDOMORPHISM
secp256k1_ge_storage (*pre_g_128)[]; /* odd multiples of 2^128*generator */
#endif
} secp256k1_ecmult_context;
static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx);
static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const secp256k1_callback *cb);
static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context *dst,
const secp256k1_ecmult_context *src, const secp256k1_callback *cb);
static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx);
static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx);
/** Double multiply: R = na*A + ng*G */
static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng);
typedef int (secp256k1_ecmult_multi_callback)(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data);
/**
* Multi-multiply: R = inp_g_sc * G + sum_i ni * Ai.
* Chooses the right algorithm for a given number of points and scratch space
* size. Resets and overwrites the given scratch space. If the points do not
* fit in the scratch space the algorithm is repeatedly run with batches of
* points.
* Returns: 1 on success (including when inp_g_sc is NULL and n is 0)
* 0 if there is not enough scratch space for a single point or
* callback returns 0
*/
static int secp256k1_ecmult_multi_var(const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n);
#endif /* SECP256K1_ECMULT_H */

View File

@ -1,17 +0,0 @@
/**********************************************************************
* Copyright (c) 2015 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_ECMULT_CONST_H
#define SECP256K1_ECMULT_CONST_H
#include "scalar.h"
#include "group.h"
/* Here `bits` should be set to the maximum bitlength of the _absolute value_ of `q`, plus
* one because we internally sometimes add 2 to the number during the WNAF conversion. */
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q, int bits);
#endif /* SECP256K1_ECMULT_CONST_H */

View File

@ -1,257 +0,0 @@
/**********************************************************************
* Copyright (c) 2015 Pieter Wuille, Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_ECMULT_CONST_IMPL_H
#define SECP256K1_ECMULT_CONST_IMPL_H
#include "scalar.h"
#include "group.h"
#include "ecmult_const.h"
#include "ecmult_impl.h"
/* This is like `ECMULT_TABLE_GET_GE` but is constant time */
#define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \
int m; \
int abs_n = (n) * (((n) > 0) * 2 - 1); \
int idx_n = abs_n / 2; \
secp256k1_fe neg_y; \
VERIFY_CHECK(((n) & 1) == 1); \
VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
VERIFY_SETUP(secp256k1_fe_clear(&(r)->x)); \
VERIFY_SETUP(secp256k1_fe_clear(&(r)->y)); \
for (m = 0; m < ECMULT_TABLE_SIZE(w); m++) { \
/* This loop is used to avoid secret data in array indices. See
* the comment in ecmult_gen_impl.h for rationale. */ \
secp256k1_fe_cmov(&(r)->x, &(pre)[m].x, m == idx_n); \
secp256k1_fe_cmov(&(r)->y, &(pre)[m].y, m == idx_n); \
} \
(r)->infinity = 0; \
secp256k1_fe_negate(&neg_y, &(r)->y, 1); \
secp256k1_fe_cmov(&(r)->y, &neg_y, (n) != abs_n); \
} while(0)
/** Convert a number to WNAF notation.
* The number becomes represented by sum(2^{wi} * wnaf[i], i=0..WNAF_SIZE(w)+1) - return_val.
* It has the following guarantees:
* - each wnaf[i] an odd integer between -(1 << w) and (1 << w)
* - each wnaf[i] is nonzero
* - the number of words set is always WNAF_SIZE(w) + 1
*
* Adapted from `The Width-w NAF Method Provides Small Memory and Fast Elliptic Scalar
* Multiplications Secure against Side Channel Attacks`, Okeya and Tagaki. M. Joye (Ed.)
* CT-RSA 2003, LNCS 2612, pp. 328-443, 2003. Springer-Verlagy Berlin Heidelberg 2003
*
* Numbers reference steps of `Algorithm SPA-resistant Width-w NAF with Odd Scalar` on pp. 335
*/
static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w, int size) {
int global_sign;
int skew = 0;
int word = 0;
/* 1 2 3 */
int u_last;
int u;
int flip;
int bit;
secp256k1_scalar neg_s;
int not_neg_one;
/* Note that we cannot handle even numbers by negating them to be odd, as is
* done in other implementations, since if our scalars were specified to have
* width < 256 for performance reasons, their negations would have width 256
* and we'd lose any performance benefit. Instead, we use a technique from
* Section 4.2 of the Okeya/Tagaki paper, which is to add either 1 (for even)
* or 2 (for odd) to the number we are encoding, returning a skew value indicating
* this, and having the caller compensate after doing the multiplication.
*
* In fact, we _do_ want to negate numbers to minimize their bit-lengths (and in
* particular, to ensure that the outputs from the endomorphism-split fit into
* 128 bits). If we negate, the parity of our number flips, inverting which of
* {1, 2} we want to add to the scalar when ensuring that it's odd. Further
* complicating things, -1 interacts badly with `secp256k1_scalar_cadd_bit` and
* we need to special-case it in this logic. */
flip = secp256k1_scalar_is_high(&s);
/* We add 1 to even numbers, 2 to odd ones, noting that negation flips parity */
bit = flip ^ !secp256k1_scalar_is_even(&s);
/* We check for negative one, since adding 2 to it will cause an overflow */
secp256k1_scalar_negate(&neg_s, &s);
not_neg_one = !secp256k1_scalar_is_one(&neg_s);
secp256k1_scalar_cadd_bit(&s, bit, not_neg_one);
/* If we had negative one, flip == 1, s.d[0] == 0, bit == 1, so caller expects
* that we added two to it and flipped it. In fact for -1 these operations are
* identical. We only flipped, but since skewing is required (in the sense that
* the skew must be 1 or 2, never zero) and flipping is not, we need to change
* our flags to claim that we only skewed. */
global_sign = secp256k1_scalar_cond_negate(&s, flip);
global_sign *= not_neg_one * 2 - 1;
skew = 1 << bit;
/* 4 */
u_last = secp256k1_scalar_shr_int(&s, w);
while (word * w < size) {
int sign;
int even;
/* 4.1 4.4 */
u = secp256k1_scalar_shr_int(&s, w);
/* 4.2 */
even = ((u & 1) == 0);
sign = 2 * (u_last > 0) - 1;
u += sign * even;
u_last -= sign * even * (1 << w);
/* 4.3, adapted for global sign change */
wnaf[word++] = u_last * global_sign;
u_last = u;
}
wnaf[word] = u * global_sign;
VERIFY_CHECK(secp256k1_scalar_is_zero(&s));
VERIFY_CHECK(word == WNAF_SIZE_BITS(size, w));
return skew;
}
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *scalar, int size) {
secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
secp256k1_ge tmpa;
secp256k1_fe Z;
int skew_1;
#ifdef USE_ENDOMORPHISM
secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
int wnaf_lam[1 + WNAF_SIZE(WINDOW_A - 1)];
int skew_lam;
secp256k1_scalar q_1, q_lam;
#endif
int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)];
int i;
secp256k1_scalar sc = *scalar;
/* build wnaf representation for q. */
int rsize = size;
#ifdef USE_ENDOMORPHISM
if (size > 128) {
rsize = 128;
/* split q into q_1 and q_lam (where q = q_1 + q_lam*lambda, and q_1 and q_lam are ~128 bit) */
secp256k1_scalar_split_lambda(&q_1, &q_lam, &sc);
skew_1 = secp256k1_wnaf_const(wnaf_1, q_1, WINDOW_A - 1, 128);
skew_lam = secp256k1_wnaf_const(wnaf_lam, q_lam, WINDOW_A - 1, 128);
} else
#endif
{
skew_1 = secp256k1_wnaf_const(wnaf_1, sc, WINDOW_A - 1, size);
#ifdef USE_ENDOMORPHISM
skew_lam = 0;
#endif
}
/* Calculate odd multiples of a.
* All multiples are brought to the same Z 'denominator', which is stored
* in Z. Due to secp256k1' isomorphism we can do all operations pretending
* that the Z coordinate was 1, use affine addition formulae, and correct
* the Z coordinate of the result once at the end.
*/
secp256k1_gej_set_ge(r, a);
secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, r);
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
secp256k1_fe_normalize_weak(&pre_a[i].y);
}
#ifdef USE_ENDOMORPHISM
if (size > 128) {
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
}
}
#endif
/* first loop iteration (separated out so we can directly set r, rather
* than having it start at infinity, get doubled several times, then have
* its new value added to it) */
i = wnaf_1[WNAF_SIZE_BITS(rsize, WINDOW_A - 1)];
VERIFY_CHECK(i != 0);
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A);
secp256k1_gej_set_ge(r, &tmpa);
#ifdef USE_ENDOMORPHISM
if (size > 128) {
i = wnaf_lam[WNAF_SIZE_BITS(rsize, WINDOW_A - 1)];
VERIFY_CHECK(i != 0);
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, i, WINDOW_A);
secp256k1_gej_add_ge(r, r, &tmpa);
}
#endif
/* remaining loop iterations */
for (i = WNAF_SIZE_BITS(rsize, WINDOW_A - 1) - 1; i >= 0; i--) {
int n;
int j;
for (j = 0; j < WINDOW_A - 1; ++j) {
secp256k1_gej_double_nonzero(r, r, NULL);
}
n = wnaf_1[i];
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
VERIFY_CHECK(n != 0);
secp256k1_gej_add_ge(r, r, &tmpa);
#ifdef USE_ENDOMORPHISM
if (size > 128) {
n = wnaf_lam[i];
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
VERIFY_CHECK(n != 0);
secp256k1_gej_add_ge(r, r, &tmpa);
}
#endif
}
secp256k1_fe_mul(&r->z, &r->z, &Z);
{
/* Correct for wNAF skew */
secp256k1_ge correction = *a;
secp256k1_ge_storage correction_1_stor;
#ifdef USE_ENDOMORPHISM
secp256k1_ge_storage correction_lam_stor;
#endif
secp256k1_ge_storage a2_stor;
secp256k1_gej tmpj;
secp256k1_gej_set_ge(&tmpj, &correction);
secp256k1_gej_double_var(&tmpj, &tmpj, NULL);
secp256k1_ge_set_gej(&correction, &tmpj);
secp256k1_ge_to_storage(&correction_1_stor, a);
#ifdef USE_ENDOMORPHISM
if (size > 128) {
secp256k1_ge_to_storage(&correction_lam_stor, a);
}
#endif
secp256k1_ge_to_storage(&a2_stor, &correction);
/* For odd numbers this is 2a (so replace it), for even ones a (so no-op) */
secp256k1_ge_storage_cmov(&correction_1_stor, &a2_stor, skew_1 == 2);
#ifdef USE_ENDOMORPHISM
if (size > 128) {
secp256k1_ge_storage_cmov(&correction_lam_stor, &a2_stor, skew_lam == 2);
}
#endif
/* Apply the correction */
secp256k1_ge_from_storage(&correction, &correction_1_stor);
secp256k1_ge_neg(&correction, &correction);
secp256k1_gej_add_ge(r, r, &correction);
#ifdef USE_ENDOMORPHISM
if (size > 128) {
secp256k1_ge_from_storage(&correction, &correction_lam_stor);
secp256k1_ge_neg(&correction, &correction);
secp256k1_ge_mul_lambda(&correction, &correction);
secp256k1_gej_add_ge(r, r, &correction);
}
#endif
}
}
#endif /* SECP256K1_ECMULT_CONST_IMPL_H */

View File

@ -1,43 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_ECMULT_GEN_H
#define SECP256K1_ECMULT_GEN_H
#include "scalar.h"
#include "group.h"
typedef struct {
/* For accelerating the computation of a*G:
* To harden against timing attacks, use the following mechanism:
* * Break up the multiplicand into groups of 4 bits, called n_0, n_1, n_2, ..., n_63.
* * Compute sum(n_i * 16^i * G + U_i, i=0..63), where:
* * U_i = U * 2^i (for i=0..62)
* * U_i = U * (1-2^63) (for i=63)
* where U is a point with no known corresponding scalar. Note that sum(U_i, i=0..63) = 0.
* For each i, and each of the 16 possible values of n_i, (n_i * 16^i * G + U_i) is
* precomputed (call it prec(i, n_i)). The formula now becomes sum(prec(i, n_i), i=0..63).
* None of the resulting prec group elements have a known scalar, and neither do any of
* the intermediate sums while computing a*G.
*/
secp256k1_ge_storage (*prec)[64][16]; /* prec[j][i] = 16^j * i * G + U_i */
secp256k1_scalar blind;
secp256k1_gej initial;
} secp256k1_ecmult_gen_context;
static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context* ctx);
static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context* ctx, const secp256k1_callback* cb);
static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst,
const secp256k1_ecmult_gen_context* src, const secp256k1_callback* cb);
static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context* ctx);
static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx);
/** Multiply with the generator: R = a*G */
static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context* ctx, secp256k1_gej *r, const secp256k1_scalar *a);
static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32);
#endif /* SECP256K1_ECMULT_GEN_H */

View File

@ -1,210 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_ECMULT_GEN_IMPL_H
#define SECP256K1_ECMULT_GEN_IMPL_H
#include "scalar.h"
#include "group.h"
#include "ecmult_gen.h"
#include "hash_impl.h"
#ifdef USE_ECMULT_STATIC_PRECOMPUTATION
#include "ecmult_static_context.h"
#endif
static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context *ctx) {
ctx->prec = NULL;
}
static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx, const secp256k1_callback* cb) {
#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
secp256k1_ge prec[1024];
secp256k1_gej gj;
secp256k1_gej nums_gej;
int i, j;
#endif
if (ctx->prec != NULL) {
return;
}
#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
ctx->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*ctx->prec));
/* get the generator */
secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g);
/* Construct a group element with no known corresponding scalar (nothing up my sleeve). */
{
static const unsigned char nums_b32[33] = "The scalar for this x is unknown";
secp256k1_fe nums_x;
secp256k1_ge nums_ge;
int r;
r = secp256k1_fe_set_b32(&nums_x, nums_b32);
(void)r;
VERIFY_CHECK(r);
r = secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0);
(void)r;
VERIFY_CHECK(r);
secp256k1_gej_set_ge(&nums_gej, &nums_ge);
/* Add G to make the bits in x uniformly distributed. */
secp256k1_gej_add_ge_var(&nums_gej, &nums_gej, &secp256k1_ge_const_g, NULL);
}
/* compute prec. */
{
secp256k1_gej precj[1024]; /* Jacobian versions of prec. */
secp256k1_gej gbase;
secp256k1_gej numsbase;
gbase = gj; /* 16^j * G */
numsbase = nums_gej; /* 2^j * nums. */
for (j = 0; j < 64; j++) {
/* Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase). */
precj[j*16] = numsbase;
for (i = 1; i < 16; i++) {
secp256k1_gej_add_var(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase, NULL);
}
/* Multiply gbase by 16. */
for (i = 0; i < 4; i++) {
secp256k1_gej_double_var(&gbase, &gbase, NULL);
}
/* Multiply numbase by 2. */
secp256k1_gej_double_var(&numsbase, &numsbase, NULL);
if (j == 62) {
/* In the last iteration, numsbase is (1 - 2^j) * nums instead. */
secp256k1_gej_neg(&numsbase, &numsbase);
secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej, NULL);
}
}
secp256k1_ge_set_all_gej_var(prec, precj, 1024, cb);
}
for (j = 0; j < 64; j++) {
for (i = 0; i < 16; i++) {
secp256k1_ge_to_storage(&(*ctx->prec)[j][i], &prec[j*16 + i]);
}
}
#else
(void)cb;
ctx->prec = (secp256k1_ge_storage (*)[64][16])secp256k1_ecmult_static_context;
#endif
secp256k1_ecmult_gen_blind(ctx, NULL);
}
static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx) {
return ctx->prec != NULL;
}
static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst,
const secp256k1_ecmult_gen_context *src, const secp256k1_callback* cb) {
if (src->prec == NULL) {
dst->prec = NULL;
} else {
#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
dst->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*dst->prec));
memcpy(dst->prec, src->prec, sizeof(*dst->prec));
#else
(void)cb;
dst->prec = src->prec;
#endif
dst->initial = src->initial;
dst->blind = src->blind;
}
}
static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context *ctx) {
#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
free(ctx->prec);
#endif
secp256k1_scalar_clear(&ctx->blind);
secp256k1_gej_clear(&ctx->initial);
ctx->prec = NULL;
}
static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *gn) {
secp256k1_ge add;
secp256k1_ge_storage adds;
secp256k1_scalar gnb;
int bits;
int i, j;
memset(&adds, 0, sizeof(adds));
*r = ctx->initial;
/* Blind scalar/point multiplication by computing (n-b)G + bG instead of nG. */
secp256k1_scalar_add(&gnb, gn, &ctx->blind);
add.infinity = 0;
for (j = 0; j < 64; j++) {
bits = secp256k1_scalar_get_bits(&gnb, j * 4, 4);
for (i = 0; i < 16; i++) {
/** This uses a conditional move to avoid any secret data in array indexes.
* _Any_ use of secret indexes has been demonstrated to result in timing
* sidechannels, even when the cache-line access patterns are uniform.
* See also:
* "A word of warning", CHES 2013 Rump Session, by Daniel J. Bernstein and Peter Schwabe
* (https://cryptojedi.org/peter/data/chesrump-20130822.pdf) and
* "Cache Attacks and Countermeasures: the Case of AES", RSA 2006,
* by Dag Arne Osvik, Adi Shamir, and Eran Tromer
* (http://www.tau.ac.il/~tromer/papers/cache.pdf)
*/
secp256k1_ge_storage_cmov(&adds, &(*ctx->prec)[j][i], i == bits);
}
secp256k1_ge_from_storage(&add, &adds);
secp256k1_gej_add_ge(r, r, &add);
}
bits = 0;
secp256k1_ge_clear(&add);
secp256k1_scalar_clear(&gnb);
}
/* Setup blinding values for secp256k1_ecmult_gen. */
static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32) {
secp256k1_scalar b;
secp256k1_gej gb;
secp256k1_fe s;
unsigned char nonce32[32];
secp256k1_rfc6979_hmac_sha256 rng;
int retry;
unsigned char keydata[64] = {0};
if (seed32 == NULL) {
/* When seed is NULL, reset the initial point and blinding value. */
secp256k1_gej_set_ge(&ctx->initial, &secp256k1_ge_const_g);
secp256k1_gej_neg(&ctx->initial, &ctx->initial);
secp256k1_scalar_set_int(&ctx->blind, 1);
}
/* The prior blinding value (if not reset) is chained forward by including it in the hash. */
secp256k1_scalar_get_b32(nonce32, &ctx->blind);
/** Using a CSPRNG allows a failure free interface, avoids needing large amounts of random data,
* and guards against weak or adversarial seeds. This is a simpler and safer interface than
* asking the caller for blinding values directly and expecting them to retry on failure.
*/
memcpy(keydata, nonce32, 32);
if (seed32 != NULL) {
memcpy(keydata + 32, seed32, 32);
}
secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, seed32 ? 64 : 32);
memset(keydata, 0, sizeof(keydata));
/* Retry for out of range results to achieve uniformity. */
do {
secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
retry = !secp256k1_fe_set_b32(&s, nonce32);
retry |= secp256k1_fe_is_zero(&s);
} while (retry); /* This branch true is cryptographically unreachable. Requires sha256_hmac output > Fp. */
/* Randomize the projection to defend against multiplier sidechannels. */
secp256k1_gej_rescale(&ctx->initial, &s);
secp256k1_fe_clear(&s);
do {
secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
secp256k1_scalar_set_b32(&b, nonce32, &retry);
/* A blinding value of 0 works, but would undermine the projection hardening. */
retry |= secp256k1_scalar_is_zero(&b);
} while (retry); /* This branch true is cryptographically unreachable. Requires sha256_hmac output > order. */
secp256k1_rfc6979_hmac_sha256_finalize(&rng);
memset(nonce32, 0, 32);
secp256k1_ecmult_gen(ctx, &gb, &b);
secp256k1_scalar_negate(&b, &b);
ctx->blind = b;
ctx->initial = gb;
secp256k1_scalar_clear(&b);
secp256k1_gej_clear(&gb);
}
#endif /* SECP256K1_ECMULT_GEN_IMPL_H */

View File

@ -1,132 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_FIELD_H
#define SECP256K1_FIELD_H
/** Field element module.
*
* Field elements can be represented in several ways, but code accessing
* it (and implementations) need to take certain properties into account:
* - Each field element can be normalized or not.
* - Each field element has a magnitude, which represents how far away
* its representation is away from normalization. Normalized elements
* always have a magnitude of 1, but a magnitude of 1 doesn't imply
* normality.
*/
#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif
#if defined(USE_FIELD_10X26)
#include "field_10x26.h"
#elif defined(USE_FIELD_5X52)
#include "field_5x52.h"
#else
#error "Please select field implementation"
#endif
#include "util.h"
/** Normalize a field element. */
static void secp256k1_fe_normalize(secp256k1_fe *r);
/** Weakly normalize a field element: reduce it magnitude to 1, but don't fully normalize. */
static void secp256k1_fe_normalize_weak(secp256k1_fe *r);
/** Normalize a field element, without constant-time guarantee. */
static void secp256k1_fe_normalize_var(secp256k1_fe *r);
/** Verify whether a field element represents zero i.e. would normalize to a zero value. The field
* implementation may optionally normalize the input, but this should not be relied upon. */
static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r);
/** Verify whether a field element represents zero i.e. would normalize to a zero value. The field
* implementation may optionally normalize the input, but this should not be relied upon. */
static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r);
/** Set a field element equal to a small integer. Resulting field element is normalized. */
static void secp256k1_fe_set_int(secp256k1_fe *r, int a);
/** Sets a field element equal to zero, initializing all fields. */
static void secp256k1_fe_clear(secp256k1_fe *a);
/** Verify whether a field element is zero. Requires the input to be normalized. */
static int secp256k1_fe_is_zero(const secp256k1_fe *a);
/** Check the "oddness" of a field element. Requires the input to be normalized. */
static int secp256k1_fe_is_odd(const secp256k1_fe *a);
/** Compare two field elements. Requires magnitude-1 inputs. */
static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b);
/** Same as secp256k1_fe_equal, but may be variable time. */
static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b);
/** Compare two field elements. Requires both inputs to be normalized */
static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b);
/** Set a field element equal to 32-byte big endian value. If successful, the resulting field element is normalized. */
static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a);
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a);
/** Set a field element equal to the additive inverse of another. Takes a maximum magnitude of the input
* as an argument. The magnitude of the output is one higher. */
static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m);
/** Multiplies the passed field element with a small integer constant. Multiplies the magnitude by that
* small integer. */
static void secp256k1_fe_mul_int(secp256k1_fe *r, int a);
/** Adds a field element to another. The result has the sum of the inputs' magnitudes as magnitude. */
static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a);
/** Sets a field element to be the product of two others. Requires the inputs' magnitudes to be at most 8.
* The output magnitude is 1 (but not guaranteed to be normalized). */
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b);
/** Sets a field element to be the square of another. Requires the input's magnitude to be at most 8.
* The output magnitude is 1 (but not guaranteed to be normalized). */
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a);
/** If a has a square root, it is computed in r and 1 is returned. If a does not
* have a square root, the root of its negation is computed and 0 is returned.
* The input's magnitude can be at most 8. The output magnitude is 1 (but not
* guaranteed to be normalized). The result in r will always be a square
* itself. */
static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a);
/** Checks whether a field element is a quadratic residue. */
static int secp256k1_fe_is_quad_var(const secp256k1_fe *a);
/** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be
* at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a);
/** Potentially faster version of secp256k1_fe_inv, without constant-time guarantee. */
static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a);
/** Calculate the (modular) inverses of a batch of field elements. Requires the inputs' magnitudes to be
* at most 8. The output magnitudes are 1 (but not guaranteed to be normalized). The inputs and
* outputs must not overlap in memory. */
static void secp256k1_fe_inv_all_var(secp256k1_fe *r, const secp256k1_fe *a, size_t len);
/** Convert a field element to the storage type. */
static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a);
/** Convert a field element back from the storage type. */
static void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a);
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */
static void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag);
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */
static void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag);
#endif /* SECP256K1_FIELD_H */

View File

@ -1,48 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_FIELD_REPR_H
#define SECP256K1_FIELD_REPR_H
#include <stdint.h>
typedef struct {
/* X = sum(i=0..9, elem[i]*2^26) mod n */
uint32_t n[10];
#ifdef VERIFY
int magnitude;
int normalized;
#endif
} secp256k1_fe;
/* Unpacks a constant into a overlapping multi-limbed FE element. */
#define SECP256K1_FE_CONST_INNER(d7, d6, d5, d4, d3, d2, d1, d0) { \
(d0) & 0x3FFFFFFUL, \
(((uint32_t)d0) >> 26) | (((uint32_t)(d1) & 0xFFFFFUL) << 6), \
(((uint32_t)d1) >> 20) | (((uint32_t)(d2) & 0x3FFFUL) << 12), \
(((uint32_t)d2) >> 14) | (((uint32_t)(d3) & 0xFFUL) << 18), \
(((uint32_t)d3) >> 8) | (((uint32_t)(d4) & 0x3UL) << 24), \
(((uint32_t)d4) >> 2) & 0x3FFFFFFUL, \
(((uint32_t)d4) >> 28) | (((uint32_t)(d5) & 0x3FFFFFUL) << 4), \
(((uint32_t)d5) >> 22) | (((uint32_t)(d6) & 0xFFFFUL) << 10), \
(((uint32_t)d6) >> 16) | (((uint32_t)(d7) & 0x3FFUL) << 16), \
(((uint32_t)d7) >> 10) \
}
#ifdef VERIFY
#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0)), 1, 1}
#else
#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0))}
#endif
typedef struct {
uint32_t n[8];
} secp256k1_fe_storage;
#define SECP256K1_FE_STORAGE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{ (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }}
#define SECP256K1_FE_STORAGE_CONST_GET(d) d.n[7], d.n[6], d.n[5], d.n[4],d.n[3], d.n[2], d.n[1], d.n[0]
#endif /* SECP256K1_FIELD_REPR_H */

View File

@ -1,47 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_FIELD_REPR_H
#define SECP256K1_FIELD_REPR_H
#include <stdint.h>
typedef struct {
/* X = sum(i=0..4, elem[i]*2^52) mod n */
uint64_t n[5];
#ifdef VERIFY
int magnitude;
int normalized;
#endif
} secp256k1_fe;
/* Unpacks a constant into a overlapping multi-limbed FE element. */
#define SECP256K1_FE_CONST_INNER(d7, d6, d5, d4, d3, d2, d1, d0) { \
(d0) | (((uint64_t)(d1) & 0xFFFFFUL) << 32), \
((uint64_t)(d1) >> 20) | (((uint64_t)(d2)) << 12) | (((uint64_t)(d3) & 0xFFUL) << 44), \
((uint64_t)(d3) >> 8) | (((uint64_t)(d4) & 0xFFFFFFFUL) << 24), \
((uint64_t)(d4) >> 28) | (((uint64_t)(d5)) << 4) | (((uint64_t)(d6) & 0xFFFFUL) << 36), \
((uint64_t)(d6) >> 16) | (((uint64_t)(d7)) << 16) \
}
#ifdef VERIFY
#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0)), 1, 1}
#else
#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0))}
#endif
typedef struct {
uint64_t n[4];
} secp256k1_fe_storage;
#define SECP256K1_FE_STORAGE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{ \
(d0) | (((uint64_t)(d1)) << 32), \
(d2) | (((uint64_t)(d3)) << 32), \
(d4) | (((uint64_t)(d5)) << 32), \
(d6) | (((uint64_t)(d7)) << 32) \
}}
#endif /* SECP256K1_FIELD_REPR_H */

View File

@ -1,502 +0,0 @@
/**********************************************************************
* Copyright (c) 2013-2014 Diederik Huys, Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
/**
* Changelog:
* - March 2013, Diederik Huys: original version
* - November 2014, Pieter Wuille: updated to use Peter Dettman's parallel multiplication algorithm
* - December 2014, Pieter Wuille: converted from YASM to GCC inline assembly
*/
#ifndef SECP256K1_FIELD_INNER5X52_IMPL_H
#define SECP256K1_FIELD_INNER5X52_IMPL_H
SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint64_t *r, const uint64_t *a, const uint64_t * SECP256K1_RESTRICT b) {
/**
* Registers: rdx:rax = multiplication accumulator
* r9:r8 = c
* r15:rcx = d
* r10-r14 = a0-a4
* rbx = b
* rdi = r
* rsi = a / t?
*/
uint64_t tmp1, tmp2, tmp3;
__asm__ __volatile__(
"movq 0(%%rsi),%%r10\n"
"movq 8(%%rsi),%%r11\n"
"movq 16(%%rsi),%%r12\n"
"movq 24(%%rsi),%%r13\n"
"movq 32(%%rsi),%%r14\n"
/* d += a3 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r13\n"
"movq %%rax,%%rcx\n"
"movq %%rdx,%%r15\n"
/* d += a2 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a1 * b2 */
"movq 16(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d = a0 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r10\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* c = a4 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r14\n"
"movq %%rax,%%r8\n"
"movq %%rdx,%%r9\n"
/* d += (c & M) * R */
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* c >>= 52 (%%r8 only) */
"shrdq $52,%%r9,%%r8\n"
/* t3 (tmp1) = d & M */
"movq %%rcx,%%rsi\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rsi\n"
"movq %%rsi,%q1\n"
/* d >>= 52 */
"shrdq $52,%%r15,%%rcx\n"
"xorq %%r15,%%r15\n"
/* d += a4 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a3 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a2 * b2 */
"movq 16(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a1 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a0 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r10\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += c * R */
"movq %%r8,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* t4 = d & M (%%rsi) */
"movq %%rcx,%%rsi\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rsi\n"
/* d >>= 52 */
"shrdq $52,%%r15,%%rcx\n"
"xorq %%r15,%%r15\n"
/* tx = t4 >> 48 (tmp3) */
"movq %%rsi,%%rax\n"
"shrq $48,%%rax\n"
"movq %%rax,%q3\n"
/* t4 &= (M >> 4) (tmp2) */
"movq $0xffffffffffff,%%rax\n"
"andq %%rax,%%rsi\n"
"movq %%rsi,%q2\n"
/* c = a0 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r10\n"
"movq %%rax,%%r8\n"
"movq %%rdx,%%r9\n"
/* d += a4 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a3 * b2 */
"movq 16(%%rbx),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a2 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a1 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* u0 = d & M (%%rsi) */
"movq %%rcx,%%rsi\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rsi\n"
/* d >>= 52 */
"shrdq $52,%%r15,%%rcx\n"
"xorq %%r15,%%r15\n"
/* u0 = (u0 << 4) | tx (%%rsi) */
"shlq $4,%%rsi\n"
"movq %q3,%%rax\n"
"orq %%rax,%%rsi\n"
/* c += u0 * (R >> 4) */
"movq $0x1000003d1,%%rax\n"
"mulq %%rsi\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* r[0] = c & M */
"movq %%r8,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq %%rax,0(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += a1 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* c += a0 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r10\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d += a4 * b2 */
"movq 16(%%rbx),%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a3 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a2 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* c += (d & M) * R */
"movq %%rcx,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d >>= 52 */
"shrdq $52,%%r15,%%rcx\n"
"xorq %%r15,%%r15\n"
/* r[1] = c & M */
"movq %%r8,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq %%rax,8(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += a2 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* c += a1 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* c += a0 * b2 (last use of %%r10 = a0) */
"movq 16(%%rbx),%%rax\n"
"mulq %%r10\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* fetch t3 (%%r10, overwrites a0), t4 (%%rsi) */
"movq %q2,%%rsi\n"
"movq %q1,%%r10\n"
/* d += a4 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a3 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* c += (d & M) * R */
"movq %%rcx,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d >>= 52 (%%rcx only) */
"shrdq $52,%%r15,%%rcx\n"
/* r[2] = c & M */
"movq %%r8,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq %%rax,16(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += t3 */
"addq %%r10,%%r8\n"
/* c += d * R */
"movq %%rcx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* r[3] = c & M */
"movq %%r8,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq %%rax,24(%%rdi)\n"
/* c >>= 52 (%%r8 only) */
"shrdq $52,%%r9,%%r8\n"
/* c += t4 (%%r8 only) */
"addq %%rsi,%%r8\n"
/* r[4] = c */
"movq %%r8,32(%%rdi)\n"
: "+S"(a), "=m"(tmp1), "=m"(tmp2), "=m"(tmp3)
: "b"(b), "D"(r)
: "%rax", "%rcx", "%rdx", "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", "cc", "memory"
);
}
SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint64_t *r, const uint64_t *a) {
/**
* Registers: rdx:rax = multiplication accumulator
* r9:r8 = c
* rcx:rbx = d
* r10-r14 = a0-a4
* r15 = M (0xfffffffffffff)
* rdi = r
* rsi = a / t?
*/
uint64_t tmp1, tmp2, tmp3;
__asm__ __volatile__(
"movq 0(%%rsi),%%r10\n"
"movq 8(%%rsi),%%r11\n"
"movq 16(%%rsi),%%r12\n"
"movq 24(%%rsi),%%r13\n"
"movq 32(%%rsi),%%r14\n"
"movq $0xfffffffffffff,%%r15\n"
/* d = (a0*2) * a3 */
"leaq (%%r10,%%r10,1),%%rax\n"
"mulq %%r13\n"
"movq %%rax,%%rbx\n"
"movq %%rdx,%%rcx\n"
/* d += (a1*2) * a2 */
"leaq (%%r11,%%r11,1),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* c = a4 * a4 */
"movq %%r14,%%rax\n"
"mulq %%r14\n"
"movq %%rax,%%r8\n"
"movq %%rdx,%%r9\n"
/* d += (c & M) * R */
"andq %%r15,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* c >>= 52 (%%r8 only) */
"shrdq $52,%%r9,%%r8\n"
/* t3 (tmp1) = d & M */
"movq %%rbx,%%rsi\n"
"andq %%r15,%%rsi\n"
"movq %%rsi,%q1\n"
/* d >>= 52 */
"shrdq $52,%%rcx,%%rbx\n"
"xorq %%rcx,%%rcx\n"
/* a4 *= 2 */
"addq %%r14,%%r14\n"
/* d += a0 * a4 */
"movq %%r10,%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d+= (a1*2) * a3 */
"leaq (%%r11,%%r11,1),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d += a2 * a2 */
"movq %%r12,%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d += c * R */
"movq %%r8,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* t4 = d & M (%%rsi) */
"movq %%rbx,%%rsi\n"
"andq %%r15,%%rsi\n"
/* d >>= 52 */
"shrdq $52,%%rcx,%%rbx\n"
"xorq %%rcx,%%rcx\n"
/* tx = t4 >> 48 (tmp3) */
"movq %%rsi,%%rax\n"
"shrq $48,%%rax\n"
"movq %%rax,%q3\n"
/* t4 &= (M >> 4) (tmp2) */
"movq $0xffffffffffff,%%rax\n"
"andq %%rax,%%rsi\n"
"movq %%rsi,%q2\n"
/* c = a0 * a0 */
"movq %%r10,%%rax\n"
"mulq %%r10\n"
"movq %%rax,%%r8\n"
"movq %%rdx,%%r9\n"
/* d += a1 * a4 */
"movq %%r11,%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d += (a2*2) * a3 */
"leaq (%%r12,%%r12,1),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* u0 = d & M (%%rsi) */
"movq %%rbx,%%rsi\n"
"andq %%r15,%%rsi\n"
/* d >>= 52 */
"shrdq $52,%%rcx,%%rbx\n"
"xorq %%rcx,%%rcx\n"
/* u0 = (u0 << 4) | tx (%%rsi) */
"shlq $4,%%rsi\n"
"movq %q3,%%rax\n"
"orq %%rax,%%rsi\n"
/* c += u0 * (R >> 4) */
"movq $0x1000003d1,%%rax\n"
"mulq %%rsi\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* r[0] = c & M */
"movq %%r8,%%rax\n"
"andq %%r15,%%rax\n"
"movq %%rax,0(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* a0 *= 2 */
"addq %%r10,%%r10\n"
/* c += a0 * a1 */
"movq %%r10,%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d += a2 * a4 */
"movq %%r12,%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d += a3 * a3 */
"movq %%r13,%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* c += (d & M) * R */
"movq %%rbx,%%rax\n"
"andq %%r15,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d >>= 52 */
"shrdq $52,%%rcx,%%rbx\n"
"xorq %%rcx,%%rcx\n"
/* r[1] = c & M */
"movq %%r8,%%rax\n"
"andq %%r15,%%rax\n"
"movq %%rax,8(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += a0 * a2 (last use of %%r10) */
"movq %%r10,%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* fetch t3 (%%r10, overwrites a0),t4 (%%rsi) */
"movq %q2,%%rsi\n"
"movq %q1,%%r10\n"
/* c += a1 * a1 */
"movq %%r11,%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d += a3 * a4 */
"movq %%r13,%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* c += (d & M) * R */
"movq %%rbx,%%rax\n"
"andq %%r15,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d >>= 52 (%%rbx only) */
"shrdq $52,%%rcx,%%rbx\n"
/* r[2] = c & M */
"movq %%r8,%%rax\n"
"andq %%r15,%%rax\n"
"movq %%rax,16(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += t3 */
"addq %%r10,%%r8\n"
/* c += d * R */
"movq %%rbx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* r[3] = c & M */
"movq %%r8,%%rax\n"
"andq %%r15,%%rax\n"
"movq %%rax,24(%%rdi)\n"
/* c >>= 52 (%%r8 only) */
"shrdq $52,%%r9,%%r8\n"
/* c += t4 (%%r8 only) */
"addq %%rsi,%%r8\n"
/* r[4] = c */
"movq %%r8,32(%%rdi)\n"
: "+S"(a), "=m"(tmp1), "=m"(tmp2), "=m"(tmp3)
: "D"(r)
: "%rax", "%rbx", "%rcx", "%rdx", "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", "cc", "memory"
);
}
#endif /* SECP256K1_FIELD_INNER5X52_IMPL_H */

View File

@ -1,496 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_FIELD_REPR_IMPL_H
#define SECP256K1_FIELD_REPR_IMPL_H
#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif
#include "util.h"
#include "num.h"
#include "field.h"
#if defined(USE_ASM_X86_64)
#include "field_5x52_asm_impl.h"
#else
#include "field_5x52_int128_impl.h"
#endif
/** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F,
* represented as 5 uint64_t's in base 2^52. The values are allowed to contain >52 each. In particular,
* each FieldElem has a 'magnitude' associated with it. Internally, a magnitude M means each element
* is at most M*(2^53-1), except the most significant one, which is limited to M*(2^49-1). All operations
* accept any input with magnitude at most M, and have different rules for propagating magnitude to their
* output.
*/
#ifdef VERIFY
static void secp256k1_fe_verify(const secp256k1_fe *a) {
const uint64_t *d = a->n;
int m = a->normalized ? 1 : 2 * a->magnitude, r = 1;
/* secp256k1 'p' value defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
r &= (d[0] <= 0xFFFFFFFFFFFFFULL * m);
r &= (d[1] <= 0xFFFFFFFFFFFFFULL * m);
r &= (d[2] <= 0xFFFFFFFFFFFFFULL * m);
r &= (d[3] <= 0xFFFFFFFFFFFFFULL * m);
r &= (d[4] <= 0x0FFFFFFFFFFFFULL * m);
r &= (a->magnitude >= 0);
r &= (a->magnitude <= 2048);
if (a->normalized) {
r &= (a->magnitude <= 1);
if (r && (d[4] == 0x0FFFFFFFFFFFFULL) && ((d[3] & d[2] & d[1]) == 0xFFFFFFFFFFFFFULL)) {
r &= (d[0] < 0xFFFFEFFFFFC2FULL);
}
}
VERIFY_CHECK(r == 1);
}
#endif
static void secp256k1_fe_normalize(secp256k1_fe *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
uint64_t m;
uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
/* The first pass ensures the magnitude is 1, ... */
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
VERIFY_CHECK(t4 >> 49 == 0);
/* At most a single final reduction is needed; check if the value is >= the field characteristic */
x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
& (t0 >= 0xFFFFEFFFFFC2FULL));
/* Apply the final reduction (for constant-time behaviour, we do it always) */
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
/* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
VERIFY_CHECK(t4 >> 48 == x);
/* Mask off the possible multiple of 2^256 from the final reduction */
t4 &= 0x0FFFFFFFFFFFFULL;
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 1;
secp256k1_fe_verify(r);
#endif
}
static void secp256k1_fe_normalize_weak(secp256k1_fe *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
/* The first pass ensures the magnitude is 1, ... */
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
VERIFY_CHECK(t4 >> 49 == 0);
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
#ifdef VERIFY
r->magnitude = 1;
secp256k1_fe_verify(r);
#endif
}
static void secp256k1_fe_normalize_var(secp256k1_fe *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
uint64_t m;
uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
/* The first pass ensures the magnitude is 1, ... */
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
VERIFY_CHECK(t4 >> 49 == 0);
/* At most a single final reduction is needed; check if the value is >= the field characteristic */
x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
& (t0 >= 0xFFFFEFFFFFC2FULL));
if (x) {
t0 += 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
/* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
VERIFY_CHECK(t4 >> 48 == x);
/* Mask off the possible multiple of 2^256 from the final reduction */
t4 &= 0x0FFFFFFFFFFFFULL;
}
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 1;
secp256k1_fe_verify(r);
#endif
}
static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
/* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
uint64_t z0, z1;
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
/* The first pass ensures the magnitude is 1, ... */
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; z0 = t0; z1 = t0 ^ 0x1000003D0ULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
VERIFY_CHECK(t4 >> 49 == 0);
return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
}
static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r) {
uint64_t t0, t1, t2, t3, t4;
uint64_t z0, z1;
uint64_t x;
t0 = r->n[0];
t4 = r->n[4];
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
x = t4 >> 48;
/* The first pass ensures the magnitude is 1, ... */
t0 += x * 0x1000003D1ULL;
/* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
z0 = t0 & 0xFFFFFFFFFFFFFULL;
z1 = z0 ^ 0x1000003D0ULL;
/* Fast return path should catch the majority of cases */
if ((z0 != 0ULL) & (z1 != 0xFFFFFFFFFFFFFULL)) {
return 0;
}
t1 = r->n[1];
t2 = r->n[2];
t3 = r->n[3];
t4 &= 0x0FFFFFFFFFFFFULL;
t1 += (t0 >> 52);
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
VERIFY_CHECK(t4 >> 49 == 0);
return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
}
SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe *r, int a) {
r->n[0] = a;
r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 1;
secp256k1_fe_verify(r);
#endif
}
SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe *a) {
const uint64_t *t = a->n;
#ifdef VERIFY
VERIFY_CHECK(a->normalized);
secp256k1_fe_verify(a);
#endif
return (t[0] | t[1] | t[2] | t[3] | t[4]) == 0;
}
SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe *a) {
#ifdef VERIFY
VERIFY_CHECK(a->normalized);
secp256k1_fe_verify(a);
#endif
return a->n[0] & 1;
}
SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe *a) {
int i;
#ifdef VERIFY
a->magnitude = 0;
a->normalized = 1;
#endif
for (i=0; i<5; i++) {
a->n[i] = 0;
}
}
static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
int i;
#ifdef VERIFY
VERIFY_CHECK(a->normalized);
VERIFY_CHECK(b->normalized);
secp256k1_fe_verify(a);
secp256k1_fe_verify(b);
#endif
for (i = 4; i >= 0; i--) {
if (a->n[i] > b->n[i]) {
return 1;
}
if (a->n[i] < b->n[i]) {
return -1;
}
}
return 0;
}
static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) {
r->n[0] = (uint64_t)a[31]
| ((uint64_t)a[30] << 8)
| ((uint64_t)a[29] << 16)
| ((uint64_t)a[28] << 24)
| ((uint64_t)a[27] << 32)
| ((uint64_t)a[26] << 40)
| ((uint64_t)(a[25] & 0xF) << 48);
r->n[1] = (uint64_t)((a[25] >> 4) & 0xF)
| ((uint64_t)a[24] << 4)
| ((uint64_t)a[23] << 12)
| ((uint64_t)a[22] << 20)
| ((uint64_t)a[21] << 28)
| ((uint64_t)a[20] << 36)
| ((uint64_t)a[19] << 44);
r->n[2] = (uint64_t)a[18]
| ((uint64_t)a[17] << 8)
| ((uint64_t)a[16] << 16)
| ((uint64_t)a[15] << 24)
| ((uint64_t)a[14] << 32)
| ((uint64_t)a[13] << 40)
| ((uint64_t)(a[12] & 0xF) << 48);
r->n[3] = (uint64_t)((a[12] >> 4) & 0xF)
| ((uint64_t)a[11] << 4)
| ((uint64_t)a[10] << 12)
| ((uint64_t)a[9] << 20)
| ((uint64_t)a[8] << 28)
| ((uint64_t)a[7] << 36)
| ((uint64_t)a[6] << 44);
r->n[4] = (uint64_t)a[5]
| ((uint64_t)a[4] << 8)
| ((uint64_t)a[3] << 16)
| ((uint64_t)a[2] << 24)
| ((uint64_t)a[1] << 32)
| ((uint64_t)a[0] << 40);
if (r->n[4] == 0x0FFFFFFFFFFFFULL && (r->n[3] & r->n[2] & r->n[1]) == 0xFFFFFFFFFFFFFULL && r->n[0] >= 0xFFFFEFFFFFC2FULL) {
return 0;
}
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 1;
secp256k1_fe_verify(r);
#endif
return 1;
}
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) {
#ifdef VERIFY
VERIFY_CHECK(a->normalized);
secp256k1_fe_verify(a);
#endif
r[0] = (a->n[4] >> 40) & 0xFF;
r[1] = (a->n[4] >> 32) & 0xFF;
r[2] = (a->n[4] >> 24) & 0xFF;
r[3] = (a->n[4] >> 16) & 0xFF;
r[4] = (a->n[4] >> 8) & 0xFF;
r[5] = a->n[4] & 0xFF;
r[6] = (a->n[3] >> 44) & 0xFF;
r[7] = (a->n[3] >> 36) & 0xFF;
r[8] = (a->n[3] >> 28) & 0xFF;
r[9] = (a->n[3] >> 20) & 0xFF;
r[10] = (a->n[3] >> 12) & 0xFF;
r[11] = (a->n[3] >> 4) & 0xFF;
r[12] = ((a->n[2] >> 48) & 0xF) | ((a->n[3] & 0xF) << 4);
r[13] = (a->n[2] >> 40) & 0xFF;
r[14] = (a->n[2] >> 32) & 0xFF;
r[15] = (a->n[2] >> 24) & 0xFF;
r[16] = (a->n[2] >> 16) & 0xFF;
r[17] = (a->n[2] >> 8) & 0xFF;
r[18] = a->n[2] & 0xFF;
r[19] = (a->n[1] >> 44) & 0xFF;
r[20] = (a->n[1] >> 36) & 0xFF;
r[21] = (a->n[1] >> 28) & 0xFF;
r[22] = (a->n[1] >> 20) & 0xFF;
r[23] = (a->n[1] >> 12) & 0xFF;
r[24] = (a->n[1] >> 4) & 0xFF;
r[25] = ((a->n[0] >> 48) & 0xF) | ((a->n[1] & 0xF) << 4);
r[26] = (a->n[0] >> 40) & 0xFF;
r[27] = (a->n[0] >> 32) & 0xFF;
r[28] = (a->n[0] >> 24) & 0xFF;
r[29] = (a->n[0] >> 16) & 0xFF;
r[30] = (a->n[0] >> 8) & 0xFF;
r[31] = a->n[0] & 0xFF;
}
SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) {
#ifdef VERIFY
VERIFY_CHECK(a->magnitude <= m);
secp256k1_fe_verify(a);
#endif
r->n[0] = 0xFFFFEFFFFFC2FULL * 2 * (m + 1) - a->n[0];
r->n[1] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[1];
r->n[2] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[2];
r->n[3] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[3];
r->n[4] = 0x0FFFFFFFFFFFFULL * 2 * (m + 1) - a->n[4];
#ifdef VERIFY
r->magnitude = m + 1;
r->normalized = 0;
secp256k1_fe_verify(r);
#endif
}
SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe *r, int a) {
r->n[0] *= a;
r->n[1] *= a;
r->n[2] *= a;
r->n[3] *= a;
r->n[4] *= a;
#ifdef VERIFY
r->magnitude *= a;
r->normalized = 0;
secp256k1_fe_verify(r);
#endif
}
SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a) {
#ifdef VERIFY
secp256k1_fe_verify(a);
#endif
r->n[0] += a->n[0];
r->n[1] += a->n[1];
r->n[2] += a->n[2];
r->n[3] += a->n[3];
r->n[4] += a->n[4];
#ifdef VERIFY
r->magnitude += a->magnitude;
r->normalized = 0;
secp256k1_fe_verify(r);
#endif
}
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) {
#ifdef VERIFY
VERIFY_CHECK(a->magnitude <= 8);
VERIFY_CHECK(b->magnitude <= 8);
secp256k1_fe_verify(a);
secp256k1_fe_verify(b);
VERIFY_CHECK(r != b);
#endif
secp256k1_fe_mul_inner(r->n, a->n, b->n);
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 0;
secp256k1_fe_verify(r);
#endif
}
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
#ifdef VERIFY
VERIFY_CHECK(a->magnitude <= 8);
secp256k1_fe_verify(a);
#endif
secp256k1_fe_sqr_inner(r->n, a->n);
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 0;
secp256k1_fe_verify(r);
#endif
}
static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
uint64_t mask0, mask1;
mask0 = flag + ~((uint64_t)0);
mask1 = ~mask0;
r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1);
#ifdef VERIFY
if (a->magnitude > r->magnitude) {
r->magnitude = a->magnitude;
}
r->normalized &= a->normalized;
#endif
}
static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag) {
uint64_t mask0, mask1;
mask0 = flag + ~((uint64_t)0);
mask1 = ~mask0;
r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
}
static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) {
#ifdef VERIFY
VERIFY_CHECK(a->normalized);
#endif
r->n[0] = a->n[0] | a->n[1] << 52;
r->n[1] = a->n[1] >> 12 | a->n[2] << 40;
r->n[2] = a->n[2] >> 24 | a->n[3] << 28;
r->n[3] = a->n[3] >> 36 | a->n[4] << 16;
}
static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) {
r->n[0] = a->n[0] & 0xFFFFFFFFFFFFFULL;
r->n[1] = a->n[0] >> 52 | ((a->n[1] << 12) & 0xFFFFFFFFFFFFFULL);
r->n[2] = a->n[1] >> 40 | ((a->n[2] << 24) & 0xFFFFFFFFFFFFFULL);
r->n[3] = a->n[2] >> 28 | ((a->n[3] << 36) & 0xFFFFFFFFFFFFFULL);
r->n[4] = a->n[3] >> 16;
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 1;
#endif
}
#endif /* SECP256K1_FIELD_REPR_IMPL_H */

View File

@ -1,277 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_FIELD_INNER5X52_IMPL_H
#define SECP256K1_FIELD_INNER5X52_IMPL_H
#include <stdint.h>
#ifdef VERIFY
#define VERIFY_BITS(x, n) VERIFY_CHECK(((x) >> (n)) == 0)
#else
#define VERIFY_BITS(x, n) do { } while(0)
#endif
SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint64_t *r, const uint64_t *a, const uint64_t * SECP256K1_RESTRICT b) {
uint128_t c, d;
uint64_t t3, t4, tx, u0;
uint64_t a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4];
const uint64_t M = 0xFFFFFFFFFFFFFULL, R = 0x1000003D10ULL;
VERIFY_BITS(a[0], 56);
VERIFY_BITS(a[1], 56);
VERIFY_BITS(a[2], 56);
VERIFY_BITS(a[3], 56);
VERIFY_BITS(a[4], 52);
VERIFY_BITS(b[0], 56);
VERIFY_BITS(b[1], 56);
VERIFY_BITS(b[2], 56);
VERIFY_BITS(b[3], 56);
VERIFY_BITS(b[4], 52);
VERIFY_CHECK(r != b);
/* [... a b c] is a shorthand for ... + a<<104 + b<<52 + c<<0 mod n.
* px is a shorthand for sum(a[i]*b[x-i], i=0..x).
* Note that [x 0 0 0 0 0] = [x*R].
*/
d = (uint128_t)a0 * b[3]
+ (uint128_t)a1 * b[2]
+ (uint128_t)a2 * b[1]
+ (uint128_t)a3 * b[0];
VERIFY_BITS(d, 114);
/* [d 0 0 0] = [p3 0 0 0] */
c = (uint128_t)a4 * b[4];
VERIFY_BITS(c, 112);
/* [c 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
d += (c & M) * R; c >>= 52;
VERIFY_BITS(d, 115);
VERIFY_BITS(c, 60);
/* [c 0 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
t3 = d & M; d >>= 52;
VERIFY_BITS(t3, 52);
VERIFY_BITS(d, 63);
/* [c 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
d += (uint128_t)a0 * b[4]
+ (uint128_t)a1 * b[3]
+ (uint128_t)a2 * b[2]
+ (uint128_t)a3 * b[1]
+ (uint128_t)a4 * b[0];
VERIFY_BITS(d, 115);
/* [c 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
d += c * R;
VERIFY_BITS(d, 116);
/* [d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
t4 = d & M; d >>= 52;
VERIFY_BITS(t4, 52);
VERIFY_BITS(d, 64);
/* [d t4 t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
tx = (t4 >> 48); t4 &= (M >> 4);
VERIFY_BITS(tx, 4);
VERIFY_BITS(t4, 48);
/* [d t4+(tx<<48) t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
c = (uint128_t)a0 * b[0];
VERIFY_BITS(c, 112);
/* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 0 p4 p3 0 0 p0] */
d += (uint128_t)a1 * b[4]
+ (uint128_t)a2 * b[3]
+ (uint128_t)a3 * b[2]
+ (uint128_t)a4 * b[1];
VERIFY_BITS(d, 115);
/* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
u0 = d & M; d >>= 52;
VERIFY_BITS(u0, 52);
VERIFY_BITS(d, 63);
/* [d u0 t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
/* [d 0 t4+(tx<<48)+(u0<<52) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
u0 = (u0 << 4) | tx;
VERIFY_BITS(u0, 56);
/* [d 0 t4+(u0<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
c += (uint128_t)u0 * (R >> 4);
VERIFY_BITS(c, 115);
/* [d 0 t4 t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
r[0] = c & M; c >>= 52;
VERIFY_BITS(r[0], 52);
VERIFY_BITS(c, 61);
/* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 0 p0] */
c += (uint128_t)a0 * b[1]
+ (uint128_t)a1 * b[0];
VERIFY_BITS(c, 114);
/* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 p1 p0] */
d += (uint128_t)a2 * b[4]
+ (uint128_t)a3 * b[3]
+ (uint128_t)a4 * b[2];
VERIFY_BITS(d, 114);
/* [d 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
c += (d & M) * R; d >>= 52;
VERIFY_BITS(c, 115);
VERIFY_BITS(d, 62);
/* [d 0 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
r[1] = c & M; c >>= 52;
VERIFY_BITS(r[1], 52);
VERIFY_BITS(c, 63);
/* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
c += (uint128_t)a0 * b[2]
+ (uint128_t)a1 * b[1]
+ (uint128_t)a2 * b[0];
VERIFY_BITS(c, 114);
/* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 p2 p1 p0] */
d += (uint128_t)a3 * b[4]
+ (uint128_t)a4 * b[3];
VERIFY_BITS(d, 114);
/* [d 0 0 t4 t3 c t1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
c += (d & M) * R; d >>= 52;
VERIFY_BITS(c, 115);
VERIFY_BITS(d, 62);
/* [d 0 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
/* [d 0 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[2] = c & M; c >>= 52;
VERIFY_BITS(r[2], 52);
VERIFY_BITS(c, 63);
/* [d 0 0 0 t4 t3+c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
c += d * R + t3;
VERIFY_BITS(c, 100);
/* [t4 c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[3] = c & M; c >>= 52;
VERIFY_BITS(r[3], 52);
VERIFY_BITS(c, 48);
/* [t4+c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
c += t4;
VERIFY_BITS(c, 49);
/* [c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[4] = c;
VERIFY_BITS(r[4], 49);
/* [r4 r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
}
SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint64_t *r, const uint64_t *a) {
uint128_t c, d;
uint64_t a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4];
int64_t t3, t4, tx, u0;
const uint64_t M = 0xFFFFFFFFFFFFFULL, R = 0x1000003D10ULL;
VERIFY_BITS(a[0], 56);
VERIFY_BITS(a[1], 56);
VERIFY_BITS(a[2], 56);
VERIFY_BITS(a[3], 56);
VERIFY_BITS(a[4], 52);
/** [... a b c] is a shorthand for ... + a<<104 + b<<52 + c<<0 mod n.
* px is a shorthand for sum(a[i]*a[x-i], i=0..x).
* Note that [x 0 0 0 0 0] = [x*R].
*/
d = (uint128_t)(a0*2) * a3
+ (uint128_t)(a1*2) * a2;
VERIFY_BITS(d, 114);
/* [d 0 0 0] = [p3 0 0 0] */
c = (uint128_t)a4 * a4;
VERIFY_BITS(c, 112);
/* [c 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
d += (c & M) * R; c >>= 52;
VERIFY_BITS(d, 115);
VERIFY_BITS(c, 60);
/* [c 0 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
t3 = d & M; d >>= 52;
VERIFY_BITS(t3, 52);
VERIFY_BITS(d, 63);
/* [c 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
a4 *= 2;
d += (uint128_t)a0 * a4
+ (uint128_t)(a1*2) * a3
+ (uint128_t)a2 * a2;
VERIFY_BITS(d, 115);
/* [c 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
d += c * R;
VERIFY_BITS(d, 116);
/* [d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
t4 = d & M; d >>= 52;
VERIFY_BITS(t4, 52);
VERIFY_BITS(d, 64);
/* [d t4 t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
tx = (t4 >> 48); t4 &= (M >> 4);
VERIFY_BITS(tx, 4);
VERIFY_BITS(t4, 48);
/* [d t4+(tx<<48) t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
c = (uint128_t)a0 * a0;
VERIFY_BITS(c, 112);
/* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 0 p4 p3 0 0 p0] */
d += (uint128_t)a1 * a4
+ (uint128_t)(a2*2) * a3;
VERIFY_BITS(d, 114);
/* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
u0 = d & M; d >>= 52;
VERIFY_BITS(u0, 52);
VERIFY_BITS(d, 62);
/* [d u0 t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
/* [d 0 t4+(tx<<48)+(u0<<52) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
u0 = (u0 << 4) | tx;
VERIFY_BITS(u0, 56);
/* [d 0 t4+(u0<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
c += (uint128_t)u0 * (R >> 4);
VERIFY_BITS(c, 113);
/* [d 0 t4 t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
r[0] = c & M; c >>= 52;
VERIFY_BITS(r[0], 52);
VERIFY_BITS(c, 61);
/* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 0 p0] */
a0 *= 2;
c += (uint128_t)a0 * a1;
VERIFY_BITS(c, 114);
/* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 p1 p0] */
d += (uint128_t)a2 * a4
+ (uint128_t)a3 * a3;
VERIFY_BITS(d, 114);
/* [d 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
c += (d & M) * R; d >>= 52;
VERIFY_BITS(c, 115);
VERIFY_BITS(d, 62);
/* [d 0 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
r[1] = c & M; c >>= 52;
VERIFY_BITS(r[1], 52);
VERIFY_BITS(c, 63);
/* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
c += (uint128_t)a0 * a2
+ (uint128_t)a1 * a1;
VERIFY_BITS(c, 114);
/* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 p2 p1 p0] */
d += (uint128_t)a3 * a4;
VERIFY_BITS(d, 114);
/* [d 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
c += (d & M) * R; d >>= 52;
VERIFY_BITS(c, 115);
VERIFY_BITS(d, 62);
/* [d 0 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[2] = c & M; c >>= 52;
VERIFY_BITS(r[2], 52);
VERIFY_BITS(c, 63);
/* [d 0 0 0 t4 t3+c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
c += d * R + t3;
VERIFY_BITS(c, 100);
/* [t4 c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[3] = c & M; c >>= 52;
VERIFY_BITS(r[3], 52);
VERIFY_BITS(c, 48);
/* [t4+c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
c += t4;
VERIFY_BITS(c, 49);
/* [c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[4] = c;
VERIFY_BITS(r[4], 49);
/* [r4 r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
}
#endif /* SECP256K1_FIELD_INNER5X52_IMPL_H */

View File

@ -1,315 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_FIELD_IMPL_H
#define SECP256K1_FIELD_IMPL_H
#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif
#include "util.h"
#if defined(USE_FIELD_10X26)
#include "field_10x26_impl.h"
#elif defined(USE_FIELD_5X52)
#include "field_5x52_impl.h"
#else
#error "Please select field implementation"
#endif
SECP256K1_INLINE static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) {
secp256k1_fe na;
secp256k1_fe_negate(&na, a, 1);
secp256k1_fe_add(&na, b);
return secp256k1_fe_normalizes_to_zero(&na);
}
SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b) {
secp256k1_fe na;
secp256k1_fe_negate(&na, a, 1);
secp256k1_fe_add(&na, b);
return secp256k1_fe_normalizes_to_zero_var(&na);
}
static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a) {
/** Given that p is congruent to 3 mod 4, we can compute the square root of
* a mod p as the (p+1)/4'th power of a.
*
* As (p+1)/4 is an even number, it will have the same result for a and for
* (-a). Only one of these two numbers actually has a square root however,
* so we test at the end by squaring and comparing to the input.
* Also because (p+1)/4 is an even number, the computed square root is
* itself always a square (a ** ((p+1)/4) is the square of a ** ((p+1)/8)).
*/
secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
int j;
/** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in
* { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
* 1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
*/
secp256k1_fe_sqr(&x2, a);
secp256k1_fe_mul(&x2, &x2, a);
secp256k1_fe_sqr(&x3, &x2);
secp256k1_fe_mul(&x3, &x3, a);
x6 = x3;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x6, &x6);
}
secp256k1_fe_mul(&x6, &x6, &x3);
x9 = x6;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x9, &x9);
}
secp256k1_fe_mul(&x9, &x9, &x3);
x11 = x9;
for (j=0; j<2; j++) {
secp256k1_fe_sqr(&x11, &x11);
}
secp256k1_fe_mul(&x11, &x11, &x2);
x22 = x11;
for (j=0; j<11; j++) {
secp256k1_fe_sqr(&x22, &x22);
}
secp256k1_fe_mul(&x22, &x22, &x11);
x44 = x22;
for (j=0; j<22; j++) {
secp256k1_fe_sqr(&x44, &x44);
}
secp256k1_fe_mul(&x44, &x44, &x22);
x88 = x44;
for (j=0; j<44; j++) {
secp256k1_fe_sqr(&x88, &x88);
}
secp256k1_fe_mul(&x88, &x88, &x44);
x176 = x88;
for (j=0; j<88; j++) {
secp256k1_fe_sqr(&x176, &x176);
}
secp256k1_fe_mul(&x176, &x176, &x88);
x220 = x176;
for (j=0; j<44; j++) {
secp256k1_fe_sqr(&x220, &x220);
}
secp256k1_fe_mul(&x220, &x220, &x44);
x223 = x220;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x223, &x223);
}
secp256k1_fe_mul(&x223, &x223, &x3);
/* The final result is then assembled using a sliding window over the blocks. */
t1 = x223;
for (j=0; j<23; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(&t1, &t1, &x22);
for (j=0; j<6; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(&t1, &t1, &x2);
secp256k1_fe_sqr(&t1, &t1);
secp256k1_fe_sqr(r, &t1);
/* Check that a square root was actually calculated */
secp256k1_fe_sqr(&t1, r);
return secp256k1_fe_equal(&t1, a);
}
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a) {
secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
int j;
/** The binary representation of (p - 2) has 5 blocks of 1s, with lengths in
* { 1, 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
* [1], [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
*/
secp256k1_fe_sqr(&x2, a);
secp256k1_fe_mul(&x2, &x2, a);
secp256k1_fe_sqr(&x3, &x2);
secp256k1_fe_mul(&x3, &x3, a);
x6 = x3;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x6, &x6);
}
secp256k1_fe_mul(&x6, &x6, &x3);
x9 = x6;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x9, &x9);
}
secp256k1_fe_mul(&x9, &x9, &x3);
x11 = x9;
for (j=0; j<2; j++) {
secp256k1_fe_sqr(&x11, &x11);
}
secp256k1_fe_mul(&x11, &x11, &x2);
x22 = x11;
for (j=0; j<11; j++) {
secp256k1_fe_sqr(&x22, &x22);
}
secp256k1_fe_mul(&x22, &x22, &x11);
x44 = x22;
for (j=0; j<22; j++) {
secp256k1_fe_sqr(&x44, &x44);
}
secp256k1_fe_mul(&x44, &x44, &x22);
x88 = x44;
for (j=0; j<44; j++) {
secp256k1_fe_sqr(&x88, &x88);
}
secp256k1_fe_mul(&x88, &x88, &x44);
x176 = x88;
for (j=0; j<88; j++) {
secp256k1_fe_sqr(&x176, &x176);
}
secp256k1_fe_mul(&x176, &x176, &x88);
x220 = x176;
for (j=0; j<44; j++) {
secp256k1_fe_sqr(&x220, &x220);
}
secp256k1_fe_mul(&x220, &x220, &x44);
x223 = x220;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x223, &x223);
}
secp256k1_fe_mul(&x223, &x223, &x3);
/* The final result is then assembled using a sliding window over the blocks. */
t1 = x223;
for (j=0; j<23; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(&t1, &t1, &x22);
for (j=0; j<5; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(&t1, &t1, a);
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(&t1, &t1, &x2);
for (j=0; j<2; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(r, a, &t1);
}
static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a) {
#if defined(USE_FIELD_INV_BUILTIN)
secp256k1_fe_inv(r, a);
#elif defined(USE_FIELD_INV_NUM)
secp256k1_num n, m;
static const secp256k1_fe negone = SECP256K1_FE_CONST(
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL,
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, 0xFFFFFC2EUL
);
/* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
static const unsigned char prime[32] = {
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
};
unsigned char b[32];
int res;
secp256k1_fe c = *a;
secp256k1_fe_normalize_var(&c);
secp256k1_fe_get_b32(b, &c);
secp256k1_num_set_bin(&n, b, 32);
secp256k1_num_set_bin(&m, prime, 32);
secp256k1_num_mod_inverse(&n, &n, &m);
secp256k1_num_get_bin(b, 32, &n);
res = secp256k1_fe_set_b32(r, b);
(void)res;
VERIFY_CHECK(res);
/* Verify the result is the (unique) valid inverse using non-GMP code. */
secp256k1_fe_mul(&c, &c, r);
secp256k1_fe_add(&c, &negone);
CHECK(secp256k1_fe_normalizes_to_zero_var(&c));
#else
#error "Please select field inverse implementation"
#endif
}
static void secp256k1_fe_inv_all_var(secp256k1_fe *r, const secp256k1_fe *a, size_t len) {
secp256k1_fe u;
size_t i;
if (len < 1) {
return;
}
VERIFY_CHECK((r + len <= a) || (a + len <= r));
r[0] = a[0];
i = 0;
while (++i < len) {
secp256k1_fe_mul(&r[i], &r[i - 1], &a[i]);
}
secp256k1_fe_inv_var(&u, &r[--i]);
while (i > 0) {
size_t j = i--;
secp256k1_fe_mul(&r[j], &r[i], &u);
secp256k1_fe_mul(&u, &u, &a[j]);
}
r[0] = u;
}
static int secp256k1_fe_is_quad_var(const secp256k1_fe *a) {
#ifndef USE_NUM_NONE
unsigned char b[32];
secp256k1_num n;
secp256k1_num m;
/* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
static const unsigned char prime[32] = {
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
};
secp256k1_fe c = *a;
secp256k1_fe_normalize_var(&c);
secp256k1_fe_get_b32(b, &c);
secp256k1_num_set_bin(&n, b, 32);
secp256k1_num_set_bin(&m, prime, 32);
return secp256k1_num_jacobi(&n, &m) >= 0;
#else
secp256k1_fe r;
return secp256k1_fe_sqrt(&r, a);
#endif
}
#endif /* SECP256K1_FIELD_IMPL_H */

View File

@ -1,74 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014, 2015 Thomas Daede, Cory Fields *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#define USE_BASIC_CONFIG 1
#include "basic-config.h"
#include "include/secp256k1.h"
#include "field_impl.h"
#include "scalar_impl.h"
#include "group_impl.h"
#include "ecmult_gen_impl.h"
static void default_error_callback_fn(const char* str, void* data) {
(void)data;
fprintf(stderr, "[libsecp256k1] internal consistency check failed: %s\n", str);
abort();
}
static const secp256k1_callback default_error_callback = {
default_error_callback_fn,
NULL
};
int main(int argc, char **argv) {
secp256k1_ecmult_gen_context ctx;
int inner;
int outer;
FILE* fp;
(void)argc;
(void)argv;
fp = fopen("src/ecmult_static_context.h","w");
if (fp == NULL) {
fprintf(stderr, "Could not open src/ecmult_static_context.h for writing!\n");
return -1;
}
fprintf(fp, "#ifndef _SECP256K1_ECMULT_STATIC_CONTEXT_\n");
fprintf(fp, "#define _SECP256K1_ECMULT_STATIC_CONTEXT_\n");
fprintf(fp, "#include \"src/group.h\"\n");
fprintf(fp, "#define SC SECP256K1_GE_STORAGE_CONST\n");
fprintf(fp, "static const secp256k1_ge_storage secp256k1_ecmult_static_context[64][16] = {\n");
secp256k1_ecmult_gen_context_init(&ctx);
secp256k1_ecmult_gen_context_build(&ctx, &default_error_callback);
for(outer = 0; outer != 64; outer++) {
fprintf(fp,"{\n");
for(inner = 0; inner != 16; inner++) {
fprintf(fp," SC(%uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu)", SECP256K1_GE_STORAGE_CONST_GET((*ctx.prec)[outer][inner]));
if (inner != 15) {
fprintf(fp,",\n");
} else {
fprintf(fp,"\n");
}
}
if (outer != 63) {
fprintf(fp,"},\n");
} else {
fprintf(fp,"}\n");
}
}
fprintf(fp,"};\n");
secp256k1_ecmult_gen_context_clear(&ctx);
fprintf(fp, "#undef SC\n");
fprintf(fp, "#endif\n");
fclose(fp);
return 0;
}

View File

@ -1,147 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_GROUP_H
#define SECP256K1_GROUP_H
#include "num.h"
#include "field.h"
/** A group element of the secp256k1 curve, in affine coordinates. */
typedef struct {
secp256k1_fe x;
secp256k1_fe y;
int infinity; /* whether this represents the point at infinity */
} secp256k1_ge;
#define SECP256K1_GE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), 0}
#define SECP256K1_GE_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
/** A group element of the secp256k1 curve, in jacobian coordinates. */
typedef struct {
secp256k1_fe x; /* actual X: x/z^2 */
secp256k1_fe y; /* actual Y: y/z^3 */
secp256k1_fe z;
int infinity; /* whether this represents the point at infinity */
} secp256k1_gej;
#define SECP256K1_GEJ_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1), 0}
#define SECP256K1_GEJ_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
typedef struct {
secp256k1_fe_storage x;
secp256k1_fe_storage y;
} secp256k1_ge_storage;
#define SECP256K1_GE_STORAGE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_STORAGE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_STORAGE_CONST((i),(j),(k),(l),(m),(n),(o),(p))}
#define SECP256K1_GE_STORAGE_CONST_GET(t) SECP256K1_FE_STORAGE_CONST_GET(t.x), SECP256K1_FE_STORAGE_CONST_GET(t.y)
/** Set a group element equal to the point with given X and Y coordinates */
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y);
/** Set a group element (affine) equal to the point with the given X coordinate
* and a Y coordinate that is a quadratic residue modulo p. The return value
* is true iff a coordinate with the given X coordinate exists.
*/
static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x);
/** Set a group element (affine) equal to the point with the given X coordinate, and given oddness
* for Y. Return value indicates whether the result is valid. */
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd);
/** Check whether a group element is the point at infinity. */
static int secp256k1_ge_is_infinity(const secp256k1_ge *a);
/** Check whether a group element is valid (i.e., on the curve). */
static int secp256k1_ge_is_valid_var(const secp256k1_ge *a);
static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a);
/** Set a group element equal to another which is given in jacobian coordinates */
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a);
/** Set a batch of group elements equal to the inputs given in jacobian coordinates */
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len, const secp256k1_callback *cb);
/** Set a batch of group elements equal to the inputs given in jacobian
* coordinates (with known z-ratios). zr must contain the known z-ratios such
* that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. */
static void secp256k1_ge_set_table_gej_var(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr, size_t len);
/** Bring a batch inputs given in jacobian coordinates (with known z-ratios) to
* the same global z "denominator". zr must contain the known z-ratios such
* that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. The x and y
* coordinates of the result are stored in r, the common z coordinate is
* stored in globalz. */
static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr);
/** Set a group element (affine) equal to the point at infinity. */
static void secp256k1_ge_set_infinity(secp256k1_ge *r);
/** Set a group element (jacobian) equal to the point at infinity. */
static void secp256k1_gej_set_infinity(secp256k1_gej *r);
/** Set a group element (jacobian) equal to another which is given in affine coordinates. */
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a);
/** Compare the X coordinate of a group element (jacobian). */
static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a);
/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a);
/** Check whether a group element is the point at infinity. */
static int secp256k1_gej_is_infinity(const secp256k1_gej *a);
/** Check whether a group element's y coordinate is a quadratic residue. */
static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a);
/** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0).
* a may not be zero. Constant time. */
static void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr);
/** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0). */
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr);
/** Set r equal to the sum of a and b. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be infinity in that case). */
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr);
/** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b);
/** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient
than secp256k1_gej_add_var. It is identical to secp256k1_gej_add_ge but without constant-time
guarantee, and b is allowed to be infinity. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be infinity in that case). */
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr);
/** Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv). */
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv);
#ifdef USE_ENDOMORPHISM
/** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */
static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a);
#endif
/** Clear a secp256k1_gej to prevent leaking sensitive information. */
static void secp256k1_gej_clear(secp256k1_gej *r);
/** Clear a secp256k1_ge to prevent leaking sensitive information. */
static void secp256k1_ge_clear(secp256k1_ge *r);
/** Convert a group element to the storage type. */
static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a);
/** Convert a group element back from the storage type. */
static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a);
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */
static void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag);
/** Rescale a jacobian point by b which must be non-zero. Constant-time. */
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b);
#endif /* SECP256K1_GROUP_H */

View File

@ -1,706 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_GROUP_IMPL_H
#define SECP256K1_GROUP_IMPL_H
#include "num.h"
#include "field.h"
#include "group.h"
/* These points can be generated in sage as follows:
*
* 0. Setup a worksheet with the following parameters.
* b = 4 # whatever CURVE_B will be set to
* F = FiniteField (0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F)
* C = EllipticCurve ([F (0), F (b)])
*
* 1. Determine all the small orders available to you. (If there are
* no satisfactory ones, go back and change b.)
* print C.order().factor(limit=1000)
*
* 2. Choose an order as one of the prime factors listed in the above step.
* (You can also multiply some to get a composite order, though the
* tests will crash trying to invert scalars during signing.) We take a
* random point and scale it to drop its order to the desired value.
* There is some probability this won't work; just try again.
* order = 199
* P = C.random_point()
* P = (int(P.order()) / int(order)) * P
* assert(P.order() == order)
*
* 3. Print the values. You'll need to use a vim macro or something to
* split the hex output into 4-byte chunks.
* print "%x %x" % P.xy()
*/
#if defined(EXHAUSTIVE_TEST_ORDER)
# if EXHAUSTIVE_TEST_ORDER == 199
const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
0xFA7CC9A7, 0x0737F2DB, 0xA749DD39, 0x2B4FB069,
0x3B017A7D, 0xA808C2F1, 0xFB12940C, 0x9EA66C18,
0x78AC123A, 0x5ED8AEF3, 0x8732BC91, 0x1F3A2868,
0x48DF246C, 0x808DAE72, 0xCFE52572, 0x7F0501ED
);
const int CURVE_B = 4;
# elif EXHAUSTIVE_TEST_ORDER == 13
const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
0xedc60018, 0xa51a786b, 0x2ea91f4d, 0x4c9416c0,
0x9de54c3b, 0xa1316554, 0x6cf4345c, 0x7277ef15,
0x54cb1b6b, 0xdc8c1273, 0x087844ea, 0x43f4603e,
0x0eaf9a43, 0xf6effe55, 0x939f806d, 0x37adf8ac
);
const int CURVE_B = 2;
# else
# error No known generator for the specified exhaustive test group order.
# endif
#else
/** Generator for secp256k1, value 'g' defined in
* "Standards for Efficient Cryptography" (SEC2) 2.7.1.
*/
static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
0x79BE667EUL, 0xF9DCBBACUL, 0x55A06295UL, 0xCE870B07UL,
0x029BFCDBUL, 0x2DCE28D9UL, 0x59F2815BUL, 0x16F81798UL,
0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL,
0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL
);
const int CURVE_B = 7;
#endif
static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) {
secp256k1_fe zi2;
secp256k1_fe zi3;
secp256k1_fe_sqr(&zi2, zi);
secp256k1_fe_mul(&zi3, &zi2, zi);
secp256k1_fe_mul(&r->x, &a->x, &zi2);
secp256k1_fe_mul(&r->y, &a->y, &zi3);
r->infinity = a->infinity;
}
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y) {
r->infinity = 0;
r->x = *x;
r->y = *y;
}
static int secp256k1_ge_is_infinity(const secp256k1_ge *a) {
return a->infinity;
}
static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a) {
*r = *a;
secp256k1_fe_normalize_weak(&r->y);
secp256k1_fe_negate(&r->y, &r->y, 1);
}
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a) {
secp256k1_fe z2, z3;
r->infinity = a->infinity;
secp256k1_fe_inv(&a->z, &a->z);
secp256k1_fe_sqr(&z2, &a->z);
secp256k1_fe_mul(&z3, &a->z, &z2);
secp256k1_fe_mul(&a->x, &a->x, &z2);
secp256k1_fe_mul(&a->y, &a->y, &z3);
secp256k1_fe_set_int(&a->z, 1);
r->x = a->x;
r->y = a->y;
}
static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) {
secp256k1_fe z2, z3;
r->infinity = a->infinity;
if (a->infinity) {
return;
}
secp256k1_fe_inv_var(&a->z, &a->z);
secp256k1_fe_sqr(&z2, &a->z);
secp256k1_fe_mul(&z3, &a->z, &z2);
secp256k1_fe_mul(&a->x, &a->x, &z2);
secp256k1_fe_mul(&a->y, &a->y, &z3);
secp256k1_fe_set_int(&a->z, 1);
r->x = a->x;
r->y = a->y;
}
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len, const secp256k1_callback *cb) {
secp256k1_fe *az;
secp256k1_fe *azi;
size_t i;
size_t count = 0;
az = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * len);
for (i = 0; i < len; i++) {
if (!a[i].infinity) {
az[count++] = a[i].z;
}
}
azi = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * count);
secp256k1_fe_inv_all_var(azi, az, count);
free(az);
count = 0;
for (i = 0; i < len; i++) {
r[i].infinity = a[i].infinity;
if (!a[i].infinity) {
secp256k1_ge_set_gej_zinv(&r[i], &a[i], &azi[count++]);
}
}
free(azi);
}
static void secp256k1_ge_set_table_gej_var(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr, size_t len) {
size_t i = len - 1;
secp256k1_fe zi;
if (len > 0) {
/* Compute the inverse of the last z coordinate, and use it to compute the last affine output. */
secp256k1_fe_inv(&zi, &a[i].z);
secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi);
/* Work out way backwards, using the z-ratios to scale the x/y values. */
while (i > 0) {
secp256k1_fe_mul(&zi, &zi, &zr[i]);
i--;
secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi);
}
}
}
static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr) {
size_t i = len - 1;
secp256k1_fe zs;
if (len > 0) {
/* The z of the final point gives us the "global Z" for the table. */
r[i].x = a[i].x;
r[i].y = a[i].y;
*globalz = a[i].z;
r[i].infinity = 0;
zs = zr[i];
/* Work our way backwards, using the z-ratios to scale the x/y values. */
while (i > 0) {
if (i != len - 1) {
secp256k1_fe_mul(&zs, &zs, &zr[i]);
}
i--;
secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zs);
}
}
}
static void secp256k1_gej_set_infinity(secp256k1_gej *r) {
r->infinity = 1;
secp256k1_fe_clear(&r->x);
secp256k1_fe_clear(&r->y);
secp256k1_fe_clear(&r->z);
}
static void secp256k1_ge_set_infinity(secp256k1_ge *r) {
r->infinity = 1;
secp256k1_fe_clear(&r->x);
secp256k1_fe_clear(&r->y);
}
static void secp256k1_gej_clear(secp256k1_gej *r) {
r->infinity = 0;
secp256k1_fe_clear(&r->x);
secp256k1_fe_clear(&r->y);
secp256k1_fe_clear(&r->z);
}
static void secp256k1_ge_clear(secp256k1_ge *r) {
r->infinity = 0;
secp256k1_fe_clear(&r->x);
secp256k1_fe_clear(&r->y);
}
static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x) {
secp256k1_fe x2, x3, c;
r->x = *x;
secp256k1_fe_sqr(&x2, x);
secp256k1_fe_mul(&x3, x, &x2);
r->infinity = 0;
secp256k1_fe_set_int(&c, CURVE_B);
secp256k1_fe_add(&c, &x3);
return secp256k1_fe_sqrt(&r->y, &c);
}
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
if (!secp256k1_ge_set_xquad(r, x)) {
return 0;
}
secp256k1_fe_normalize_var(&r->y);
if (secp256k1_fe_is_odd(&r->y) != odd) {
secp256k1_fe_negate(&r->y, &r->y, 1);
}
return 1;
}
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a) {
r->infinity = a->infinity;
r->x = a->x;
r->y = a->y;
secp256k1_fe_set_int(&r->z, 1);
}
static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a) {
secp256k1_fe r, r2;
VERIFY_CHECK(!a->infinity);
secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x);
r2 = a->x; secp256k1_fe_normalize_weak(&r2);
return secp256k1_fe_equal_var(&r, &r2);
}
static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a) {
r->infinity = a->infinity;
r->x = a->x;
r->y = a->y;
r->z = a->z;
secp256k1_fe_normalize_weak(&r->y);
secp256k1_fe_negate(&r->y, &r->y, 1);
}
static int secp256k1_gej_is_infinity(const secp256k1_gej *a) {
return a->infinity;
}
static int secp256k1_gej_is_valid_var(const secp256k1_gej *a) {
secp256k1_fe y2, x3, z2, z6;
if (a->infinity) {
return 0;
}
/** y^2 = x^3 + 7
* (Y/Z^3)^2 = (X/Z^2)^3 + 7
* Y^2 / Z^6 = X^3 / Z^6 + 7
* Y^2 = X^3 + 7*Z^6
*/
secp256k1_fe_sqr(&y2, &a->y);
secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
secp256k1_fe_sqr(&z2, &a->z);
secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2);
secp256k1_fe_mul_int(&z6, CURVE_B);
secp256k1_fe_add(&x3, &z6);
secp256k1_fe_normalize_weak(&x3);
return secp256k1_fe_equal_var(&y2, &x3);
}
static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) {
secp256k1_fe y2, x3, c;
if (a->infinity) {
return 0;
}
/* y^2 = x^3 + 7 */
secp256k1_fe_sqr(&y2, &a->y);
secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
secp256k1_fe_set_int(&c, CURVE_B);
secp256k1_fe_add(&x3, &c);
secp256k1_fe_normalize_weak(&x3);
return secp256k1_fe_equal_var(&y2, &x3);
}
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
/* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate.
*
* Note that there is an implementation described at
* https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
* which trades a multiply for a square, but in practice this is actually slower,
* mainly because it requires more normalizations.
*/
secp256k1_fe t1,t2,t3,t4;
/** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity,
* Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have
* y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p.
*
* Having said this, if this function receives a point on a sextic twist, e.g. by
* a fault attack, it is possible for y to be 0. This happens for y^2 = x^3 + 6,
* since -6 does have a cube root mod p. For this point, this function will not set
* the infinity flag even though the point doubles to infinity, and the result
* point will be gibberish (z = 0 but infinity = 0).
*/
r->infinity = a->infinity;
if (r->infinity) {
if (rzr != NULL) {
secp256k1_fe_set_int(rzr, 1);
}
return;
}
if (rzr != NULL) {
*rzr = a->y;
secp256k1_fe_normalize_weak(rzr);
secp256k1_fe_mul_int(rzr, 2);
}
secp256k1_fe_mul(&r->z, &a->z, &a->y);
secp256k1_fe_mul_int(&r->z, 2); /* Z' = 2*Y*Z (2) */
secp256k1_fe_sqr(&t1, &a->x);
secp256k1_fe_mul_int(&t1, 3); /* T1 = 3*X^2 (3) */
secp256k1_fe_sqr(&t2, &t1); /* T2 = 9*X^4 (1) */
secp256k1_fe_sqr(&t3, &a->y);
secp256k1_fe_mul_int(&t3, 2); /* T3 = 2*Y^2 (2) */
secp256k1_fe_sqr(&t4, &t3);
secp256k1_fe_mul_int(&t4, 2); /* T4 = 8*Y^4 (2) */
secp256k1_fe_mul(&t3, &t3, &a->x); /* T3 = 2*X*Y^2 (1) */
r->x = t3;
secp256k1_fe_mul_int(&r->x, 4); /* X' = 8*X*Y^2 (4) */
secp256k1_fe_negate(&r->x, &r->x, 4); /* X' = -8*X*Y^2 (5) */
secp256k1_fe_add(&r->x, &t2); /* X' = 9*X^4 - 8*X*Y^2 (6) */
secp256k1_fe_negate(&t2, &t2, 1); /* T2 = -9*X^4 (2) */
secp256k1_fe_mul_int(&t3, 6); /* T3 = 12*X*Y^2 (6) */
secp256k1_fe_add(&t3, &t2); /* T3 = 12*X*Y^2 - 9*X^4 (8) */
secp256k1_fe_mul(&r->y, &t1, &t3); /* Y' = 36*X^3*Y^2 - 27*X^6 (1) */
secp256k1_fe_negate(&t2, &t4, 2); /* T2 = -8*Y^4 (3) */
secp256k1_fe_add(&r->y, &t2); /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */
}
static SECP256K1_INLINE void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
VERIFY_CHECK(!secp256k1_gej_is_infinity(a));
secp256k1_gej_double_var(r, a, rzr);
}
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr) {
/* Operations: 12 mul, 4 sqr, 2 normalize, 12 mul_int/add/negate */
secp256k1_fe z22, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
if (a->infinity) {
VERIFY_CHECK(rzr == NULL);
*r = *b;
return;
}
if (b->infinity) {
if (rzr != NULL) {
secp256k1_fe_set_int(rzr, 1);
}
*r = *a;
return;
}
r->infinity = 0;
secp256k1_fe_sqr(&z22, &b->z);
secp256k1_fe_sqr(&z12, &a->z);
secp256k1_fe_mul(&u1, &a->x, &z22);
secp256k1_fe_mul(&u2, &b->x, &z12);
secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z);
secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
if (secp256k1_fe_normalizes_to_zero_var(&h)) {
if (secp256k1_fe_normalizes_to_zero_var(&i)) {
secp256k1_gej_double_var(r, a, rzr);
} else {
if (rzr != NULL) {
secp256k1_fe_set_int(rzr, 0);
}
r->infinity = 1;
}
return;
}
secp256k1_fe_sqr(&i2, &i);
secp256k1_fe_sqr(&h2, &h);
secp256k1_fe_mul(&h3, &h, &h2);
secp256k1_fe_mul(&h, &h, &b->z);
if (rzr != NULL) {
*rzr = h;
}
secp256k1_fe_mul(&r->z, &a->z, &h);
secp256k1_fe_mul(&t, &u1, &h2);
r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
secp256k1_fe_add(&r->y, &h3);
}
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr) {
/* 8 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
secp256k1_fe z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
if (a->infinity) {
VERIFY_CHECK(rzr == NULL);
secp256k1_gej_set_ge(r, b);
return;
}
if (b->infinity) {
if (rzr != NULL) {
secp256k1_fe_set_int(rzr, 1);
}
*r = *a;
return;
}
r->infinity = 0;
secp256k1_fe_sqr(&z12, &a->z);
u1 = a->x; secp256k1_fe_normalize_weak(&u1);
secp256k1_fe_mul(&u2, &b->x, &z12);
s1 = a->y; secp256k1_fe_normalize_weak(&s1);
secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
if (secp256k1_fe_normalizes_to_zero_var(&h)) {
if (secp256k1_fe_normalizes_to_zero_var(&i)) {
secp256k1_gej_double_var(r, a, rzr);
} else {
if (rzr != NULL) {
secp256k1_fe_set_int(rzr, 0);
}
r->infinity = 1;
}
return;
}
secp256k1_fe_sqr(&i2, &i);
secp256k1_fe_sqr(&h2, &h);
secp256k1_fe_mul(&h3, &h, &h2);
if (rzr != NULL) {
*rzr = h;
}
secp256k1_fe_mul(&r->z, &a->z, &h);
secp256k1_fe_mul(&t, &u1, &h2);
r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
secp256k1_fe_add(&r->y, &h3);
}
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) {
/* 9 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
secp256k1_fe az, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
if (b->infinity) {
*r = *a;
return;
}
if (a->infinity) {
secp256k1_fe bzinv2, bzinv3;
r->infinity = b->infinity;
secp256k1_fe_sqr(&bzinv2, bzinv);
secp256k1_fe_mul(&bzinv3, &bzinv2, bzinv);
secp256k1_fe_mul(&r->x, &b->x, &bzinv2);
secp256k1_fe_mul(&r->y, &b->y, &bzinv3);
secp256k1_fe_set_int(&r->z, 1);
return;
}
r->infinity = 0;
/** We need to calculate (rx,ry,rz) = (ax,ay,az) + (bx,by,1/bzinv). Due to
* secp256k1's isomorphism we can multiply the Z coordinates on both sides
* by bzinv, and get: (rx,ry,rz*bzinv) = (ax,ay,az*bzinv) + (bx,by,1).
* This means that (rx,ry,rz) can be calculated as
* (ax,ay,az*bzinv) + (bx,by,1), when not applying the bzinv factor to rz.
* The variable az below holds the modified Z coordinate for a, which is used
* for the computation of rx and ry, but not for rz.
*/
secp256k1_fe_mul(&az, &a->z, bzinv);
secp256k1_fe_sqr(&z12, &az);
u1 = a->x; secp256k1_fe_normalize_weak(&u1);
secp256k1_fe_mul(&u2, &b->x, &z12);
s1 = a->y; secp256k1_fe_normalize_weak(&s1);
secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az);
secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
if (secp256k1_fe_normalizes_to_zero_var(&h)) {
if (secp256k1_fe_normalizes_to_zero_var(&i)) {
secp256k1_gej_double_var(r, a, NULL);
} else {
r->infinity = 1;
}
return;
}
secp256k1_fe_sqr(&i2, &i);
secp256k1_fe_sqr(&h2, &h);
secp256k1_fe_mul(&h3, &h, &h2);
r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h);
secp256k1_fe_mul(&t, &u1, &h2);
r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
secp256k1_fe_add(&r->y, &h3);
}
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b) {
/* Operations: 7 mul, 5 sqr, 4 normalize, 21 mul_int/add/negate/cmov */
static const secp256k1_fe fe_1 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr;
secp256k1_fe m_alt, rr_alt;
int infinity, degenerate;
VERIFY_CHECK(!b->infinity);
VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
/** In:
* Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks.
* In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002.
* we find as solution for a unified addition/doubling formula:
* lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation.
* x3 = lambda^2 - (x1 + x2)
* 2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2).
*
* Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives:
* U1 = X1*Z2^2, U2 = X2*Z1^2
* S1 = Y1*Z2^3, S2 = Y2*Z1^3
* Z = Z1*Z2
* T = U1+U2
* M = S1+S2
* Q = T*M^2
* R = T^2-U1*U2
* X3 = 4*(R^2-Q)
* Y3 = 4*(R*(3*Q-2*R^2)-M^4)
* Z3 = 2*M*Z
* (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.)
*
* This formula has the benefit of being the same for both addition
* of distinct points and doubling. However, it breaks down in the
* case that either point is infinity, or that y1 = -y2. We handle
* these cases in the following ways:
*
* - If b is infinity we simply bail by means of a VERIFY_CHECK.
*
* - If a is infinity, we detect this, and at the end of the
* computation replace the result (which will be meaningless,
* but we compute to be constant-time) with b.x : b.y : 1.
*
* - If a = -b, we have y1 = -y2, which is a degenerate case.
* But here the answer is infinity, so we simply set the
* infinity flag of the result, overriding the computed values
* without even needing to cmov.
*
* - If y1 = -y2 but x1 != x2, which does occur thanks to certain
* properties of our curve (specifically, 1 has nontrivial cube
* roots in our field, and the curve equation has no x coefficient)
* then the answer is not infinity but also not given by the above
* equation. In this case, we cmov in place an alternate expression
* for lambda. Specifically (y1 - y2)/(x1 - x2). Where both these
* expressions for lambda are defined, they are equal, and can be
* obtained from each other by multiplication by (y1 + y2)/(y1 + y2)
* then substitution of x^3 + 7 for y^2 (using the curve equation).
* For all pairs of nonzero points (a, b) at least one is defined,
* so this covers everything.
*/
secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */
u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */
secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */
s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */
secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z1^2 (1) */
secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */
t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */
m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */
secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */
secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 */
secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (2) */
secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */
/** If lambda = R/M = 0/0 we have a problem (except in the "trivial"
* case that Z = z1z2 = 0, and this is special-cased later on). */
degenerate = secp256k1_fe_normalizes_to_zero(&m) &
secp256k1_fe_normalizes_to_zero(&rr);
/* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2.
* This means either x1 == beta*x2 or beta*x1 == x2, where beta is
* a nontrivial cube root of one. In either case, an alternate
* non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2),
* so we set R/M equal to this. */
rr_alt = s1;
secp256k1_fe_mul_int(&rr_alt, 2); /* rr = Y1*Z2^3 - Y2*Z1^3 (2) */
secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 */
secp256k1_fe_cmov(&rr_alt, &rr, !degenerate);
secp256k1_fe_cmov(&m_alt, &m, !degenerate);
/* Now Ralt / Malt = lambda and is guaranteed not to be 0/0.
* From here on out Ralt and Malt represent the numerator
* and denominator of lambda; R and M represent the explicit
* expressions x1^2 + x2^2 + x1x2 and y1 + y2. */
secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */
secp256k1_fe_mul(&q, &n, &t); /* q = Q = T*Malt^2 (1) */
/* These two lines use the observation that either M == Malt or M == 0,
* so M^3 * Malt is either Malt^4 (which is computed by squaring), or
* zero (which is "computed" by cmov). So the cost is one squaring
* versus two multiplications. */
secp256k1_fe_sqr(&n, &n);
secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */
secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */
secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Malt*Z (1) */
infinity = secp256k1_fe_normalizes_to_zero(&r->z) * (1 - a->infinity);
secp256k1_fe_mul_int(&r->z, 2); /* r->z = Z3 = 2*Malt*Z (2) */
secp256k1_fe_negate(&q, &q, 1); /* q = -Q (2) */
secp256k1_fe_add(&t, &q); /* t = Ralt^2-Q (3) */
secp256k1_fe_normalize_weak(&t);
r->x = t; /* r->x = Ralt^2-Q (1) */
secp256k1_fe_mul_int(&t, 2); /* t = 2*x3 (2) */
secp256k1_fe_add(&t, &q); /* t = 2*x3 - Q: (4) */
secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*x3 - Q) (1) */
secp256k1_fe_add(&t, &n); /* t = Ralt*(2*x3 - Q) + M^3*Malt (3) */
secp256k1_fe_negate(&r->y, &t, 3); /* r->y = Ralt*(Q - 2x3) - M^3*Malt (4) */
secp256k1_fe_normalize_weak(&r->y);
secp256k1_fe_mul_int(&r->x, 4); /* r->x = X3 = 4*(Ralt^2-Q) */
secp256k1_fe_mul_int(&r->y, 4); /* r->y = Y3 = 4*Ralt*(Q - 2x3) - 4*M^3*Malt (4) */
/** In case a->infinity == 1, replace r with (b->x, b->y, 1). */
secp256k1_fe_cmov(&r->x, &b->x, a->infinity);
secp256k1_fe_cmov(&r->y, &b->y, a->infinity);
secp256k1_fe_cmov(&r->z, &fe_1, a->infinity);
r->infinity = infinity;
}
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s) {
/* Operations: 4 mul, 1 sqr */
secp256k1_fe zz;
VERIFY_CHECK(!secp256k1_fe_is_zero(s));
secp256k1_fe_sqr(&zz, s);
secp256k1_fe_mul(&r->x, &r->x, &zz); /* r->x *= s^2 */
secp256k1_fe_mul(&r->y, &r->y, &zz);
secp256k1_fe_mul(&r->y, &r->y, s); /* r->y *= s^3 */
secp256k1_fe_mul(&r->z, &r->z, s); /* r->z *= s */
}
static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a) {
secp256k1_fe x, y;
VERIFY_CHECK(!a->infinity);
x = a->x;
secp256k1_fe_normalize(&x);
y = a->y;
secp256k1_fe_normalize(&y);
secp256k1_fe_to_storage(&r->x, &x);
secp256k1_fe_to_storage(&r->y, &y);
}
static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a) {
secp256k1_fe_from_storage(&r->x, &a->x);
secp256k1_fe_from_storage(&r->y, &a->y);
r->infinity = 0;
}
static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag) {
secp256k1_fe_storage_cmov(&r->x, &a->x, flag);
secp256k1_fe_storage_cmov(&r->y, &a->y, flag);
}
#ifdef USE_ENDOMORPHISM
static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) {
static const secp256k1_fe beta = SECP256K1_FE_CONST(
0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul,
0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul
);
*r = *a;
secp256k1_fe_mul(&r->x, &r->x, &beta);
}
#endif
static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a) {
secp256k1_fe yz;
if (a->infinity) {
return 0;
}
/* We rely on the fact that the Jacobi symbol of 1 / a->z^3 is the same as
* that of a->z. Thus a->y / a->z^3 is a quadratic residue iff a->y * a->z
is */
secp256k1_fe_mul(&yz, &a->y, &a->z);
return secp256k1_fe_is_quad_var(&yz);
}
#endif /* SECP256K1_GROUP_IMPL_H */

View File

@ -1,41 +0,0 @@
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_HASH_H
#define SECP256K1_HASH_H
#include <stdlib.h>
#include <stdint.h>
typedef struct {
uint32_t s[8];
uint32_t buf[16]; /* In big endian */
size_t bytes;
} secp256k1_sha256;
static void secp256k1_sha256_initialize(secp256k1_sha256 *hash);
static void secp256k1_sha256_write(secp256k1_sha256 *hash, const unsigned char *data, size_t size);
static void secp256k1_sha256_finalize(secp256k1_sha256 *hash, unsigned char *out32);
typedef struct {
secp256k1_sha256 inner, outer;
} secp256k1_hmac_sha256;
static void secp256k1_hmac_sha256_initialize(secp256k1_hmac_sha256 *hash, const unsigned char *key, size_t size);
static void secp256k1_hmac_sha256_write(secp256k1_hmac_sha256 *hash, const unsigned char *data, size_t size);
static void secp256k1_hmac_sha256_finalize(secp256k1_hmac_sha256 *hash, unsigned char *out32);
typedef struct {
unsigned char v[32];
unsigned char k[32];
int retry;
} secp256k1_rfc6979_hmac_sha256;
static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256 *rng, const unsigned char *key, size_t keylen);
static void secp256k1_rfc6979_hmac_sha256_generate(secp256k1_rfc6979_hmac_sha256 *rng, unsigned char *out, size_t outlen);
static void secp256k1_rfc6979_hmac_sha256_finalize(secp256k1_rfc6979_hmac_sha256 *rng);
#endif /* SECP256K1_HASH_H */

View File

@ -1,282 +0,0 @@
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_HASH_IMPL_H
#define SECP256K1_HASH_IMPL_H
#include "hash.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#define Ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
#define Maj(x,y,z) (((x) & (y)) | ((z) & ((x) | (y))))
#define Sigma0(x) (((x) >> 2 | (x) << 30) ^ ((x) >> 13 | (x) << 19) ^ ((x) >> 22 | (x) << 10))
#define Sigma1(x) (((x) >> 6 | (x) << 26) ^ ((x) >> 11 | (x) << 21) ^ ((x) >> 25 | (x) << 7))
#define sigma0(x) (((x) >> 7 | (x) << 25) ^ ((x) >> 18 | (x) << 14) ^ ((x) >> 3))
#define sigma1(x) (((x) >> 17 | (x) << 15) ^ ((x) >> 19 | (x) << 13) ^ ((x) >> 10))
#define Round(a,b,c,d,e,f,g,h,k,w) do { \
uint32_t t1 = (h) + Sigma1(e) + Ch((e), (f), (g)) + (k) + (w); \
uint32_t t2 = Sigma0(a) + Maj((a), (b), (c)); \
(d) += t1; \
(h) = t1 + t2; \
} while(0)
#ifdef WORDS_BIGENDIAN
#define BE32(x) (x)
#else
#define BE32(p) ((((p) & 0xFF) << 24) | (((p) & 0xFF00) << 8) | (((p) & 0xFF0000) >> 8) | (((p) & 0xFF000000) >> 24))
#endif
static void secp256k1_sha256_initialize(secp256k1_sha256 *hash) {
hash->s[0] = 0x6a09e667ul;
hash->s[1] = 0xbb67ae85ul;
hash->s[2] = 0x3c6ef372ul;
hash->s[3] = 0xa54ff53aul;
hash->s[4] = 0x510e527ful;
hash->s[5] = 0x9b05688cul;
hash->s[6] = 0x1f83d9abul;
hash->s[7] = 0x5be0cd19ul;
hash->bytes = 0;
}
/** Perform one SHA-256 transformation, processing 16 big endian 32-bit words. */
static void secp256k1_sha256_transform(uint32_t* s, const uint32_t* chunk) {
uint32_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4], f = s[5], g = s[6], h = s[7];
uint32_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
Round(a, b, c, d, e, f, g, h, 0x428a2f98, w0 = BE32(chunk[0]));
Round(h, a, b, c, d, e, f, g, 0x71374491, w1 = BE32(chunk[1]));
Round(g, h, a, b, c, d, e, f, 0xb5c0fbcf, w2 = BE32(chunk[2]));
Round(f, g, h, a, b, c, d, e, 0xe9b5dba5, w3 = BE32(chunk[3]));
Round(e, f, g, h, a, b, c, d, 0x3956c25b, w4 = BE32(chunk[4]));
Round(d, e, f, g, h, a, b, c, 0x59f111f1, w5 = BE32(chunk[5]));
Round(c, d, e, f, g, h, a, b, 0x923f82a4, w6 = BE32(chunk[6]));
Round(b, c, d, e, f, g, h, a, 0xab1c5ed5, w7 = BE32(chunk[7]));
Round(a, b, c, d, e, f, g, h, 0xd807aa98, w8 = BE32(chunk[8]));
Round(h, a, b, c, d, e, f, g, 0x12835b01, w9 = BE32(chunk[9]));
Round(g, h, a, b, c, d, e, f, 0x243185be, w10 = BE32(chunk[10]));
Round(f, g, h, a, b, c, d, e, 0x550c7dc3, w11 = BE32(chunk[11]));
Round(e, f, g, h, a, b, c, d, 0x72be5d74, w12 = BE32(chunk[12]));
Round(d, e, f, g, h, a, b, c, 0x80deb1fe, w13 = BE32(chunk[13]));
Round(c, d, e, f, g, h, a, b, 0x9bdc06a7, w14 = BE32(chunk[14]));
Round(b, c, d, e, f, g, h, a, 0xc19bf174, w15 = BE32(chunk[15]));
Round(a, b, c, d, e, f, g, h, 0xe49b69c1, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, c, d, e, f, g, 0xefbe4786, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, b, c, d, e, f, 0x0fc19dc6, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, a, b, c, d, e, 0x240ca1cc, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, h, a, b, c, d, 0x2de92c6f, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, g, h, a, b, c, 0x4a7484aa, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, f, g, h, a, b, 0x5cb0a9dc, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, e, f, g, h, a, 0x76f988da, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, d, e, f, g, h, 0x983e5152, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, c, d, e, f, g, 0xa831c66d, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0xb00327c8, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0xbf597fc7, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0xc6e00bf3, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0xd5a79147, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0x06ca6351, w14 += sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0x14292967, w15 += sigma1(w13) + w8 + sigma0(w0));
Round(a, b, c, d, e, f, g, h, 0x27b70a85, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, c, d, e, f, g, 0x2e1b2138, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, b, c, d, e, f, 0x4d2c6dfc, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, a, b, c, d, e, 0x53380d13, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, h, a, b, c, d, 0x650a7354, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, g, h, a, b, c, 0x766a0abb, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, f, g, h, a, b, 0x81c2c92e, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, e, f, g, h, a, 0x92722c85, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, d, e, f, g, h, 0xa2bfe8a1, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, c, d, e, f, g, 0xa81a664b, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0xc24b8b70, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0xc76c51a3, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0xd192e819, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0xd6990624, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0xf40e3585, w14 += sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0x106aa070, w15 += sigma1(w13) + w8 + sigma0(w0));
Round(a, b, c, d, e, f, g, h, 0x19a4c116, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, c, d, e, f, g, 0x1e376c08, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, b, c, d, e, f, 0x2748774c, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, a, b, c, d, e, 0x34b0bcb5, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, h, a, b, c, d, 0x391c0cb3, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, g, h, a, b, c, 0x4ed8aa4a, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, f, g, h, a, b, 0x5b9cca4f, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, e, f, g, h, a, 0x682e6ff3, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, d, e, f, g, h, 0x748f82ee, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, c, d, e, f, g, 0x78a5636f, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0x84c87814, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0x8cc70208, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0x90befffa, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0xa4506ceb, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0xbef9a3f7, w14 + sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0xc67178f2, w15 + sigma1(w13) + w8 + sigma0(w0));
s[0] += a;
s[1] += b;
s[2] += c;
s[3] += d;
s[4] += e;
s[5] += f;
s[6] += g;
s[7] += h;
}
static void secp256k1_sha256_write(secp256k1_sha256 *hash, const unsigned char *data, size_t len) {
size_t bufsize = hash->bytes & 0x3F;
hash->bytes += len;
while (bufsize + len >= 64) {
/* Fill the buffer, and process it. */
size_t chunk_len = 64 - bufsize;
memcpy(((unsigned char*)hash->buf) + bufsize, data, chunk_len);
data += chunk_len;
len -= chunk_len;
secp256k1_sha256_transform(hash->s, hash->buf);
bufsize = 0;
}
if (len) {
/* Fill the buffer with what remains. */
memcpy(((unsigned char*)hash->buf) + bufsize, data, len);
}
}
static void secp256k1_sha256_finalize(secp256k1_sha256 *hash, unsigned char *out32) {
static const unsigned char pad[64] = {0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
uint32_t sizedesc[2];
uint32_t out[8];
int i = 0;
sizedesc[0] = BE32(hash->bytes >> 29);
sizedesc[1] = BE32(hash->bytes << 3);
secp256k1_sha256_write(hash, pad, 1 + ((119 - (hash->bytes % 64)) % 64));
secp256k1_sha256_write(hash, (const unsigned char*)sizedesc, 8);
for (i = 0; i < 8; i++) {
out[i] = BE32(hash->s[i]);
hash->s[i] = 0;
}
memcpy(out32, (const unsigned char*)out, 32);
}
static void secp256k1_hmac_sha256_initialize(secp256k1_hmac_sha256 *hash, const unsigned char *key, size_t keylen) {
size_t n;
unsigned char rkey[64];
if (keylen <= sizeof(rkey)) {
memcpy(rkey, key, keylen);
memset(rkey + keylen, 0, sizeof(rkey) - keylen);
} else {
secp256k1_sha256 sha256;
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, key, keylen);
secp256k1_sha256_finalize(&sha256, rkey);
memset(rkey + 32, 0, 32);
}
secp256k1_sha256_initialize(&hash->outer);
for (n = 0; n < sizeof(rkey); n++) {
rkey[n] ^= 0x5c;
}
secp256k1_sha256_write(&hash->outer, rkey, sizeof(rkey));
secp256k1_sha256_initialize(&hash->inner);
for (n = 0; n < sizeof(rkey); n++) {
rkey[n] ^= 0x5c ^ 0x36;
}
secp256k1_sha256_write(&hash->inner, rkey, sizeof(rkey));
memset(rkey, 0, sizeof(rkey));
}
static void secp256k1_hmac_sha256_write(secp256k1_hmac_sha256 *hash, const unsigned char *data, size_t size) {
secp256k1_sha256_write(&hash->inner, data, size);
}
static void secp256k1_hmac_sha256_finalize(secp256k1_hmac_sha256 *hash, unsigned char *out32) {
unsigned char temp[32];
secp256k1_sha256_finalize(&hash->inner, temp);
secp256k1_sha256_write(&hash->outer, temp, 32);
memset(temp, 0, 32);
secp256k1_sha256_finalize(&hash->outer, out32);
}
static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256 *rng, const unsigned char *key, size_t keylen) {
secp256k1_hmac_sha256 hmac;
static const unsigned char zero[1] = {0x00};
static const unsigned char one[1] = {0x01};
memset(rng->v, 0x01, 32); /* RFC6979 3.2.b. */
memset(rng->k, 0x00, 32); /* RFC6979 3.2.c. */
/* RFC6979 3.2.d. */
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_write(&hmac, zero, 1);
secp256k1_hmac_sha256_write(&hmac, key, keylen);
secp256k1_hmac_sha256_finalize(&hmac, rng->k);
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_finalize(&hmac, rng->v);
/* RFC6979 3.2.f. */
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_write(&hmac, one, 1);
secp256k1_hmac_sha256_write(&hmac, key, keylen);
secp256k1_hmac_sha256_finalize(&hmac, rng->k);
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_finalize(&hmac, rng->v);
rng->retry = 0;
}
static void secp256k1_rfc6979_hmac_sha256_generate(secp256k1_rfc6979_hmac_sha256 *rng, unsigned char *out, size_t outlen) {
/* RFC6979 3.2.h. */
static const unsigned char zero[1] = {0x00};
if (rng->retry) {
secp256k1_hmac_sha256 hmac;
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_write(&hmac, zero, 1);
secp256k1_hmac_sha256_finalize(&hmac, rng->k);
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_finalize(&hmac, rng->v);
}
while (outlen > 0) {
secp256k1_hmac_sha256 hmac;
int now = outlen;
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_finalize(&hmac, rng->v);
if (now > 32) {
now = 32;
}
memcpy(out, rng->v, now);
out += now;
outlen -= now;
}
rng->retry = 1;
}
static void secp256k1_rfc6979_hmac_sha256_finalize(secp256k1_rfc6979_hmac_sha256 *rng) {
memset(rng->k, 0, 32);
memset(rng->v, 0, 32);
rng->retry = 0;
}
#undef BE32
#undef Round
#undef sigma1
#undef sigma0
#undef Sigma1
#undef Sigma0
#undef Maj
#undef Ch
#endif /* SECP256K1_HASH_IMPL_H */

View File

@ -1,446 +0,0 @@
/*
* Copyright 2013 Google Inc.
* Copyright 2014-2016 the libsecp256k1 contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.bitcoin;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.math.BigInteger;
import com.google.common.base.Preconditions;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
import static org.bitcoin.NativeSecp256k1Util.*;
/**
* <p>This class holds native methods to handle ECDSA verification.</p>
*
* <p>You can find an example library that can be used for this at https://github.com/bitcoin/secp256k1</p>
*
* <p>To build secp256k1 for use with bitcoinj, run
* `./configure --enable-jni --enable-experimental --enable-module-ecdh`
* and `make` then copy `.libs/libsecp256k1.so` to your system library path
* or point the JVM to the folder containing it with -Djava.library.path
* </p>
*/
public class NativeSecp256k1 {
private static final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
private static final Lock r = rwl.readLock();
private static final Lock w = rwl.writeLock();
private static ThreadLocal<ByteBuffer> nativeECDSABuffer = new ThreadLocal<ByteBuffer>();
/**
* Verifies the given secp256k1 signature in native code.
* Calling when enabled == false is undefined (probably library not loaded)
*
* @param data The data which was signed, must be exactly 32 bytes
* @param signature The signature
* @param pub The public key which did the signing
*/
public static boolean verify(byte[] data, byte[] signature, byte[] pub) throws AssertFailException{
Preconditions.checkArgument(data.length == 32 && signature.length <= 520 && pub.length <= 520);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < 520) {
byteBuff = ByteBuffer.allocateDirect(520);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(data);
byteBuff.put(signature);
byteBuff.put(pub);
byte[][] retByteArray;
r.lock();
try {
return secp256k1_ecdsa_verify(byteBuff, Secp256k1Context.getContext(), signature.length, pub.length) == 1;
} finally {
r.unlock();
}
}
/**
* libsecp256k1 Create an ECDSA signature.
*
* @param data Message hash, 32 bytes
* @param key Secret key, 32 bytes
*
* Return values
* @param sig byte array of signature
*/
public static byte[] sign(byte[] data, byte[] sec) throws AssertFailException{
Preconditions.checkArgument(data.length == 32 && sec.length <= 32);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < 32 + 32) {
byteBuff = ByteBuffer.allocateDirect(32 + 32);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(data);
byteBuff.put(sec);
byte[][] retByteArray;
r.lock();
try {
retByteArray = secp256k1_ecdsa_sign(byteBuff, Secp256k1Context.getContext());
} finally {
r.unlock();
}
byte[] sigArr = retByteArray[0];
int sigLen = new BigInteger(new byte[] { retByteArray[1][0] }).intValue();
int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue();
assertEquals(sigArr.length, sigLen, "Got bad signature length.");
return retVal == 0 ? new byte[0] : sigArr;
}
/**
* libsecp256k1 Seckey Verify - returns 1 if valid, 0 if invalid
*
* @param seckey ECDSA Secret key, 32 bytes
*/
public static boolean secKeyVerify(byte[] seckey) {
Preconditions.checkArgument(seckey.length == 32);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < seckey.length) {
byteBuff = ByteBuffer.allocateDirect(seckey.length);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(seckey);
r.lock();
try {
return secp256k1_ec_seckey_verify(byteBuff,Secp256k1Context.getContext()) == 1;
} finally {
r.unlock();
}
}
/**
* libsecp256k1 Compute Pubkey - computes public key from secret key
*
* @param seckey ECDSA Secret key, 32 bytes
*
* Return values
* @param pubkey ECDSA Public key, 33 or 65 bytes
*/
//TODO add a 'compressed' arg
public static byte[] computePubkey(byte[] seckey) throws AssertFailException{
Preconditions.checkArgument(seckey.length == 32);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < seckey.length) {
byteBuff = ByteBuffer.allocateDirect(seckey.length);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(seckey);
byte[][] retByteArray;
r.lock();
try {
retByteArray = secp256k1_ec_pubkey_create(byteBuff, Secp256k1Context.getContext());
} finally {
r.unlock();
}
byte[] pubArr = retByteArray[0];
int pubLen = new BigInteger(new byte[] { retByteArray[1][0] }).intValue();
int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue();
assertEquals(pubArr.length, pubLen, "Got bad pubkey length.");
return retVal == 0 ? new byte[0]: pubArr;
}
/**
* libsecp256k1 Cleanup - This destroys the secp256k1 context object
* This should be called at the end of the program for proper cleanup of the context.
*/
public static synchronized void cleanup() {
w.lock();
try {
secp256k1_destroy_context(Secp256k1Context.getContext());
} finally {
w.unlock();
}
}
public static long cloneContext() {
r.lock();
try {
return secp256k1_ctx_clone(Secp256k1Context.getContext());
} finally { r.unlock(); }
}
/**
* libsecp256k1 PrivKey Tweak-Mul - Tweak privkey by multiplying to it
*
* @param tweak some bytes to tweak with
* @param seckey 32-byte seckey
*/
public static byte[] privKeyTweakMul(byte[] privkey, byte[] tweak) throws AssertFailException{
Preconditions.checkArgument(privkey.length == 32);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < privkey.length + tweak.length) {
byteBuff = ByteBuffer.allocateDirect(privkey.length + tweak.length);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(privkey);
byteBuff.put(tweak);
byte[][] retByteArray;
r.lock();
try {
retByteArray = secp256k1_privkey_tweak_mul(byteBuff,Secp256k1Context.getContext());
} finally {
r.unlock();
}
byte[] privArr = retByteArray[0];
int privLen = (byte) new BigInteger(new byte[] { retByteArray[1][0] }).intValue() & 0xFF;
int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue();
assertEquals(privArr.length, privLen, "Got bad pubkey length.");
assertEquals(retVal, 1, "Failed return value check.");
return privArr;
}
/**
* libsecp256k1 PrivKey Tweak-Add - Tweak privkey by adding to it
*
* @param tweak some bytes to tweak with
* @param seckey 32-byte seckey
*/
public static byte[] privKeyTweakAdd(byte[] privkey, byte[] tweak) throws AssertFailException{
Preconditions.checkArgument(privkey.length == 32);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < privkey.length + tweak.length) {
byteBuff = ByteBuffer.allocateDirect(privkey.length + tweak.length);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(privkey);
byteBuff.put(tweak);
byte[][] retByteArray;
r.lock();
try {
retByteArray = secp256k1_privkey_tweak_add(byteBuff,Secp256k1Context.getContext());
} finally {
r.unlock();
}
byte[] privArr = retByteArray[0];
int privLen = (byte) new BigInteger(new byte[] { retByteArray[1][0] }).intValue() & 0xFF;
int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue();
assertEquals(privArr.length, privLen, "Got bad pubkey length.");
assertEquals(retVal, 1, "Failed return value check.");
return privArr;
}
/**
* libsecp256k1 PubKey Tweak-Add - Tweak pubkey by adding to it
*
* @param tweak some bytes to tweak with
* @param pubkey 32-byte seckey
*/
public static byte[] pubKeyTweakAdd(byte[] pubkey, byte[] tweak) throws AssertFailException{
Preconditions.checkArgument(pubkey.length == 33 || pubkey.length == 65);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < pubkey.length + tweak.length) {
byteBuff = ByteBuffer.allocateDirect(pubkey.length + tweak.length);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(pubkey);
byteBuff.put(tweak);
byte[][] retByteArray;
r.lock();
try {
retByteArray = secp256k1_pubkey_tweak_add(byteBuff,Secp256k1Context.getContext(), pubkey.length);
} finally {
r.unlock();
}
byte[] pubArr = retByteArray[0];
int pubLen = (byte) new BigInteger(new byte[] { retByteArray[1][0] }).intValue() & 0xFF;
int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue();
assertEquals(pubArr.length, pubLen, "Got bad pubkey length.");
assertEquals(retVal, 1, "Failed return value check.");
return pubArr;
}
/**
* libsecp256k1 PubKey Tweak-Mul - Tweak pubkey by multiplying to it
*
* @param tweak some bytes to tweak with
* @param pubkey 32-byte seckey
*/
public static byte[] pubKeyTweakMul(byte[] pubkey, byte[] tweak) throws AssertFailException{
Preconditions.checkArgument(pubkey.length == 33 || pubkey.length == 65);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < pubkey.length + tweak.length) {
byteBuff = ByteBuffer.allocateDirect(pubkey.length + tweak.length);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(pubkey);
byteBuff.put(tweak);
byte[][] retByteArray;
r.lock();
try {
retByteArray = secp256k1_pubkey_tweak_mul(byteBuff,Secp256k1Context.getContext(), pubkey.length);
} finally {
r.unlock();
}
byte[] pubArr = retByteArray[0];
int pubLen = (byte) new BigInteger(new byte[] { retByteArray[1][0] }).intValue() & 0xFF;
int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue();
assertEquals(pubArr.length, pubLen, "Got bad pubkey length.");
assertEquals(retVal, 1, "Failed return value check.");
return pubArr;
}
/**
* libsecp256k1 create ECDH secret - constant time ECDH calculation
*
* @param seckey byte array of secret key used in exponentiaion
* @param pubkey byte array of public key used in exponentiaion
*/
public static byte[] createECDHSecret(byte[] seckey, byte[] pubkey) throws AssertFailException{
Preconditions.checkArgument(seckey.length <= 32 && pubkey.length <= 65);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < 32 + pubkey.length) {
byteBuff = ByteBuffer.allocateDirect(32 + pubkey.length);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(seckey);
byteBuff.put(pubkey);
byte[][] retByteArray;
r.lock();
try {
retByteArray = secp256k1_ecdh(byteBuff, Secp256k1Context.getContext(), pubkey.length);
} finally {
r.unlock();
}
byte[] resArr = retByteArray[0];
int retVal = new BigInteger(new byte[] { retByteArray[1][0] }).intValue();
assertEquals(resArr.length, 32, "Got bad result length.");
assertEquals(retVal, 1, "Failed return value check.");
return resArr;
}
/**
* libsecp256k1 randomize - updates the context randomization
*
* @param seed 32-byte random seed
*/
public static synchronized boolean randomize(byte[] seed) throws AssertFailException{
Preconditions.checkArgument(seed.length == 32 || seed == null);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < seed.length) {
byteBuff = ByteBuffer.allocateDirect(seed.length);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(seed);
w.lock();
try {
return secp256k1_context_randomize(byteBuff, Secp256k1Context.getContext()) == 1;
} finally {
w.unlock();
}
}
private static native long secp256k1_ctx_clone(long context);
private static native int secp256k1_context_randomize(ByteBuffer byteBuff, long context);
private static native byte[][] secp256k1_privkey_tweak_add(ByteBuffer byteBuff, long context);
private static native byte[][] secp256k1_privkey_tweak_mul(ByteBuffer byteBuff, long context);
private static native byte[][] secp256k1_pubkey_tweak_add(ByteBuffer byteBuff, long context, int pubLen);
private static native byte[][] secp256k1_pubkey_tweak_mul(ByteBuffer byteBuff, long context, int pubLen);
private static native void secp256k1_destroy_context(long context);
private static native int secp256k1_ecdsa_verify(ByteBuffer byteBuff, long context, int sigLen, int pubLen);
private static native byte[][] secp256k1_ecdsa_sign(ByteBuffer byteBuff, long context);
private static native int secp256k1_ec_seckey_verify(ByteBuffer byteBuff, long context);
private static native byte[][] secp256k1_ec_pubkey_create(ByteBuffer byteBuff, long context);
private static native byte[][] secp256k1_ec_pubkey_parse(ByteBuffer byteBuff, long context, int inputLen);
private static native byte[][] secp256k1_ecdh(ByteBuffer byteBuff, long context, int inputLen);
}

View File

@ -1,226 +0,0 @@
package org.bitcoin;
import com.google.common.io.BaseEncoding;
import java.util.Arrays;
import java.math.BigInteger;
import javax.xml.bind.DatatypeConverter;
import static org.bitcoin.NativeSecp256k1Util.*;
/**
* This class holds test cases defined for testing this library.
*/
public class NativeSecp256k1Test {
//TODO improve comments/add more tests
/**
* This tests verify() for a valid signature
*/
public static void testVerifyPos() throws AssertFailException{
boolean result = false;
byte[] data = BaseEncoding.base16().lowerCase().decode("CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A90".toLowerCase()); //sha256hash of "testing"
byte[] sig = BaseEncoding.base16().lowerCase().decode("3044022079BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F817980220294F14E883B3F525B5367756C2A11EF6CF84B730B36C17CB0C56F0AAB2C98589".toLowerCase());
byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase());
result = NativeSecp256k1.verify( data, sig, pub);
assertEquals( result, true , "testVerifyPos");
}
/**
* This tests verify() for a non-valid signature
*/
public static void testVerifyNeg() throws AssertFailException{
boolean result = false;
byte[] data = BaseEncoding.base16().lowerCase().decode("CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A91".toLowerCase()); //sha256hash of "testing"
byte[] sig = BaseEncoding.base16().lowerCase().decode("3044022079BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F817980220294F14E883B3F525B5367756C2A11EF6CF84B730B36C17CB0C56F0AAB2C98589".toLowerCase());
byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase());
result = NativeSecp256k1.verify( data, sig, pub);
//System.out.println(" TEST " + new BigInteger(1, resultbytes).toString(16));
assertEquals( result, false , "testVerifyNeg");
}
/**
* This tests secret key verify() for a valid secretkey
*/
public static void testSecKeyVerifyPos() throws AssertFailException{
boolean result = false;
byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
result = NativeSecp256k1.secKeyVerify( sec );
//System.out.println(" TEST " + new BigInteger(1, resultbytes).toString(16));
assertEquals( result, true , "testSecKeyVerifyPos");
}
/**
* This tests secret key verify() for an invalid secretkey
*/
public static void testSecKeyVerifyNeg() throws AssertFailException{
boolean result = false;
byte[] sec = BaseEncoding.base16().lowerCase().decode("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF".toLowerCase());
result = NativeSecp256k1.secKeyVerify( sec );
//System.out.println(" TEST " + new BigInteger(1, resultbytes).toString(16));
assertEquals( result, false , "testSecKeyVerifyNeg");
}
/**
* This tests public key create() for a valid secretkey
*/
public static void testPubKeyCreatePos() throws AssertFailException{
byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
byte[] resultArr = NativeSecp256k1.computePubkey( sec);
String pubkeyString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( pubkeyString , "04C591A8FF19AC9C4E4E5793673B83123437E975285E7B442F4EE2654DFFCA5E2D2103ED494718C697AC9AEBCFD19612E224DB46661011863ED2FC54E71861E2A6" , "testPubKeyCreatePos");
}
/**
* This tests public key create() for a invalid secretkey
*/
public static void testPubKeyCreateNeg() throws AssertFailException{
byte[] sec = BaseEncoding.base16().lowerCase().decode("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF".toLowerCase());
byte[] resultArr = NativeSecp256k1.computePubkey( sec);
String pubkeyString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( pubkeyString, "" , "testPubKeyCreateNeg");
}
/**
* This tests sign() for a valid secretkey
*/
public static void testSignPos() throws AssertFailException{
byte[] data = BaseEncoding.base16().lowerCase().decode("CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A90".toLowerCase()); //sha256hash of "testing"
byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
byte[] resultArr = NativeSecp256k1.sign(data, sec);
String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( sigString, "30440220182A108E1448DC8F1FB467D06A0F3BB8EA0533584CB954EF8DA112F1D60E39A202201C66F36DA211C087F3AF88B50EDF4F9BDAA6CF5FD6817E74DCA34DB12390C6E9" , "testSignPos");
}
/**
* This tests sign() for a invalid secretkey
*/
public static void testSignNeg() throws AssertFailException{
byte[] data = BaseEncoding.base16().lowerCase().decode("CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A90".toLowerCase()); //sha256hash of "testing"
byte[] sec = BaseEncoding.base16().lowerCase().decode("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF".toLowerCase());
byte[] resultArr = NativeSecp256k1.sign(data, sec);
String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( sigString, "" , "testSignNeg");
}
/**
* This tests private key tweak-add
*/
public static void testPrivKeyTweakAdd_1() throws AssertFailException {
byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
byte[] data = BaseEncoding.base16().lowerCase().decode("3982F19BEF1615BCCFBB05E321C10E1D4CBA3DF0E841C2E41EEB6016347653C3".toLowerCase()); //sha256hash of "tweak"
byte[] resultArr = NativeSecp256k1.privKeyTweakAdd( sec , data );
String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( sigString , "A168571E189E6F9A7E2D657A4B53AE99B909F7E712D1C23CED28093CD57C88F3" , "testPrivKeyAdd_1");
}
/**
* This tests private key tweak-mul
*/
public static void testPrivKeyTweakMul_1() throws AssertFailException {
byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
byte[] data = BaseEncoding.base16().lowerCase().decode("3982F19BEF1615BCCFBB05E321C10E1D4CBA3DF0E841C2E41EEB6016347653C3".toLowerCase()); //sha256hash of "tweak"
byte[] resultArr = NativeSecp256k1.privKeyTweakMul( sec , data );
String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( sigString , "97F8184235F101550F3C71C927507651BD3F1CDB4A5A33B8986ACF0DEE20FFFC" , "testPrivKeyMul_1");
}
/**
* This tests private key tweak-add uncompressed
*/
public static void testPrivKeyTweakAdd_2() throws AssertFailException {
byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase());
byte[] data = BaseEncoding.base16().lowerCase().decode("3982F19BEF1615BCCFBB05E321C10E1D4CBA3DF0E841C2E41EEB6016347653C3".toLowerCase()); //sha256hash of "tweak"
byte[] resultArr = NativeSecp256k1.pubKeyTweakAdd( pub , data );
String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( sigString , "0411C6790F4B663CCE607BAAE08C43557EDC1A4D11D88DFCB3D841D0C6A941AF525A268E2A863C148555C48FB5FBA368E88718A46E205FABC3DBA2CCFFAB0796EF" , "testPrivKeyAdd_2");
}
/**
* This tests private key tweak-mul uncompressed
*/
public static void testPrivKeyTweakMul_2() throws AssertFailException {
byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase());
byte[] data = BaseEncoding.base16().lowerCase().decode("3982F19BEF1615BCCFBB05E321C10E1D4CBA3DF0E841C2E41EEB6016347653C3".toLowerCase()); //sha256hash of "tweak"
byte[] resultArr = NativeSecp256k1.pubKeyTweakMul( pub , data );
String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( sigString , "04E0FE6FE55EBCA626B98A807F6CAF654139E14E5E3698F01A9A658E21DC1D2791EC060D4F412A794D5370F672BC94B722640B5F76914151CFCA6E712CA48CC589" , "testPrivKeyMul_2");
}
/**
* This tests seed randomization
*/
public static void testRandomize() throws AssertFailException {
byte[] seed = BaseEncoding.base16().lowerCase().decode("A441B15FE9A3CF56661190A0B93B9DEC7D04127288CC87250967CF3B52894D11".toLowerCase()); //sha256hash of "random"
boolean result = NativeSecp256k1.randomize(seed);
assertEquals( result, true, "testRandomize");
}
public static void testCreateECDHSecret() throws AssertFailException{
byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase());
byte[] resultArr = NativeSecp256k1.createECDHSecret(sec, pub);
String ecdhString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( ecdhString, "2A2A67007A926E6594AF3EB564FC74005B37A9C8AEF2033C4552051B5C87F043" , "testCreateECDHSecret");
}
public static void main(String[] args) throws AssertFailException{
System.out.println("\n libsecp256k1 enabled: " + Secp256k1Context.isEnabled() + "\n");
assertEquals( Secp256k1Context.isEnabled(), true, "isEnabled" );
//Test verify() success/fail
testVerifyPos();
testVerifyNeg();
//Test secKeyVerify() success/fail
testSecKeyVerifyPos();
testSecKeyVerifyNeg();
//Test computePubkey() success/fail
testPubKeyCreatePos();
testPubKeyCreateNeg();
//Test sign() success/fail
testSignPos();
testSignNeg();
//Test privKeyTweakAdd() 1
testPrivKeyTweakAdd_1();
//Test privKeyTweakMul() 2
testPrivKeyTweakMul_1();
//Test privKeyTweakAdd() 3
testPrivKeyTweakAdd_2();
//Test privKeyTweakMul() 4
testPrivKeyTweakMul_2();
//Test randomize()
testRandomize();
//Test ECDH
testCreateECDHSecret();
NativeSecp256k1.cleanup();
System.out.println(" All tests passed." );
}
}

View File

@ -1,45 +0,0 @@
/*
* Copyright 2014-2016 the libsecp256k1 contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.bitcoin;
public class NativeSecp256k1Util{
public static void assertEquals( int val, int val2, String message ) throws AssertFailException{
if( val != val2 )
throw new AssertFailException("FAIL: " + message);
}
public static void assertEquals( boolean val, boolean val2, String message ) throws AssertFailException{
if( val != val2 )
throw new AssertFailException("FAIL: " + message);
else
System.out.println("PASS: " + message);
}
public static void assertEquals( String val, String val2, String message ) throws AssertFailException{
if( !val.equals(val2) )
throw new AssertFailException("FAIL: " + message);
else
System.out.println("PASS: " + message);
}
public static class AssertFailException extends Exception {
public AssertFailException(String message) {
super( message );
}
}
}

View File

@ -1,51 +0,0 @@
/*
* Copyright 2014-2016 the libsecp256k1 contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.bitcoin;
/**
* This class holds the context reference used in native methods
* to handle ECDSA operations.
*/
public class Secp256k1Context {
private static final boolean enabled; //true if the library is loaded
private static final long context; //ref to pointer to context obj
static { //static initializer
boolean isEnabled = true;
long contextRef = -1;
try {
System.loadLibrary("secp256k1");
contextRef = secp256k1_init_context();
} catch (UnsatisfiedLinkError e) {
System.out.println("UnsatisfiedLinkError: " + e.toString());
isEnabled = false;
}
enabled = isEnabled;
context = contextRef;
}
public static boolean isEnabled() {
return enabled;
}
public static long getContext() {
if(!enabled) return -1; //sanity check
return context;
}
private static native long secp256k1_init_context();
}

View File

@ -1,377 +0,0 @@
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include "org_bitcoin_NativeSecp256k1.h"
#include "include/secp256k1.h"
#include "include/secp256k1_ecdh.h"
#include "include/secp256k1_recovery.h"
SECP256K1_API jlong JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ctx_1clone
(JNIEnv* env, jclass classObject, jlong ctx_l)
{
const secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
jlong ctx_clone_l = (uintptr_t) secp256k1_context_clone(ctx);
(void)classObject;(void)env;
return ctx_clone_l;
}
SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1context_1randomize
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
const unsigned char* seed = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
(void)classObject;
return secp256k1_context_randomize(ctx, seed);
}
SECP256K1_API void JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1destroy_1context
(JNIEnv* env, jclass classObject, jlong ctx_l)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
secp256k1_context_destroy(ctx);
(void)classObject;(void)env;
}
SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1verify
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint siglen, jint publen)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
unsigned char* data = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
const unsigned char* sigdata = { (unsigned char*) (data + 32) };
const unsigned char* pubdata = { (unsigned char*) (data + siglen + 32) };
secp256k1_ecdsa_signature sig;
secp256k1_pubkey pubkey;
int ret = secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigdata, siglen);
if( ret ) {
ret = secp256k1_ec_pubkey_parse(ctx, &pubkey, pubdata, publen);
if( ret ) {
ret = secp256k1_ecdsa_verify(ctx, &sig, data, &pubkey);
}
}
(void)classObject;
return ret;
}
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1sign
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
unsigned char* data = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
unsigned char* secKey = (unsigned char*) (data + 32);
jobjectArray retArray;
jbyteArray sigArray, intsByteArray;
unsigned char intsarray[2];
secp256k1_ecdsa_signature sig[72];
int ret = secp256k1_ecdsa_sign(ctx, sig, data, secKey, NULL, NULL );
unsigned char outputSer[72];
size_t outputLen = 72;
if( ret ) {
int ret2 = secp256k1_ecdsa_signature_serialize_der(ctx,outputSer, &outputLen, sig ); (void)ret2;
}
intsarray[0] = outputLen;
intsarray[1] = ret;
retArray = (*env)->NewObjectArray(env, 2,
(*env)->FindClass(env, "[B"),
(*env)->NewByteArray(env, 1));
sigArray = (*env)->NewByteArray(env, outputLen);
(*env)->SetByteArrayRegion(env, sigArray, 0, outputLen, (jbyte*)outputSer);
(*env)->SetObjectArrayElement(env, retArray, 0, sigArray);
intsByteArray = (*env)->NewByteArray(env, 2);
(*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray);
(*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
(void)classObject;
return retArray;
}
SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1seckey_1verify
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
unsigned char* secKey = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
(void)classObject;
return secp256k1_ec_seckey_verify(ctx, secKey);
}
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1pubkey_1create
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
const unsigned char* secKey = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
secp256k1_pubkey pubkey;
jobjectArray retArray;
jbyteArray pubkeyArray, intsByteArray;
unsigned char intsarray[2];
int ret = secp256k1_ec_pubkey_create(ctx, &pubkey, secKey);
unsigned char outputSer[65];
size_t outputLen = 65;
if( ret ) {
int ret2 = secp256k1_ec_pubkey_serialize(ctx,outputSer, &outputLen, &pubkey,SECP256K1_EC_UNCOMPRESSED );(void)ret2;
}
intsarray[0] = outputLen;
intsarray[1] = ret;
retArray = (*env)->NewObjectArray(env, 2,
(*env)->FindClass(env, "[B"),
(*env)->NewByteArray(env, 1));
pubkeyArray = (*env)->NewByteArray(env, outputLen);
(*env)->SetByteArrayRegion(env, pubkeyArray, 0, outputLen, (jbyte*)outputSer);
(*env)->SetObjectArrayElement(env, retArray, 0, pubkeyArray);
intsByteArray = (*env)->NewByteArray(env, 2);
(*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray);
(*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
(void)classObject;
return retArray;
}
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1privkey_1tweak_1add
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
unsigned char* privkey = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
const unsigned char* tweak = (unsigned char*) (privkey + 32);
jobjectArray retArray;
jbyteArray privArray, intsByteArray;
unsigned char intsarray[2];
int privkeylen = 32;
int ret = secp256k1_ec_privkey_tweak_add(ctx, privkey, tweak);
intsarray[0] = privkeylen;
intsarray[1] = ret;
retArray = (*env)->NewObjectArray(env, 2,
(*env)->FindClass(env, "[B"),
(*env)->NewByteArray(env, 1));
privArray = (*env)->NewByteArray(env, privkeylen);
(*env)->SetByteArrayRegion(env, privArray, 0, privkeylen, (jbyte*)privkey);
(*env)->SetObjectArrayElement(env, retArray, 0, privArray);
intsByteArray = (*env)->NewByteArray(env, 2);
(*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray);
(*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
(void)classObject;
return retArray;
}
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1privkey_1tweak_1mul
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
unsigned char* privkey = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
const unsigned char* tweak = (unsigned char*) (privkey + 32);
jobjectArray retArray;
jbyteArray privArray, intsByteArray;
unsigned char intsarray[2];
int privkeylen = 32;
int ret = secp256k1_ec_privkey_tweak_mul(ctx, privkey, tweak);
intsarray[0] = privkeylen;
intsarray[1] = ret;
retArray = (*env)->NewObjectArray(env, 2,
(*env)->FindClass(env, "[B"),
(*env)->NewByteArray(env, 1));
privArray = (*env)->NewByteArray(env, privkeylen);
(*env)->SetByteArrayRegion(env, privArray, 0, privkeylen, (jbyte*)privkey);
(*env)->SetObjectArrayElement(env, retArray, 0, privArray);
intsByteArray = (*env)->NewByteArray(env, 2);
(*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray);
(*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
(void)classObject;
return retArray;
}
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1pubkey_1tweak_1add
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint publen)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
/* secp256k1_pubkey* pubkey = (secp256k1_pubkey*) (*env)->GetDirectBufferAddress(env, byteBufferObject);*/
unsigned char* pkey = (*env)->GetDirectBufferAddress(env, byteBufferObject);
const unsigned char* tweak = (unsigned char*) (pkey + publen);
jobjectArray retArray;
jbyteArray pubArray, intsByteArray;
unsigned char intsarray[2];
unsigned char outputSer[65];
size_t outputLen = 65;
secp256k1_pubkey pubkey;
int ret = secp256k1_ec_pubkey_parse(ctx, &pubkey, pkey, publen);
if( ret ) {
ret = secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, tweak);
}
if( ret ) {
int ret2 = secp256k1_ec_pubkey_serialize(ctx,outputSer, &outputLen, &pubkey,SECP256K1_EC_UNCOMPRESSED );(void)ret2;
}
intsarray[0] = outputLen;
intsarray[1] = ret;
retArray = (*env)->NewObjectArray(env, 2,
(*env)->FindClass(env, "[B"),
(*env)->NewByteArray(env, 1));
pubArray = (*env)->NewByteArray(env, outputLen);
(*env)->SetByteArrayRegion(env, pubArray, 0, outputLen, (jbyte*)outputSer);
(*env)->SetObjectArrayElement(env, retArray, 0, pubArray);
intsByteArray = (*env)->NewByteArray(env, 2);
(*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray);
(*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
(void)classObject;
return retArray;
}
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1pubkey_1tweak_1mul
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint publen)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
unsigned char* pkey = (*env)->GetDirectBufferAddress(env, byteBufferObject);
const unsigned char* tweak = (unsigned char*) (pkey + publen);
jobjectArray retArray;
jbyteArray pubArray, intsByteArray;
unsigned char intsarray[2];
unsigned char outputSer[65];
size_t outputLen = 65;
secp256k1_pubkey pubkey;
int ret = secp256k1_ec_pubkey_parse(ctx, &pubkey, pkey, publen);
if ( ret ) {
ret = secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, tweak);
}
if( ret ) {
int ret2 = secp256k1_ec_pubkey_serialize(ctx,outputSer, &outputLen, &pubkey,SECP256K1_EC_UNCOMPRESSED );(void)ret2;
}
intsarray[0] = outputLen;
intsarray[1] = ret;
retArray = (*env)->NewObjectArray(env, 2,
(*env)->FindClass(env, "[B"),
(*env)->NewByteArray(env, 1));
pubArray = (*env)->NewByteArray(env, outputLen);
(*env)->SetByteArrayRegion(env, pubArray, 0, outputLen, (jbyte*)outputSer);
(*env)->SetObjectArrayElement(env, retArray, 0, pubArray);
intsByteArray = (*env)->NewByteArray(env, 2);
(*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray);
(*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
(void)classObject;
return retArray;
}
SECP256K1_API jlong JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1pubkey_1combine
(JNIEnv * env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint numkeys)
{
(void)classObject;(void)env;(void)byteBufferObject;(void)ctx_l;(void)numkeys;
return 0;
}
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdh
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint publen)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
const unsigned char* secdata = (*env)->GetDirectBufferAddress(env, byteBufferObject);
const unsigned char* pubdata = (const unsigned char*) (secdata + 32);
jobjectArray retArray;
jbyteArray outArray, intsByteArray;
unsigned char intsarray[1];
secp256k1_pubkey pubkey;
unsigned char nonce_res[32];
size_t outputLen = 32;
int ret = secp256k1_ec_pubkey_parse(ctx, &pubkey, pubdata, publen);
if (ret) {
ret = secp256k1_ecdh(
ctx,
nonce_res,
&pubkey,
secdata
);
}
intsarray[0] = ret;
retArray = (*env)->NewObjectArray(env, 2,
(*env)->FindClass(env, "[B"),
(*env)->NewByteArray(env, 1));
outArray = (*env)->NewByteArray(env, outputLen);
(*env)->SetByteArrayRegion(env, outArray, 0, 32, (jbyte*)nonce_res);
(*env)->SetObjectArrayElement(env, retArray, 0, outArray);
intsByteArray = (*env)->NewByteArray(env, 1);
(*env)->SetByteArrayRegion(env, intsByteArray, 0, 1, (jbyte*)intsarray);
(*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
(void)classObject;
return retArray;
}

View File

@ -1,119 +0,0 @@
/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
#include "include/secp256k1.h"
/* Header for class org_bitcoin_NativeSecp256k1 */
#ifndef _Included_org_bitcoin_NativeSecp256k1
#define _Included_org_bitcoin_NativeSecp256k1
#ifdef __cplusplus
extern "C" {
#endif
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_ctx_clone
* Signature: (J)J
*/
SECP256K1_API jlong JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ctx_1clone
(JNIEnv *, jclass, jlong);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_context_randomize
* Signature: (Ljava/nio/ByteBuffer;J)I
*/
SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1context_1randomize
(JNIEnv *, jclass, jobject, jlong);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_privkey_tweak_add
* Signature: (Ljava/nio/ByteBuffer;J)[[B
*/
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1privkey_1tweak_1add
(JNIEnv *, jclass, jobject, jlong);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_privkey_tweak_mul
* Signature: (Ljava/nio/ByteBuffer;J)[[B
*/
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1privkey_1tweak_1mul
(JNIEnv *, jclass, jobject, jlong);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_pubkey_tweak_add
* Signature: (Ljava/nio/ByteBuffer;JI)[[B
*/
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1pubkey_1tweak_1add
(JNIEnv *, jclass, jobject, jlong, jint);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_pubkey_tweak_mul
* Signature: (Ljava/nio/ByteBuffer;JI)[[B
*/
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1pubkey_1tweak_1mul
(JNIEnv *, jclass, jobject, jlong, jint);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_destroy_context
* Signature: (J)V
*/
SECP256K1_API void JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1destroy_1context
(JNIEnv *, jclass, jlong);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_ecdsa_verify
* Signature: (Ljava/nio/ByteBuffer;JII)I
*/
SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1verify
(JNIEnv *, jclass, jobject, jlong, jint, jint);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_ecdsa_sign
* Signature: (Ljava/nio/ByteBuffer;J)[[B
*/
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1sign
(JNIEnv *, jclass, jobject, jlong);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_ec_seckey_verify
* Signature: (Ljava/nio/ByteBuffer;J)I
*/
SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1seckey_1verify
(JNIEnv *, jclass, jobject, jlong);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_ec_pubkey_create
* Signature: (Ljava/nio/ByteBuffer;J)[[B
*/
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1pubkey_1create
(JNIEnv *, jclass, jobject, jlong);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_ec_pubkey_parse
* Signature: (Ljava/nio/ByteBuffer;JI)[[B
*/
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1pubkey_1parse
(JNIEnv *, jclass, jobject, jlong, jint);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_ecdh
* Signature: (Ljava/nio/ByteBuffer;JI)[[B
*/
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdh
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint publen);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -1,15 +0,0 @@
#include <stdlib.h>
#include <stdint.h>
#include "org_bitcoin_Secp256k1Context.h"
#include "include/secp256k1.h"
SECP256K1_API jlong JNICALL Java_org_bitcoin_Secp256k1Context_secp256k1_1init_1context
(JNIEnv* env, jclass classObject)
{
secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
(void)classObject;(void)env;
return (uintptr_t)ctx;
}

View File

@ -1,22 +0,0 @@
/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
#include "include/secp256k1.h"
/* Header for class org_bitcoin_Secp256k1Context */
#ifndef _Included_org_bitcoin_Secp256k1Context
#define _Included_org_bitcoin_Secp256k1Context
#ifdef __cplusplus
extern "C" {
#endif
/*
* Class: org_bitcoin_Secp256k1Context
* Method: secp256k1_init_context
* Signature: ()J
*/
SECP256K1_API jlong JNICALL Java_org_bitcoin_Secp256k1Context_secp256k1_1init_1context
(JNIEnv *, jclass);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -1,12 +0,0 @@
include_HEADERS += include/secp256k1_bulletproofs.h
noinst_HEADERS += src/modules/bulletproofs/inner_product_impl.h
noinst_HEADERS += src/modules/bulletproofs/rangeproof_impl.h
noinst_HEADERS += src/modules/bulletproofs/main_impl.h
noinst_HEADERS += src/modules/bulletproofs/tests_impl.h
noinst_HEADERS += src/modules/bulletproofs/util.h
if USE_BENCHMARK
noinst_PROGRAMS += bench_bulletproof
bench_bulletproof_SOURCES = src/bench_bulletproof.c
bench_bulletproof_LDADD = libsecp256k1.la $(SECP_LIBS)
bench_bulletproof_LDFLAGS = -static
endif

View File

@ -1,848 +0,0 @@
/**********************************************************************
* Copyright (c) 2018 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODULE_BULLETPROOF_INNER_PRODUCT_IMPL
#define SECP256K1_MODULE_BULLETPROOF_INNER_PRODUCT_IMPL
#include "group.h"
#include "scalar.h"
#include "modules/bulletproofs/main_impl.h"
#include "modules/bulletproofs/util.h"
#define POPCOUNT(x) (__builtin_popcountl((unsigned long)(x))) /* TODO make these portable */
#define CTZ(x) (__builtin_ctzl((unsigned long)(x)))
/* Number of scalars that should remain at the end of a recursive proof. The paper
* uses 2, by reducing the scalars as far as possible. We stop one recursive step
* early, trading two points (L, R) for two scalars, which reduces verification
* and prover cost.
*
* For the most part, all comments assume this value is at 4.
*/
#define IP_AB_SCALARS 4
/* Bulletproof inner products consist of the four scalars and `2[log2(n) - 1]` points
* `a_1`, `a_2`, `b_1`, `b_2`, `L_i` and `R_i`, where `i` ranges from 0 to `log2(n)-1`.
*
* The prover takes as input a point `P` and scalar `c`. It proves that there exist
* scalars `a_i`, `b_i` for `i` ranging from 0 to `n-1`, such that
* `P = sum_i [a_i G_i + b_i H_i]` and `<{a_i}, {b_i}> = c`.
* where `G_i` and `H_i` are standard NUMS generators.
*
* Verification of the proof comes down to a single multiexponentiation of the form
*
* P + (c - a_1*b_1 - a_2*b_2)*x*G
* - sum_{i=1}^n [s'_i*G_i + s_i*H_i]
* + sum_{i=1}^log2(n) [x_i^-2 L_i + x_i^2 R_i]
*
* which will equal infinity if the inner product proof is correct. Here
* - `G` is the standard secp generator
* - `x` is a hash of `commit` and is used to rerandomize `c`. See Protocol 2 vs Protocol 1 in the paper.
* - `x_i = H(x_{i-1} || L_i || R_i)`, where `x_{-1}` is passed through the `commit` variable and
* must be a commitment to `P` and `c`.
* - `s_i` and `s'_i` are computed as follows.
*
* Letting `i_j` be defined as 1 if `i & 2^j == 1`, and -1 otherwise,
* - For `i` from `1` to `n/2`, `s'_i = a_1 * prod_{j=1}^log2(n) x_j^i_j`
* - For `i` from `n/2 + 1` to `n`, `s'_i = a_2 * prod_{j=1}^log2(n) x_j^i_j`
* - For `i` from `1` to `n/2`, `s_i = b_1 * prod_{j=1}^log2(n) x_j^-i_j`
* - For `i` from `n/2 + 1` to `n`, `s_i = b_2 * prod_{j=1}^log2(n) x_j^-i_j`
*
* Observe that these can be computed iteratively by labelling the coefficients `s_i` for `i`
* from `0` to `2n-1` rather than 1-indexing and distinguishing between `s_i'`s and `s_i`s:
*
* Start with `s_0 = a_1 * prod_{j=1}^log2(n) x_j^-1`, then for later `s_i`s,
* - For `i` from `1` to `n/2 - 1`, multiply some earlier `s'_j` by some `x_k^2`
* - For `i = n/2`, multiply `s_{i-1} by `a_2/a_1`.
* - For `i` from `n/2 + 1` to `n - 1`, multiply some earlier `s'_j` by some `x_k^2`
* - For `i = n`, multiply `s'_{i-1}` by `b_1/a_2` to get `s_i`.
* - For `i` from `n + 1` to `3n/2 - 1`, multiply some earlier `s_j` by some `x_k^-2`
* - For `i = 3n/2`, multiply `s_{i-1}` by `b_2/b_1`.
* - For `i` from `3n/2 + 1` to `2n - 1`, multiply some earlier `s_j` by some `x_k^-2`
* where of course, the indices `j` and `k` must be chosen carefully.
*
* The bulk of `secp256k1_bulletproof_innerproduct_vfy_ecmult_callback` involves computing
* these indices, given `a_2/a_1`, `b_1/a_1`, `b_2/b_1`, and the `x_k^2`s as input. It
* computes `x_k^-2` as a side-effect of its other computation.
*/
typedef int (secp256k1_bulletproof_vfy_callback)(secp256k1_scalar *sc, secp256k1_ge *pt, secp256k1_scalar *randomizer, size_t idx, void *data);
/* used by callers to wrap a proof with surrounding context */
typedef struct {
const unsigned char *proof;
secp256k1_scalar p_offs;
secp256k1_scalar yinv;
unsigned char commit[32];
secp256k1_bulletproof_vfy_callback *rangeproof_cb;
void *rangeproof_cb_data;
size_t n_extra_rangeproof_points;
} secp256k1_bulletproof_innerproduct_context;
/* used internally */
typedef struct {
const secp256k1_bulletproof_innerproduct_context *proof;
secp256k1_scalar abinv[IP_AB_SCALARS];
secp256k1_scalar xsq[SECP256K1_BULLETPROOF_MAX_DEPTH + 1];
secp256k1_scalar xsqinv[SECP256K1_BULLETPROOF_MAX_DEPTH + 1];
secp256k1_scalar xsqinvy[SECP256K1_BULLETPROOF_MAX_DEPTH + 1];
secp256k1_scalar xcache[SECP256K1_BULLETPROOF_MAX_DEPTH + 1];
secp256k1_scalar xsqinv_mask;
const unsigned char *serialized_lr;
} secp256k1_bulletproof_innerproduct_vfy_data;
/* used by callers to modify the multiexp */
typedef struct {
size_t n_proofs;
secp256k1_scalar p_offs;
const secp256k1_ge *g;
const secp256k1_ge *geng;
const secp256k1_ge *genh;
size_t vec_len;
size_t lg_vec_len;
int shared_g;
secp256k1_scalar *randomizer;
secp256k1_bulletproof_innerproduct_vfy_data *proof;
} secp256k1_bulletproof_innerproduct_vfy_ecmult_context;
size_t secp256k1_bulletproof_innerproduct_proof_length(size_t n) {
if (n < IP_AB_SCALARS / 2) {
return 32 * (1 + 2 * n);
} else {
size_t bit_count = POPCOUNT(n);
size_t log = secp256k1_floor_lg(2 * n / IP_AB_SCALARS);
return 32 * (1 + 2 * (bit_count - 1 + log) + IP_AB_SCALARS) + (2*log + 7) / 8;
}
}
/* Our ecmult_multi function takes `(c - a*b)*x` directly and multiplies this by `G`. For every other
* (scalar, point) pair it calls the following callback function, which takes an index and outputs a
* pair. The function therefore has three regimes:
*
* For the first `n` invocations, it returns `(s'_i, G_i)` for `i` from 1 to `n`.
* For the next `n` invocations, it returns `(s_i, H_i)` for `i` from 1 to `n`.
* For the next `2*log2(n)` invocations it returns `(x_i^-2, L_i)` and `(x_i^2, R_i)`,
* alternating between the two choices, for `i` from 1 to `log2(n)`.
*
* For the remaining invocations it passes through to another callback, `rangeproof_cb_data` which
* computes `P`. The reason for this is that in practice `P` is usually defined by another multiexp
* rather than being a known point, and it is more efficient to compute one exponentiation.
*
* Inline we refer to the first `2n` coefficients as `s_i` for `i` from 0 to `2n-1`, since that
* is the more convenient indexing. In particular we describe (a) how the indices `j` and `k`,
* from the big comment block above, are chosen; and (b) when/how each `x_k^-2` is computed.
*/
static int secp256k1_bulletproof_innerproduct_vfy_ecmult_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data) {
secp256k1_bulletproof_innerproduct_vfy_ecmult_context *ctx = (secp256k1_bulletproof_innerproduct_vfy_ecmult_context *) data;
/* First 2N points use the standard Gi, Hi generators, and the scalars can be aggregated across proofs.
* Inside this if clause, `idx` corresponds to the index `i` in the big comment, and runs from 0 to `2n-1`.
* Also `ctx->vec_len` corresponds to `n`. */
if (idx < 2 * ctx->vec_len) {
/* Number of `a` scalars in the proof (same as number of `b` scalars in the proof). Will
* be 2 except for very small proofs that have fewer than 2 scalars as input. */
const size_t grouping = ctx->vec_len < IP_AB_SCALARS / 2 ? ctx->vec_len : IP_AB_SCALARS / 2;
const size_t lg_grouping = secp256k1_floor_lg(grouping);
size_t i;
VERIFY_CHECK(lg_grouping == 0 || lg_grouping == 1); /* TODO support higher IP_AB_SCALARS */
/* Determine whether we're multiplying by `G_i`s or `H_i`s. */
if (idx < ctx->vec_len) {
*pt = ctx->geng[idx];
} else {
*pt = ctx->genh[idx - ctx->vec_len];
}
secp256k1_scalar_clear(sc);
/* Loop over all the different inner product proofs we might be doing at once. Since they
* share generators `G_i` and `H_i`, we compute all of their scalars at once and add them.
* For each proof we start with the "seed value" `ctx->proof[i].xcache[0]` (see next comment
* for its meaning) from which every other scalar derived. We expect the caller to have
* randomized this to ensure that this wanton addition cannot enable cancellation attacks.
*/
for (i = 0; i < ctx->n_proofs; i++) {
/* To recall from the introductory comment: most `s_i` values are computed by taking an
* earlier `s_j` value and multiplying it by some `x_k^2`.
*
* We now explain the index `j`: it is the largest number with one fewer 1-bits than `i`.
* Alternately, the most recently returned `s_j` where `j` has one fewer 1-bits than `i`.
*
* To ensure that `s_j` is available when we need it, on each iteration we define the
* variable `cache_idx` which simply counts the 1-bits in `i`; before returning `s_i`
* we store it in `ctx->proof[i].xcache[cache_idx]`. Then later, when we want "most
* recently returned `s_j` with one fewer 1-bits than `i`, it'll be sitting right
* there in `ctx->proof[i].xcache[cache_idx - 1]`.
*
* Note that `ctx->proof[i].xcache[0]` will always equal `-a_1 * prod_{i=1}^{n-1} x_i^-2`,
* and we expect the caller to have set this.
*/
const size_t cache_idx = POPCOUNT(idx);
secp256k1_scalar term;
VERIFY_CHECK(cache_idx < SECP256K1_BULLETPROOF_MAX_DEPTH);
/* For the special case `cache_idx == 0` (which is true iff `idx == 0`) there is nothing to do. */
if (cache_idx > 0) {
/* Otherwise, check if this is one of the special indices where we transition from `a_1` to `a_2`,
* from `a_2` to `b_1`, or from `b_1` to `b_2`. (For small proofs there is only one transition,
* from `a` to `b`.) */
if (idx % (ctx->vec_len / grouping) == 0) {
const size_t abinv_idx = idx / (ctx->vec_len / grouping) - 1;
size_t prev_cache_idx;
/* Check if it's the even specialer index where we're transitioning from `a`s to `b`s, from
* `G`s to `H`s, and from `x_k^2`s to `x_k^-2`s. In rangeproof and circuit applications,
* the caller secretly has a variable `y` such that `H_i` is really `y^-i H_i` for `i` ranging
* from 0 to `n-1`. Rather than forcing the caller to tweak every `H_i` herself, which would
* be very slow and prevent precomputation, we instead multiply our cached `x_k^-2` values
* by `y^(-2^k)` respectively, which will ultimately result in every `s_i` we return having
* been multiplied by `y^-i`.
*
* This is an underhanded trick but the result is that all `n` powers of `y^-i` show up
* in the right place, and we only need log-many scalar squarings and multiplications.
*/
if (idx == ctx->vec_len) {
secp256k1_scalar yinvn = ctx->proof[i].proof->yinv;
size_t j;
prev_cache_idx = POPCOUNT(idx - 1);
for (j = 0; j < (size_t) CTZ(idx) - lg_grouping; j++) {
secp256k1_scalar_mul(&ctx->proof[i].xsqinvy[j], &ctx->proof[i].xsqinv[j], &yinvn);
secp256k1_scalar_sqr(&yinvn, &yinvn);
}
if (lg_grouping == 1) {
secp256k1_scalar_mul(&ctx->proof[i].abinv[2], &ctx->proof[i].abinv[2], &yinvn);
secp256k1_scalar_sqr(&yinvn, &yinvn);
}
} else {
prev_cache_idx = cache_idx - 1;
}
/* Regardless of specialness, we multiply by `a_2/a_1` or whatever the appropriate multiplier
* is. We expect the caller to have given these to us in the `ctx->proof[i].abinv` array. */
secp256k1_scalar_mul(
&ctx->proof[i].xcache[cache_idx],
&ctx->proof[i].xcache[prev_cache_idx],
&ctx->proof[i].abinv[abinv_idx]
);
/* If it's *not* a special index, just multiply by the appropriate `x_k^2`, or `x_k^-2` in case
* we're in the `H_i` half of the multiexp. At this point we can explain the index `k`, which
* is computed in the variable `xsq_idx` (`xsqinv_idx` respectively). In light of our discussion
* of `j`, we see that this should be "the least significant bit that's 1 in `i` but not `i-1`."
* In other words, it is the number of trailing 0 bits in the index `i`. */
} else if (idx < ctx->vec_len) {
const size_t xsq_idx = CTZ(idx);
secp256k1_scalar_mul(&ctx->proof[i].xcache[cache_idx], &ctx->proof[i].xcache[cache_idx - 1], &ctx->proof[i].xsq[xsq_idx]);
} else {
const size_t xsqinv_idx = CTZ(idx);
secp256k1_scalar_mul(&ctx->proof[i].xcache[cache_idx], &ctx->proof[i].xcache[cache_idx - 1], &ctx->proof[i].xsqinvy[xsqinv_idx]);
}
}
term = ctx->proof[i].xcache[cache_idx];
/* One last trick: compute `x_k^-2` while computing the `G_i` scalars, so that they'll be
* available when we need them for the `H_i` scalars. We can do this for every `i` value
* that has exactly one 0-bit, i.e. which is a product of all `x_i`s and one `x_k^-1`. By
* multiplying that by the special value `prod_{i=1}^n x_i^-1` we obtain simply `x_k^-2`.
* We expect the caller to give us this special value in `ctx->proof[i].xsqinv_mask`. */
if (idx < ctx->vec_len / grouping && POPCOUNT(idx) == ctx->lg_vec_len - 1) {
const size_t xsqinv_idx = CTZ(~idx);
secp256k1_scalar_mul(&ctx->proof[i].xsqinv[xsqinv_idx], &ctx->proof[i].xcache[cache_idx], &ctx->proof[i].xsqinv_mask);
}
/* Finally, if the caller, in its computation of `P`, wants to multiply `G_i` or `H_i` by some scalar,
* we add that to our sum as well. Again, we trust the randomization in `xcache[0]` to prevent any
* cancellation attacks here. */
if (ctx->proof[i].proof->rangeproof_cb != NULL) {
secp256k1_scalar rangeproof_offset;
if ((ctx->proof[i].proof->rangeproof_cb)(&rangeproof_offset, NULL, &ctx->randomizer[i], idx, ctx->proof[i].proof->rangeproof_cb_data) == 0) {
return 0;
}
secp256k1_scalar_add(&term, &term, &rangeproof_offset);
}
secp256k1_scalar_add(sc, sc, &term);
}
/* Next 2lgN points are the L and R vectors */
} else if (idx < 2 * (ctx->vec_len + ctx->lg_vec_len * ctx->n_proofs)) {
size_t real_idx = idx - 2 * ctx->vec_len;
const size_t proof_idx = real_idx / (2 * ctx->lg_vec_len);
real_idx = real_idx % (2 * ctx->lg_vec_len);
secp256k1_bulletproof_deserialize_point(
pt,
ctx->proof[proof_idx].serialized_lr,
real_idx,
2 * ctx->lg_vec_len
);
if (idx % 2 == 0) {
*sc = ctx->proof[proof_idx].xsq[real_idx / 2];
} else {
*sc = ctx->proof[proof_idx].xsqinv[real_idx / 2];
}
secp256k1_scalar_mul(sc, sc, &ctx->randomizer[proof_idx]);
/* After the G's, H's, L's and R's, do the blinding_gen */
} else if (idx == 2 * (ctx->vec_len + ctx->lg_vec_len * ctx->n_proofs)) {
*sc = ctx->p_offs;
*pt = *ctx->g;
/* Remaining points are whatever the rangeproof wants */
} else if (ctx->shared_g && idx == 2 * (ctx->vec_len + ctx->lg_vec_len * ctx->n_proofs) + 1) {
/* Special case: the first extra point is independent of the proof, for both rangeproof and circuit */
size_t i;
secp256k1_scalar_clear(sc);
for (i = 0; i < ctx->n_proofs; i++) {
secp256k1_scalar term;
if ((ctx->proof[i].proof->rangeproof_cb)(&term, pt, &ctx->randomizer[i], 2 * (ctx->vec_len + ctx->lg_vec_len), ctx->proof[i].proof->rangeproof_cb_data) == 0) {
return 0;
}
secp256k1_scalar_add(sc, sc, &term);
}
} else {
size_t proof_idx = 0;
size_t real_idx = idx - 2 * (ctx->vec_len + ctx->lg_vec_len * ctx->n_proofs) - 1 - !!ctx->shared_g;
while (real_idx >= ctx->proof[proof_idx].proof->n_extra_rangeproof_points - !!ctx->shared_g) {
real_idx -= ctx->proof[proof_idx].proof->n_extra_rangeproof_points - !!ctx->shared_g;
proof_idx++;
VERIFY_CHECK(proof_idx < ctx->n_proofs);
}
if ((ctx->proof[proof_idx].proof->rangeproof_cb)(sc, pt, &ctx->randomizer[proof_idx], 2 * (ctx->vec_len + ctx->lg_vec_len), ctx->proof[proof_idx].proof->rangeproof_cb_data) == 0) {
return 0;
}
}
return 1;
}
/* nb For security it is essential that `commit_inp` already commit to all data
* needed to compute `P`. We do not hash it in during verification since `P`
* may be specified indirectly as a bunch of scalar offsets.
*/
static int secp256k1_bulletproof_inner_product_verify_impl(const secp256k1_ecmult_context *ecmult_ctx, secp256k1_scratch *scratch, const secp256k1_bulletproof_generators *gens, size_t vec_len, const secp256k1_bulletproof_innerproduct_context *proof, size_t n_proofs, size_t plen, int shared_g) {
secp256k1_sha256 sha256;
secp256k1_bulletproof_innerproduct_vfy_ecmult_context ecmult_data;
unsigned char commit[32];
size_t total_n_points = 2 * vec_len + !!shared_g + 1; /* +1 for shared G (value_gen), +1 for H (blinding_gen) */
secp256k1_gej r;
secp256k1_scalar zero;
size_t i;
if (plen != secp256k1_bulletproof_innerproduct_proof_length(vec_len)) {
return 0;
}
if (n_proofs == 0) {
return 1;
}
if (!secp256k1_scratch_allocate_frame(scratch, n_proofs * (sizeof(*ecmult_data.randomizer) + sizeof(*ecmult_data.proof)), 2)) {
return 0;
}
secp256k1_scalar_clear(&zero);
ecmult_data.n_proofs = n_proofs;
ecmult_data.g = gens->blinding_gen;
ecmult_data.geng = gens->gens;
ecmult_data.genh = gens->gens + gens->n / 2;
ecmult_data.vec_len = vec_len;
ecmult_data.lg_vec_len = secp256k1_floor_lg(2 * vec_len / IP_AB_SCALARS);
ecmult_data.shared_g = shared_g;
ecmult_data.randomizer = (secp256k1_scalar *)secp256k1_scratch_alloc(scratch, n_proofs * sizeof(*ecmult_data.randomizer));
ecmult_data.proof = (secp256k1_bulletproof_innerproduct_vfy_data *)secp256k1_scratch_alloc(scratch, n_proofs * sizeof(*ecmult_data.proof));
/* Seed RNG for per-proof randomizers */
secp256k1_sha256_initialize(&sha256);
for (i = 0; i < n_proofs; i++) {
secp256k1_sha256_write(&sha256, proof[i].proof, plen);
secp256k1_sha256_write(&sha256, proof[i].commit, 32);
secp256k1_scalar_get_b32(commit, &proof[i].p_offs);
secp256k1_sha256_write(&sha256, commit, 32);
}
secp256k1_sha256_finalize(&sha256, commit);
secp256k1_scalar_clear(&ecmult_data.p_offs);
for (i = 0; i < n_proofs; i++) {
const unsigned char *serproof = proof[i].proof;
unsigned char proof_commit[32];
secp256k1_scalar dot;
secp256k1_scalar ab[IP_AB_SCALARS];
secp256k1_scalar negprod;
secp256k1_scalar x;
int overflow;
size_t j;
const size_t n_ab = 2 * vec_len < IP_AB_SCALARS ? 2 * vec_len : IP_AB_SCALARS;
total_n_points += 2 * ecmult_data.lg_vec_len + proof[i].n_extra_rangeproof_points - !!shared_g; /* -1 for shared G */
/* Extract dot product, will always be the first 32 bytes */
secp256k1_scalar_set_b32(&dot, serproof, &overflow);
if (overflow) {
secp256k1_scratch_deallocate_frame(scratch);
return 0;
}
/* Commit to dot product */
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, proof[i].commit, 32);
secp256k1_sha256_write(&sha256, serproof, 32);
secp256k1_sha256_finalize(&sha256, proof_commit);
serproof += 32;
/* Extract a, b */
for (j = 0; j < n_ab; j++) {
secp256k1_scalar_set_b32(&ab[j], serproof, &overflow);
if (overflow) {
secp256k1_scratch_deallocate_frame(scratch);
return 0;
}
/* TODO our verifier currently bombs out with zeros because it uses
* scalar inverses gratuitously. Fix that. */
if (secp256k1_scalar_is_zero(&ab[j])) {
secp256k1_scratch_deallocate_frame(scratch);
return 0;
}
serproof += 32;
}
secp256k1_scalar_dot_product(&negprod, &ab[0], &ab[n_ab / 2], n_ab / 2);
ecmult_data.proof[i].proof = &proof[i];
/* set per-proof randomizer */
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, commit, 32);
secp256k1_sha256_finalize(&sha256, commit);
secp256k1_scalar_set_b32(&ecmult_data.randomizer[i], commit, &overflow);
if (overflow || secp256k1_scalar_is_zero(&ecmult_data.randomizer[i])) {
/* cryptographically unreachable */
secp256k1_scratch_deallocate_frame(scratch);
return 0;
}
/* Compute x*(dot - a*b) for each proof; add it and p_offs to the p_offs accumulator */
secp256k1_scalar_set_b32(&x, proof_commit, &overflow);
if (overflow || secp256k1_scalar_is_zero(&x)) {
secp256k1_scratch_deallocate_frame(scratch);
return 0;
}
secp256k1_scalar_negate(&negprod, &negprod);
secp256k1_scalar_add(&negprod, &negprod, &dot);
secp256k1_scalar_mul(&x, &x, &negprod);
secp256k1_scalar_add(&x, &x, &proof[i].p_offs);
secp256k1_scalar_mul(&x, &x, &ecmult_data.randomizer[i]);
secp256k1_scalar_add(&ecmult_data.p_offs, &ecmult_data.p_offs, &x);
/* Special-case: trivial proofs are valid iff the explicitly revealed scalars
* dot to the explicitly revealed dot product. */
if (2 * vec_len <= IP_AB_SCALARS) {
if (!secp256k1_scalar_is_zero(&negprod)) {
secp256k1_scratch_deallocate_frame(scratch);
return 0;
}
/* remaining data does not (and cannot) be computed for proofs with no a's or b's. */
if (vec_len == 0) {
continue;
}
}
/* Compute the inverse product and the array of squares; the rest will be filled
* in by the callback during the multiexp. */
ecmult_data.proof[i].serialized_lr = serproof; /* bookmark L/R location in proof */
negprod = ab[n_ab - 1];
ab[n_ab - 1] = ecmult_data.randomizer[i]; /* build r * x1 * x2 * ... * xn in last slot of `ab` array */
for (j = 0; j < ecmult_data.lg_vec_len; j++) {
secp256k1_scalar xi;
const size_t lidx = 2 * j;
const size_t ridx = 2 * j + 1;
const size_t bitveclen = (2 * ecmult_data.lg_vec_len + 7) / 8;
const unsigned char lrparity = 2 * !!(serproof[lidx / 8] & (1 << (lidx % 8))) + !!(serproof[ridx / 8] & (1 << (ridx % 8)));
/* Map commit -> H(commit || LR parity || Lx || Rx), compute xi from it */
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, proof_commit, 32);
secp256k1_sha256_write(&sha256, &lrparity, 1);
secp256k1_sha256_write(&sha256, &serproof[32 * lidx + bitveclen], 32);
secp256k1_sha256_write(&sha256, &serproof[32 * ridx + bitveclen], 32);
secp256k1_sha256_finalize(&sha256, proof_commit);
secp256k1_scalar_set_b32(&xi, proof_commit, &overflow);
if (overflow || secp256k1_scalar_is_zero(&xi)) {
secp256k1_scratch_deallocate_frame(scratch);
return 0;
}
secp256k1_scalar_mul(&ab[n_ab - 1], &ab[n_ab - 1], &xi);
secp256k1_scalar_sqr(&ecmult_data.proof[i].xsq[j], &xi);
}
/* Compute inverse of all a's and b's, except the last b whose inverse is not needed.
* Also compute the inverse of (-r * x1 * ... * xn) which will be needed */
secp256k1_scalar_inverse_all_var(ecmult_data.proof[i].abinv, ab, n_ab);
ab[n_ab - 1] = negprod;
/* Compute (-a0 * r * x1 * ... * xn)^-1 which will be used to mask out individual x_i^-2's */
secp256k1_scalar_negate(&ecmult_data.proof[i].xsqinv_mask, &ecmult_data.proof[i].abinv[0]);
secp256k1_scalar_mul(&ecmult_data.proof[i].xsqinv_mask, &ecmult_data.proof[i].xsqinv_mask, &ecmult_data.proof[i].abinv[n_ab - 1]);
/* Compute each scalar times the previous' inverse, which is used to switch between a's and b's */
for (j = n_ab - 1; j > 0; j--) {
size_t prev_idx;
if (j == n_ab / 2) {
prev_idx = j - 1; /* we go from a_n to b_0 */
} else {
prev_idx = j & (j - 1); /* but from a_i' to a_i, where i' is i with its lowest set bit unset */
}
secp256k1_scalar_mul(
&ecmult_data.proof[i].abinv[j - 1],
&ecmult_data.proof[i].abinv[prev_idx],
&ab[j]
);
}
/* Extract -a0 * r * (x1 * ... * xn)^-1 which is our first coefficient. Use negprod as a dummy */
secp256k1_scalar_mul(&negprod, &ecmult_data.randomizer[i], &ab[0]); /* r*a */
secp256k1_scalar_sqr(&negprod, &negprod); /* (r*a)^2 */
secp256k1_scalar_mul(&ecmult_data.proof[i].xcache[0], &ecmult_data.proof[i].xsqinv_mask, &negprod); /* -a * r * (x1 * x2 * ... * xn)^-1 */
}
/* Do the multiexp */
if (secp256k1_ecmult_multi_var(ecmult_ctx, scratch, &r, NULL, secp256k1_bulletproof_innerproduct_vfy_ecmult_callback, (void *) &ecmult_data, total_n_points) != 1) {
secp256k1_scratch_deallocate_frame(scratch);
return 0;
}
secp256k1_scratch_deallocate_frame(scratch);
return secp256k1_gej_is_infinity(&r);
}
typedef struct {
secp256k1_scalar x[SECP256K1_BULLETPROOF_MAX_DEPTH];
secp256k1_scalar xinv[SECP256K1_BULLETPROOF_MAX_DEPTH];
secp256k1_scalar yinv;
secp256k1_scalar yinvn;
const secp256k1_ge *geng;
const secp256k1_ge *genh;
const secp256k1_ge *g;
const secp256k1_scalar *a;
const secp256k1_scalar *b;
secp256k1_scalar g_sc;
size_t grouping;
size_t n;
} secp256k1_bulletproof_innerproduct_pf_ecmult_context;
/* At each level i of recursion (i from 0 upto lg(vector size) - 1)
* L = a_even . G_odd + b_odd . H_even (18)
* which, by expanding the generators into the original G's and H's
* and setting n = (1 << i), can be computed as follows:
*
* For j from 1 to [vector size],
* 1. Use H[j] or G[j] as generator, starting with H and switching
* every n.
* 2. Start with b1 with H and a0 with G, and increment by 2 each switch.
* 3. For k = 1, 2, 4, ..., n/2, use the same algorithm to choose
* between a and b to choose between x and x^-1, except using
* k in place of n. With H's choose x then x^-1, with G's choose
* x^-1 then x.
*
* For R everything is the same except swap G/H and a/b and x/x^-1.
*/
static int secp256k1_bulletproof_innerproduct_pf_ecmult_callback_l(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data) {
secp256k1_bulletproof_innerproduct_pf_ecmult_context *ctx = (secp256k1_bulletproof_innerproduct_pf_ecmult_context *) data;
const size_t ab_idx = (idx / ctx->grouping) ^ 1;
size_t i;
/* Special-case the primary generator */
if (idx == ctx->n) {
*pt = *ctx->g;
*sc = ctx->g_sc;
return 1;
}
/* steps 1/2 */
if ((idx / ctx->grouping) % 2 == 0) {
*pt = ctx->genh[idx];
*sc = ctx->b[ab_idx];
/* Map h -> h' (eqn 59) */
secp256k1_scalar_mul(sc, sc, &ctx->yinvn);
} else {
*pt = ctx->geng[idx];
*sc = ctx->a[ab_idx];
}
/* step 3 */
for (i = 0; (1u << i) < ctx->grouping; i++) {
size_t grouping = (1u << i);
if ((((idx / grouping) % 2) ^ ((idx / ctx->grouping) % 2)) == 0) {
secp256k1_scalar_mul(sc, sc, &ctx->x[i]);
} else {
secp256k1_scalar_mul(sc, sc, &ctx->xinv[i]);
}
}
secp256k1_scalar_mul(&ctx->yinvn, &ctx->yinvn, &ctx->yinv);
return 1;
}
/* Identical code except `== 0` changed to `== 1` twice, and the
* `+ 1` from Step 1/2 was moved to the other if branch. */
static int secp256k1_bulletproof_innerproduct_pf_ecmult_callback_r(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data) {
secp256k1_bulletproof_innerproduct_pf_ecmult_context *ctx = (secp256k1_bulletproof_innerproduct_pf_ecmult_context *) data;
const size_t ab_idx = (idx / ctx->grouping) ^ 1;
size_t i;
/* Special-case the primary generator */
if (idx == ctx->n) {
*pt = *ctx->g;
*sc = ctx->g_sc;
return 1;
}
/* steps 1/2 */
if ((idx / ctx->grouping) % 2 == 1) {
*pt = ctx->genh[idx];
*sc = ctx->b[ab_idx];
/* Map h -> h' (eqn 59) */
secp256k1_scalar_mul(sc, sc, &ctx->yinvn);
} else {
*pt = ctx->geng[idx];
*sc = ctx->a[ab_idx];
}
/* step 3 */
for (i = 0; (1u << i) < ctx->grouping; i++) {
size_t grouping = (1u << i);
if ((((idx / grouping) % 2) ^ ((idx / ctx->grouping) % 2)) == 1) {
secp256k1_scalar_mul(sc, sc, &ctx->x[i]);
} else {
secp256k1_scalar_mul(sc, sc, &ctx->xinv[i]);
}
}
secp256k1_scalar_mul(&ctx->yinvn, &ctx->yinvn, &ctx->yinv);
return 1;
}
static int secp256k1_bulletproof_innerproduct_pf_ecmult_callback_g(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data) {
secp256k1_bulletproof_innerproduct_pf_ecmult_context *ctx = (secp256k1_bulletproof_innerproduct_pf_ecmult_context *) data;
size_t i;
*pt = ctx->geng[idx];
secp256k1_scalar_set_int(sc, 1);
for (i = 0; (1u << i) <= ctx->grouping; i++) {
if (idx & (1u << i)) {
secp256k1_scalar_mul(sc, sc, &ctx->x[i]);
} else {
secp256k1_scalar_mul(sc, sc, &ctx->xinv[i]);
}
}
return 1;
}
static int secp256k1_bulletproof_innerproduct_pf_ecmult_callback_h(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data) {
secp256k1_bulletproof_innerproduct_pf_ecmult_context *ctx = (secp256k1_bulletproof_innerproduct_pf_ecmult_context *) data;
size_t i;
*pt = ctx->genh[idx];
secp256k1_scalar_set_int(sc, 1);
for (i = 0; (1u << i) <= ctx->grouping; i++) {
if (idx & (1u << i)) {
secp256k1_scalar_mul(sc, sc, &ctx->xinv[i]);
} else {
secp256k1_scalar_mul(sc, sc, &ctx->x[i]);
}
}
secp256k1_scalar_mul(sc, sc, &ctx->yinvn);
secp256k1_scalar_mul(&ctx->yinvn, &ctx->yinvn, &ctx->yinv);
return 1;
}
/* These proofs are not zero-knowledge. There is no need to worry about constant timeness.
* `commit_inp` must contain 256 bits of randomness, it is used immediately as a randomizer.
*/
static int secp256k1_bulletproof_inner_product_real_prove_impl(const secp256k1_ecmult_context *ecmult_ctx, secp256k1_scratch *scratch, secp256k1_ge *out_pt, size_t *pt_idx, const secp256k1_ge *g, secp256k1_ge *geng, secp256k1_ge *genh, secp256k1_scalar *a_arr, secp256k1_scalar *b_arr, const secp256k1_scalar *yinv, const secp256k1_scalar *ux, const size_t n, unsigned char *commit) {
size_t i;
size_t halfwidth;
secp256k1_bulletproof_innerproduct_pf_ecmult_context pfdata;
pfdata.yinv = *yinv;
pfdata.g = g;
pfdata.geng = geng;
pfdata.genh = genh;
pfdata.a = a_arr;
pfdata.b = b_arr;
pfdata.n = n;
/* Protocol 1: Iterate, halving vector size until it is 1 */
for (halfwidth = n / 2, i = 0; halfwidth > IP_AB_SCALARS / 4; halfwidth /= 2, i++) {
secp256k1_gej tmplj, tmprj;
size_t j;
int overflow;
pfdata.grouping = 1u << i;
/* L */
secp256k1_scalar_clear(&pfdata.g_sc);
for (j = 0; j < halfwidth; j++) {
secp256k1_scalar prod;
secp256k1_scalar_mul(&prod, &a_arr[2*j], &b_arr[2*j + 1]);
secp256k1_scalar_add(&pfdata.g_sc, &pfdata.g_sc, &prod);
}
secp256k1_scalar_mul(&pfdata.g_sc, &pfdata.g_sc, ux);
secp256k1_scalar_set_int(&pfdata.yinvn, 1);
secp256k1_ecmult_multi_var(ecmult_ctx, scratch, &tmplj, NULL, &secp256k1_bulletproof_innerproduct_pf_ecmult_callback_l, (void *) &pfdata, n + 1);
secp256k1_ge_set_gej(&out_pt[(*pt_idx)++], &tmplj);
/* R */
secp256k1_scalar_clear(&pfdata.g_sc);
for (j = 0; j < halfwidth; j++) {
secp256k1_scalar prod;
secp256k1_scalar_mul(&prod, &a_arr[2*j + 1], &b_arr[2*j]);
secp256k1_scalar_add(&pfdata.g_sc, &pfdata.g_sc, &prod);
}
secp256k1_scalar_mul(&pfdata.g_sc, &pfdata.g_sc, ux);
secp256k1_scalar_set_int(&pfdata.yinvn, 1);
secp256k1_ecmult_multi_var(ecmult_ctx, scratch, &tmprj, NULL, &secp256k1_bulletproof_innerproduct_pf_ecmult_callback_r, (void *) &pfdata, n + 1);
secp256k1_ge_set_gej(&out_pt[(*pt_idx)++], &tmprj);
/* x, x^2, x^-1, x^-2 */
secp256k1_bulletproof_update_commit(commit, &out_pt[*pt_idx - 2], &out_pt[*pt_idx] - 1);
secp256k1_scalar_set_b32(&pfdata.x[i], commit, &overflow);
if (overflow || secp256k1_scalar_is_zero(&pfdata.x[i])) {
return 0;
}
secp256k1_scalar_inverse_var(&pfdata.xinv[i], &pfdata.x[i]);
/* update scalar array */
for (j = 0; j < halfwidth; j++) {
secp256k1_scalar tmps;
secp256k1_scalar_mul(&a_arr[2*j], &a_arr[2*j], &pfdata.x[i]);
secp256k1_scalar_mul(&tmps, &a_arr[2*j + 1], &pfdata.xinv[i]);
secp256k1_scalar_add(&a_arr[j], &a_arr[2*j], &tmps);
secp256k1_scalar_mul(&b_arr[2*j], &b_arr[2*j], &pfdata.xinv[i]);
secp256k1_scalar_mul(&tmps, &b_arr[2*j + 1], &pfdata.x[i]);
secp256k1_scalar_add(&b_arr[j], &b_arr[2*j], &tmps);
}
/* Combine G generators and recurse, if that would be more optimal */
if ((n > 2048 && i == 3) || (n > 128 && i == 2) || (n > 32 && i == 1)) {
secp256k1_scalar yinv2;
for (j = 0; j < halfwidth; j++) {
secp256k1_gej rj;
secp256k1_ecmult_multi_var(ecmult_ctx, scratch, &rj, NULL, &secp256k1_bulletproof_innerproduct_pf_ecmult_callback_g, (void *) &pfdata, 2u << i);
pfdata.geng += 2u << i;
secp256k1_ge_set_gej(&geng[j], &rj);
secp256k1_scalar_set_int(&pfdata.yinvn, 1);
secp256k1_ecmult_multi_var(ecmult_ctx, scratch, &rj, NULL, &secp256k1_bulletproof_innerproduct_pf_ecmult_callback_h, (void *) &pfdata, 2u << i);
pfdata.genh += 2u << i;
secp256k1_ge_set_gej(&genh[j], &rj);
}
secp256k1_scalar_sqr(&yinv2, yinv);
for (j = 0; j < i; j++) {
secp256k1_scalar_sqr(&yinv2, &yinv2);
}
if (!secp256k1_bulletproof_inner_product_real_prove_impl(ecmult_ctx, scratch, out_pt, pt_idx, g, geng, genh, a_arr, b_arr, &yinv2, ux, halfwidth, commit)) {
return 0;
}
break;
}
}
return 1;
}
static int secp256k1_bulletproof_inner_product_prove_impl(const secp256k1_ecmult_context *ecmult_ctx, secp256k1_scratch *scratch, unsigned char *proof, size_t *proof_len, const secp256k1_bulletproof_generators *gens, const secp256k1_scalar *yinv, const size_t n, secp256k1_ecmult_multi_callback *cb, void *cb_data, const unsigned char *commit_inp) {
secp256k1_sha256 sha256;
size_t i;
unsigned char commit[32];
secp256k1_scalar *a_arr;
secp256k1_scalar *b_arr;
secp256k1_ge *out_pt;
secp256k1_ge *geng;
secp256k1_ge *genh;
secp256k1_scalar ux;
int overflow;
size_t pt_idx = 0;
secp256k1_scalar dot;
size_t half_n_ab = n < IP_AB_SCALARS / 2 ? n : IP_AB_SCALARS / 2;
if (*proof_len < secp256k1_bulletproof_innerproduct_proof_length(n)) {
return 0;
}
*proof_len = secp256k1_bulletproof_innerproduct_proof_length(n);
/* Special-case lengths 0 and 1 whose proofs are just expliict lists of scalars */
if (n <= IP_AB_SCALARS / 2) {
secp256k1_scalar a[IP_AB_SCALARS / 2];
secp256k1_scalar b[IP_AB_SCALARS / 2];
for (i = 0; i < n; i++) {
cb(&a[i], NULL, 2*i, cb_data);
cb(&b[i], NULL, 2*i+1, cb_data);
}
secp256k1_scalar_dot_product(&dot, a, b, n);
secp256k1_scalar_get_b32(proof, &dot);
for (i = 0; i < n; i++) {
secp256k1_scalar_get_b32(&proof[32 * (i + 1)], &a[i]);
secp256k1_scalar_get_b32(&proof[32 * (i + n + 1)], &b[i]);
}
VERIFY_CHECK(*proof_len == 32 * (2 * n + 1));
return 1;
}
/* setup for nontrivial proofs */
if (!secp256k1_scratch_allocate_frame(scratch, 2 * n * (sizeof(secp256k1_scalar) + sizeof(secp256k1_ge)) + 2 * secp256k1_floor_lg(n) * sizeof(secp256k1_ge), 5)) {
return 0;
}
a_arr = (secp256k1_scalar*)secp256k1_scratch_alloc(scratch, n * sizeof(secp256k1_scalar));
b_arr = (secp256k1_scalar*)secp256k1_scratch_alloc(scratch, n * sizeof(secp256k1_scalar));
geng = (secp256k1_ge*)secp256k1_scratch_alloc(scratch, n * sizeof(secp256k1_ge));
genh = (secp256k1_ge*)secp256k1_scratch_alloc(scratch, n * sizeof(secp256k1_ge));
out_pt = (secp256k1_ge*)secp256k1_scratch_alloc(scratch, 2 * secp256k1_floor_lg(n) * sizeof(secp256k1_ge));
VERIFY_CHECK(a_arr != NULL);
VERIFY_CHECK(b_arr != NULL);
VERIFY_CHECK(gens != NULL);
for (i = 0; i < n; i++) {
cb(&a_arr[i], NULL, 2*i, cb_data);
cb(&b_arr[i], NULL, 2*i+1, cb_data);
geng[i] = gens->gens[i];
genh[i] = gens->gens[i + gens->n/2];
}
/* Record final dot product */
secp256k1_scalar_dot_product(&dot, a_arr, b_arr, n);
secp256k1_scalar_get_b32(proof, &dot);
/* Protocol 2: hash dot product to obtain G-randomizer */
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, commit_inp, 32);
secp256k1_sha256_write(&sha256, proof, 32);
secp256k1_sha256_finalize(&sha256, commit);
proof += 32;
secp256k1_scalar_set_b32(&ux, commit, &overflow);
if (overflow || secp256k1_scalar_is_zero(&ux)) {
/* cryptographically unreachable */
secp256k1_scratch_deallocate_frame(scratch);
return 0;
}
if (!secp256k1_bulletproof_inner_product_real_prove_impl(ecmult_ctx, scratch, out_pt, &pt_idx, gens->blinding_gen, geng, genh, a_arr, b_arr, yinv, &ux, n, commit)) {
secp256k1_scratch_deallocate_frame(scratch);
return 0;
}
/* Final a/b values */
for (i = 0; i < half_n_ab; i++) {
secp256k1_scalar_get_b32(&proof[32 * i], &a_arr[i]);
secp256k1_scalar_get_b32(&proof[32 * (i + half_n_ab)], &b_arr[i]);
}
proof += 64 * half_n_ab;
secp256k1_bulletproof_serialize_points(proof, out_pt, pt_idx);
secp256k1_scratch_deallocate_frame(scratch);
return 1;
}
#undef IP_AB_SCALARS
#endif

View File

@ -1,240 +0,0 @@
/**********************************************************************
* Copyright (c) 2018 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODULE_BULLETPROOF_MAIN_IMPL
#define SECP256K1_MODULE_BULLETPROOF_MAIN_IMPL
#include "group.h"
#include "scalar.h"
#include "modules/commitment/main_impl.h"
struct secp256k1_bulletproof_generators {
size_t n;
/* `G_i`, `H_i` generators, `n` each of them which are generated when creating this struct */
secp256k1_ge *gens;
/* `H` "alternate" generator, used in Pedersen commitments. Passed in by caller to
* `secp256k1_bulletproof_generators_create`; stored in this structure to allow consistent
* generators between functions using `secp256k1_bulletproof_generators` and functions
* using the Pedersen commitment module. */
secp256k1_ge *blinding_gen;
};
#include "modules/bulletproofs/inner_product_impl.h"
#include "modules/bulletproofs/rangeproof_impl.h"
#include "modules/bulletproofs/util.h"
// This is out setup
secp256k1_bulletproof_generators *secp256k1_bulletproof_generators_create(const secp256k1_context *ctx, const secp256k1_generator *blinding_gen, size_t n) {
secp256k1_bulletproof_generators *ret;
secp256k1_rfc6979_hmac_sha256 rng;
unsigned char seed[64];
secp256k1_gej precompj;
size_t i;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(blinding_gen != NULL);
ret = (secp256k1_bulletproof_generators *)checked_malloc(&ctx->error_callback, sizeof(*ret));
if (ret == NULL) {
return NULL;
}
ret->gens = (secp256k1_ge *)checked_malloc(&ctx->error_callback, (n + 1) * sizeof(*ret->gens));
if (ret->gens == NULL) {
free(ret);
return NULL;
}
ret->blinding_gen = &ret->gens[n];
ret->n = n;
secp256k1_fe_get_b32(&seed[0], &secp256k1_ge_const_g.x);
secp256k1_fe_get_b32(&seed[32], &secp256k1_ge_const_g.y);
secp256k1_rfc6979_hmac_sha256_initialize(&rng, seed, 64);
for (i = 0; i < n; i++) {
unsigned char tmp[32] = { 0 };
secp256k1_generator gen;
secp256k1_rfc6979_hmac_sha256_generate(&rng, tmp, 32);
CHECK(secp256k1_generator_generate(ctx, &gen, tmp));
secp256k1_generator_load(&ret->gens[i], &gen);
secp256k1_gej_set_ge(&precompj, &ret->gens[i]);
}
secp256k1_generator_load(&ret->blinding_gen[0], blinding_gen);
secp256k1_gej_set_ge(&precompj, &ret->blinding_gen[0]);
return ret;
}
void secp256k1_bulletproof_generators_destroy(const secp256k1_context* ctx, secp256k1_bulletproof_generators *gens) {
(void) ctx;
if (gens != NULL) {
free(gens->gens);
free(gens);
}
}
int secp256k1_bulletproof_rangeproof_verify(const secp256k1_context* ctx, secp256k1_scratch_space *scratch, const secp256k1_bulletproof_generators *gens, const unsigned char *proof, size_t plen,
const uint64_t *min_value, const secp256k1_pedersen_commitment* commit, size_t n_commits, size_t nbits, const secp256k1_generator *value_gen, const unsigned char *extra_commit, size_t extra_commit_len) {
int ret;
size_t i;
secp256k1_ge *commitp;
secp256k1_ge value_genp;
const secp256k1_ge *commitp_ptr;
const uint64_t *minvalue_ptr;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(scratch != NULL);
ARG_CHECK(gens != NULL);
ARG_CHECK(gens->n >= 2 * nbits * n_commits);
ARG_CHECK(proof != NULL);
ARG_CHECK(commit != NULL);
ARG_CHECK(n_commits > 0);
ARG_CHECK(nbits > 0);
ARG_CHECK(nbits <= 64);
ARG_CHECK(value_gen != NULL);
ARG_CHECK(extra_commit != NULL || extra_commit_len == 0);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
if (!secp256k1_scratch_allocate_frame(scratch, 2 * n_commits * sizeof(secp256k1_ge), 1)) {
return 0;
}
commitp = (secp256k1_ge *)secp256k1_scratch_alloc(scratch, n_commits * sizeof(secp256k1_ge));
for (i = 0; i < n_commits; i++) {
secp256k1_pedersen_commitment_load(&commitp[i], &commit[i]);
}
secp256k1_generator_load(&value_genp, value_gen);
commitp_ptr = commitp;
minvalue_ptr = min_value;
ret = secp256k1_bulletproof_rangeproof_verify_impl(&ctx->ecmult_ctx, scratch, &proof, 1, plen, nbits, &minvalue_ptr, &commitp_ptr, n_commits, &value_genp, gens, &extra_commit, &extra_commit_len);
secp256k1_scratch_deallocate_frame(scratch);
return ret;
}
int secp256k1_bulletproof_rangeproof_verify_multi(const secp256k1_context* ctx, secp256k1_scratch_space *scratch, const secp256k1_bulletproof_generators *gens, const unsigned char* const* proof, size_t n_proofs, size_t plen, const uint64_t* const* min_value, const secp256k1_pedersen_commitment* const* commit, size_t n_commits, size_t nbits, const secp256k1_generator *value_gen, const unsigned char* const* extra_commit, size_t *extra_commit_len) {
int ret;
secp256k1_ge **commitp;
secp256k1_ge *value_genp;
size_t i;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(scratch != NULL);
ARG_CHECK(gens != NULL);
ARG_CHECK(gens->n >= 2 * nbits * n_commits);
ARG_CHECK(commit != NULL);
ARG_CHECK(proof != NULL);
ARG_CHECK(n_proofs > 0);
ARG_CHECK(n_commits > 0);
ARG_CHECK(nbits > 0);
ARG_CHECK(nbits <= 64);
ARG_CHECK(value_gen != NULL);
ARG_CHECK((extra_commit_len == NULL) == (extra_commit == NULL));
if (extra_commit != NULL) {
for (i = 0; i < n_proofs; i++) {
ARG_CHECK(extra_commit[i] != NULL || extra_commit_len[i] == 0);
}
}
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
if (!secp256k1_scratch_allocate_frame(scratch, n_proofs * (sizeof(*value_genp) + sizeof(*commitp) + n_commits * sizeof(**commitp)), 1 + n_proofs)) {
return 0;
}
commitp = (secp256k1_ge **)secp256k1_scratch_alloc(scratch, n_proofs * sizeof(*commitp));
value_genp = (secp256k1_ge *)secp256k1_scratch_alloc(scratch, n_proofs * sizeof(*value_genp));
for (i = 0; i < n_proofs; i++) {
size_t j;
commitp[i] = (secp256k1_ge *)secp256k1_scratch_alloc(scratch, n_commits * sizeof(*commitp[i]));
for (j = 0; j < n_commits; j++) {
secp256k1_pedersen_commitment_load(&commitp[i][j], &commit[i][j]);
}
secp256k1_generator_load(&value_genp[i], &value_gen[i]);
}
ret = secp256k1_bulletproof_rangeproof_verify_impl(&ctx->ecmult_ctx, scratch, proof, n_proofs, plen, nbits, min_value, (const secp256k1_ge **) commitp, n_commits, value_genp, gens, extra_commit, extra_commit_len);
secp256k1_scratch_deallocate_frame(scratch);
return ret;
}
int secp256k1_bulletproof_rangeproof_rewind(const secp256k1_context* ctx, const secp256k1_bulletproof_generators *gens, uint64_t *value, unsigned char *blind, const unsigned char *proof, size_t plen, uint64_t min_value, const secp256k1_pedersen_commitment* commit, const secp256k1_generator *value_gen, const unsigned char *nonce, const unsigned char *extra_commit, size_t extra_commit_len) {
secp256k1_scalar blinds;
int ret;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(value != NULL);
ARG_CHECK(blind != NULL);
ARG_CHECK(gens != NULL);
ARG_CHECK(proof != NULL);
ARG_CHECK(commit != NULL);
ARG_CHECK(value_gen != NULL);
ARG_CHECK(nonce != NULL);
ARG_CHECK(extra_commit != NULL || extra_commit_len == 0);
ret = secp256k1_bulletproof_rangeproof_rewind_impl(value, &blinds, proof, plen, min_value, commit, value_gen, gens->blinding_gen, nonce, extra_commit, extra_commit_len);
if (ret == 1) {
secp256k1_scalar_get_b32(blind, &blinds);
}
return ret;
}
// Put everything inside a struct, so that we can receive as input this struct and the commitment to the value
int secp256k1_bulletproof_rangeproof_prove(const secp256k1_context* ctx, secp256k1_scratch_space *scratch, const secp256k1_bulletproof_generators *gens, unsigned char *proof, size_t *plen, const uint64_t *value, const uint64_t *min_value, const unsigned char* const* blind, size_t n_commits, const secp256k1_generator *value_gen, size_t nbits, const unsigned char *nonce, const unsigned char *extra_commit, size_t extra_commit_len) {
int ret;
secp256k1_ge *commitp;
secp256k1_scalar *blinds;
secp256k1_ge value_genp;
size_t i;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(scratch != NULL);
ARG_CHECK(gens != NULL);
ARG_CHECK(gens->n >= 2 * nbits * n_commits);
ARG_CHECK(proof != NULL);
ARG_CHECK(plen != NULL);
ARG_CHECK(value != NULL);
ARG_CHECK(blind != NULL);
ARG_CHECK(value_gen != NULL);
ARG_CHECK(nonce != NULL);
ARG_CHECK(n_commits > 0 && n_commits);
ARG_CHECK(nbits <= 64);
if (nbits < 64) {
for (i = 0; i < n_commits; i++) {
ARG_CHECK(value[i] < (1ull << nbits));
ARG_CHECK(blind[i] != NULL);
}
}
ARG_CHECK(extra_commit != NULL || extra_commit_len == 0);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
if (!secp256k1_scratch_allocate_frame(scratch, n_commits * (sizeof(*commitp) + sizeof(*blinds)), 2)) {
return 0;
}
commitp = (secp256k1_ge *)secp256k1_scratch_alloc(scratch, n_commits * sizeof(*commitp));
blinds = (secp256k1_scalar *)secp256k1_scratch_alloc(scratch, n_commits * sizeof(*blinds));
secp256k1_generator_load(&value_genp, value_gen);
for (i = 0; i < n_commits; i++) {
int overflow;
secp256k1_gej commitj;
secp256k1_scalar_set_b32(&blinds[i], blind[i], &overflow);
if (overflow || secp256k1_scalar_is_zero(&blinds[i])) {
return 0;
}
secp256k1_pedersen_ecmult(&commitj, &blinds[i], value[i], &value_genp, &gens->blinding_gen[0]);
secp256k1_ge_set_gej(&commitp[i], &commitj);
}
ret = secp256k1_bulletproof_rangeproof_prove_impl(&ctx->ecmult_ctx, scratch, proof, plen, nbits, value, min_value, blinds, commitp, n_commits, &value_genp, gens, nonce, extra_commit, extra_commit_len);
secp256k1_scratch_deallocate_frame(scratch);
return ret;
}
#endif

View File

@ -1,792 +0,0 @@
/**********************************************************************
* Copyright (c) 2018 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODULE_BULLETPROOF_RANGEPROOF_IMPL
#define SECP256K1_MODULE_BULLETPROOF_RANGEPROOF_IMPL
#include "modules/bulletproofs/inner_product_impl.h"
#include "modules/bulletproofs/util.h"
#include "group.h"
#define MAX_NBITS 64
typedef struct {
secp256k1_scalar yinv;
secp256k1_scalar yinvn;
secp256k1_scalar z;
secp256k1_scalar z_randomized;
secp256k1_scalar zsq;
secp256k1_scalar g_exponent;
secp256k1_scalar negz;
secp256k1_scalar x;
secp256k1_ge a;
secp256k1_ge s;
size_t n;
/* eq (61) stuff */
size_t count;
secp256k1_scalar randomizer61;
secp256k1_scalar y;
secp256k1_scalar t;
const secp256k1_ge *asset;
const secp256k1_ge *commit;
const uint64_t *min_value;
size_t n_commits;
secp256k1_ge t1;
secp256k1_ge t2;
} secp256k1_bulletproof_vfy_ecmult_context;
static int secp256k1_bulletproof_rangeproof_vfy_callback(secp256k1_scalar *sc, secp256k1_ge *pt, secp256k1_scalar *randomizer, size_t idx, void *data) {
secp256k1_bulletproof_vfy_ecmult_context *ctx = (secp256k1_bulletproof_vfy_ecmult_context *) data;
if (idx == 0) {
secp256k1_scalar_mul(&ctx->g_exponent, &ctx->negz, randomizer);
secp256k1_scalar_mul(&ctx->z_randomized, &ctx->z, randomizer);
}
if (idx < ctx->n) {
*sc = ctx->g_exponent;
} else if (idx < 2 * ctx->n) {
const size_t nbits = ctx->n / ctx->n_commits;
const size_t commit_idx = (idx - ctx->n) / nbits;
const size_t bit_idx = (idx - ctx->n) % nbits;
if (bit_idx == 0) {
size_t i;
secp256k1_scalar tmp;
secp256k1_scalar_mul(&tmp, &ctx->z, &ctx->yinvn);
secp256k1_scalar_sqr(&ctx->zsq, &ctx->z);
for (i = 0; i < commit_idx; i++) {
secp256k1_scalar_mul(&ctx->zsq, &ctx->zsq, &tmp);
}
secp256k1_scalar_mul(&ctx->zsq, &ctx->zsq, randomizer);
}
secp256k1_scalar_add(sc, &ctx->zsq, &ctx->z_randomized);
secp256k1_scalar_mul(&ctx->zsq, &ctx->zsq, &ctx->yinv);
secp256k1_scalar_add(&ctx->zsq, &ctx->zsq, &ctx->zsq);
} else {
switch(ctx->count) {
/* S^x in eq (62) */
case 2:
*sc = ctx->x;
*pt = ctx->s;
break;
/* A in eq (62) */
case 1:
*pt = ctx->a;
secp256k1_scalar_set_int(sc, 1);
break;
/* G^[k(y, z) + sum_i y^i - t] from eq (61) */
case 0: {
size_t i;
secp256k1_scalar yn;
secp256k1_scalar twosum;
secp256k1_scalar tmp;
secp256k1_scalar_clear(&twosum);
secp256k1_scalar_clear(&yn);
secp256k1_scalar_set_int(&tmp, 1);
secp256k1_scalar_sqr(&ctx->zsq, &ctx->z); /* need to re-set this */
secp256k1_scalar_negate(sc, &ctx->zsq); /* -z^2 */
secp256k1_scalar_add(sc, sc, &ctx->z); /* z - z^2 */
for (i = 0; i < ctx->n_commits; i++) {
const size_t nbits = ctx->n / ctx->n_commits;
secp256k1_scalar negzn;
secp256k1_scalar twon;
size_t j;
secp256k1_scalar_clear(&twon);
for (j = 0; j < nbits; j++) {
secp256k1_scalar_mul(&yn, &yn, &ctx->y);
secp256k1_scalar_add(&twon, &twon, &twon);
secp256k1_scalar_add(&yn, &yn, &tmp);
secp256k1_scalar_add(&twon, &twon, &tmp);
}
secp256k1_scalar_mul(&negzn, &ctx->zsq, &ctx->negz);
for (j = 0; j < i; j++) {
secp256k1_scalar_mul(&negzn, &negzn, &ctx->z);
}
if (ctx->min_value != NULL) {
secp256k1_scalar mv;
secp256k1_scalar_set_int(&mv, ctx->min_value[i]);
secp256k1_scalar_mul(&mv, &mv, &ctx->negz);
secp256k1_scalar_mul(&mv, &mv, &ctx->z);
for (j = 0; j < i; j++) {
secp256k1_scalar_mul(&negzn, &negzn, &ctx->z);
}
secp256k1_scalar_add(&twosum, &twosum, &mv);
}
secp256k1_scalar_mul(&twon, &twon, &negzn);
secp256k1_scalar_add(&twosum, &twosum, &twon);
} /* yn = 1 + y + ... + y^(n-1); twosum = (z^3 + ... + z^{2 + n_commits})(1 + 2 + ... + 2^(n-1)) */
secp256k1_scalar_mul(sc, sc, &yn); /* (z - z^2)(1 + ... + y^(n-1)) */
secp256k1_scalar_add(sc, sc, &twosum); /* (z - z^2)(1 + ... + y^(n-1)) - z^3(1 + ... + 2^(n-1)) */
secp256k1_scalar_negate(&tmp, &ctx->t);
secp256k1_scalar_add(sc, sc, &tmp); /* (z - z^2)(1 + ... + y^n) - z^3(1 + ... + 2^n) - t */
secp256k1_scalar_mul(sc, sc, &ctx->randomizer61);
*pt = *ctx->asset;
break;
}
/* T1^x in eq (61) */
case 3:
secp256k1_scalar_mul(sc, &ctx->x, &ctx->randomizer61);
*pt = ctx->t1;
break;
/* T2^x^2 in eq (61) */
case 4:
secp256k1_scalar_sqr(sc, &ctx->x);
secp256k1_scalar_mul(sc, sc, &ctx->randomizer61);
*pt = ctx->t2;
break;
/* V^z^2 in eq (61) */
default:
VERIFY_CHECK(ctx->count < 5 + ctx->n_commits);
secp256k1_scalar_mul(sc, &ctx->zsq, &ctx->randomizer61);
secp256k1_scalar_mul(&ctx->zsq, &ctx->zsq, &ctx->z);
*pt = ctx->commit[ctx->count - 5];
break;
}
secp256k1_scalar_mul(sc, sc, randomizer);
ctx->count++;
}
return 1;
}
static int secp256k1_bulletproof_rangeproof_verify_impl(const secp256k1_ecmult_context *ecmult_ctx, secp256k1_scratch *scratch, const unsigned char* const* proof, const size_t n_proofs, const size_t plen, size_t nbits, const uint64_t* const* min_value, const secp256k1_ge* const* commitp, size_t n_commits, const secp256k1_ge *value_gen, const secp256k1_bulletproof_generators *gens, const unsigned char* const* extra_commit, size_t *extra_commit_len) {
secp256k1_bulletproof_vfy_ecmult_context *ecmult_data;
secp256k1_bulletproof_innerproduct_context *innp_ctx;
int ret;
size_t i;
int same_generators = 1;
/* sanity-check input */
if (POPCOUNT(nbits) != 1 || nbits > MAX_NBITS) {
return 0;
}
if (plen < 64 + 128 + 1) { /* inner product argument will do a more precise check */
return 0;
}
if (plen > SECP256K1_BULLETPROOF_MAX_PROOF) {
return 0;
}
if (!secp256k1_scratch_allocate_frame(scratch, n_proofs * (sizeof(*ecmult_data) + sizeof(*innp_ctx)), 2)) {
return 0;
}
ecmult_data = (secp256k1_bulletproof_vfy_ecmult_context *)secp256k1_scratch_alloc(scratch, n_proofs * sizeof(*ecmult_data));
innp_ctx = (secp256k1_bulletproof_innerproduct_context *)secp256k1_scratch_alloc(scratch, n_proofs * sizeof(*innp_ctx));
/* In general you cannot memcmp secp256k1_ge's like this because their field
* elements may represent the same number differently. In this case it is ok
* because (a) a false positive here is no big deal, it will add one mult per
* proof to he giant ecmult_multi at the end but not change any semantics;
* and (b) typically this list of generators was deterministically decoded
* from a list of secp256k1_generators which have a compact encoding, so that
* equal group elements actually will compare equal. */
for (i = 1; i < n_proofs; i++) {
if (memcmp(&value_gen[i], &value_gen[i - 1], sizeof(value_gen[i])) != 0) {
same_generators = 0;
}
}
for (i = 0; i < n_proofs; i++) {
secp256k1_sha256 sha256;
unsigned char commit[32] = {0};
unsigned char randomizer61[32] = {0}; /* randomizer for eq (61) so we can add it to eq (62) to save a separate multiexp */
secp256k1_scalar taux, mu;
secp256k1_ge age, sge;
int overflow;
size_t j;
/* Commit to all input data: min value, pedersen commit, asset generator, extra_commit */
if (min_value != NULL && min_value[i] != NULL) {
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, commit, 32);
for (j = 0; j < n_commits; j++) {
unsigned char vbuf[8];
vbuf[0] = min_value[i][j];
vbuf[1] = min_value[i][j] >> 8;
vbuf[2] = min_value[i][j] >> 16;
vbuf[3] = min_value[i][j] >> 24;
vbuf[4] = min_value[i][j] >> 32;
vbuf[5] = min_value[i][j] >> 40;
vbuf[6] = min_value[i][j] >> 48;
vbuf[7] = min_value[i][j] >> 56;
secp256k1_sha256_write(&sha256, vbuf, 8);
}
secp256k1_sha256_finalize(&sha256, commit);
}
for (j = 0; j < n_commits; j++) {
secp256k1_bulletproof_update_commit(commit, &commitp[i][j], &value_gen[i]);
}
if (extra_commit != NULL && extra_commit[i] != NULL) {
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, commit, 32);
secp256k1_sha256_write(&sha256, extra_commit[i], extra_commit_len[i]);
secp256k1_sha256_finalize(&sha256, commit);
}
/* Compute y, z, x */
secp256k1_bulletproof_deserialize_point(&age, &proof[i][64], 0, 4);
secp256k1_bulletproof_deserialize_point(&sge, &proof[i][64], 1, 4);
secp256k1_bulletproof_update_commit(commit, &age, &sge);
secp256k1_scalar_set_b32(&ecmult_data[i].y, commit, &overflow);
if (overflow || secp256k1_scalar_is_zero(&ecmult_data[i].y)) {
secp256k1_scratch_deallocate_frame(scratch);
return 0;
}
secp256k1_bulletproof_update_commit(commit, &age, &sge);
secp256k1_scalar_set_b32(&ecmult_data[i].z, commit, &overflow);
if (overflow || secp256k1_scalar_is_zero(&ecmult_data[i].z)) {
secp256k1_scratch_deallocate_frame(scratch);
return 0;
}
secp256k1_bulletproof_deserialize_point(&ecmult_data[i].t1, &proof[i][64], 2, 4);
secp256k1_bulletproof_deserialize_point(&ecmult_data[i].t2, &proof[i][64], 3, 4);
secp256k1_bulletproof_update_commit(commit, &ecmult_data[i].t1, &ecmult_data[i].t2);
secp256k1_scalar_set_b32(&ecmult_data[i].x, commit, &overflow);
if (overflow || secp256k1_scalar_is_zero(&ecmult_data[i].x)) {
secp256k1_scratch_deallocate_frame(scratch);
return 0;
}
/* compute exponent offsets */
secp256k1_scalar_inverse_var(&ecmult_data[i].yinv, &ecmult_data[i].y); /* TODO somehow batch this w the inner-product argument inverse */
ecmult_data[i].yinvn = ecmult_data[i].yinv;
for (j = 0; j < secp256k1_floor_lg(nbits); j++) {
secp256k1_scalar_sqr(&ecmult_data[i].yinvn, &ecmult_data[i].yinvn);
}
secp256k1_scalar_sqr(&ecmult_data[i].zsq, &ecmult_data[i].z);
secp256k1_scalar_negate(&ecmult_data[i].negz, &ecmult_data[i].z);
/* Update commit with remaining data for the inner product proof */
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, commit, 32);
secp256k1_sha256_write(&sha256, &proof[i][0], 64);
secp256k1_sha256_finalize(&sha256, commit);
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, commit, 32);
secp256k1_sha256_finalize(&sha256, randomizer61);
secp256k1_scalar_set_b32(&ecmult_data[i].randomizer61, randomizer61, &overflow);
if (overflow || secp256k1_scalar_is_zero(&ecmult_data[i].randomizer61)) {
secp256k1_scratch_deallocate_frame(scratch);
return 0;
}
/* Deserialize everything else */
secp256k1_scalar_set_b32(&taux, &proof[i][0], &overflow);
if (overflow || secp256k1_scalar_is_zero(&taux)) {
secp256k1_scratch_deallocate_frame(scratch);
return 0;
}
secp256k1_scalar_set_b32(&mu, &proof[i][32], &overflow);
if (overflow || secp256k1_scalar_is_zero(&mu)) {
secp256k1_scratch_deallocate_frame(scratch);
return 0;
}
/* A little sketchy, we read t (l(x) . r(x)) off the front of the inner product proof,
* which we otherwise treat as a black box */
secp256k1_scalar_set_b32(&ecmult_data[i].t, &proof[i][64 + 128 + 1], &overflow);
if (overflow || secp256k1_scalar_is_zero(&ecmult_data[i].t)) {
secp256k1_scratch_deallocate_frame(scratch);
return 0;
}
/* Verify inner product proof */
ecmult_data[i].a = age;
ecmult_data[i].s = sge;
ecmult_data[i].n = nbits * n_commits;
ecmult_data[i].count = 0;
ecmult_data[i].asset = &value_gen[i];
ecmult_data[i].min_value = min_value == NULL ? NULL : min_value[i];
ecmult_data[i].commit = commitp[i];
ecmult_data[i].n_commits = n_commits;
secp256k1_scalar_mul(&taux, &taux, &ecmult_data[i].randomizer61);
secp256k1_scalar_add(&mu, &mu, &taux);
innp_ctx[i].proof = &proof[i][64 + 128 + 1];
innp_ctx[i].p_offs = mu;
memcpy(innp_ctx[i].commit, commit, 32);
innp_ctx[i].yinv = ecmult_data[i].yinv;
innp_ctx[i].rangeproof_cb = secp256k1_bulletproof_rangeproof_vfy_callback;
innp_ctx[i].rangeproof_cb_data = (void *) &ecmult_data[i];
innp_ctx[i].n_extra_rangeproof_points = 5 + n_commits;
}
ret = secp256k1_bulletproof_inner_product_verify_impl(ecmult_ctx, scratch, gens, nbits * n_commits, innp_ctx, n_proofs, plen - (64 + 128 + 1), same_generators);
secp256k1_scratch_deallocate_frame(scratch);
return ret;
}
typedef struct {
const unsigned char *nonce;
secp256k1_scalar y;
secp256k1_scalar z;
secp256k1_scalar yn;
secp256k1_scalar z22n;
const uint64_t *val;
const uint64_t *min_val;
size_t n_vals;
size_t nbits;
size_t count;
} secp256k1_bulletproof_lr_generator;
static void secp256k1_lr_generator_init(secp256k1_bulletproof_lr_generator *generator, const unsigned char *nonce, const secp256k1_scalar *y, const secp256k1_scalar *z, size_t nbits, const uint64_t *val, const uint64_t *min_val, size_t n_vals) {
generator->nonce = nonce;
generator->y = *y;
generator->z = *z;
secp256k1_scalar_set_int(&generator->yn, 1);
generator->nbits = nbits;
generator->val = val;
generator->min_val = min_val;
generator->n_vals = n_vals;
generator->count = 0;
}
static void secp256k1_lr_generate(secp256k1_bulletproof_lr_generator *generator, secp256k1_scalar *lout, secp256k1_scalar *rout, const secp256k1_scalar *x) {
const size_t commit_idx = generator->count / generator->nbits;
const size_t bit_idx = generator->count % generator->nbits;
const uint64_t mv = generator->min_val == NULL ? 0 : generator->min_val[commit_idx];
const int bit = ((generator->val[commit_idx] - mv)>> bit_idx) & 1;
secp256k1_scalar sl, sr;
secp256k1_scalar negz;
if (bit_idx == 0) {
size_t i;
secp256k1_scalar_sqr(&generator->z22n, &generator->z);
for (i = 0; i < commit_idx; i++) {
secp256k1_scalar_mul(&generator->z22n, &generator->z22n, &generator->z);
}
}
secp256k1_scalar_chacha20(&sl, &sr, generator->nonce, generator->count + 2);
secp256k1_scalar_mul(&sl, &sl, x);
secp256k1_scalar_mul(&sr, &sr, x);
secp256k1_scalar_set_int(lout, bit);
secp256k1_scalar_negate(&negz, &generator->z);
secp256k1_scalar_add(lout, lout, &negz);
secp256k1_scalar_add(lout, lout, &sl);
secp256k1_scalar_set_int(rout, 1 - bit);
secp256k1_scalar_negate(rout, rout);
secp256k1_scalar_add(rout, rout, &generator->z);
secp256k1_scalar_add(rout, rout, &sr);
secp256k1_scalar_mul(rout, rout, &generator->yn);
secp256k1_scalar_add(rout, rout, &generator->z22n);
generator->count++;
secp256k1_scalar_mul(&generator->yn, &generator->yn, &generator->y);
secp256k1_scalar_add(&generator->z22n, &generator->z22n, &generator->z22n);
}
typedef struct {
secp256k1_scalar x;
secp256k1_scalar cache;
secp256k1_bulletproof_lr_generator lr_gen;
} secp256k1_bulletproof_abgh_data;
static int secp256k1_bulletproof_abgh_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data) {
secp256k1_bulletproof_abgh_data *ctx = (secp256k1_bulletproof_abgh_data *) data;
const int is_g = idx % 2 == 0;
(void) pt;
if (is_g) {
secp256k1_lr_generate(&ctx->lr_gen, sc, &ctx->cache, &ctx->x);
} else {
*sc = ctx->cache;
}
return 1;
}
/* Proof format: t, tau_x, mu, a, b, A, S, T_1, T_2, {L_i}, {R_i}
* 5 scalar + [4 + 2log(n)] ge
*
* The non-bold `h` in the Bulletproofs paper corresponds to our gens->blinding_gen
* while the non-bold `g` corresponds to the asset type `value_gen`.
*/
static int secp256k1_bulletproof_rangeproof_prove_impl(const secp256k1_ecmult_context *ecmult_ctx, secp256k1_scratch *scratch, unsigned char *proof, size_t *plen, const size_t nbits, const uint64_t *value, const uint64_t *min_value, const secp256k1_scalar *blind, const secp256k1_ge *commitp, size_t n_commits, const secp256k1_ge *value_gen, const secp256k1_bulletproof_generators *gens, const unsigned char *nonce, const unsigned char *extra_commit, size_t extra_commit_len) {
secp256k1_bulletproof_lr_generator lr_gen;
secp256k1_bulletproof_abgh_data abgh_data;
secp256k1_scalar zero;
secp256k1_sha256 sha256;
unsigned char commit[32] = {0};
secp256k1_scalar alpha, rho;
secp256k1_scalar t0, t1, t2;
secp256k1_scalar tau1, tau2, taux, mu;
secp256k1_scalar y;
secp256k1_scalar z, zsq;
secp256k1_scalar x, xsq;
secp256k1_scalar tmps;
secp256k1_gej aj, sj;
secp256k1_gej tmpj;
size_t i, j;
int overflow;
/* inner product proof variables */
secp256k1_ge out_pt[4];
if (POPCOUNT(nbits) != 1 || nbits > MAX_NBITS) {
return 0;
}
for (i = 0; i < n_commits; i++) {
uint64_t mv = min_value == NULL ? 0 : min_value[i];
if (mv > value[i]) {
return 0;
}
if (nbits < 64 && (value[i] - mv) >= (1ull << nbits)) {
return 0;
}
}
if (*plen < 128 + 64 + 1) { /* inner product argument will check and assign plen */
return 0;
}
secp256k1_scalar_clear(&zero);
/* Commit to all input data: min value, pedersen commit, asset generator, extra_commit */
if (min_value != NULL) {
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, commit, 32);
for (i = 0; i < n_commits; i++) {
unsigned char vbuf[8];
vbuf[0] = min_value[i];
vbuf[1] = min_value[i] >> 8;
vbuf[2] = min_value[i] >> 16;
vbuf[3] = min_value[i] >> 24;
vbuf[4] = min_value[i] >> 32;
vbuf[5] = min_value[i] >> 40;
vbuf[6] = min_value[i] >> 48;
vbuf[7] = min_value[i] >> 56;
secp256k1_sha256_write(&sha256, vbuf, 8);
}
secp256k1_sha256_finalize(&sha256, commit);
}
for (i = 0; i < n_commits; i++) {
secp256k1_bulletproof_update_commit(commit, &commitp[i], value_gen); /* TODO be less stupid about this */
}
if (extra_commit != NULL) {
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, commit, 32);
secp256k1_sha256_write(&sha256, extra_commit, extra_commit_len);
secp256k1_sha256_finalize(&sha256, commit);
}
secp256k1_scalar_chacha20(&alpha, &rho, nonce, 0);
secp256k1_scalar_chacha20(&tau1, &tau2, nonce, 1);
/* Encrypt value into alpha, so it will be recoverable from -mu by someone who knows `nonce` */
if (n_commits == 1) {
secp256k1_scalar vals;
secp256k1_scalar_set_u64(&vals, value[0]);
secp256k1_scalar_negate(&vals, &vals); /* Negate so it'll be positive in -mu */
secp256k1_scalar_add(&alpha, &alpha, &vals);
}
/* Compute A and S */
secp256k1_ecmult_const(&aj, &gens->blinding_gen[0], &alpha, 256);
secp256k1_ecmult_const(&sj, &gens->blinding_gen[0], &rho, 256);
for (i = 0; i < n_commits; i++) {
for (j = 0; j < nbits; j++) {
secp256k1_scalar sl, sr;
uint64_t mv = min_value == NULL ? 0 : min_value[i];
size_t al = !!((value[i] - mv) & (1ull << j));
secp256k1_ge aterm = gens->gens[i * nbits + j + gens->n/2];
secp256k1_ge sterm;
secp256k1_gej stermj;
secp256k1_scalar_chacha20(&sl, &sr, nonce, i * nbits + j + 2);
secp256k1_ge_neg(&aterm, &aterm);
secp256k1_fe_cmov(&aterm.x, &gens->gens[i * nbits + j].x, al);
secp256k1_fe_cmov(&aterm.y, &gens->gens[i * nbits + j].y, al);
secp256k1_gej_add_ge(&aj, &aj, &aterm);
secp256k1_ecmult_const(&stermj, &gens->gens[i * nbits + j], &sl, 256);
secp256k1_ge_set_gej(&sterm, &stermj);
secp256k1_gej_add_ge(&sj, &sj, &sterm);
secp256k1_ecmult_const(&stermj, &gens->gens[i * nbits + j + gens->n/2], &sr, 256);
secp256k1_ge_set_gej(&sterm, &stermj);
secp256k1_gej_add_ge(&sj, &sj, &sterm);
}
}
/* get challenges y and z */
secp256k1_ge_set_gej(&out_pt[0], &aj);
secp256k1_ge_set_gej(&out_pt[1], &sj);
secp256k1_bulletproof_update_commit(commit, &out_pt[0], &out_pt[1]);
secp256k1_scalar_set_b32(&y, commit, &overflow);
if (overflow || secp256k1_scalar_is_zero(&y)) {
return 0;
}
secp256k1_bulletproof_update_commit(commit, &out_pt[0], &out_pt[1]); /* TODO rehashing A and S to get a second challenge is overkill */
secp256k1_scalar_set_b32(&z, commit, &overflow);
if (overflow || secp256k1_scalar_is_zero(&z)) {
return 0;
}
secp256k1_scalar_sqr(&zsq, &z);
/* Compute coefficients t0, t1, t2 of the <l, r> polynomial */
/* t0 = l(0) dot r(0) */
secp256k1_lr_generator_init(&lr_gen, nonce, &y, &z, nbits, value, min_value, n_commits);
secp256k1_scalar_clear(&t0);
for (i = 0; i < nbits * n_commits; i++) {
secp256k1_scalar l, r;
secp256k1_lr_generate(&lr_gen, &l, &r, &zero);
secp256k1_scalar_mul(&l, &l, &r);
secp256k1_scalar_add(&t0, &t0, &l);
}
/* A = t0 + t1 + t2 = l(1) dot r(1) */
secp256k1_lr_generator_init(&lr_gen, nonce, &y, &z, nbits, value, min_value, n_commits);
secp256k1_scalar_clear(&t1);
for (i = 0; i < nbits * n_commits; i++) {
secp256k1_scalar one;
secp256k1_scalar l, r;
secp256k1_scalar_set_int(&one, 1);
secp256k1_lr_generate(&lr_gen, &l, &r, &one);
secp256k1_scalar_mul(&l, &l, &r);
secp256k1_scalar_add(&t1, &t1, &l);
}
/* B = t0 - t1 + t2 = l(-1) dot r(-1) */
secp256k1_lr_generator_init(&lr_gen, nonce, &y, &z, nbits, value, min_value, n_commits);
secp256k1_scalar_clear(&t2);
for (i = 0; i < nbits * n_commits; i++) {
secp256k1_scalar negone;
secp256k1_scalar l, r;
secp256k1_scalar_set_int(&negone, 1);
secp256k1_scalar_negate(&negone, &negone);
secp256k1_lr_generate(&lr_gen, &l, &r, &negone);
secp256k1_scalar_mul(&l, &l, &r);
secp256k1_scalar_add(&t2, &t2, &l);
}
/* t1 = (A - B)/2 */
secp256k1_scalar_set_int(&tmps, 2);
secp256k1_scalar_inverse_var(&tmps, &tmps);
secp256k1_scalar_negate(&t2, &t2);
secp256k1_scalar_add(&t1, &t1, &t2);
secp256k1_scalar_mul(&t1, &t1, &tmps);
/* t2 = -(-B + t0) + t1 */
secp256k1_scalar_add(&t2, &t2, &t0);
secp256k1_scalar_negate(&t2, &t2);
secp256k1_scalar_add(&t2, &t2, &t1);
/* Compute Ti = t_i*A + tau_i*G for i = 1,2 */
/* TODO surely we can improve this */
secp256k1_ecmult_const(&tmpj, value_gen, &t1, 256);
secp256k1_ge_set_gej(&out_pt[2], &tmpj);
secp256k1_ecmult_const(&tmpj, &gens->blinding_gen[0], &tau1, 256);
secp256k1_gej_add_ge(&tmpj, &tmpj, &out_pt[2]);
secp256k1_ge_set_gej(&out_pt[2], &tmpj);
secp256k1_ecmult_const(&tmpj, value_gen, &t2, 256);
secp256k1_ge_set_gej(&out_pt[3], &tmpj);
secp256k1_ecmult_const(&tmpj, &gens->blinding_gen[0], &tau2, 256);
secp256k1_gej_add_ge(&tmpj, &tmpj, &out_pt[3]);
secp256k1_ge_set_gej(&out_pt[3], &tmpj);
/* get challenge x */
secp256k1_bulletproof_update_commit(commit, &out_pt[2], &out_pt[3]);
secp256k1_scalar_set_b32(&x, commit, &overflow);
if (overflow || secp256k1_scalar_is_zero(&x)) {
return 0;
}
secp256k1_scalar_sqr(&xsq, &x);
/* compute tau_x and mu */
secp256k1_scalar_mul(&taux, &tau1, &x);
secp256k1_scalar_mul(&tmps, &tau2, &xsq);
secp256k1_scalar_add(&taux, &taux, &tmps);
for (i = 0; i < n_commits; i++) {
secp256k1_scalar_mul(&tmps, &zsq, &blind[i]);
secp256k1_scalar_add(&taux, &taux, &tmps);
secp256k1_scalar_mul(&zsq, &zsq, &z);
}
secp256k1_scalar_mul(&mu, &rho, &x);
secp256k1_scalar_add(&mu, &mu, &alpha);
/* Negate taux and mu so the verifier doesn't have to */
secp256k1_scalar_negate(&taux, &taux);
secp256k1_scalar_negate(&mu, &mu);
/* Encode rangeproof stuff */
secp256k1_scalar_get_b32(&proof[0], &taux);
secp256k1_scalar_get_b32(&proof[32], &mu);
secp256k1_bulletproof_serialize_points(&proof[64], out_pt, 4);
/* Mix this into the hash so the input to the inner product proof is fixed */
/* TODO is this necessary? revisit */
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, commit, 32);
secp256k1_sha256_write(&sha256, proof, 64);
secp256k1_sha256_finalize(&sha256, commit);
/* Compute l and r, do inner product proof */
abgh_data.x = x;
secp256k1_lr_generator_init(&abgh_data.lr_gen, nonce, &y, &z, nbits, value, min_value, n_commits);
*plen -= 64 + 128 + 1;
secp256k1_scalar_inverse_var(&y, &y);
if (secp256k1_bulletproof_inner_product_prove_impl(ecmult_ctx, scratch, &proof[64 + 128 + 1], plen, gens, &y, nbits * n_commits, secp256k1_bulletproof_abgh_callback, (void *) &abgh_data, commit) == 0) {
return 0;
}
*plen += 64 + 128 + 1;
return 1;
}
static int secp256k1_bulletproof_rangeproof_rewind_impl(uint64_t *value, secp256k1_scalar *blind, const unsigned char *proof, const size_t plen, uint64_t min_value, const secp256k1_pedersen_commitment *pcommit, const secp256k1_generator *value_gen, const secp256k1_ge *blind_gen, const unsigned char *nonce, const unsigned char *extra_commit, size_t extra_commit_len) {
secp256k1_sha256 sha256;
static const unsigned char zero24[24] = { 0 };
unsigned char commit[32] = { 0 };
unsigned char lrparity;
secp256k1_scalar taux, mu;
secp256k1_scalar alpha, rho, tau1, tau2;
secp256k1_scalar x, z;
secp256k1_ge commitp, value_genp;
secp256k1_gej rewind_commitj;
int overflow;
if (plen < 64 + 128 + 1 || plen > SECP256K1_BULLETPROOF_MAX_PROOF) {
return 0;
}
/* Extract data from beginning of proof */
secp256k1_scalar_set_b32(&taux, &proof[0], &overflow);
if (overflow || secp256k1_scalar_is_zero(&taux)) {
return 0;
}
secp256k1_scalar_set_b32(&mu, &proof[32], &overflow);
if (overflow || secp256k1_scalar_is_zero(&mu)) {
return 0;
}
secp256k1_scalar_chacha20(&alpha, &rho, nonce, 0);
secp256k1_scalar_chacha20(&tau1, &tau2, nonce, 1);
if (min_value > 0) {
unsigned char vbuf[8];
vbuf[0] = min_value;
vbuf[1] = min_value >> 8;
vbuf[2] = min_value >> 16;
vbuf[3] = min_value >> 24;
vbuf[4] = min_value >> 32;
vbuf[5] = min_value >> 40;
vbuf[6] = min_value >> 48;
vbuf[7] = min_value >> 56;
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, commit, 32);
secp256k1_sha256_write(&sha256, vbuf, 8);
secp256k1_sha256_finalize(&sha256, commit);
}
/* This breaks the abstraction of both the Pedersen commitment and the generator
* type by directly reading the parity bit and x-coordinate from the data. But
* the alternative using the _load functions is to do two full point decompression,
* and in my benchmarks we save ~80% of the rewinding time by avoiding this. -asp */
lrparity = 2 * !!(pcommit->data[0] & 1) + !!(value_gen->data[0] & 1);
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, commit, 32);
secp256k1_sha256_write(&sha256, &lrparity, 1);
secp256k1_sha256_write(&sha256, &pcommit->data[1], 32);
secp256k1_sha256_write(&sha256, &value_gen->data[1], 32);
secp256k1_sha256_finalize(&sha256, commit);
if (extra_commit != NULL) {
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, commit, 32);
secp256k1_sha256_write(&sha256, extra_commit, extra_commit_len);
secp256k1_sha256_finalize(&sha256, commit);
}
/* Extract A and S to compute y and z */
lrparity = 2 * !!(proof[64] & 1) + !!(proof[64] & 2);
/* y */
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, commit, 32);
secp256k1_sha256_write(&sha256, &lrparity, 1);
secp256k1_sha256_write(&sha256, &proof[65], 64);
secp256k1_sha256_finalize(&sha256, commit);
/* z */
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, commit, 32);
secp256k1_sha256_write(&sha256, &lrparity, 1);
secp256k1_sha256_write(&sha256, &proof[65], 64);
secp256k1_sha256_finalize(&sha256, commit);
secp256k1_scalar_set_b32(&z, commit, &overflow);
if (overflow || secp256k1_scalar_is_zero(&z)) {
return 0;
}
/* x */
lrparity = 2 * !!(proof[64] & 4) + !!(proof[64] & 8);
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, commit, 32);
secp256k1_sha256_write(&sha256, &lrparity, 1);
secp256k1_sha256_write(&sha256, &proof[129], 64);
secp256k1_sha256_finalize(&sha256, commit);
secp256k1_scalar_set_b32(&x, commit, &overflow);
if (overflow || secp256k1_scalar_is_zero(&x)) {
return 0;
}
/* Compute candidate mu and add to (negated) mu from proof to get value */
secp256k1_scalar_mul(&rho, &rho, &x);
secp256k1_scalar_add(&mu, &mu, &rho);
secp256k1_scalar_add(&mu, &mu, &alpha);
secp256k1_scalar_get_b32(commit, &mu);
if (memcmp(commit, zero24, 24) != 0) {
return 0;
}
*value = commit[31] + ((uint64_t) commit[30] << 8) +
((uint64_t) commit[29] << 16) + ((uint64_t) commit[28] << 24) +
((uint64_t) commit[27] << 32) + ((uint64_t) commit[26] << 40) +
((uint64_t) commit[25] << 48) + ((uint64_t) commit[24] << 56);
/* Derive blinding factor */
secp256k1_scalar_mul(&tau1, &tau1, &x);
secp256k1_scalar_mul(&tau2, &tau2, &x);
secp256k1_scalar_mul(&tau2, &tau2, &x);
secp256k1_scalar_add(&taux, &taux, &tau1);
secp256k1_scalar_add(&taux, &taux, &tau2);
secp256k1_scalar_sqr(&z, &z);
secp256k1_scalar_inverse_var(&z, &z);
secp256k1_scalar_mul(blind, &taux, &z);
secp256k1_scalar_negate(blind, blind);
/* Check blinding factor */
secp256k1_pedersen_commitment_load(&commitp, pcommit);
secp256k1_generator_load(&value_genp, value_gen);
secp256k1_pedersen_ecmult(&rewind_commitj, blind, *value, &value_genp, blind_gen);
secp256k1_gej_neg(&rewind_commitj, &rewind_commitj);
secp256k1_gej_add_ge_var(&rewind_commitj, &rewind_commitj, &commitp, NULL);
return secp256k1_gej_is_infinity(&rewind_commitj);
}
#endif

View File

@ -1,608 +0,0 @@
/**********************************************************************
* Copyright (c) 2018 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODULE_BULLETPROOF_TESTS
#define SECP256K1_MODULE_BULLETPROOF_TESTS
#include <string.h>
#include "group.h"
#include "scalar.h"
#include "testrand.h"
#include "util.h"
#include "include/secp256k1_bulletproofs.h"
static void test_bulletproof_api(void) {
secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
secp256k1_context *sign = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
secp256k1_context *vrfy = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY);
secp256k1_context *both = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
secp256k1_scratch *scratch = secp256k1_scratch_space_create(ctx, 1024 * 1024);
secp256k1_generator value_gen;
secp256k1_bulletproof_generators *gens;
secp256k1_pedersen_commitment pcommit[4];
const secp256k1_pedersen_commitment *pcommit_arr[1];
unsigned char proof[2000];
const unsigned char *proof_ptr = proof;
const unsigned char blind[32] = " i am not a blinding factor ";
const unsigned char *blind_ptr[4];
size_t blindlen = sizeof(blind);
size_t plen = sizeof(proof);
uint64_t value[4] = { 1234, 4567, 8910, 1112 } ;
uint64_t min_value[4] = { 1000, 4567, 0, 5000 } ;
const uint64_t *mv_ptr = min_value;
unsigned char rewind_blind[32];
size_t rewind_v;
int32_t ecount = 0;
blind_ptr[0] = blind;
blind_ptr[1] = blind;
blind_ptr[2] = blind;
blind_ptr[3] = blind;
pcommit_arr[0] = pcommit;
secp256k1_context_set_error_callback(none, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_error_callback(sign, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_error_callback(vrfy, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_error_callback(both, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(none, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(sign, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(vrfy, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(both, counting_illegal_callback_fn, &ecount);
CHECK(secp256k1_generator_generate(both, &value_gen, blind) != 0);
CHECK(secp256k1_pedersen_commit(both, &pcommit[0], blind, value[0], &value_gen, &secp256k1_generator_const_h) != 0);
CHECK(secp256k1_pedersen_commit(both, &pcommit[1], blind, value[1], &value_gen, &secp256k1_generator_const_h) != 0);
CHECK(secp256k1_pedersen_commit(both, &pcommit[2], blind, value[2], &value_gen, &secp256k1_generator_const_h) != 0);
CHECK(secp256k1_pedersen_commit(both, &pcommit[3], blind, value[3], &value_gen, &secp256k1_generator_const_h) != 0);
/* generators */
gens = secp256k1_bulletproof_generators_create(none, NULL, 256);
CHECK(gens == NULL && ecount == 1);
gens = secp256k1_bulletproof_generators_create(none, &secp256k1_generator_const_h, 256);
CHECK(gens != NULL && ecount == 1);
/* rangeproof_prove */
ecount = 0;
CHECK(secp256k1_bulletproof_rangeproof_prove(none, scratch, gens, proof, &plen, value, NULL, blind_ptr, 1, &value_gen, 64, blind, NULL, 0) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_bulletproof_rangeproof_prove(sign, scratch, gens, proof, &plen, value, NULL, blind_ptr, 1, &value_gen, 64, blind, NULL, 0) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_bulletproof_rangeproof_prove(vrfy, scratch, gens, proof, &plen, value, NULL, blind_ptr, 1, &value_gen, 64, blind, NULL, 0) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, value, NULL, blind_ptr, 1, &value_gen, 64, blind, NULL, 0) == 1);
CHECK(ecount == 3);
plen = 2000;
CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, value, NULL, blind_ptr, 2, &value_gen, 64, blind, NULL, 0) == 1);
CHECK(ecount == 3);
plen = 2000;
CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, value, NULL, blind_ptr, 4, &value_gen, 64, blind, NULL, 0) == 0); /* too few gens */
CHECK(ecount == 4);
CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, value, min_value, blind_ptr, 2, &value_gen, 64, blind, NULL, 0) == 1); /* mv = v, ok */
CHECK(ecount == 4);
CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, &value[1], &min_value[1], blind_ptr, 2, &value_gen, 64, blind, NULL, 0) == 1); /* mv = 0, ok */
CHECK(ecount == 4);
CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, &value[2], &min_value[2], blind_ptr, 2, &value_gen, 64, blind, NULL, 0) == 0); /* mv > v, !ok */
CHECK(ecount == 4);
CHECK(secp256k1_bulletproof_rangeproof_prove(both, NULL, gens, proof, &plen, value, NULL, blind_ptr, 1, &value_gen, 64, blind, NULL, 0) == 0);
CHECK(ecount == 5);
CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, NULL, proof, &plen, value, NULL, blind_ptr, 1, &value_gen, 64, blind, NULL, 0) == 0);
CHECK(ecount == 6);
CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, NULL, &plen, value, NULL, blind_ptr, 1, &value_gen, 64, blind, NULL, 0) == 0);
CHECK(ecount == 7);
CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, NULL, value, NULL, blind_ptr, 1, &value_gen, 64, blind, NULL, 0) == 0);
CHECK(ecount == 8);
CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, NULL, NULL, blind_ptr, 1, &value_gen, 64, blind, NULL, 0) == 0);
CHECK(ecount == 9);
CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, value, NULL, NULL, 1, &value_gen, 64, blind, NULL, 0) == 0);
CHECK(ecount == 10);
CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, value, NULL, blind_ptr, 0, &value_gen, 64, blind, NULL, 0) == 0);
CHECK(ecount == 11);
CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, value, NULL, blind_ptr, 1, NULL, 64, blind, NULL, 0) == 0);
CHECK(ecount == 12);
CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, value, NULL, blind_ptr, 1, &value_gen, 0, blind, NULL, 0) == 0);
CHECK(ecount == 13);
CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, value, NULL, blind_ptr, 1, &value_gen, 65, blind, NULL, 0) == 0);
CHECK(ecount == 14);
CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, value, NULL, blind_ptr, 1, &value_gen, -1, blind, NULL, 0) == 0);
CHECK(ecount == 15);
CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, value, NULL, blind_ptr, 1, &value_gen, 64, NULL, NULL, 0) == 0);
CHECK(ecount == 16);
CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, value, NULL, blind_ptr, 1, &value_gen, 64, blind, blind, 0) == 1);
CHECK(ecount == 16);
CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, value, min_value, blind_ptr, 1, &value_gen, 64, blind, blind, 32) == 1);
CHECK(ecount == 16);
/* rangeproof_verify */
ecount = 0;
CHECK(secp256k1_bulletproof_rangeproof_verify(none, scratch, gens, proof, plen, min_value, pcommit, 1, 64, &value_gen, blind, 32) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_bulletproof_rangeproof_verify(sign, scratch, gens, proof, plen, min_value, pcommit, 1, 64, &value_gen, blind, 32) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_bulletproof_rangeproof_verify(vrfy, scratch, gens, proof, plen, min_value, pcommit, 1, 64, &value_gen, blind, 32) == 1);
CHECK(ecount == 2);
CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, min_value, pcommit, 1, 64, &value_gen, blind, 32) == 1);
CHECK(ecount == 2);
CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, min_value, pcommit, 1, 63, &value_gen, blind, 32) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen - 1, min_value, pcommit, 1, 63, &value_gen, blind, 32) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, 0, min_value, pcommit, 1, 63, &value_gen, blind, 32) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, min_value, pcommit, 1, 64, &value_gen, blind, 31) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, min_value, pcommit, 1, 64, &value_gen, NULL, 0) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, min_value, pcommit, 2, 64, &value_gen, blind, 32) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, min_value, pcommit, 4, 64, &value_gen, blind, 32) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_bulletproof_rangeproof_verify(both, NULL, gens, proof, plen, min_value, pcommit, 1, 64, &value_gen, blind, 32) == 0);
CHECK(ecount == 4);
CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, NULL, proof, plen, min_value, pcommit, 1, 64, &value_gen, blind, 32) == 0);
CHECK(ecount == 5);
CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, NULL, plen, min_value, pcommit, 1, 64, &value_gen, blind, 32) == 0);
CHECK(ecount == 6);
CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, NULL, pcommit, 1, 64, &value_gen, blind, 32) == 0);
CHECK(ecount == 6);
CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, min_value, NULL, 1, 64, &value_gen, blind, 32) == 0);
CHECK(ecount == 7);
CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, min_value, pcommit, 0, 64, &value_gen, blind, 32) == 0);
CHECK(ecount == 8);
CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, min_value, pcommit, 1, 65, &value_gen, blind, 32) == 0);
CHECK(ecount == 9);
CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, min_value, pcommit, 1, 0, &value_gen, blind, 32) == 0);
CHECK(ecount == 10);
CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, min_value, pcommit, 1, 64, NULL, blind, 32) == 0);
CHECK(ecount == 11);
CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, min_value, pcommit, 1, 64, &value_gen, NULL, 32) == 0);
CHECK(ecount == 12);
CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, min_value, pcommit, 1, 64, &value_gen, blind, 0) == 0);
CHECK(ecount == 12);
/* verify_multi */
ecount = 0;
CHECK(secp256k1_bulletproof_rangeproof_verify_multi(none, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 1, 64, &value_gen, blind_ptr, &blindlen) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_bulletproof_rangeproof_verify_multi(sign, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 1, 64, &value_gen, blind_ptr, &blindlen) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_bulletproof_rangeproof_verify_multi(vrfy, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 1, 64, &value_gen, blind_ptr, &blindlen) == 1);
CHECK(ecount == 2);
CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 1, 64, &value_gen, blind_ptr, &blindlen) == 1);
CHECK(ecount == 2);
CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, NULL, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 1, 64, &value_gen, blind_ptr, &blindlen) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, NULL, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 1, 64, &value_gen, blind_ptr, &blindlen) == 0);
CHECK(ecount == 4);
CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, NULL, 1, plen, &mv_ptr, pcommit_arr, 1, 64, &value_gen, blind_ptr, &blindlen) == 0);
CHECK(ecount == 5);
CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 0, plen, &mv_ptr, pcommit_arr, 1, 64, &value_gen, blind_ptr, &blindlen) == 0);
CHECK(ecount == 6);
CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 1, plen, NULL, pcommit_arr, 1, 64, &value_gen, blind_ptr, &blindlen) == 0);
CHECK(ecount == 6);
CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, NULL, 1, 64, &value_gen, blind_ptr, &blindlen) == 0);
CHECK(ecount == 7);
CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 1, 64, NULL, blind_ptr, &blindlen) == 0);
CHECK(ecount == 8);
CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 1, 64, &value_gen, NULL, &blindlen) == 0);
CHECK(ecount == 9);
CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 1, 64, &value_gen, blind_ptr, NULL) == 0);
CHECK(ecount == 10);
CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 1, 64, &value_gen, NULL, NULL) == 0);
CHECK(ecount == 10);
CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 0, 64, &value_gen, blind_ptr, &blindlen) == 0);
CHECK(ecount == 11);
CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 1, 65, &value_gen, blind_ptr, &blindlen) == 0);
CHECK(ecount == 12);
CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 1, 63, &value_gen, blind_ptr, &blindlen) == 0);
CHECK(ecount == 12);
CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 1, 0, &value_gen, blind_ptr, &blindlen) == 0);
CHECK(ecount == 13);
CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 2, 64, &value_gen, blind_ptr, &blindlen) == 0);
CHECK(ecount == 13);
CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 4, 64, &value_gen, blind_ptr, &blindlen) == 0);
CHECK(ecount == 14);
/* Rewind */
ecount = 0;
CHECK(secp256k1_bulletproof_rangeproof_rewind(none, gens, &rewind_v, rewind_blind, proof, plen, min_value[0], pcommit, &value_gen, blind, blind, 32) == 1);
CHECK(ecount == 0);
CHECK(secp256k1_bulletproof_rangeproof_rewind(none, NULL, &rewind_v, rewind_blind, proof, plen, min_value[0], pcommit, &value_gen, blind, blind, 32) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_bulletproof_rangeproof_rewind(none, gens, NULL, rewind_blind, proof, plen, min_value[0], pcommit, &value_gen, blind, blind, 32) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_bulletproof_rangeproof_rewind(none, gens, &rewind_v, NULL, proof, plen, min_value[0], pcommit, &value_gen, blind, blind, 32) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_bulletproof_rangeproof_rewind(none, gens, &rewind_v, rewind_blind, NULL, plen, min_value[0], pcommit, &value_gen, blind, blind, 32) == 0);
CHECK(ecount == 4);
CHECK(secp256k1_bulletproof_rangeproof_rewind(none, gens, &rewind_v, rewind_blind, proof, 0, min_value[0], pcommit, &value_gen, blind, blind, 32) == 0);
CHECK(ecount == 4);
CHECK(secp256k1_bulletproof_rangeproof_rewind(none, gens, &rewind_v, rewind_blind, proof, plen, 0, pcommit, &value_gen, blind, blind, 32) == 0);
CHECK(ecount == 4);
CHECK(secp256k1_bulletproof_rangeproof_rewind(none, gens, &rewind_v, rewind_blind, proof, plen, min_value[0], NULL, &value_gen, blind, blind, 32) == 0);
CHECK(ecount == 5);
CHECK(secp256k1_bulletproof_rangeproof_rewind(none, gens, &rewind_v, rewind_blind, proof, plen, min_value[0], pcommit, NULL, blind, blind, 32) == 0);
CHECK(ecount == 6);
CHECK(secp256k1_bulletproof_rangeproof_rewind(none, gens, &rewind_v, rewind_blind, proof, plen, min_value[0], pcommit, &value_gen, NULL, blind, 32) == 0);
CHECK(ecount == 7);
CHECK(secp256k1_bulletproof_rangeproof_rewind(none, gens, &rewind_v, rewind_blind, proof, plen, min_value[0], pcommit, &value_gen, blind, NULL, 32) == 0);
CHECK(ecount == 8);
CHECK(secp256k1_bulletproof_rangeproof_rewind(none, gens, &rewind_v, rewind_blind, proof, plen, min_value[0], pcommit, &value_gen, blind, blind, 0) == 0);
CHECK(ecount == 8);
CHECK(secp256k1_bulletproof_rangeproof_rewind(none, gens, &rewind_v, rewind_blind, proof, plen, min_value[0], pcommit, &value_gen, blind, NULL, 0) == 0);
CHECK(ecount == 8);
secp256k1_bulletproof_generators_destroy(none, gens);
secp256k1_bulletproof_generators_destroy(none, NULL);
secp256k1_scratch_destroy(scratch);
secp256k1_context_destroy(none);
secp256k1_context_destroy(sign);
secp256k1_context_destroy(vrfy);
secp256k1_context_destroy(both);
}
#define MAX_WIDTH (1ul << 20)
typedef struct {
const secp256k1_scalar *a;
const secp256k1_scalar *b;
const secp256k1_ge *g;
const secp256k1_ge *h;
size_t n;
} test_bulletproof_ecmult_context;
static int test_bulletproof_ecmult_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data) {
test_bulletproof_ecmult_context *ecctx = (test_bulletproof_ecmult_context *) data;
if (idx < ecctx->n) {
*sc = ecctx->a[idx];
*pt = ecctx->g[idx];
} else {
VERIFY_CHECK(idx < 2*ecctx->n);
*sc = ecctx->b[idx - ecctx->n];
*pt = ecctx->h[idx - ecctx->n];
}
return 1;
}
typedef struct {
secp256k1_scalar offs;
secp256k1_scalar ext_sc;
secp256k1_scalar skew_sc;
secp256k1_ge ext_pt;
secp256k1_ge p;
size_t n;
int parity;
} test_bulletproof_offset_context;
static int test_bulletproof_offset_vfy_callback(secp256k1_scalar *sc, secp256k1_ge *pt, secp256k1_scalar *randomizer, size_t idx, void *data) {
test_bulletproof_offset_context *ecctx = (test_bulletproof_offset_context *) data;
secp256k1_scalar_set_int(&ecctx->offs, 1);
if (idx < 2 * ecctx->n) {
secp256k1_scalar idxsc;
secp256k1_scalar_set_int(&idxsc, idx);
secp256k1_scalar_mul(sc, &ecctx->skew_sc, &idxsc);
} else {
if (ecctx->parity) {
*sc = ecctx->ext_sc;
*pt = ecctx->ext_pt;
} else {
secp256k1_scalar_set_int(sc, 1);
*pt = ecctx->p;
}
}
secp256k1_scalar_mul(sc, sc, randomizer);
ecctx->parity = !ecctx->parity;
return 1;
}
typedef struct {
const secp256k1_scalar *a_arr;
const secp256k1_scalar *b_arr;
} secp256k1_bulletproof_ip_test_abgh_data;
static int secp256k1_bulletproof_ip_test_abgh_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data) {
secp256k1_bulletproof_ip_test_abgh_data *cbctx = (secp256k1_bulletproof_ip_test_abgh_data *) data;
const int is_g = idx % 2 == 0;
(void) pt;
if (is_g) {
*sc = cbctx->a_arr[idx / 2];
} else {
*sc = cbctx->b_arr[idx / 2];
}
return 1;
}
void test_bulletproof_inner_product(size_t n, const secp256k1_bulletproof_generators *gens) {
const secp256k1_scalar zero = SECP256K1_SCALAR_CONST(0,0,0,0,0,0,0,0);
secp256k1_gej pj;
secp256k1_gej tmpj, tmpj2;
secp256k1_scalar *a_arr = (secp256k1_scalar *)checked_malloc(&ctx->error_callback, n * sizeof(*a_arr));
secp256k1_scalar *b_arr = (secp256k1_scalar *)checked_malloc(&ctx->error_callback, n * sizeof(*b_arr));
unsigned char commit[32] = "hash of P, c, etc. all that jazz";
secp256k1_scalar one;
size_t j;
test_bulletproof_offset_context offs_ctx;
secp256k1_bulletproof_ip_test_abgh_data abgh_data;
secp256k1_bulletproof_innerproduct_context innp_ctx;
unsigned char proof[2000];
size_t plen = sizeof(proof);
secp256k1_scratch *scratch = secp256k1_scratch_space_create(ctx, 100000 + 256 * (2 * n + 2));
for (j = 0; j < n; j++) {
random_scalar_order(&a_arr[j]);
random_scalar_order(&b_arr[j]);
}
abgh_data.a_arr = a_arr;
abgh_data.b_arr = b_arr;
random_group_element_test(&offs_ctx.ext_pt);
random_scalar_order(&offs_ctx.ext_sc);
secp256k1_scalar_clear(&offs_ctx.skew_sc);
offs_ctx.n = n;
secp256k1_scalar_set_int(&one, 1);
CHECK(secp256k1_bulletproof_inner_product_prove_impl(&ctx->ecmult_ctx, scratch, proof, &plen, gens, &one, n, secp256k1_bulletproof_ip_test_abgh_callback, (void *) &abgh_data, commit) == 1);
innp_ctx.proof = proof;
memcpy(innp_ctx.commit, commit, 32);
secp256k1_scalar_set_int(&innp_ctx.yinv, 1);
innp_ctx.n_extra_rangeproof_points = 1;
innp_ctx.rangeproof_cb = test_bulletproof_offset_vfy_callback;
innp_ctx.rangeproof_cb_data = (void *) &offs_ctx;
/* Manually do the multiexp to obtain the point P which commits to the inner product.
* The prover never computes this because it is implicit in the range/circuit proofs. */
{
test_bulletproof_ecmult_context ecmult_data;
ecmult_data.n = n;
ecmult_data.a = a_arr;
ecmult_data.b = b_arr;
ecmult_data.g = gens->gens;
ecmult_data.h = gens->gens + gens->n/2;
CHECK(secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &pj, &zero, test_bulletproof_ecmult_callback, (void*) &ecmult_data, 2 * n));
secp256k1_ge_set_gej(&offs_ctx.p, &pj);
}
/* Check proof with no offsets or other baubles */
offs_ctx.parity = 0;
secp256k1_scalar_clear(&innp_ctx.p_offs);
CHECK(secp256k1_bulletproof_inner_product_verify_impl(&ctx->ecmult_ctx, scratch, gens, n, &innp_ctx, 1, plen, 1) == 1);
/* skew P by a random amount and instruct the verifier to offset it */
random_scalar_order(&innp_ctx.p_offs);
secp256k1_gej_set_ge(&tmpj2, &gens->blinding_gen[0]);
secp256k1_ecmult(&ctx->ecmult_ctx, &tmpj, &tmpj2, &innp_ctx.p_offs, &zero);
secp256k1_gej_add_var(&pj, &pj, &tmpj, NULL);
secp256k1_ge_set_gej(&offs_ctx.p, &pj);
/* wrong p_offs should fail */
offs_ctx.parity = 0;
CHECK(secp256k1_bulletproof_inner_product_verify_impl(&ctx->ecmult_ctx, scratch, gens, n, &innp_ctx, 1, plen, 1) == 0);
secp256k1_scalar_negate(&innp_ctx.p_offs, &innp_ctx.p_offs);
offs_ctx.parity = 0;
CHECK(secp256k1_bulletproof_inner_product_verify_impl(&ctx->ecmult_ctx, scratch, gens, n, &innp_ctx, 1, plen, 1) == 1);
/* check that verification did not trash anything */
offs_ctx.parity = 0;
CHECK(secp256k1_bulletproof_inner_product_verify_impl(&ctx->ecmult_ctx, scratch, gens, n, &innp_ctx, 1, plen, 1) == 1);
/* check that adding a no-op rangeproof skew function doesn't break anything */
offs_ctx.parity = 0;
CHECK(secp256k1_bulletproof_inner_product_verify_impl(&ctx->ecmult_ctx, scratch, gens, n, &innp_ctx, 1, plen, 1) == 1);
/* Offset P by some random point and then try to undo this in the verification */
secp256k1_gej_set_ge(&tmpj2, &offs_ctx.ext_pt);
secp256k1_ecmult(&ctx->ecmult_ctx, &tmpj, &tmpj2, &offs_ctx.ext_sc, &zero);
secp256k1_gej_neg(&tmpj, &tmpj);
secp256k1_gej_add_ge_var(&tmpj, &tmpj, &offs_ctx.p, NULL);
secp256k1_ge_set_gej(&offs_ctx.p, &tmpj);
offs_ctx.parity = 0;
innp_ctx.n_extra_rangeproof_points = 2;
CHECK(secp256k1_bulletproof_inner_product_verify_impl(&ctx->ecmult_ctx, scratch, gens, n, &innp_ctx, 1, plen, 1) == 1);
/* Offset each basis by some random point and try to undo this in the verification */
secp256k1_gej_set_infinity(&tmpj2);
for (j = 0; j < n; j++) {
size_t k;
/* Offset by k-times the kth G basis and (k+n)-times the kth H basis */
for (k = 0; k < j; k++) {
secp256k1_gej_add_ge_var(&tmpj2, &tmpj2, &gens->gens[j], NULL);
secp256k1_gej_add_ge_var(&tmpj2, &tmpj2, &gens->gens[j + gens->n/2], NULL);
}
for (k = 0; k < n; k++) {
secp256k1_gej_add_ge_var(&tmpj2, &tmpj2, &gens->gens[j + gens->n/2], NULL);
}
}
random_scalar_order(&offs_ctx.skew_sc);
secp256k1_ecmult(&ctx->ecmult_ctx, &tmpj, &tmpj2, &offs_ctx.skew_sc, &zero);
secp256k1_gej_add_ge_var(&tmpj, &tmpj, &offs_ctx.p, NULL);
secp256k1_ge_set_gej(&offs_ctx.p, &tmpj);
secp256k1_scalar_negate(&offs_ctx.skew_sc, &offs_ctx.skew_sc);
offs_ctx.parity = 0;
CHECK(secp256k1_bulletproof_inner_product_verify_impl(&ctx->ecmult_ctx, scratch, gens, n, &innp_ctx, 1, plen, 1) == 1);
/* Try to validate the same proof twice */
{
test_bulletproof_offset_context offs_ctxs[2];
secp256k1_bulletproof_innerproduct_context innp_ctxs[2];
offs_ctx.parity = 1; /* set parity to 1 so the common point will be returned first, as required by the multi-proof verifier */
memcpy(&innp_ctxs[0], &innp_ctx, sizeof(innp_ctx));
memcpy(&innp_ctxs[1], &innp_ctx, sizeof(innp_ctx));
memcpy(&offs_ctxs[0], &offs_ctx, sizeof(offs_ctx));
memcpy(&offs_ctxs[1], &offs_ctx, sizeof(offs_ctx));
innp_ctxs[0].rangeproof_cb_data = (void *)&offs_ctxs[0];
innp_ctxs[1].rangeproof_cb_data = (void *)&offs_ctxs[1];
CHECK(secp256k1_bulletproof_inner_product_verify_impl(&ctx->ecmult_ctx, scratch, gens, n, innp_ctxs, 2, plen, 1) == 1);
CHECK(secp256k1_bulletproof_inner_product_verify_impl(&ctx->ecmult_ctx, scratch, gens, n, innp_ctxs, 2, plen, 0) == 1);
}
free(a_arr);
free(b_arr);
secp256k1_scratch_destroy(scratch);
}
void test_bulletproof_rangeproof(size_t nbits, size_t expected_size, const secp256k1_bulletproof_generators *gens) {
secp256k1_scalar blind;
secp256k1_scalar blind_recovered;
unsigned char proof[1024];
unsigned char proof2[1024];
unsigned char proof3[1024];
const unsigned char *proof_ptr[3];
size_t plen = sizeof(proof);
uint64_t v = 123456;
uint64_t v_recovered;
secp256k1_gej commitj;
secp256k1_ge commitp;
secp256k1_ge commitp2;
secp256k1_pedersen_commitment pcommit;
const secp256k1_ge *commitp_ptr[3];
secp256k1_ge value_gen[3];
unsigned char nonce[32] = "my kingdom for some randomness!!";
secp256k1_scratch *scratch = secp256k1_scratch_space_create(ctx, 10000000);
if (v >> nbits > 0) {
v = 0;
}
proof_ptr[0] = proof;
proof_ptr[1] = proof2;
proof_ptr[2] = proof3;
secp256k1_generator_load(&value_gen[0], &secp256k1_generator_const_g);
secp256k1_generator_load(&value_gen[1], &secp256k1_generator_const_g);
secp256k1_generator_load(&value_gen[2], &secp256k1_generator_const_h);
random_scalar_order(&blind);
secp256k1_pedersen_ecmult(&commitj, &blind, v, &value_gen[0], &gens->blinding_gen[0]);
secp256k1_ge_set_gej(&commitp, &commitj);
secp256k1_pedersen_ecmult(&commitj, &blind, v, &value_gen[2], &gens->blinding_gen[0]);
secp256k1_ge_set_gej(&commitp2, &commitj);
commitp_ptr[0] = commitp_ptr[1] = &commitp;
commitp_ptr[2] = &commitp2;
secp256k1_pedersen_commitment_save(&pcommit, &commitp);
CHECK(secp256k1_bulletproof_rangeproof_prove_impl(&ctx->ecmult_ctx, scratch, proof, &plen, nbits, &v, NULL, &blind, &commitp, 1, &value_gen[0], gens, nonce, NULL, 0) == 1);
CHECK(plen == expected_size);
nonce[0] ^= 1;
CHECK(secp256k1_bulletproof_rangeproof_prove_impl(&ctx->ecmult_ctx, scratch, proof2, &plen, nbits, &v, NULL, &blind, &commitp, 1, &value_gen[1], gens, nonce, NULL, 0) == 1);
CHECK(plen == expected_size);
nonce[0] ^= 2;
CHECK(secp256k1_bulletproof_rangeproof_prove_impl(&ctx->ecmult_ctx, scratch, proof3, &plen, nbits, &v, NULL, &blind, &commitp2, 1, &value_gen[2], gens, nonce, NULL, 0) == 1);
CHECK(plen == expected_size);
nonce[0] ^= 3;
/* Verify once */
CHECK(secp256k1_bulletproof_rangeproof_verify_impl(&ctx->ecmult_ctx, scratch, proof_ptr, 1, plen, nbits, NULL, commitp_ptr, 1, value_gen, gens, NULL, 0) == 1);
/* Verify twice at once to test batch validation */
CHECK(secp256k1_bulletproof_rangeproof_verify_impl(&ctx->ecmult_ctx, scratch, proof_ptr, 2, plen, nbits, NULL, commitp_ptr, 1, value_gen, gens, NULL, 0) == 1);
/* Verify thrice at once where one has a different asset type */
CHECK(secp256k1_bulletproof_rangeproof_verify_impl(&ctx->ecmult_ctx, scratch, proof_ptr, 3, plen, nbits, NULL, commitp_ptr, 1, value_gen, gens, NULL, 0) == 1);
/* Rewind */
CHECK(secp256k1_bulletproof_rangeproof_rewind_impl(&v_recovered, &blind_recovered, proof, plen, 0, &pcommit, &secp256k1_generator_const_g, gens->blinding_gen, nonce, NULL, 0) == 1);
CHECK(v_recovered == v);
CHECK(secp256k1_scalar_eq(&blind_recovered, &blind) == 1);
nonce[0] ^= 111;
CHECK(secp256k1_bulletproof_rangeproof_rewind_impl(&v_recovered, &blind_recovered, proof, plen, 0, &pcommit, &secp256k1_generator_const_g, gens->blinding_gen, nonce, NULL, 0) == 0);
secp256k1_scratch_destroy(scratch);
}
void test_bulletproof_rangeproof_aggregate(size_t nbits, size_t n_commits, size_t expected_size, const secp256k1_bulletproof_generators *gens) {
unsigned char proof[1024];
const unsigned char *proof_ptr = proof;
size_t plen = sizeof(proof);
secp256k1_scalar *blind = (secp256k1_scalar *)checked_malloc(&ctx->error_callback, n_commits * sizeof(*blind));
uint64_t *v = (uint64_t *)checked_malloc(&ctx->error_callback, n_commits * sizeof(*v));
secp256k1_ge *commitp = (secp256k1_ge *)checked_malloc(&ctx->error_callback, n_commits * sizeof(*commitp));
const secp256k1_ge *constptr = commitp;
secp256k1_ge value_gen;
unsigned char commit[32] = {0};
unsigned char nonce[32] = "mary, mary quite contrary how do";
size_t i;
secp256k1_scratch *scratch = secp256k1_scratch_space_create(ctx, 10000000);
secp256k1_generator_load(&value_gen, &secp256k1_generator_const_g);
for (i = 0; i < n_commits; i++) {
secp256k1_scalar vs;
secp256k1_gej commitj;
v[i] = 223 * i; /* dice-roll random # */
if (v[i] >> nbits > 0) {
v[i] = 0;
}
secp256k1_scalar_set_u64(&vs, v[i]);
random_scalar_order(&blind[i]);
secp256k1_pedersen_ecmult(&commitj, &blind[i], v[i], &value_gen, &gens->blinding_gen[0]);
secp256k1_ge_set_gej(&commitp[i], &commitj);
secp256k1_bulletproof_update_commit(commit, &commitp[i], &value_gen);
}
CHECK(secp256k1_bulletproof_rangeproof_prove_impl(&ctx->ecmult_ctx, scratch, proof, &plen, nbits, v, NULL, blind, commitp, n_commits, &value_gen, gens, nonce, NULL, 0) == 1);
CHECK(plen == expected_size);
CHECK(secp256k1_bulletproof_rangeproof_verify_impl(&ctx->ecmult_ctx, scratch, &proof_ptr, 1, plen, nbits, NULL, &constptr, n_commits, &value_gen, gens, NULL, 0) == 1);
secp256k1_scratch_destroy(scratch);
free(commitp);
free(v);
free(blind);
}
void run_bulletproofs_tests(void) {
size_t i;
/* Make a ton of generators */
secp256k1_bulletproof_generators *gens = secp256k1_bulletproof_generators_create(ctx, &secp256k1_generator_const_h, 32768);
test_bulletproof_api();
/* sanity checks */
CHECK(secp256k1_bulletproof_innerproduct_proof_length(0) == 32); /* encoding of 1 */
CHECK(secp256k1_bulletproof_innerproduct_proof_length(1) == 96); /* encoding a*b, a, b */
CHECK(secp256k1_bulletproof_innerproduct_proof_length(2) == 160); /* dot prod, a, b, L, R, parity of L, R */
CHECK(secp256k1_bulletproof_innerproduct_proof_length(4) == 225); /* dot prod, a, b, a, b, L, R, parity of L, R */
CHECK(secp256k1_bulletproof_innerproduct_proof_length(8) == 289); /* dot prod, a, b, a, b, L, R, L, R, parity of L, R */
test_bulletproof_inner_product(0, gens);
test_bulletproof_inner_product(1, gens);
test_bulletproof_inner_product(2, gens);
test_bulletproof_inner_product(4, gens);
test_bulletproof_inner_product(8, gens);
for (i = 0; i < (size_t) count; i++) {
test_bulletproof_inner_product(32, gens);
test_bulletproof_inner_product(64, gens);
}
test_bulletproof_inner_product(1024, gens);
test_bulletproof_rangeproof(1, 289, gens);
test_bulletproof_rangeproof(2, 353, gens);
test_bulletproof_rangeproof(16, 546, gens);
test_bulletproof_rangeproof(32, 610, gens);
test_bulletproof_rangeproof(64, 675, gens);
test_bulletproof_rangeproof_aggregate(64, 1, 675, gens);
test_bulletproof_rangeproof_aggregate(8, 2, 546, gens);
test_bulletproof_rangeproof_aggregate(8, 4, 610, gens);
secp256k1_bulletproof_generators_destroy(ctx, gens);
}
#undef MAX_WIDTH
#endif

View File

@ -1,116 +0,0 @@
/**********************************************************************
* Copyright (c) 2018 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODULE_BULLETPROOF_UTIL
#define SECP256K1_MODULE_BULLETPROOF_UTIL
/* floor(log2(n)) which returns 0 for 0, since this is used to estimate proof sizes */
SECP256K1_INLINE static size_t secp256k1_floor_lg(size_t n) {
switch (n) {
case 0: return 0;
case 1: return 0;
case 2: return 1;
case 3: return 1;
case 4: return 2;
case 5: return 2;
case 6: return 2;
case 7: return 2;
case 8: return 3;
default: {
size_t i = 0;
while (n > 1) {
n /= 2;
i++;
}
return i;
}
}
}
static void secp256k1_scalar_dot_product(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, size_t n) {
secp256k1_scalar_clear(r);
while(n--) {
secp256k1_scalar term;
secp256k1_scalar_mul(&term, &a[n], &b[n]);
secp256k1_scalar_add(r, r, &term);
}
}
static void secp256k1_scalar_inverse_all_var(secp256k1_scalar *r, const secp256k1_scalar *a, size_t len) {
secp256k1_scalar u;
size_t i;
if (len < 1) {
return;
}
VERIFY_CHECK((r + len <= a) || (a + len <= r));
r[0] = a[0];
i = 0;
while (++i < len) {
secp256k1_scalar_mul(&r[i], &r[i - 1], &a[i]);
}
secp256k1_scalar_inverse_var(&u, &r[--i]);
while (i > 0) {
size_t j = i--;
secp256k1_scalar_mul(&r[j], &r[i], &u);
secp256k1_scalar_mul(&u, &u, &a[j]);
}
r[0] = u;
}
SECP256K1_INLINE static void secp256k1_bulletproof_serialize_points(unsigned char *out, secp256k1_ge *pt, size_t n) {
const size_t bitveclen = (n + 7) / 8;
size_t i;
memset(out, 0, bitveclen);
for (i = 0; i < n; i++) {
secp256k1_fe pointx;
pointx = pt[i].x;
secp256k1_fe_normalize(&pointx);
secp256k1_fe_get_b32(&out[bitveclen + i*32], &pointx);
if (!secp256k1_fe_is_quad_var(&pt[i].y)) {
out[i/8] |= (1ull << (i % 8));
}
}
}
SECP256K1_INLINE static void secp256k1_bulletproof_deserialize_point(secp256k1_ge *pt, const unsigned char *data, size_t i, size_t n) {
const size_t bitveclen = (n + 7) / 8;
const size_t offset = bitveclen + i*32;
secp256k1_fe fe;
secp256k1_fe_set_b32(&fe, &data[offset]);
secp256k1_ge_set_xquad(pt, &fe);
if (data[i / 8] & (1 << (i % 8))) {
secp256k1_ge_neg(pt, pt);
}
}
static void secp256k1_bulletproof_update_commit(unsigned char *commit, const secp256k1_ge *lpt, const secp256k1_ge *rpt) {
secp256k1_fe pointx;
secp256k1_sha256 sha256;
unsigned char lrparity;
lrparity = (!secp256k1_fe_is_quad_var(&lpt->y) << 1) + !secp256k1_fe_is_quad_var(&rpt->y);
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, commit, 32);
secp256k1_sha256_write(&sha256, &lrparity, 1);
pointx = lpt->x;
secp256k1_fe_normalize(&pointx);
secp256k1_fe_get_b32(commit, &pointx);
secp256k1_sha256_write(&sha256, commit, 32);
pointx = rpt->x;
secp256k1_fe_normalize(&pointx);
secp256k1_fe_get_b32(commit, &pointx);
secp256k1_sha256_write(&sha256, commit, 32);
secp256k1_sha256_finalize(&sha256, commit);
}
#endif

View File

@ -1,4 +0,0 @@
include_HEADERS += include/secp256k1_commitment.h
noinst_HEADERS += src/modules/commitment/main_impl.h
noinst_HEADERS += src/modules/commitment/pedersen_impl.h
noinst_HEADERS += src/modules/commitment/tests_impl.h

View File

@ -1,186 +0,0 @@
/**********************************************************************
* Copyright (c) 2014-2015 Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODULE_COMMITMENT_MAIN
#define SECP256K1_MODULE_COMMITMENT_MAIN
#include "group.h"
#include "modules/commitment/pedersen_impl.h"
static void secp256k1_pedersen_commitment_load(secp256k1_ge* ge, const secp256k1_pedersen_commitment* commit) {
secp256k1_fe fe;
secp256k1_fe_set_b32(&fe, &commit->data[1]);
secp256k1_ge_set_xquad(ge, &fe);
if (commit->data[0] & 1) {
secp256k1_ge_neg(ge, ge);
}
}
static void secp256k1_pedersen_commitment_save(secp256k1_pedersen_commitment* commit, secp256k1_ge* ge) {
secp256k1_fe_normalize(&ge->x);
secp256k1_fe_get_b32(&commit->data[1], &ge->x);
commit->data[0] = 9 ^ secp256k1_fe_is_quad_var(&ge->y);
}
int secp256k1_pedersen_commitment_parse(const secp256k1_context* ctx, secp256k1_pedersen_commitment* commit, const unsigned char *input) {
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(commit != NULL);
ARG_CHECK(input != NULL);
(void) ctx;
if ((input[0] & 0xFE) != 8) {
return 0;
}
memcpy(commit->data, input, sizeof(commit->data));
return 1;
}
int secp256k1_pedersen_commitment_serialize(const secp256k1_context* ctx, unsigned char *output, const secp256k1_pedersen_commitment* commit) {
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(output != NULL);
ARG_CHECK(commit != NULL);
memcpy(output, commit->data, sizeof(commit->data));
return 1;
}
/* Generates a pedersen commitment: *commit = blind * G + value * G2. The blinding factor is 32 bytes.*/
int secp256k1_pedersen_commit(const secp256k1_context* ctx, secp256k1_pedersen_commitment *commit, const unsigned char *blind, uint64_t value, const secp256k1_generator* value_gen, const secp256k1_generator* blind_gen) {
secp256k1_ge value_genp;
secp256k1_ge blind_genp;
secp256k1_gej rj;
secp256k1_ge r;
secp256k1_scalar sec;
int overflow;
int ret = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(commit != NULL);
ARG_CHECK(blind != NULL);
ARG_CHECK(value_gen != NULL);
ARG_CHECK(blind_gen != NULL);
secp256k1_generator_load(&value_genp, value_gen);
secp256k1_generator_load(&blind_genp, blind_gen);
secp256k1_scalar_set_b32(&sec, blind, &overflow);
if (!overflow) {
secp256k1_pedersen_ecmult(&rj, &sec, value, &value_genp, &blind_genp);
if (!secp256k1_gej_is_infinity(&rj)) {
secp256k1_ge_set_gej(&r, &rj);
secp256k1_pedersen_commitment_save(commit, &r);
ret = 1;
}
secp256k1_gej_clear(&rj);
secp256k1_ge_clear(&r);
}
secp256k1_scalar_clear(&sec);
return ret;
}
/** Takes a list of n pointers to 32 byte blinding values, the first negs of which are treated with positive sign and the rest
* negative, then calculates an additional blinding value that adds to zero.
*/
int secp256k1_pedersen_blind_sum(const secp256k1_context* ctx, unsigned char *blind_out, const unsigned char * const *blinds, size_t n, size_t npositive) {
secp256k1_scalar acc;
secp256k1_scalar x;
size_t i;
int overflow;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(blind_out != NULL);
ARG_CHECK(blinds != NULL);
ARG_CHECK(npositive <= n);
(void) ctx;
secp256k1_scalar_set_int(&acc, 0);
for (i = 0; i < n; i++) {
secp256k1_scalar_set_b32(&x, blinds[i], &overflow);
if (overflow) {
return 0;
}
if (i >= npositive) {
secp256k1_scalar_negate(&x, &x);
}
secp256k1_scalar_add(&acc, &acc, &x);
}
secp256k1_scalar_get_b32(blind_out, &acc);
secp256k1_scalar_clear(&acc);
secp256k1_scalar_clear(&x);
return 1;
}
/* Takes two lists of commitments and sums the first set and subtracts the second and verifies that they sum to excess. */
int secp256k1_pedersen_verify_tally(const secp256k1_context* ctx, const secp256k1_pedersen_commitment * const* pos, size_t n_pos, const secp256k1_pedersen_commitment * const* neg, size_t n_neg) {
secp256k1_gej accj;
secp256k1_ge add;
size_t i;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(!n_pos || (pos != NULL));
ARG_CHECK(!n_neg || (neg != NULL));
(void) ctx;
secp256k1_gej_set_infinity(&accj);
for (i = 0; i < n_pos; i++) {
secp256k1_pedersen_commitment_load(&add, neg[i]);
secp256k1_gej_add_ge_var(&accj, &accj, &add, NULL);
}
secp256k1_gej_neg(&accj, &accj);
for (i = 0; i < n_neg; i++) {
secp256k1_pedersen_commitment_load(&add, pos[i]);
secp256k1_gej_add_ge_var(&accj, &accj, &add, NULL);
}
return secp256k1_gej_is_infinity(&accj);
}
int secp256k1_pedersen_blind_generator_blind_sum(const secp256k1_context* ctx, const uint64_t *value, const unsigned char* const* generator_blind, unsigned char* const* blinding_factor, size_t n_total, size_t n_inputs) {
secp256k1_scalar sum;
secp256k1_scalar tmp;
size_t i;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(n_total == 0 || value != NULL);
ARG_CHECK(n_total == 0 || generator_blind != NULL);
ARG_CHECK(n_total == 0 || blinding_factor != NULL);
ARG_CHECK(n_total > n_inputs);
(void) ctx;
if (n_total == 0) {
return 1;
}
secp256k1_scalar_set_int(&sum, 0);
for (i = 0; i < n_total; i++) {
int overflow = 0;
secp256k1_scalar addend;
secp256k1_scalar_set_u64(&addend, value[i]); /* s = v */
secp256k1_scalar_set_b32(&tmp, generator_blind[i], &overflow);
if (overflow == 1) {
secp256k1_scalar_clear(&tmp);
secp256k1_scalar_clear(&addend);
secp256k1_scalar_clear(&sum);
return 0;
}
secp256k1_scalar_mul(&addend, &addend, &tmp); /* s = vr */
secp256k1_scalar_set_b32(&tmp, blinding_factor[i], &overflow);
if (overflow == 1) {
secp256k1_scalar_clear(&tmp);
secp256k1_scalar_clear(&addend);
secp256k1_scalar_clear(&sum);
return 0;
}
secp256k1_scalar_add(&addend, &addend, &tmp); /* s = vr + r' */
secp256k1_scalar_cond_negate(&addend, i < n_inputs); /* s is negated if it's an input */
secp256k1_scalar_add(&sum, &sum, &addend); /* sum += s */
secp256k1_scalar_clear(&addend);
}
/* Right now tmp has the last pedersen blinding factor. Subtract the sum from it. */
secp256k1_scalar_negate(&sum, &sum);
secp256k1_scalar_add(&tmp, &tmp, &sum);
secp256k1_scalar_get_b32(blinding_factor[n_total - 1], &tmp);
secp256k1_scalar_clear(&tmp);
secp256k1_scalar_clear(&sum);
return 1;
}
#endif

View File

@ -1,38 +0,0 @@
/***********************************************************************
* Copyright (c) 2015 Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php. *
***********************************************************************/
#ifndef SECP256K1_MODULE_COMMITMENT_PEDERSEN
#define SECP256K1_MODULE_COMMITMENT_PEDERSEN
#include <string.h>
#include "ecmult_const.h"
#include "group.h"
#include "scalar.h"
/* sec * G + value * G2. */
SECP256K1_INLINE static void secp256k1_pedersen_ecmult(secp256k1_gej *rj, const secp256k1_scalar *sec, uint64_t value, const secp256k1_ge* value_gen, const secp256k1_ge* blind_gen) {
secp256k1_scalar vs;
secp256k1_gej bj;
secp256k1_ge bp;
secp256k1_scalar_set_u64(&vs, value);
secp256k1_ecmult_const(rj, value_gen, &vs, 64);
secp256k1_ecmult_const(&bj, blind_gen, sec, 256);
/* zero blinding factor indicates that we are not trying to be zero-knowledge,
* so not being constant-time in this case is OK. */
if (!secp256k1_gej_is_infinity(&bj)) {
secp256k1_ge_set_gej(&bp, &bj);
secp256k1_gej_add_ge(rj, rj, &bp);
}
secp256k1_gej_clear(&bj);
secp256k1_ge_clear(&bp);
secp256k1_scalar_clear(&vs);
}
#endif

View File

@ -1,230 +0,0 @@
/**********************************************************************
* Copyright (c) 2015 Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODULE_COMMITMENT_TESTS
#define SECP256K1_MODULE_COMMITMENT_TESTS
#include <string.h>
#include "group.h"
#include "scalar.h"
#include "testrand.h"
#include "util.h"
#include "include/secp256k1_commitment.h"
static void test_commitment_api(void) {
secp256k1_pedersen_commitment commit;
const secp256k1_pedersen_commitment *commit_ptr = &commit;
unsigned char blind[32];
unsigned char blind_out[32];
const unsigned char *blind_ptr = blind;
unsigned char *blind_out_ptr = blind_out;
uint64_t val = secp256k1_rand32();
secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
secp256k1_context *sign = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
secp256k1_context *vrfy = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY);
secp256k1_context *both = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
int32_t ecount;
secp256k1_context_set_error_callback(none, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_error_callback(sign, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_error_callback(vrfy, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_error_callback(both, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(none, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(sign, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(vrfy, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(both, counting_illegal_callback_fn, &ecount);
secp256k1_rand256(blind);
CHECK(secp256k1_pedersen_commit(none, &commit, blind, val, &secp256k1_generator_const_h, &secp256k1_generator_const_g) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_pedersen_commit(vrfy, &commit, blind, val, &secp256k1_generator_const_h, &secp256k1_generator_const_g) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_pedersen_commit(sign, &commit, blind, val, &secp256k1_generator_const_h, &secp256k1_generator_const_g) != 0);
CHECK(ecount == 2);
CHECK(secp256k1_pedersen_commit(sign, NULL, blind, val, &secp256k1_generator_const_h, &secp256k1_generator_const_g) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_pedersen_commit(sign, &commit, NULL, val, &secp256k1_generator_const_h, &secp256k1_generator_const_g) == 0);
CHECK(ecount == 4);
CHECK(secp256k1_pedersen_commit(sign, &commit, blind, val, NULL, &secp256k1_generator_const_g) == 0);
CHECK(ecount == 5);
CHECK(secp256k1_pedersen_commit(sign, &commit, blind, val, &secp256k1_generator_const_h, NULL) == 0);
CHECK(ecount == 6);
CHECK(secp256k1_pedersen_blind_sum(none, blind_out, &blind_ptr, 1, 1) != 0);
CHECK(ecount == 6);
CHECK(secp256k1_pedersen_blind_sum(none, NULL, &blind_ptr, 1, 1) == 0);
CHECK(ecount == 7);
CHECK(secp256k1_pedersen_blind_sum(none, blind_out, NULL, 1, 1) == 0);
CHECK(ecount == 8);
CHECK(secp256k1_pedersen_blind_sum(none, blind_out, &blind_ptr, 0, 1) == 0);
CHECK(ecount == 9);
CHECK(secp256k1_pedersen_blind_sum(none, blind_out, &blind_ptr, 0, 0) != 0);
CHECK(ecount == 9);
CHECK(secp256k1_pedersen_commit(sign, &commit, blind, val, &secp256k1_generator_const_h, &secp256k1_generator_const_g) != 0);
CHECK(secp256k1_pedersen_verify_tally(none, &commit_ptr, 1, &commit_ptr, 1) != 0);
CHECK(secp256k1_pedersen_verify_tally(none, NULL, 0, &commit_ptr, 1) == 0);
CHECK(secp256k1_pedersen_verify_tally(none, &commit_ptr, 1, NULL, 0) == 0);
CHECK(secp256k1_pedersen_verify_tally(none, NULL, 0, NULL, 0) != 0);
CHECK(ecount == 9);
CHECK(secp256k1_pedersen_verify_tally(none, NULL, 1, &commit_ptr, 1) == 0);
CHECK(ecount == 10);
CHECK(secp256k1_pedersen_verify_tally(none, &commit_ptr, 1, NULL, 1) == 0);
CHECK(ecount == 11);
CHECK(secp256k1_pedersen_blind_generator_blind_sum(none, &val, &blind_ptr, &blind_out_ptr, 1, 0) != 0);
CHECK(ecount == 11);
CHECK(secp256k1_pedersen_blind_generator_blind_sum(none, &val, &blind_ptr, &blind_out_ptr, 1, 1) == 0);
CHECK(ecount == 12);
CHECK(secp256k1_pedersen_blind_generator_blind_sum(none, &val, &blind_ptr, &blind_out_ptr, 0, 0) == 0);
CHECK(ecount == 13);
CHECK(secp256k1_pedersen_blind_generator_blind_sum(none, NULL, &blind_ptr, &blind_out_ptr, 1, 0) == 0);
CHECK(ecount == 14);
CHECK(secp256k1_pedersen_blind_generator_blind_sum(none, &val, NULL, &blind_out_ptr, 1, 0) == 0);
CHECK(ecount == 15);
CHECK(secp256k1_pedersen_blind_generator_blind_sum(none, &val, &blind_ptr, NULL, 1, 0) == 0);
CHECK(ecount == 16);
secp256k1_context_destroy(none);
secp256k1_context_destroy(sign);
secp256k1_context_destroy(vrfy);
secp256k1_context_destroy(both);
}
static void test_pedersen(void) {
secp256k1_pedersen_commitment commits[19];
const secp256k1_pedersen_commitment *cptr[19];
unsigned char blinds[32*19];
const unsigned char *bptr[19];
secp256k1_scalar s;
uint64_t values[19];
int64_t totalv;
int i;
int inputs;
int outputs;
int total;
inputs = (secp256k1_rand32() & 7) + 1;
outputs = (secp256k1_rand32() & 7) + 2;
total = inputs + outputs;
for (i = 0; i < 19; i++) {
cptr[i] = &commits[i];
bptr[i] = &blinds[i * 32];
}
totalv = 0;
for (i = 0; i < inputs; i++) {
values[i] = secp256k1_rands64(0, INT64_MAX - totalv);
totalv += values[i];
}
for (i = 0; i < outputs - 1; i++) {
values[i + inputs] = secp256k1_rands64(0, totalv);
totalv -= values[i + inputs];
}
values[total - 1] = totalv;
for (i = 0; i < total - 1; i++) {
random_scalar_order(&s);
secp256k1_scalar_get_b32(&blinds[i * 32], &s);
}
CHECK(secp256k1_pedersen_blind_sum(ctx, &blinds[(total - 1) * 32], bptr, total - 1, inputs));
for (i = 0; i < total; i++) {
CHECK(secp256k1_pedersen_commit(ctx, &commits[i], &blinds[i * 32], values[i], &secp256k1_generator_const_h, &secp256k1_generator_const_g));
}
CHECK(secp256k1_pedersen_verify_tally(ctx, cptr, inputs, &cptr[inputs], outputs));
CHECK(secp256k1_pedersen_verify_tally(ctx, &cptr[inputs], outputs, cptr, inputs));
if (inputs > 0 && values[0] > 0) {
CHECK(!secp256k1_pedersen_verify_tally(ctx, cptr, inputs - 1, &cptr[inputs], outputs));
}
random_scalar_order(&s);
for (i = 0; i < 4; i++) {
secp256k1_scalar_get_b32(&blinds[i * 32], &s);
}
values[0] = INT64_MAX;
values[1] = 0;
values[2] = 1;
for (i = 0; i < 3; i++) {
CHECK(secp256k1_pedersen_commit(ctx, &commits[i], &blinds[i * 32], values[i], &secp256k1_generator_const_h, &secp256k1_generator_const_g));
}
CHECK(secp256k1_pedersen_verify_tally(ctx, &cptr[0], 1, &cptr[0], 1));
CHECK(secp256k1_pedersen_verify_tally(ctx, &cptr[1], 1, &cptr[1], 1));
}
#define MAX_N_GENS 30
void test_multiple_generators(void) {
const size_t n_inputs = (secp256k1_rand32() % (MAX_N_GENS / 2)) + 1;
const size_t n_outputs = (secp256k1_rand32() % (MAX_N_GENS / 2)) + 1;
const size_t n_generators = n_inputs + n_outputs;
unsigned char *generator_blind[MAX_N_GENS];
unsigned char *pedersen_blind[MAX_N_GENS];
secp256k1_generator generator[MAX_N_GENS];
secp256k1_pedersen_commitment commit[MAX_N_GENS];
const secp256k1_pedersen_commitment *commit_ptr[MAX_N_GENS];
size_t i;
int64_t total_value;
uint64_t value[MAX_N_GENS];
secp256k1_scalar s;
unsigned char generator_seed[32];
random_scalar_order(&s);
secp256k1_scalar_get_b32(generator_seed, &s);
/* Create all the needed generators */
for (i = 0; i < n_generators; i++) {
generator_blind[i] = (unsigned char*) malloc(32);
pedersen_blind[i] = (unsigned char*) malloc(32);
random_scalar_order(&s);
secp256k1_scalar_get_b32(generator_blind[i], &s);
random_scalar_order(&s);
secp256k1_scalar_get_b32(pedersen_blind[i], &s);
CHECK(secp256k1_generator_generate_blinded(ctx, &generator[i], generator_seed, generator_blind[i]));
commit_ptr[i] = &commit[i];
}
/* Compute all the values -- can be positive or negative */
total_value = 0;
for (i = 0; i < n_outputs; i++) {
value[n_inputs + i] = secp256k1_rands64(0, INT64_MAX - total_value);
total_value += value[n_inputs + i];
}
for (i = 0; i < n_inputs - 1; i++) {
value[i] = secp256k1_rands64(0, total_value);
total_value -= value[i];
}
value[i] = total_value;
/* Correct for blinding factors and do the commitments */
CHECK(secp256k1_pedersen_blind_generator_blind_sum(ctx, value, (const unsigned char * const *) generator_blind, pedersen_blind, n_generators, n_inputs));
for (i = 0; i < n_generators; i++) {
CHECK(secp256k1_pedersen_commit(ctx, &commit[i], pedersen_blind[i], value[i], &generator[i], &secp256k1_generator_const_h));
}
/* Verify */
CHECK(secp256k1_pedersen_verify_tally(ctx, &commit_ptr[0], n_inputs, &commit_ptr[n_inputs], n_outputs));
/* Cleanup */
for (i = 0; i < n_generators; i++) {
free(generator_blind[i]);
free(pedersen_blind[i]);
}
}
#undef MAX_N_GENS
void run_commitment_tests(void) {
int i;
test_commitment_api();
for (i = 0; i < 10*count; i++) {
test_pedersen();
}
test_multiple_generators();
}
#endif

View File

@ -1,8 +0,0 @@
include_HEADERS += include/secp256k1_ecdh.h
noinst_HEADERS += src/modules/ecdh/main_impl.h
noinst_HEADERS += src/modules/ecdh/tests_impl.h
if USE_BENCHMARK
noinst_PROGRAMS += bench_ecdh
bench_ecdh_SOURCES = src/bench_ecdh.c
bench_ecdh_LDADD = libsecp256k1.la $(SECP_LIBS) $(COMMON_LIB)
endif

View File

@ -1,54 +0,0 @@
/**********************************************************************
* Copyright (c) 2015 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODULE_ECDH_MAIN_H
#define SECP256K1_MODULE_ECDH_MAIN_H
#include "include/secp256k1_ecdh.h"
#include "ecmult_const_impl.h"
int secp256k1_ecdh(const secp256k1_context* ctx, unsigned char *result, const secp256k1_pubkey *point, const unsigned char *scalar) {
int ret = 0;
int overflow = 0;
secp256k1_gej res;
secp256k1_ge pt;
secp256k1_scalar s;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(result != NULL);
ARG_CHECK(point != NULL);
ARG_CHECK(scalar != NULL);
secp256k1_pubkey_load(ctx, &pt, point);
secp256k1_scalar_set_b32(&s, scalar, &overflow);
if (overflow || secp256k1_scalar_is_zero(&s)) {
ret = 0;
} else {
unsigned char x[32];
unsigned char y[1];
secp256k1_sha256 sha;
secp256k1_ecmult_const(&res, &pt, &s, 256);
secp256k1_ge_set_gej(&pt, &res);
/* Compute a hash of the point in compressed form
* Note we cannot use secp256k1_eckey_pubkey_serialize here since it does not
* expect its output to be secret and has a timing sidechannel. */
secp256k1_fe_normalize(&pt.x);
secp256k1_fe_normalize(&pt.y);
secp256k1_fe_get_b32(x, &pt.x);
y[0] = 0x02 | secp256k1_fe_is_odd(&pt.y);
secp256k1_sha256_initialize(&sha);
secp256k1_sha256_write(&sha, y, sizeof(y));
secp256k1_sha256_write(&sha, x, sizeof(x));
secp256k1_sha256_finalize(&sha, result);
ret = 1;
}
secp256k1_scalar_clear(&s);
return ret;
}
#endif /* SECP256K1_MODULE_ECDH_MAIN_H */

View File

@ -1,105 +0,0 @@
/**********************************************************************
* Copyright (c) 2015 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODULE_ECDH_TESTS_H
#define SECP256K1_MODULE_ECDH_TESTS_H
void test_ecdh_api(void) {
/* Setup context that just counts errors */
secp256k1_context *tctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
secp256k1_pubkey point;
unsigned char res[32];
unsigned char s_one[32] = { 0 };
int32_t ecount = 0;
s_one[31] = 1;
secp256k1_context_set_error_callback(tctx, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(tctx, counting_illegal_callback_fn, &ecount);
CHECK(secp256k1_ec_pubkey_create(tctx, &point, s_one) == 1);
/* Check all NULLs are detected */
CHECK(secp256k1_ecdh(tctx, res, &point, s_one) == 1);
CHECK(ecount == 0);
CHECK(secp256k1_ecdh(tctx, NULL, &point, s_one) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_ecdh(tctx, res, NULL, s_one) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_ecdh(tctx, res, &point, NULL) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_ecdh(tctx, res, &point, s_one) == 1);
CHECK(ecount == 3);
/* Cleanup */
secp256k1_context_destroy(tctx);
}
void test_ecdh_generator_basepoint(void) {
unsigned char s_one[32] = { 0 };
secp256k1_pubkey point[2];
int i;
s_one[31] = 1;
/* Check against pubkey creation when the basepoint is the generator */
for (i = 0; i < 100; ++i) {
secp256k1_sha256 sha;
unsigned char s_b32[32];
unsigned char output_ecdh[32];
unsigned char output_ser[32];
unsigned char point_ser[33];
size_t point_ser_len = sizeof(point_ser);
secp256k1_scalar s;
random_scalar_order(&s);
secp256k1_scalar_get_b32(s_b32, &s);
/* compute using ECDH function */
CHECK(secp256k1_ec_pubkey_create(ctx, &point[0], s_one) == 1);
CHECK(secp256k1_ecdh(ctx, output_ecdh, &point[0], s_b32) == 1);
/* compute "explicitly" */
CHECK(secp256k1_ec_pubkey_create(ctx, &point[1], s_b32) == 1);
CHECK(secp256k1_ec_pubkey_serialize(ctx, point_ser, &point_ser_len, &point[1], SECP256K1_EC_COMPRESSED) == 1);
CHECK(point_ser_len == sizeof(point_ser));
secp256k1_sha256_initialize(&sha);
secp256k1_sha256_write(&sha, point_ser, point_ser_len);
secp256k1_sha256_finalize(&sha, output_ser);
/* compare */
CHECK(memcmp(output_ecdh, output_ser, sizeof(output_ser)) == 0);
}
}
void test_bad_scalar(void) {
unsigned char s_zero[32] = { 0 };
unsigned char s_overflow[32] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b,
0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x41
};
unsigned char s_rand[32] = { 0 };
unsigned char output[32];
secp256k1_scalar rand;
secp256k1_pubkey point;
/* Create random point */
random_scalar_order(&rand);
secp256k1_scalar_get_b32(s_rand, &rand);
CHECK(secp256k1_ec_pubkey_create(ctx, &point, s_rand) == 1);
/* Try to multiply it by bad values */
CHECK(secp256k1_ecdh(ctx, output, &point, s_zero) == 0);
CHECK(secp256k1_ecdh(ctx, output, &point, s_overflow) == 0);
/* ...and a good one */
s_overflow[31] -= 1;
CHECK(secp256k1_ecdh(ctx, output, &point, s_overflow) == 1);
}
void run_ecdh_tests(void) {
test_ecdh_api();
test_ecdh_generator_basepoint();
test_bad_scalar();
}
#endif /* SECP256K1_MODULE_ECDH_TESTS_H */

View File

@ -1,9 +0,0 @@
include_HEADERS += include/secp256k1_generator.h
noinst_HEADERS += src/modules/generator/main_impl.h
noinst_HEADERS += src/modules/generator/tests_impl.h
if USE_BENCHMARK
noinst_PROGRAMS += bench_generator
bench_generator_SOURCES = src/bench_generator.c
bench_generator_LDADD = libsecp256k1.la $(SECP_LIBS)
bench_generator_LDFLAGS = -static
endif

View File

@ -1,232 +0,0 @@
/**********************************************************************
* Copyright (c) 2016 Andrew Poelstra & Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODULE_GENERATOR_MAIN
#define SECP256K1_MODULE_GENERATOR_MAIN
#include <stdio.h>
#include "field.h"
#include "group.h"
#include "hash.h"
#include "scalar.h"
/** Standard secp256k1 generator */
const secp256k1_generator secp256k1_generator_const_g = {
{ 0x0a,
0x79, 0xbe, 0x66, 0x7e, 0xf9, 0xdc, 0xbb, 0xac,
0x55, 0xa0, 0x62, 0x95, 0xce, 0x87, 0x0b, 0x07,
0x02, 0x9b, 0xfc, 0xdb, 0x2d, 0xce, 0x28, 0xd9,
0x59, 0xf2, 0x81, 0x5b, 0x16, 0xf8, 0x17, 0x98
}
};
/** Alternate secp256k1 generator, used in Elements Alpha.
* Computed as the hash of the above G, DER-encoded with 0x04 (uncompressed pubkey) as its flag byte.
* import hashlib
* C = EllipticCurve ([F (0), F (7)])
* G_bytes = '0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8'.decode('hex')
* H = C.lift_x(int(hashlib.sha256(G_bytes).hexdigest(),16))
*/
const secp256k1_generator secp256k1_generator_const_h = {
{ 0x0b,
0x50, 0x92, 0x9b, 0x74, 0xc1, 0xa0, 0x49, 0x54,
0xb7, 0x8b, 0x4b, 0x60, 0x35, 0xe9, 0x7a, 0x5e,
0x07, 0x8a, 0x5a, 0x0f, 0x28, 0xec, 0x96, 0xd5,
0x47, 0xbf, 0xee, 0x9a, 0xce, 0x80, 0x3a, 0xc0
}
};
static void secp256k1_generator_load(secp256k1_ge* ge, const secp256k1_generator* gen) {
secp256k1_fe fe;
secp256k1_fe_set_b32(&fe, &gen->data[1]);
secp256k1_ge_set_xquad(ge, &fe);
if (gen->data[0] & 1) {
secp256k1_ge_neg(ge, ge);
}
}
static void secp256k1_generator_save(secp256k1_generator* commit, secp256k1_ge* ge) {
secp256k1_fe_normalize(&ge->x);
secp256k1_fe_get_b32(&commit->data[1], &ge->x);
commit->data[0] = 11 ^ secp256k1_fe_is_quad_var(&ge->y);
}
int secp256k1_generator_parse(const secp256k1_context* ctx, secp256k1_generator* gen, const unsigned char *input) {
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(gen != NULL);
ARG_CHECK(input != NULL);
if ((input[0] & 0xFE) != 10) {
return 0;
}
memcpy(gen->data, input, sizeof(gen->data));
return 1;
}
int secp256k1_generator_serialize(const secp256k1_context* ctx, unsigned char *output, const secp256k1_generator* gen) {
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(output != NULL);
ARG_CHECK(gen != NULL);
memcpy(output, gen->data, sizeof(gen->data));
return 1;
}
static void shallue_van_de_woestijne(secp256k1_ge* ge, const secp256k1_fe* t) {
/* Implements the algorithm from:
* Indifferentiable Hashing to Barreto-Naehrig Curves
* Pierre-Alain Fouque and Mehdi Tibouchi
* Latincrypt 2012
*/
/* Basic algorithm:
c = sqrt(-3)
d = (c - 1)/2
w = c * t / (1 + b + t^2) [with b = 7]
x1 = d - t*w
x2 = -(x1 + 1)
x3 = 1 + 1/w^2
To avoid the 2 divisions, compute the above in numerator/denominator form:
wn = c * t
wd = 1 + 7 + t^2
x1n = d*wd - t*wn
x1d = wd
x2n = -(x1n + wd)
x2d = wd
x3n = wd^2 + c^2 + t^2
x3d = (c * t)^2
The joint denominator j = wd * c^2 * t^2, and
1 / x1d = 1/j * c^2 * t^2
1 / x2d = x3d = 1/j * wd
*/
static const secp256k1_fe c = SECP256K1_FE_CONST(0x0a2d2ba9, 0x3507f1df, 0x233770c2, 0xa797962c, 0xc61f6d15, 0xda14ecd4, 0x7d8d27ae, 0x1cd5f852);
static const secp256k1_fe d = SECP256K1_FE_CONST(0x851695d4, 0x9a83f8ef, 0x919bb861, 0x53cbcb16, 0x630fb68a, 0xed0a766a, 0x3ec693d6, 0x8e6afa40);
static const secp256k1_fe b = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 7);
static const secp256k1_fe b_plus_one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 8);
secp256k1_fe wn, wd, x1n, x2n, x3n, x3d, jinv, tmp, x1, x2, x3, alphain, betain, gammain, y1, y2, y3;
int alphaquad, betaquad;
secp256k1_fe_mul(&wn, &c, t); /* mag 1 */
secp256k1_fe_sqr(&wd, t); /* mag 1 */
secp256k1_fe_add(&wd, &b_plus_one); /* mag 2 */
secp256k1_fe_mul(&tmp, t, &wn); /* mag 1 */
secp256k1_fe_negate(&tmp, &tmp, 1); /* mag 2 */
secp256k1_fe_mul(&x1n, &d, &wd); /* mag 1 */
secp256k1_fe_add(&x1n, &tmp); /* mag 3 */
x2n = x1n; /* mag 3 */
secp256k1_fe_add(&x2n, &wd); /* mag 5 */
secp256k1_fe_negate(&x2n, &x2n, 5); /* mag 6 */
secp256k1_fe_mul(&x3d, &c, t); /* mag 1 */
secp256k1_fe_sqr(&x3d, &x3d); /* mag 1 */
secp256k1_fe_sqr(&x3n, &wd); /* mag 1 */
secp256k1_fe_add(&x3n, &x3d); /* mag 2 */
secp256k1_fe_mul(&jinv, &x3d, &wd); /* mag 1 */
secp256k1_fe_inv(&jinv, &jinv); /* mag 1 */
secp256k1_fe_mul(&x1, &x1n, &x3d); /* mag 1 */
secp256k1_fe_mul(&x1, &x1, &jinv); /* mag 1 */
secp256k1_fe_mul(&x2, &x2n, &x3d); /* mag 1 */
secp256k1_fe_mul(&x2, &x2, &jinv); /* mag 1 */
secp256k1_fe_mul(&x3, &x3n, &wd); /* mag 1 */
secp256k1_fe_mul(&x3, &x3, &jinv); /* mag 1 */
secp256k1_fe_sqr(&alphain, &x1); /* mag 1 */
secp256k1_fe_mul(&alphain, &alphain, &x1); /* mag 1 */
secp256k1_fe_add(&alphain, &b); /* mag 2 */
secp256k1_fe_sqr(&betain, &x2); /* mag 1 */
secp256k1_fe_mul(&betain, &betain, &x2); /* mag 1 */
secp256k1_fe_add(&betain, &b); /* mag 2 */
secp256k1_fe_sqr(&gammain, &x3); /* mag 1 */
secp256k1_fe_mul(&gammain, &gammain, &x3); /* mag 1 */
secp256k1_fe_add(&gammain, &b); /* mag 2 */
alphaquad = secp256k1_fe_sqrt(&y1, &alphain);
betaquad = secp256k1_fe_sqrt(&y2, &betain);
secp256k1_fe_sqrt(&y3, &gammain);
secp256k1_fe_cmov(&x1, &x2, (!alphaquad) & betaquad);
secp256k1_fe_cmov(&y1, &y2, (!alphaquad) & betaquad);
secp256k1_fe_cmov(&x1, &x3, (!alphaquad) & !betaquad);
secp256k1_fe_cmov(&y1, &y3, (!alphaquad) & !betaquad);
secp256k1_ge_set_xy(ge, &x1, &y1);
/* The linked algorithm from the paper uses the Jacobi symbol of t to
* determine the Jacobi symbol of the produced y coordinate. Since the
* rest of the algorithm only uses t^2, we can safely use another criterion
* as long as negation of t results in negation of the y coordinate. Here
* we choose to use t's oddness, as it is faster to determine. */
secp256k1_fe_negate(&tmp, &ge->y, 1);
secp256k1_fe_cmov(&ge->y, &tmp, secp256k1_fe_is_odd(t));
}
static int secp256k1_generator_generate_internal(const secp256k1_context* ctx, secp256k1_generator* gen, const unsigned char *key32, const unsigned char *blind32) {
static const unsigned char prefix1[17] = "1st generation: ";
static const unsigned char prefix2[17] = "2nd generation: ";
secp256k1_fe t = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 4);
secp256k1_ge add;
secp256k1_gej accum;
int overflow;
secp256k1_sha256 sha256;
unsigned char b32[32];
int ret = 1;
if (blind32) {
secp256k1_scalar blind;
secp256k1_scalar_set_b32(&blind, blind32, &overflow);
ret = !overflow;
CHECK(ret);
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &accum, &blind);
}
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, prefix1, 16);
secp256k1_sha256_write(&sha256, key32, 32);
secp256k1_sha256_finalize(&sha256, b32);
ret &= secp256k1_fe_set_b32(&t, b32);
CHECK(ret);
shallue_van_de_woestijne(&add, &t);
if (blind32) {
secp256k1_gej_add_ge(&accum, &accum, &add);
} else {
secp256k1_gej_set_ge(&accum, &add);
}
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, prefix2, 16);
secp256k1_sha256_write(&sha256, key32, 32);
secp256k1_sha256_finalize(&sha256, b32);
ret &= secp256k1_fe_set_b32(&t, b32);
CHECK(ret);
shallue_van_de_woestijne(&add, &t);
secp256k1_gej_add_ge(&accum, &accum, &add);
secp256k1_ge_set_gej(&add, &accum);
secp256k1_generator_save(gen, &add);
return ret;
}
int secp256k1_generator_generate(const secp256k1_context* ctx, secp256k1_generator* gen, const unsigned char *key32) {
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(gen != NULL);
ARG_CHECK(key32 != NULL);
return secp256k1_generator_generate_internal(ctx, gen, key32, NULL);
}
int secp256k1_generator_generate_blinded(const secp256k1_context* ctx, secp256k1_generator* gen, const unsigned char *key32, const unsigned char *blind32) {
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(gen != NULL);
ARG_CHECK(key32 != NULL);
ARG_CHECK(blind32 != NULL);
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
return secp256k1_generator_generate_internal(ctx, gen, key32, blind32);
}
#endif

View File

@ -1,199 +0,0 @@
/**********************************************************************
* Copyright (c) 2016 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODULE_GENERATOR_TESTS
#define SECP256K1_MODULE_GENERATOR_TESTS
#include <string.h>
#include <stdio.h>
#include "group.h"
#include "scalar.h"
#include "testrand.h"
#include "util.h"
#include "include/secp256k1_generator.h"
void test_generator_api(void) {
unsigned char key[32];
unsigned char blind[32];
unsigned char sergen[33];
secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
secp256k1_context *sign = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
secp256k1_context *vrfy = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY);
secp256k1_generator gen;
int32_t ecount = 0;
secp256k1_context_set_error_callback(none, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_error_callback(sign, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_error_callback(vrfy, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(none, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(sign, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(vrfy, counting_illegal_callback_fn, &ecount);
secp256k1_rand256(key);
secp256k1_rand256(blind);
CHECK(secp256k1_generator_generate(none, &gen, key) == 1);
CHECK(ecount == 0);
CHECK(secp256k1_generator_generate(none, NULL, key) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_generator_generate(none, &gen, NULL) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_generator_generate_blinded(sign, &gen, key, blind) == 1);
CHECK(ecount == 2);
CHECK(secp256k1_generator_generate_blinded(vrfy, &gen, key, blind) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_generator_generate_blinded(none, &gen, key, blind) == 0);
CHECK(ecount == 4);
CHECK(secp256k1_generator_generate_blinded(vrfy, NULL, key, blind) == 0);
CHECK(ecount == 5);
CHECK(secp256k1_generator_generate_blinded(vrfy, &gen, NULL, blind) == 0);
CHECK(ecount == 6);
CHECK(secp256k1_generator_generate_blinded(vrfy, &gen, key, NULL) == 0);
CHECK(ecount == 7);
CHECK(secp256k1_generator_serialize(none, sergen, &gen) == 1);
CHECK(ecount == 7);
CHECK(secp256k1_generator_serialize(none, NULL, &gen) == 0);
CHECK(ecount == 8);
CHECK(secp256k1_generator_serialize(none, sergen, NULL) == 0);
CHECK(ecount == 9);
CHECK(secp256k1_generator_serialize(none, sergen, &gen) == 1);
CHECK(secp256k1_generator_parse(none, &gen, sergen) == 1);
CHECK(ecount == 9);
CHECK(secp256k1_generator_parse(none, NULL, sergen) == 0);
CHECK(ecount == 10);
CHECK(secp256k1_generator_parse(none, &gen, NULL) == 0);
CHECK(ecount == 11);
secp256k1_context_destroy(none);
secp256k1_context_destroy(sign);
secp256k1_context_destroy(vrfy);
}
void test_shallue_van_de_woestijne(void) {
/* Matches with the output of the shallue_van_de_woestijne.sage SAGE program */
static const secp256k1_ge_storage results[32] = {
SECP256K1_GE_STORAGE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c, 0x0225f529, 0xee75acaf, 0xccfc4560, 0x26c5e46b, 0xf80237a3, 0x3924655a, 0x16f90e88, 0x085ed52a),
SECP256K1_GE_STORAGE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c, 0xfdda0ad6, 0x118a5350, 0x3303ba9f, 0xd93a1b94, 0x07fdc85c, 0xc6db9aa5, 0xe906f176, 0xf7a12705),
SECP256K1_GE_STORAGE_CONST(0x2c5cdc9c, 0x338152fa, 0x85de92cb, 0x1bee9907, 0x765a922e, 0x4f037cce, 0x14ecdbf2, 0x2f78fe15, 0x56716069, 0x6818286b, 0x72f01a3e, 0x5e8caca7, 0x36249160, 0xc7ded69d, 0xd51913c3, 0x03a2fa97),
SECP256K1_GE_STORAGE_CONST(0x2c5cdc9c, 0x338152fa, 0x85de92cb, 0x1bee9907, 0x765a922e, 0x4f037cce, 0x14ecdbf2, 0x2f78fe15, 0xa98e9f96, 0x97e7d794, 0x8d0fe5c1, 0xa1735358, 0xc9db6e9f, 0x38212962, 0x2ae6ec3b, 0xfc5d0198),
SECP256K1_GE_STORAGE_CONST(0x531f7239, 0xaebc780e, 0x179fbf8d, 0x412a1b01, 0x511f0abc, 0xe0c46151, 0x8b38db84, 0xcc2467f3, 0x82387d45, 0xec7bd5cc, 0x61fcb9df, 0x41cddd7b, 0x217d8114, 0x3577dc8f, 0x23de356a, 0x7e97704e),
SECP256K1_GE_STORAGE_CONST(0x531f7239, 0xaebc780e, 0x179fbf8d, 0x412a1b01, 0x511f0abc, 0xe0c46151, 0x8b38db84, 0xcc2467f3, 0x7dc782ba, 0x13842a33, 0x9e034620, 0xbe322284, 0xde827eeb, 0xca882370, 0xdc21ca94, 0x81688be1),
SECP256K1_GE_STORAGE_CONST(0x2c5cdc9c, 0x338152fa, 0x85de92cb, 0x1bee9907, 0x765a922e, 0x4f037cce, 0x14ecdbf2, 0x2f78fe15, 0x56716069, 0x6818286b, 0x72f01a3e, 0x5e8caca7, 0x36249160, 0xc7ded69d, 0xd51913c3, 0x03a2fa97),
SECP256K1_GE_STORAGE_CONST(0x2c5cdc9c, 0x338152fa, 0x85de92cb, 0x1bee9907, 0x765a922e, 0x4f037cce, 0x14ecdbf2, 0x2f78fe15, 0xa98e9f96, 0x97e7d794, 0x8d0fe5c1, 0xa1735358, 0xc9db6e9f, 0x38212962, 0x2ae6ec3b, 0xfc5d0198),
SECP256K1_GE_STORAGE_CONST(0x5e5936b1, 0x81db0b65, 0x8e33a8c6, 0x1aa687dd, 0x31d11e15, 0x85e35664, 0x6b4c2071, 0xcde7e942, 0x88bb5332, 0xa8e05654, 0x78d4f60c, 0x0cd979ec, 0x938558f2, 0xcac11216, 0x7c387a56, 0xe3a6d5f3),
SECP256K1_GE_STORAGE_CONST(0x5e5936b1, 0x81db0b65, 0x8e33a8c6, 0x1aa687dd, 0x31d11e15, 0x85e35664, 0x6b4c2071, 0xcde7e942, 0x7744accd, 0x571fa9ab, 0x872b09f3, 0xf3268613, 0x6c7aa70d, 0x353eede9, 0x83c785a8, 0x1c59263c),
SECP256K1_GE_STORAGE_CONST(0x657d438f, 0xfac34a50, 0x463fd07c, 0x3f09f320, 0x4c98e8ed, 0x6927e330, 0xc0c7735f, 0x76d32f6d, 0x577c2b11, 0xcaca2f6f, 0xd60bcaf0, 0x3e7cebe9, 0x5da6e1f4, 0xbb557f12, 0x2a397331, 0x81df897f),
SECP256K1_GE_STORAGE_CONST(0x657d438f, 0xfac34a50, 0x463fd07c, 0x3f09f320, 0x4c98e8ed, 0x6927e330, 0xc0c7735f, 0x76d32f6d, 0xa883d4ee, 0x3535d090, 0x29f4350f, 0xc1831416, 0xa2591e0b, 0x44aa80ed, 0xd5c68ccd, 0x7e2072b0),
SECP256K1_GE_STORAGE_CONST(0xbe0bc11b, 0x2bc639cb, 0xc28f72a8, 0xd07c21cc, 0xbc06cfa7, 0x4c2ff25e, 0x630c9740, 0x23128eab, 0x6f062fc8, 0x75148197, 0xd10375c3, 0xcc3fadb6, 0x20277e9c, 0x00579c55, 0xeddd7f95, 0xe95604db),
SECP256K1_GE_STORAGE_CONST(0xbe0bc11b, 0x2bc639cb, 0xc28f72a8, 0xd07c21cc, 0xbc06cfa7, 0x4c2ff25e, 0x630c9740, 0x23128eab, 0x90f9d037, 0x8aeb7e68, 0x2efc8a3c, 0x33c05249, 0xdfd88163, 0xffa863aa, 0x12228069, 0x16a9f754),
SECP256K1_GE_STORAGE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c, 0xfdda0ad6, 0x118a5350, 0x3303ba9f, 0xd93a1b94, 0x07fdc85c, 0xc6db9aa5, 0xe906f176, 0xf7a12705),
SECP256K1_GE_STORAGE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c, 0x0225f529, 0xee75acaf, 0xccfc4560, 0x26c5e46b, 0xf80237a3, 0x3924655a, 0x16f90e88, 0x085ed52a),
SECP256K1_GE_STORAGE_CONST(0xaee172d4, 0xce7c5010, 0xdb20a88f, 0x469598c1, 0xd7f7926f, 0xabb85cb5, 0x339f1403, 0x87e6b494, 0x38065980, 0x4de81b35, 0x098c7190, 0xe3380f9d, 0x95b2ed6c, 0x6c869e85, 0xc772bc5a, 0x7bc3d9d5),
SECP256K1_GE_STORAGE_CONST(0xaee172d4, 0xce7c5010, 0xdb20a88f, 0x469598c1, 0xd7f7926f, 0xabb85cb5, 0x339f1403, 0x87e6b494, 0xc7f9a67f, 0xb217e4ca, 0xf6738e6f, 0x1cc7f062, 0x6a4d1293, 0x9379617a, 0x388d43a4, 0x843c225a),
SECP256K1_GE_STORAGE_CONST(0xc28f5c28, 0xf5c28f5c, 0x28f5c28f, 0x5c28f5c2, 0x8f5c28f5, 0xc28f5c28, 0xf5c28f5b, 0x6666635a, 0x0c4da840, 0x1b2cf5be, 0x4604e6ec, 0xf92b2780, 0x063a5351, 0xe294bf65, 0xbb2f8b61, 0x00902db7),
SECP256K1_GE_STORAGE_CONST(0xc28f5c28, 0xf5c28f5c, 0x28f5c28f, 0x5c28f5c2, 0x8f5c28f5, 0xc28f5c28, 0xf5c28f5b, 0x6666635a, 0xf3b257bf, 0xe4d30a41, 0xb9fb1913, 0x06d4d87f, 0xf9c5acae, 0x1d6b409a, 0x44d0749d, 0xff6fce78),
SECP256K1_GE_STORAGE_CONST(0xecf56be6, 0x9c8fde26, 0x152832c6, 0xe043b3d5, 0xaf9a723f, 0x789854a0, 0xcb1b810d, 0xe2614ece, 0x66127ae4, 0xe4c17a75, 0x60a727e6, 0xffd2ea7f, 0xaed99088, 0xbec465c6, 0xbde56791, 0x37ed5572),
SECP256K1_GE_STORAGE_CONST(0xecf56be6, 0x9c8fde26, 0x152832c6, 0xe043b3d5, 0xaf9a723f, 0x789854a0, 0xcb1b810d, 0xe2614ece, 0x99ed851b, 0x1b3e858a, 0x9f58d819, 0x002d1580, 0x51266f77, 0x413b9a39, 0x421a986d, 0xc812a6bd),
SECP256K1_GE_STORAGE_CONST(0xba72860f, 0x10fcd142, 0x23f71e3c, 0x228deb9a, 0xc46c5ff5, 0x90b884e5, 0xcc60d51e, 0x0629d16e, 0x67999f31, 0x5a74ada3, 0x526832cf, 0x76b9fec3, 0xa348cc97, 0x33c3aa67, 0x02bd2516, 0x7814f635),
SECP256K1_GE_STORAGE_CONST(0xba72860f, 0x10fcd142, 0x23f71e3c, 0x228deb9a, 0xc46c5ff5, 0x90b884e5, 0xcc60d51e, 0x0629d16e, 0x986660ce, 0xa58b525c, 0xad97cd30, 0x8946013c, 0x5cb73368, 0xcc3c5598, 0xfd42dae8, 0x87eb05fa),
SECP256K1_GE_STORAGE_CONST(0x92ef5657, 0xdba51cc7, 0xf3e1b442, 0xa6a0916b, 0x8ce03079, 0x2ef5657d, 0xba51cc7e, 0xab2beb65, 0x782c65d2, 0x3f1e0eb2, 0x9179a994, 0xe5e8ff80, 0x5a0d50d9, 0xdeeaed90, 0xcec96ca5, 0x973e2ad3),
SECP256K1_GE_STORAGE_CONST(0x92ef5657, 0xdba51cc7, 0xf3e1b442, 0xa6a0916b, 0x8ce03079, 0x2ef5657d, 0xba51cc7e, 0xab2beb65, 0x87d39a2d, 0xc0e1f14d, 0x6e86566b, 0x1a17007f, 0xa5f2af26, 0x2115126f, 0x31369359, 0x68c1d15c),
SECP256K1_GE_STORAGE_CONST(0x9468ad22, 0xf921fc78, 0x8de3f1b0, 0x586c58eb, 0x5e6f0270, 0xe950b602, 0x7ada90d9, 0xd71ae323, 0x922a0c6a, 0x9ccc31d9, 0xc3bf87fd, 0x88381739, 0x35fe393f, 0xa64dfdec, 0x29f2846d, 0x12918d86),
SECP256K1_GE_STORAGE_CONST(0x9468ad22, 0xf921fc78, 0x8de3f1b0, 0x586c58eb, 0x5e6f0270, 0xe950b602, 0x7ada90d9, 0xd71ae323, 0x6dd5f395, 0x6333ce26, 0x3c407802, 0x77c7e8c6, 0xca01c6c0, 0x59b20213, 0xd60d7b91, 0xed6e6ea9),
SECP256K1_GE_STORAGE_CONST(0x76ddc7f5, 0xe029e59e, 0x22b0e54f, 0xa811db94, 0x5a209c4f, 0x5e912ca2, 0x8b4da6a7, 0x4c1e00a2, 0x1e8f516c, 0x91c20437, 0x50f6e24e, 0x8c2cf202, 0xacf68291, 0xbf8b66eb, 0xf7335b62, 0xec2c88fe),
SECP256K1_GE_STORAGE_CONST(0x76ddc7f5, 0xe029e59e, 0x22b0e54f, 0xa811db94, 0x5a209c4f, 0x5e912ca2, 0x8b4da6a7, 0x4c1e00a2, 0xe170ae93, 0x6e3dfbc8, 0xaf091db1, 0x73d30dfd, 0x53097d6e, 0x40749914, 0x08cca49c, 0x13d37331),
SECP256K1_GE_STORAGE_CONST(0xf75763bc, 0x2907e79b, 0x125e33c3, 0x9a027f48, 0x0f8c6409, 0x2153432f, 0x967bc2b1, 0x1d1f5cf0, 0xb4a8edc6, 0x36391b39, 0x9bc219c0, 0x3d033128, 0xdbcd463e, 0xd2506394, 0x061b87a5, 0x9e510235),
SECP256K1_GE_STORAGE_CONST(0xf75763bc, 0x2907e79b, 0x125e33c3, 0x9a027f48, 0x0f8c6409, 0x2153432f, 0x967bc2b1, 0x1d1f5cf0, 0x4b571239, 0xc9c6e4c6, 0x643de63f, 0xc2fcced7, 0x2432b9c1, 0x2daf9c6b, 0xf9e47859, 0x61aef9fa),
};
secp256k1_ge ge;
secp256k1_fe fe;
secp256k1_ge_storage ges;
int i, s;
for (i = 1; i <= 16; i++) {
secp256k1_fe_set_int(&fe, i);
for (s = 0; s < 2; s++) {
if (s) {
secp256k1_fe_negate(&fe, &fe, 1);
secp256k1_fe_normalize(&fe);
}
shallue_van_de_woestijne(&ge, &fe);
secp256k1_ge_to_storage(&ges, &ge);
CHECK(memcmp(&ges, &results[i * 2 + s - 2], sizeof(secp256k1_ge_storage)) == 0);
}
}
}
void test_generator_generate(void) {
static const secp256k1_ge_storage results[32] = {
SECP256K1_GE_STORAGE_CONST(0x806cd8ed, 0xd6c153e3, 0x4aa9b9a0, 0x8755c4be, 0x4718b1ef, 0xb26cb93f, 0xfdd99e1b, 0x21f2af8e, 0xc7062208, 0xcc649a03, 0x1bdc1a33, 0x9d01f115, 0x4bcd0dca, 0xfe0b875d, 0x62f35f73, 0x28673006),
SECP256K1_GE_STORAGE_CONST(0xd91b15ec, 0x47a811f4, 0xaa189561, 0xd13f5c4d, 0x4e81f10d, 0xc7dc551f, 0x4fea9b84, 0x610314c4, 0x9b0ada1e, 0xb38efd67, 0x8bff0b6c, 0x7d7315f7, 0xb49b8cc5, 0xa679fad4, 0xc94f9dc6, 0x9da66382),
SECP256K1_GE_STORAGE_CONST(0x11c00de6, 0xf885035e, 0x76051430, 0xa3c38b2a, 0x5f86ab8c, 0xf66dae58, 0x04ea7307, 0x348b19bf, 0xe0858ae7, 0x61dcb1ba, 0xff247e37, 0xd38fcd88, 0xf3bd7911, 0xaa4ed6e0, 0x28d792dd, 0x3ee1ac09),
SECP256K1_GE_STORAGE_CONST(0x986b99eb, 0x3130e7f0, 0xe779f674, 0xb85cb514, 0x46a676bf, 0xb1dfb603, 0x4c4bb639, 0x7c406210, 0xdf900609, 0x8b3ef1e0, 0x30e32fb0, 0xd97a4329, 0xff98aed0, 0xcd278c3f, 0xe6078467, 0xfbd12f35),
SECP256K1_GE_STORAGE_CONST(0xae528146, 0x03fdf91e, 0xc592977e, 0x12461dc7, 0xb9e038f8, 0x048dcb62, 0xea264756, 0xd459ae42, 0x80ef658d, 0x92becb84, 0xdba8e4f9, 0x560d7a72, 0xbaf4c393, 0xfbcf6007, 0x11039f1c, 0x224faaad),
SECP256K1_GE_STORAGE_CONST(0x00df3d91, 0x35975eee, 0x91fab903, 0xe3128e4a, 0xca071dde, 0x270814e5, 0xcbda69ec, 0xcad58f46, 0x11b590aa, 0x92d89969, 0x2dbd932f, 0x08013b8b, 0x45afabc6, 0x43677db2, 0x143e0c0f, 0x5865fb03),
SECP256K1_GE_STORAGE_CONST(0x1168155b, 0x987e9bc8, 0x84c5f3f4, 0x92ebf784, 0xcc8c6735, 0x39d8e5e8, 0xa967115a, 0x2949da9b, 0x0858a470, 0xf403ca97, 0xb1827f6f, 0x544c2c67, 0x08f6cb83, 0xc510c317, 0x96c981ed, 0xb9f61780),
SECP256K1_GE_STORAGE_CONST(0xe8d7c0cf, 0x2bb4194c, 0x97bf2a36, 0xbd115ba0, 0x81a9afe8, 0x7663fa3c, 0x9c3cd253, 0x79fe2571, 0x2028ad04, 0xefa00119, 0x5a25d598, 0x67e79502, 0x49de7c61, 0x4751cd9d, 0x4fb317f6, 0xf76f1110),
SECP256K1_GE_STORAGE_CONST(0x9532c491, 0xa64851dd, 0xcd0d3e5a, 0x93e17267, 0xa10aca95, 0xa23781aa, 0x5087f340, 0xc45fecc3, 0xb691ddc2, 0x3143a7b6, 0x09969302, 0x258affb8, 0x5bbf8666, 0xe1192319, 0xeb174d88, 0x308bd57a),
SECP256K1_GE_STORAGE_CONST(0x6b20b6e2, 0x1ba6cc44, 0x3f2c3a0c, 0x5283ba44, 0xbee43a0a, 0x2799a6cf, 0xbecc0f8a, 0xf8c583ac, 0xf7021e76, 0xd51291a6, 0xf9396215, 0x686f25aa, 0xbec36282, 0x5e11eeea, 0x6e51a6e6, 0xd7d7c006),
SECP256K1_GE_STORAGE_CONST(0xde27e6ff, 0x219b3ab1, 0x2b0a9e4e, 0x51fc6092, 0x96e55af6, 0xc6f717d6, 0x12cd6cce, 0x65d6c8f2, 0x48166884, 0x4dc13fd2, 0xed7a7d81, 0x66a0839a, 0x8a960863, 0xfe0001c1, 0x35d206fd, 0x63b87c09),
SECP256K1_GE_STORAGE_CONST(0x79a96fb8, 0xd88a08d3, 0x055d38d1, 0x3346b0d4, 0x47d838ca, 0xfcc8fa40, 0x6d3a7157, 0xef84e7e3, 0x6bab9c45, 0x2871b51d, 0xb0df2369, 0xe7860e01, 0x2e37ffea, 0x6689fd1a, 0x9c6fe9cf, 0xb940acea),
SECP256K1_GE_STORAGE_CONST(0x06c4d4cb, 0xd32c0ddb, 0x67e988c6, 0x2bdbe6ad, 0xa39b80cc, 0x61afb347, 0x234abe27, 0xa689618c, 0x5b355949, 0xf904fe08, 0x569b2313, 0xe8f19f8d, 0xc5b79e27, 0x70da0832, 0x5fb7a229, 0x238ca6b6),
SECP256K1_GE_STORAGE_CONST(0x7027e566, 0x3e727c28, 0x42aa14e5, 0x52c2d2ec, 0x1d8beaa9, 0x8a22ceab, 0x15ccafc3, 0xb4f06249, 0x9b3dffbc, 0xdbd5e045, 0x6931fd03, 0x8b1c6a9b, 0x4c168c6d, 0xa6553897, 0xfe11ce49, 0xac728139),
SECP256K1_GE_STORAGE_CONST(0xee3520c3, 0x9f2b954d, 0xf8e15547, 0xdaeb6cc8, 0x04c8f3b0, 0x9301f53e, 0xe0c11ea1, 0xeace539d, 0x244ff873, 0x7e060c98, 0xe843c353, 0xcd35d2e4, 0x3cd8b082, 0xcffbc9ae, 0x81eafa70, 0x332f9748),
SECP256K1_GE_STORAGE_CONST(0xdaecd756, 0xf5b706a4, 0xc14e1095, 0x3e2f70df, 0xa81276e7, 0x71806b89, 0x4d8a5502, 0xa0ef4998, 0xbac906c0, 0x948b1d48, 0xe023f439, 0xfd3770b8, 0x837f60cc, 0x40552a51, 0x433d0b79, 0x6610da27),
SECP256K1_GE_STORAGE_CONST(0x55e1ca28, 0x750fe2d0, 0x57f7449b, 0x3f49d999, 0x3b9616dd, 0x5387bc2e, 0x6e6698f8, 0xc4ea49f4, 0xe339e0e9, 0xa4c7fa99, 0xd063e062, 0x6582bce2, 0x33c6b1ee, 0x17a5b47f, 0x6d43ecf8, 0x98b40120),
SECP256K1_GE_STORAGE_CONST(0xdd82cac2, 0x9e0e0135, 0x4964d3bc, 0x27469233, 0xf13bbd5e, 0xd7aff24b, 0x4902fca8, 0x17294b12, 0x561ab1d6, 0xcd9bcb6e, 0x805585cf, 0x3df8714c, 0x1bfa6304, 0x5efbf122, 0x1a3d8fd9, 0x3827764a),
SECP256K1_GE_STORAGE_CONST(0xda5cbfb7, 0x3522e9c7, 0xcb594436, 0x83677038, 0x0eaa64a9, 0x2eca3888, 0x0fe4c9d6, 0xdeb22dbf, 0x4f46de68, 0x0447c780, 0xc54a314b, 0x5389a926, 0xbba8910b, 0x869fc6cd, 0x42ee82e8, 0x5895e42a),
SECP256K1_GE_STORAGE_CONST(0x4e09830e, 0xc8894c58, 0x4e6278de, 0x167a96b0, 0x20d60463, 0xee48f788, 0x4974d66e, 0x871e35e9, 0x21259c4d, 0x332ca932, 0x2e187df9, 0xe7afbc23, 0x9d171ebc, 0x7d9e2560, 0x503f50b1, 0x9fe45834),
SECP256K1_GE_STORAGE_CONST(0xabfff6ca, 0x41dcfd17, 0x03cae629, 0x9d127971, 0xf19ee000, 0x2db332e6, 0x5cc209a3, 0xc21b8f54, 0x65991d60, 0xee54f5cc, 0xddf7a732, 0xa76b0303, 0xb9f519a6, 0x22ea0390, 0x8af23ffa, 0x35ae6632),
SECP256K1_GE_STORAGE_CONST(0xc6c9b92c, 0x91e045a5, 0xa1913277, 0x44d6fce2, 0x11b12c7c, 0x9b3112d6, 0xc61e14a6, 0xd6b1ae12, 0x04ab0396, 0xebdc4c6a, 0xc213cc3e, 0x077a2e80, 0xb4ba7b2b, 0x33907d56, 0x2c98ccf7, 0xb82a2e9f),
SECP256K1_GE_STORAGE_CONST(0x66f6e6d9, 0xc4bb9a5f, 0x99085781, 0x83cb9362, 0x2ea437d8, 0xccd31969, 0xffadca3a, 0xff1d3935, 0x50a5b06e, 0x39e039d7, 0x1dfb2723, 0x18db74e5, 0x5af64da1, 0xdfc34586, 0x6aac3bd0, 0x5792a890),
SECP256K1_GE_STORAGE_CONST(0x58ded03c, 0x98e1a890, 0x63fc7793, 0xe3ecd896, 0x235e75c9, 0x82e7008f, 0xddbf3ca8, 0x5b7e9ecb, 0x34594776, 0x58ab6821, 0xaf43a453, 0xa946fda9, 0x13d24999, 0xccf22df8, 0xd291ef59, 0xb08975c0),
SECP256K1_GE_STORAGE_CONST(0x74557864, 0x4f2b0486, 0xd5beea7c, 0x2d258ccb, 0x78a870e1, 0x848982d8, 0xed3f91a4, 0x9db83a36, 0xd84e940e, 0x1d33c28a, 0x62398ec8, 0xc493aee7, 0x7c2ba722, 0x42dee7ae, 0x3c35c256, 0xad00cf42),
SECP256K1_GE_STORAGE_CONST(0x7fc7963a, 0x16abc8fb, 0x5d61eb61, 0x0fc50a68, 0x754470d2, 0xf43df3be, 0x52228f66, 0x522fe61b, 0x499f9e7f, 0x462c6545, 0x29687af4, 0x9f7c732d, 0x48801ce5, 0x21acd546, 0xc6fb903c, 0x7c265032),
SECP256K1_GE_STORAGE_CONST(0xb2f6257c, 0xc58df82f, 0xb9ba4f36, 0x7ededf03, 0xf8ea10f3, 0x104d7ae6, 0x233b7ac4, 0x725e11de, 0x9c7a32df, 0x4842f33d, 0xaad84f0b, 0x62e88b40, 0x46ddcbde, 0xbbeec6f8, 0x93bfde27, 0x0561dc73),
SECP256K1_GE_STORAGE_CONST(0xe2cdfd27, 0x8a8e22be, 0xabf08b79, 0x1bc6ae38, 0x41d22a9a, 0x9472e266, 0x1a7c6e83, 0xa2f74725, 0x0e26c103, 0xe0dd93b2, 0x3724f3b7, 0x8bb7366e, 0x2c245768, 0xd64f3283, 0xd8316e8a, 0x1383b977),
SECP256K1_GE_STORAGE_CONST(0x757c13e7, 0xe866017e, 0xe6af61d7, 0x161d208a, 0xc438f712, 0x242fcd23, 0x63a10e59, 0xd67e41fb, 0xb550c6a9, 0x4ddb15f3, 0xfeea4bfe, 0xd2faa19f, 0x2aa2fbd3, 0x0c6ae785, 0xe357f365, 0xb30d12e0),
SECP256K1_GE_STORAGE_CONST(0x528d525e, 0xac30095b, 0x5e5f83ca, 0x4d3dea63, 0xeb608f2d, 0x18dd25a7, 0x2529c8e5, 0x1ae5f9f1, 0xfde2860b, 0x492a4106, 0x9f356c05, 0x3ebc045e, 0x4ad08b79, 0x3e264935, 0xf25785a9, 0x8690b5ee),
SECP256K1_GE_STORAGE_CONST(0x150df593, 0x5b6956a0, 0x0cfed843, 0xb9d6ffce, 0x4f790022, 0xea18730f, 0xc495111d, 0x91568e55, 0x6700a2ca, 0x9ff4ed32, 0xc1697312, 0x4eb51ce3, 0x5656344b, 0x65a1e3d5, 0xd6c1f7ce, 0x29233f82),
SECP256K1_GE_STORAGE_CONST(0x38e02eaf, 0x2c8774fd, 0x58b8b373, 0x732457f1, 0x16dbe53b, 0xea5683d9, 0xada20dd7, 0x14ce20a6, 0x6ac5362e, 0xbb425416, 0x8250f43f, 0xa4ee2b63, 0x0406324f, 0x1c876d60, 0xebe5be2c, 0x6eb1515b),
};
secp256k1_generator gen;
secp256k1_ge ge;
secp256k1_ge_storage ges;
int i;
unsigned char v[32];
static const unsigned char s[32] = {0};
secp256k1_scalar sc;
secp256k1_scalar_set_b32(&sc, s, NULL);
for (i = 1; i <= 32; i++) {
memset(v, 0, 31);
v[31] = i;
CHECK(secp256k1_generator_generate_blinded(ctx, &gen, v, s));
secp256k1_generator_load(&ge, &gen);
secp256k1_ge_to_storage(&ges, &ge);
CHECK(memcmp(&ges, &results[i - 1], sizeof(secp256k1_ge_storage)) == 0);
CHECK(secp256k1_generator_generate(ctx, &gen, v));
secp256k1_generator_load(&ge, &gen);
secp256k1_ge_to_storage(&ges, &ge);
CHECK(memcmp(&ges, &results[i - 1], sizeof(secp256k1_ge_storage)) == 0);
}
}
void run_generator_tests(void) {
test_shallue_van_de_woestijne();
test_generator_api();
test_generator_generate();
}
#endif

Some files were not shown because too many files have changed in this diff Show More