From ec407c3c397fa5a6e810cac28af046fb287a160c Mon Sep 17 00:00:00 2001 From: yjjnls Date: Mon, 12 Aug 2019 19:27:58 +0800 Subject: [PATCH] streamline confidential tx --- src/ConfidentialTx/crypto/bn256/bn256.go | 531 -- src/ConfidentialTx/crypto/bn256/bn256_test.go | 304 - src/ConfidentialTx/crypto/bn256/constants.go | 44 - src/ConfidentialTx/crypto/bn256/curve.go | 286 - src/ConfidentialTx/crypto/bn256/gfp12.go | 200 - src/ConfidentialTx/crypto/bn256/gfp2.go | 227 - src/ConfidentialTx/crypto/bn256/gfp6.go | 296 - src/ConfidentialTx/crypto/bn256/main_test.go | 71 - src/ConfidentialTx/crypto/bn256/optate.go | 397 -- src/ConfidentialTx/crypto/bn256/twist.go | 249 - src/ConfidentialTx/crypto/secp256k1/curve.go | 316 - src/ConfidentialTx/crypto/secp256k1/ext.h | 245 - .../crypto/secp256k1/libsecp256k1/Makefile.am | 207 - .../build-aux/m4/ax_jni_include_dir.m4 | 145 - .../libsecp256k1/build-aux/m4/bitcoin_secp.m4 | 68 - .../secp256k1/libsecp256k1/configure.ac | 618 -- .../libsecp256k1/contrib/lax_der_parsing.h | 91 - .../contrib/lax_der_privatekey_parsing.h | 90 - .../libsecp256k1/include/secp256k1.h | 654 --- .../include/secp256k1_bulletproofs.h | 176 - .../include/secp256k1_commitment.h | 164 - .../libsecp256k1/include/secp256k1_ecdh.h | 31 - .../include/secp256k1_generator.h | 102 - .../include/secp256k1_rangeproof.h | 144 - .../libsecp256k1/include/secp256k1_recovery.h | 110 - .../include/secp256k1_surjectionproof.h | 212 - .../include/secp256k1_whitelist.h | 152 - .../libsecp256k1/sage/group_prover.sage | 322 - .../sage/shallue_van_de_woestijne.sage | 51 - .../libsecp256k1/src/asm/field_10x26_arm.s | 919 --- .../secp256k1/libsecp256k1/src/basic-config.h | 33 - .../crypto/secp256k1/libsecp256k1/src/bench.h | 82 - .../libsecp256k1/src/bench_bulletproof.c | 243 - .../secp256k1/libsecp256k1/src/bench_ecdh.c | 54 - .../secp256k1/libsecp256k1/src/bench_ecmult.c | 196 - .../libsecp256k1/src/bench_generator.c | 59 - .../libsecp256k1/src/bench_internal.c | 367 -- .../libsecp256k1/src/bench_rangeproof.c | 64 - .../libsecp256k1/src/bench_recover.c | 60 - .../secp256k1/libsecp256k1/src/bench_sign.c | 56 - .../secp256k1/libsecp256k1/src/bench_verify.c | 112 - .../libsecp256k1/src/bench_whitelist.c | 104 - .../crypto/secp256k1/libsecp256k1/src/ecdsa.h | 21 - .../secp256k1/libsecp256k1/src/ecdsa_impl.h | 313 - .../crypto/secp256k1/libsecp256k1/src/eckey.h | 25 - .../secp256k1/libsecp256k1/src/eckey_impl.h | 100 - .../secp256k1/libsecp256k1/src/ecmult.h | 47 - .../secp256k1/libsecp256k1/src/ecmult_const.h | 17 - .../libsecp256k1/src/ecmult_const_impl.h | 257 - .../secp256k1/libsecp256k1/src/ecmult_gen.h | 43 - .../libsecp256k1/src/ecmult_gen_impl.h | 210 - .../secp256k1/libsecp256k1/src/ecmult_impl.h | 1027 ---- .../crypto/secp256k1/libsecp256k1/src/field.h | 132 - .../secp256k1/libsecp256k1/src/field_10x26.h | 48 - .../libsecp256k1/src/field_10x26_impl.h | 1161 ---- .../secp256k1/libsecp256k1/src/field_5x52.h | 47 - .../libsecp256k1/src/field_5x52_asm_impl.h | 502 -- .../libsecp256k1/src/field_5x52_impl.h | 496 -- .../libsecp256k1/src/field_5x52_int128_impl.h | 277 - .../secp256k1/libsecp256k1/src/field_impl.h | 315 - .../secp256k1/libsecp256k1/src/gen_context.c | 74 - .../crypto/secp256k1/libsecp256k1/src/group.h | 147 - .../secp256k1/libsecp256k1/src/group_impl.h | 706 --- .../crypto/secp256k1/libsecp256k1/src/hash.h | 41 - .../secp256k1/libsecp256k1/src/hash_impl.h | 282 - .../src/java/org/bitcoin/NativeSecp256k1.java | 446 -- .../java/org/bitcoin/NativeSecp256k1Test.java | 226 - .../java/org/bitcoin/NativeSecp256k1Util.java | 45 - .../java/org/bitcoin/Secp256k1Context.java | 51 - .../src/java/org_bitcoin_NativeSecp256k1.c | 377 -- .../src/java/org_bitcoin_NativeSecp256k1.h | 119 - .../src/java/org_bitcoin_Secp256k1Context.c | 15 - .../src/java/org_bitcoin_Secp256k1Context.h | 22 - .../bulletproofs/.inner_product_impl.h.swp | Bin 16384 -> 0 bytes .../src/modules/bulletproofs/.main_impl.h.swp | Bin 20480 -> 0 bytes .../bulletproofs/.rangeproof_impl.h.swo | Bin 16384 -> 0 bytes .../bulletproofs/.rangeproof_impl.h.swp | Bin 16384 -> 0 bytes .../modules/bulletproofs/.tests_impl.h.swp | Bin 16384 -> 0 bytes .../src/modules/bulletproofs/.util.h.swp | Bin 12288 -> 0 bytes .../modules/bulletproofs/Makefile.am.include | 12 - .../modules/bulletproofs/inner_product_impl.h | 848 --- .../src/modules/bulletproofs/main_impl.h | 240 - .../modules/bulletproofs/rangeproof_impl.h | 792 --- .../src/modules/bulletproofs/tests_impl.h | 608 -- .../src/modules/bulletproofs/util.h | 116 - .../src/modules/commitment/.main_impl.h.swp | Bin 16384 -> 0 bytes .../modules/commitment/Makefile.am.include | 4 - .../src/modules/commitment/main_impl.h | 186 - .../src/modules/commitment/pedersen_impl.h | 38 - .../src/modules/commitment/tests_impl.h | 230 - .../src/modules/ecdh/Makefile.am.include | 8 - .../libsecp256k1/src/modules/ecdh/main_impl.h | 54 - .../src/modules/ecdh/tests_impl.h | 105 - .../src/modules/generator/.main_impl.h.swp | Bin 16384 -> 0 bytes .../src/modules/generator/.tests_impl.h.swp | Bin 16384 -> 0 bytes .../src/modules/generator/Makefile.am.include | 9 - .../src/modules/generator/main_impl.h | 232 - .../src/modules/generator/tests_impl.h | 199 - .../src/modules/rangeproof/.borromean.h.swp | Bin 12288 -> 0 bytes .../modules/rangeproof/.borromean_impl.h.swp | Bin 16384 -> 0 bytes .../src/modules/rangeproof/.main_impl.h.swp | Bin 16384 -> 0 bytes .../src/modules/rangeproof/.tests_impl.h.swp | Bin 16384 -> 0 bytes .../modules/rangeproof/Makefile.am.include | 13 - .../src/modules/rangeproof/borromean.h | 24 - .../src/modules/rangeproof/borromean_impl.h | 204 - .../src/modules/rangeproof/main_impl.h | 95 - .../src/modules/rangeproof/rangeproof.h | 21 - .../src/modules/rangeproof/rangeproof_impl.h | 685 --- .../src/modules/rangeproof/tests_impl.h | 439 -- .../src/modules/recovery/Makefile.am.include | 8 - .../src/modules/recovery/main_impl.h | 193 - .../src/modules/recovery/tests_impl.h | 393 -- .../modules/surjection/Makefile.am.include | 6 - .../src/modules/surjection/main_impl.h | 338 -- .../src/modules/surjection/surjection.h | 19 - .../src/modules/surjection/surjection.md | 108 - .../src/modules/surjection/surjection_impl.h | 86 - .../src/modules/surjection/tests_impl.h | 494 -- .../src/modules/whitelist/Makefile.am.include | 10 - .../src/modules/whitelist/main_impl.h | 174 - .../src/modules/whitelist/tests_impl.h | 151 - .../src/modules/whitelist/whitelist.md | 96 - .../src/modules/whitelist/whitelist_impl.h | 129 - .../crypto/secp256k1/libsecp256k1/src/num.h | 74 - .../secp256k1/libsecp256k1/src/num_gmp.h | 20 - .../secp256k1/libsecp256k1/src/num_gmp_impl.h | 288 - .../secp256k1/libsecp256k1/src/num_impl.h | 24 - .../secp256k1/libsecp256k1/src/scalar.h | 112 - .../secp256k1/libsecp256k1/src/scalar_4x64.h | 19 - .../libsecp256k1/src/scalar_4x64_impl.h | 1049 ---- .../secp256k1/libsecp256k1/src/scalar_8x32.h | 19 - .../libsecp256k1/src/scalar_8x32_impl.h | 832 --- .../secp256k1/libsecp256k1/src/scalar_impl.h | 333 -- .../secp256k1/libsecp256k1/src/scalar_low.h | 15 - .../libsecp256k1/src/scalar_low_impl.h | 120 - .../secp256k1/libsecp256k1/src/scratch.h | 39 - .../secp256k1/libsecp256k1/src/scratch_impl.h | 86 - .../secp256k1/libsecp256k1/src/secp256k1.c | 637 -- .../secp256k1/libsecp256k1/src/testrand.h | 41 - .../libsecp256k1/src/testrand_impl.h | 127 - .../crypto/secp256k1/libsecp256k1/src/tests.c | 5231 ----------------- .../libsecp256k1/src/tests_exhaustive.c | 511 -- .../crypto/secp256k1/libsecp256k1/src/util.h | 147 - .../crypto/secp256k1/panic_cb.go | 33 - .../crypto/secp256k1/secp256.go | 172 - .../crypto/secp256k1/secp256_test.go | 263 - src/ConfidentialTx/main.go | 63 +- src/ConfidentialTx/main_test.go | 103 + src/ConfidentialTx/zkproofs/bb.go | 35 +- src/ConfidentialTx/zkproofs/bulletproofs.go | 14 +- src/ConfidentialTx/zkproofs/ccs08.go | 19 +- src/ConfidentialTx/zkproofs/p256.go | 14 +- src/ConfidentialTx/zkproofs/util.go | 68 +- 153 files changed, 256 insertions(+), 34060 deletions(-) delete mode 100644 src/ConfidentialTx/crypto/bn256/bn256.go delete mode 100644 src/ConfidentialTx/crypto/bn256/bn256_test.go delete mode 100644 src/ConfidentialTx/crypto/bn256/constants.go delete mode 100644 src/ConfidentialTx/crypto/bn256/curve.go delete mode 100644 src/ConfidentialTx/crypto/bn256/gfp12.go delete mode 100644 src/ConfidentialTx/crypto/bn256/gfp2.go delete mode 100644 src/ConfidentialTx/crypto/bn256/gfp6.go delete mode 100644 src/ConfidentialTx/crypto/bn256/main_test.go delete mode 100644 src/ConfidentialTx/crypto/bn256/optate.go delete mode 100644 src/ConfidentialTx/crypto/bn256/twist.go delete mode 100644 src/ConfidentialTx/crypto/secp256k1/curve.go delete mode 100644 src/ConfidentialTx/crypto/secp256k1/ext.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/Makefile.am delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/build-aux/m4/ax_jni_include_dir.m4 delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/build-aux/m4/bitcoin_secp.m4 delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/configure.ac delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/contrib/lax_der_parsing.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/contrib/lax_der_privatekey_parsing.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_bulletproofs.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_commitment.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_ecdh.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_generator.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_rangeproof.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_recovery.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_surjectionproof.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_whitelist.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/sage/group_prover.sage delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/sage/shallue_van_de_woestijne.sage delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/asm/field_10x26_arm.s delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/basic-config.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_bulletproof.c delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_ecdh.c delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_ecmult.c delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_generator.c delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_internal.c delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_rangeproof.c delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_recover.c delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_sign.c delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_verify.c delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_whitelist.c delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecdsa.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecdsa_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/eckey.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/eckey_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecmult.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecmult_const.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecmult_const_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecmult_gen.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecmult_gen_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecmult_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_10x26.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_10x26_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_5x52.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_5x52_asm_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_5x52_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_5x52_int128_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/gen_context.c delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/group.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/group_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/hash.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/hash_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1.java delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1Test.java delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1Util.java delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/Secp256k1Context.java delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.c delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_Secp256k1Context.c delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_Secp256k1Context.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/.inner_product_impl.h.swp delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/.main_impl.h.swp delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/.rangeproof_impl.h.swo delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/.rangeproof_impl.h.swp delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/.tests_impl.h.swp delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/.util.h.swp delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/Makefile.am.include delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/inner_product_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/main_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/rangeproof_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/tests_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/util.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/commitment/.main_impl.h.swp delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/commitment/Makefile.am.include delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/commitment/main_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/commitment/pedersen_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/commitment/tests_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/ecdh/Makefile.am.include delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/ecdh/main_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/ecdh/tests_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/generator/.main_impl.h.swp delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/generator/.tests_impl.h.swp delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/generator/Makefile.am.include delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/generator/main_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/generator/tests_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/.borromean.h.swp delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/.borromean_impl.h.swp delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/.main_impl.h.swp delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/.tests_impl.h.swp delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/Makefile.am.include delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/borromean.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/borromean_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/main_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/rangeproof.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/rangeproof_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/tests_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/recovery/Makefile.am.include delete mode 100755 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/recovery/main_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/recovery/tests_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/surjection/Makefile.am.include delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/surjection/main_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/surjection/surjection.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/surjection/surjection.md delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/surjection/surjection_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/surjection/tests_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/whitelist/Makefile.am.include delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/whitelist/main_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/whitelist/tests_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/whitelist/whitelist.md delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/whitelist/whitelist_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/num.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/num_gmp.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/num_gmp_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/num_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_4x64.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_4x64_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_8x32.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_8x32_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_low.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_low_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scratch.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scratch_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/secp256k1.c delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/testrand.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/testrand_impl.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/tests.c delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/tests_exhaustive.c delete mode 100644 src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/util.h delete mode 100644 src/ConfidentialTx/crypto/secp256k1/panic_cb.go delete mode 100644 src/ConfidentialTx/crypto/secp256k1/secp256.go delete mode 100644 src/ConfidentialTx/crypto/secp256k1/secp256_test.go create mode 100644 src/ConfidentialTx/main_test.go diff --git a/src/ConfidentialTx/crypto/bn256/bn256.go b/src/ConfidentialTx/crypto/bn256/bn256.go deleted file mode 100644 index 6af1c19..0000000 --- a/src/ConfidentialTx/crypto/bn256/bn256.go +++ /dev/null @@ -1,531 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Package bn256 implements a particular bilinear group at the 128-bit security level. -// -// Bilinear groups are the basis of many of the new cryptographic protocols -// that have been proposed over the past decade. They consist of a triplet of -// groups (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ -// (where gₓ is a generator of the respective group). That function is called -// a pairing function. -// -// This package specifically implements the Optimal Ate pairing over a 256-bit -// Barreto-Naehrig curve as described in -// http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is compatible -// with the implementation described in that paper. -package bn256 - -import ( - "crypto/rand" - "io" - "math/big" -) - -// BUG(agl): this implementation is not constant time. -// TODO(agl): keep GF(p²) elements in Mongomery form. - -// G1 is an abstract cyclic group. The zero value is suitable for use as the -// output of an operation, but cannot be used as an input. -type G1 struct { - p *curvePoint -} - -// RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r. -func RandomG1(r io.Reader) (*big.Int, *G1, error) { - var k *big.Int - var err error - - for { - k, err = rand.Int(r, Order) - if err != nil { - return nil, nil, err - } - if k.Sign() > 0 { - break - } - } - - return k, new(G1).ScalarBaseMult(k), nil -} - -func (g *G1) String() string { - return "bn256.G1" + g.p.String() -} - -// CurvePoints returns p's curve points in big integer -func (e *G1) CurvePoints() (*big.Int, *big.Int, *big.Int, *big.Int) { - return e.p.x, e.p.y, e.p.z, e.p.t -} - -// Set to identity element on the group. -func (e *G1) SetInfinity() *G1 { - e.p = newCurvePoint(new(bnPool)) - e.p.SetInfinity() - return e -} - -// ScalarBaseMult sets e to g*k where g is the generator of the group and -// then returns e. -// This method was updated to deal with negative numbers. -func (e *G1) ScalarBaseMult(k *big.Int) *G1 { - if e.p == nil { - e.p = newCurvePoint(nil) - } - cmp := k.Cmp(big.NewInt(0)) - if cmp >=0 { - if cmp == 0 { - e.p.SetInfinity() - } else { - e.p.Mul(curveGen, k, new(bnPool)) - } - } else { - e.p.Negative(e.p.Mul(curveGen, new(big.Int).Abs(k), new(bnPool))) - } - return e -} - -// ScalarMult sets e to a*k and then returns e. -// This method was updated to deal with negative numbers. -func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 { - if e.p == nil { - e.p = newCurvePoint(nil) - } - cmp := k.Cmp(big.NewInt(0)) - if cmp >=0 { - if cmp == 0 { - e.p.SetInfinity() - } else { - e.p.Mul(a.p, k, new(bnPool)) - } - } else { - e.p.Negative(e.p.Mul(a.p, new(big.Int).Abs(k), new(bnPool))) - } - return e -} - -// Add sets e to a+b and then returns e. -// BUG(agl): this function is not complete: a==b fails. -func (e *G1) Add(a, b *G1) *G1 { - if e.p == nil { - e.p = newCurvePoint(nil) - } - e.p.Add(a.p, b.p, new(bnPool)) - return e -} - -// Neg sets e to -a and then returns e. -func (e *G1) Neg(a *G1) *G1 { - if e.p == nil { - e.p = newCurvePoint(nil) - } - e.p.Negative(a.p) - return e -} - -// Marshal converts n to a byte slice. -func (n *G1) Marshal() []byte { - n.p.MakeAffine(nil) - - xBytes := new(big.Int).Mod(n.p.x, P).Bytes() - yBytes := new(big.Int).Mod(n.p.y, P).Bytes() - - // Each value is a 256-bit number. - const numBytes = 256 / 8 - - ret := make([]byte, numBytes*2) - copy(ret[1*numBytes-len(xBytes):], xBytes) - copy(ret[2*numBytes-len(yBytes):], yBytes) - - return ret -} - -// Unmarshal sets e to the result of converting the output of Marshal back into -// a group element and then returns e. -func (e *G1) Unmarshal(m []byte) (*G1, bool) { - // Each value is a 256-bit number. - const numBytes = 256 / 8 - - if len(m) != 2*numBytes { - return nil, false - } - - if e.p == nil { - e.p = newCurvePoint(nil) - } - - e.p.x.SetBytes(m[0*numBytes : 1*numBytes]) - e.p.y.SetBytes(m[1*numBytes : 2*numBytes]) - - if e.p.x.Sign() == 0 && e.p.y.Sign() == 0 { - // This is the point at infinity. - e.p.y.SetInt64(1) - e.p.z.SetInt64(0) - e.p.t.SetInt64(0) - } else { - e.p.z.SetInt64(1) - e.p.t.SetInt64(1) - - if !e.p.IsOnCurve() { - return nil, false - } - } - - return e, true -} - -// G2 is an abstract cyclic group. The zero value is suitable for use as the -// output of an operation, but cannot be used as an input. -type G2 struct { - p *twistPoint -} - -// RandomG1 returns x and g₂ˣ where x is a random, non-zero number read from r. -func RandomG2(r io.Reader) (*big.Int, *G2, error) { - var k *big.Int - var err error - - for { - k, err = rand.Int(r, Order) - if err != nil { - return nil, nil, err - } - if k.Sign() > 0 { - break - } - } - - return k, new(G2).ScalarBaseMult(k), nil -} - -func (g *G2) String() string { - return "bn256.G2" + g.p.String() -} - -// CurvePoints returns the curve points of p which includes the real -// and imaginary parts of the curve point. -func (e *G2) CurvePoints() (*gfP2, *gfP2, *gfP2, *gfP2) { - return e.p.x, e.p.y, e.p.z, e.p.t -} - -// Set to identity element on the group. -func (e *G2) SetInfinity() *G2 { - e.p = newTwistPoint(new(bnPool)) - e.p.SetInfinity() - return e -} - -// ScalarBaseMult sets e to g*k where g is the generator of the group and -// then returns out. -// This method was updated to deal with negative numbers. -func (e *G2) ScalarBaseMult(k *big.Int) *G2 { - if e.p == nil { - e.p = newTwistPoint(nil) - } - if k.Cmp(big.NewInt(0)) >=0 { - e.p.Mul(twistGen, k, new(bnPool)) - } else { - e.p.Negative(e.p.Mul(twistGen, new(big.Int).Abs(k), new(bnPool)), new(bnPool)) - } - return e -} - -// ScalarMult sets e to a*k and then returns e. -// This method was updated to deal with negative numbers. -func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 { - if e.p == nil { - e.p = newTwistPoint(nil) - } - if k.Cmp(big.NewInt(0)) >=0 { - e.p.Mul(a.p, k, new(bnPool)) - } else { - e.p.Negative(e.p.Mul(a.p, new(big.Int).Abs(k), new(bnPool)), new(bnPool)) - } - return e -} - -// Add sets e to a+b and then returns e. -// BUG(agl): this function is not complete: a==b fails. -func (e *G2) Add(a, b *G2) *G2 { - if e.p == nil { - e.p = newTwistPoint(nil) - } - e.p.Add(a.p, b.p, new(bnPool)) - return e -} - -// Neg sets e to -a and then returns e. -func (e *G2) Neg(a *G2) *G2 { - if e.p == nil { - e.p = newTwistPoint(nil) - } - e.p.Negative(a.p, new(bnPool)) - return e -} - -// Marshal converts n into a byte slice. -func (n *G2) Marshal() []byte { - n.p.MakeAffine(nil) - - xxBytes := new(big.Int).Mod(n.p.x.x, P).Bytes() - xyBytes := new(big.Int).Mod(n.p.x.y, P).Bytes() - yxBytes := new(big.Int).Mod(n.p.y.x, P).Bytes() - yyBytes := new(big.Int).Mod(n.p.y.y, P).Bytes() - - // Each value is a 256-bit number. - const numBytes = 256 / 8 - - ret := make([]byte, numBytes*4) - copy(ret[1*numBytes-len(xxBytes):], xxBytes) - copy(ret[2*numBytes-len(xyBytes):], xyBytes) - copy(ret[3*numBytes-len(yxBytes):], yxBytes) - copy(ret[4*numBytes-len(yyBytes):], yyBytes) - - return ret -} - -// Unmarshal sets e to the result of converting the output of Marshal back into -// a group element and then returns e. -func (e *G2) Unmarshal(m []byte) (*G2, bool) { - // Each value is a 256-bit number. - const numBytes = 256 / 8 - - if len(m) != 4*numBytes { - return nil, false - } - - if e.p == nil { - e.p = newTwistPoint(nil) - } - - e.p.x.x.SetBytes(m[0*numBytes : 1*numBytes]) - e.p.x.y.SetBytes(m[1*numBytes : 2*numBytes]) - e.p.y.x.SetBytes(m[2*numBytes : 3*numBytes]) - e.p.y.y.SetBytes(m[3*numBytes : 4*numBytes]) - - if e.p.x.x.Sign() == 0 && - e.p.x.y.Sign() == 0 && - e.p.y.x.Sign() == 0 && - e.p.y.y.Sign() == 0 { - // This is the point at infinity. - e.p.y.SetOne() - e.p.z.SetZero() - e.p.t.SetZero() - } else { - e.p.z.SetOne() - e.p.t.SetOne() - - if !e.p.IsOnCurve() { - return nil, false - } - } - - return e, true -} - -// GT is an abstract cyclic group. The zero value is suitable for use as the -// output of an operation, but cannot be used as an input. -type GT struct { - p *gfP12 -} - -func (g *GT) String() string { - return "bn256.GT" + g.p.String() -} - -// ScalarMult sets e to a*k and then returns e. -func (e *GT) ScalarMult(a *GT, k *big.Int) *GT { - if e.p == nil { - e.p = newGFp12(nil) - } - e.p.Exp(a.p, k, new(bnPool)) - return e -} - -func (e *GT) Exp(a *GT, k *big.Int) *GT { - var returnValue *GT - if k.Cmp(big.NewInt(0)) >=0 { - returnValue = a.ScalarMult(a, k) - } else { - returnValue = a.Invert(a.ScalarMult(a, new(big.Int).Abs(k))) - } - return returnValue -} - -func (e *GT) Invert(a *GT) *GT { - if e.p == nil { - e.p = newGFp12(nil) - } - e.p.Invert(a.p, new(bnPool)) - return e -} - -// SetZero returns true iff a = 0. -func (e *G1) SetZero() { - e.p.SetInfinity() -} - -// IsZero returns true iff a = 0. -func (e *G1) IsZero() bool { - return e.p.IsInfinity() -} - -// IsZero returns true iff a = 0. -func (e *G2) IsZero() bool { - return e.p.IsInfinity() -} - -// IsZero returns true iff a = 0. -func (e *GT) IsZero() bool { - return e.p.IsZero() -} - -// IsOne returns true iff a = 0. -func (e *GT) IsOne() bool { - return e.p.IsOne() -} - -// Add sets e to a+b and then returns e. -func (e *GT) Add(a, b *GT) *GT { - if e.p == nil { - e.p = newGFp12(nil) - } - e.p.Mul(a.p, b.p, new(bnPool)) - return e -} - -// Neg sets e to -a and then returns e. -func (e *GT) Neg(a *GT) *GT { - if e.p == nil { - e.p = newGFp12(nil) - } - e.p.Invert(a.p, new(bnPool)) - return e -} - - -// Marshal converts n into a byte slice. -func (n *GT) Marshal() []byte { - n.p.Minimal() - - xxxBytes := n.p.x.x.x.Bytes() - xxyBytes := n.p.x.x.y.Bytes() - xyxBytes := n.p.x.y.x.Bytes() - xyyBytes := n.p.x.y.y.Bytes() - xzxBytes := n.p.x.z.x.Bytes() - xzyBytes := n.p.x.z.y.Bytes() - yxxBytes := n.p.y.x.x.Bytes() - yxyBytes := n.p.y.x.y.Bytes() - yyxBytes := n.p.y.y.x.Bytes() - yyyBytes := n.p.y.y.y.Bytes() - yzxBytes := n.p.y.z.x.Bytes() - yzyBytes := n.p.y.z.y.Bytes() - - // Each value is a 256-bit number. - const numBytes = 256 / 8 - - ret := make([]byte, numBytes*12) - copy(ret[1*numBytes-len(xxxBytes):], xxxBytes) - copy(ret[2*numBytes-len(xxyBytes):], xxyBytes) - copy(ret[3*numBytes-len(xyxBytes):], xyxBytes) - copy(ret[4*numBytes-len(xyyBytes):], xyyBytes) - copy(ret[5*numBytes-len(xzxBytes):], xzxBytes) - copy(ret[6*numBytes-len(xzyBytes):], xzyBytes) - copy(ret[7*numBytes-len(yxxBytes):], yxxBytes) - copy(ret[8*numBytes-len(yxyBytes):], yxyBytes) - copy(ret[9*numBytes-len(yyxBytes):], yyxBytes) - copy(ret[10*numBytes-len(yyyBytes):], yyyBytes) - copy(ret[11*numBytes-len(yzxBytes):], yzxBytes) - copy(ret[12*numBytes-len(yzyBytes):], yzyBytes) - - return ret -} - -// Unmarshal sets e to the result of converting the output of Marshal back into -// a group element and then returns e. -func (e *GT) Unmarshal(m []byte) (*GT, bool) { - // Each value is a 256-bit number. - const numBytes = 256 / 8 - - if len(m) != 12*numBytes { - return nil, false - } - - if e.p == nil { - e.p = newGFp12(nil) - } - - e.p.x.x.x.SetBytes(m[0*numBytes : 1*numBytes]) - e.p.x.x.y.SetBytes(m[1*numBytes : 2*numBytes]) - e.p.x.y.x.SetBytes(m[2*numBytes : 3*numBytes]) - e.p.x.y.y.SetBytes(m[3*numBytes : 4*numBytes]) - e.p.x.z.x.SetBytes(m[4*numBytes : 5*numBytes]) - e.p.x.z.y.SetBytes(m[5*numBytes : 6*numBytes]) - e.p.y.x.x.SetBytes(m[6*numBytes : 7*numBytes]) - e.p.y.x.y.SetBytes(m[7*numBytes : 8*numBytes]) - e.p.y.y.x.SetBytes(m[8*numBytes : 9*numBytes]) - e.p.y.y.y.SetBytes(m[9*numBytes : 10*numBytes]) - e.p.y.z.x.SetBytes(m[10*numBytes : 11*numBytes]) - e.p.y.z.y.SetBytes(m[11*numBytes : 12*numBytes]) - - return e, true -} - -// Pair calculates an Optimal Ate pairing. -func Pair(g1 *G1, g2 *G2) *GT { - return >{optimalAte(g2.p, g1.p, new(bnPool))} -} - -// PairingCheck calculates the Optimal Ate pairing for a set of points. -func PairingCheck(a []*G1, b []*G2) bool { - pool := new(bnPool) - - acc := newGFp12(pool) - acc.SetOne() - - for i := 0; i < len(a); i++ { - if a[i].p.IsInfinity() || b[i].p.IsInfinity() { - continue - } - acc.Mul(acc, miller(b[i].p, a[i].p, pool), pool) - } - ret := finalExponentiation(acc, pool) - acc.Put(pool) - - return ret.IsOne() -} - -// bnPool implements a tiny cache of *big.Int objects that's used to reduce the -// number of allocations made during processing. -type bnPool struct { - bns []*big.Int - count int -} - -func (pool *bnPool) Get() *big.Int { - if pool == nil { - return new(big.Int) - } - - pool.count++ - l := len(pool.bns) - if l == 0 { - return new(big.Int) - } - - bn := pool.bns[l-1] - pool.bns = pool.bns[:l-1] - return bn -} - -func (pool *bnPool) Put(bn *big.Int) { - if pool == nil { - return - } - pool.bns = append(pool.bns, bn) - pool.count-- -} - -func (pool *bnPool) Count() int { - return pool.count -} diff --git a/src/ConfidentialTx/crypto/bn256/bn256_test.go b/src/ConfidentialTx/crypto/bn256/bn256_test.go deleted file mode 100644 index 866065d..0000000 --- a/src/ConfidentialTx/crypto/bn256/bn256_test.go +++ /dev/null @@ -1,304 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package bn256 - -import ( - "bytes" - "crypto/rand" - "math/big" - "testing" -) - -func TestGFp2Invert(t *testing.T) { - pool := new(bnPool) - - a := newGFp2(pool) - a.x.SetString("23423492374", 10) - a.y.SetString("12934872398472394827398470", 10) - - inv := newGFp2(pool) - inv.Invert(a, pool) - - b := newGFp2(pool).Mul(inv, a, pool) - if b.x.Int64() != 0 || b.y.Int64() != 1 { - t.Fatalf("bad result for a^-1*a: %s %s", b.x, b.y) - } - - a.Put(pool) - b.Put(pool) - inv.Put(pool) - - if c := pool.Count(); c > 0 { - t.Errorf("Pool count non-zero: %d\n", c) - } -} - -func isZero(n *big.Int) bool { - return new(big.Int).Mod(n, P).Int64() == 0 -} - -func isOne(n *big.Int) bool { - return new(big.Int).Mod(n, P).Int64() == 1 -} - -func TestGFp6Invert(t *testing.T) { - pool := new(bnPool) - - a := newGFp6(pool) - a.x.x.SetString("239487238491", 10) - a.x.y.SetString("2356249827341", 10) - a.y.x.SetString("082659782", 10) - a.y.y.SetString("182703523765", 10) - a.z.x.SetString("978236549263", 10) - a.z.y.SetString("64893242", 10) - - inv := newGFp6(pool) - inv.Invert(a, pool) - - b := newGFp6(pool).Mul(inv, a, pool) - if !isZero(b.x.x) || - !isZero(b.x.y) || - !isZero(b.y.x) || - !isZero(b.y.y) || - !isZero(b.z.x) || - !isOne(b.z.y) { - t.Fatalf("bad result for a^-1*a: %s", b) - } - - a.Put(pool) - b.Put(pool) - inv.Put(pool) - - if c := pool.Count(); c > 0 { - t.Errorf("Pool count non-zero: %d\n", c) - } -} - -func TestGFp12Invert(t *testing.T) { - pool := new(bnPool) - - a := newGFp12(pool) - a.x.x.x.SetString("239846234862342323958623", 10) - a.x.x.y.SetString("2359862352529835623", 10) - a.x.y.x.SetString("928836523", 10) - a.x.y.y.SetString("9856234", 10) - a.x.z.x.SetString("235635286", 10) - a.x.z.y.SetString("5628392833", 10) - a.y.x.x.SetString("252936598265329856238956532167968", 10) - a.y.x.y.SetString("23596239865236954178968", 10) - a.y.y.x.SetString("95421692834", 10) - a.y.y.y.SetString("236548", 10) - a.y.z.x.SetString("924523", 10) - a.y.z.y.SetString("12954623", 10) - - inv := newGFp12(pool) - inv.Invert(a, pool) - - b := newGFp12(pool).Mul(inv, a, pool) - if !isZero(b.x.x.x) || - !isZero(b.x.x.y) || - !isZero(b.x.y.x) || - !isZero(b.x.y.y) || - !isZero(b.x.z.x) || - !isZero(b.x.z.y) || - !isZero(b.y.x.x) || - !isZero(b.y.x.y) || - !isZero(b.y.y.x) || - !isZero(b.y.y.y) || - !isZero(b.y.z.x) || - !isOne(b.y.z.y) { - t.Fatalf("bad result for a^-1*a: %s", b) - } - - a.Put(pool) - b.Put(pool) - inv.Put(pool) - - if c := pool.Count(); c > 0 { - t.Errorf("Pool count non-zero: %d\n", c) - } -} - -func TestCurveImpl(t *testing.T) { - pool := new(bnPool) - - g := &curvePoint{ - pool.Get().SetInt64(1), - pool.Get().SetInt64(-2), - pool.Get().SetInt64(1), - pool.Get().SetInt64(0), - } - - x := pool.Get().SetInt64(32498273234) - X := newCurvePoint(pool).Mul(g, x, pool) - - y := pool.Get().SetInt64(98732423523) - Y := newCurvePoint(pool).Mul(g, y, pool) - - s1 := newCurvePoint(pool).Mul(X, y, pool).MakeAffine(pool) - s2 := newCurvePoint(pool).Mul(Y, x, pool).MakeAffine(pool) - - if s1.x.Cmp(s2.x) != 0 || - s2.x.Cmp(s1.x) != 0 { - t.Errorf("DH points don't match: (%s, %s) (%s, %s)", s1.x, s1.y, s2.x, s2.y) - } - - pool.Put(x) - X.Put(pool) - pool.Put(y) - Y.Put(pool) - s1.Put(pool) - s2.Put(pool) - g.Put(pool) - - if c := pool.Count(); c > 0 { - t.Errorf("Pool count non-zero: %d\n", c) - } -} - -func TestOrderG1(t *testing.T) { - g := new(G1).ScalarBaseMult(Order) - if !g.p.IsInfinity() { - t.Error("G1 has incorrect order") - } - - one := new(G1).ScalarBaseMult(new(big.Int).SetInt64(1)) - g.Add(g, one) - g.p.MakeAffine(nil) - if g.p.x.Cmp(one.p.x) != 0 || g.p.y.Cmp(one.p.y) != 0 { - t.Errorf("1+0 != 1 in G1") - } -} - -func TestOrderG2(t *testing.T) { - g := new(G2).ScalarBaseMult(Order) - if !g.p.IsInfinity() { - t.Error("G2 has incorrect order") - } - - one := new(G2).ScalarBaseMult(new(big.Int).SetInt64(1)) - g.Add(g, one) - g.p.MakeAffine(nil) - if g.p.x.x.Cmp(one.p.x.x) != 0 || - g.p.x.y.Cmp(one.p.x.y) != 0 || - g.p.y.x.Cmp(one.p.y.x) != 0 || - g.p.y.y.Cmp(one.p.y.y) != 0 { - t.Errorf("1+0 != 1 in G2") - } -} - -func TestOrderGT(t *testing.T) { - gt := Pair(&G1{curveGen}, &G2{twistGen}) - g := new(GT).ScalarMult(gt, Order) - if !g.p.IsOne() { - t.Error("GT has incorrect order") - } -} - -func TestBilinearity(t *testing.T) { - for i := 0; i < 2; i++ { - a, p1, _ := RandomG1(rand.Reader) - b, p2, _ := RandomG2(rand.Reader) - e1 := Pair(p1, p2) - - e2 := Pair(&G1{curveGen}, &G2{twistGen}) - e2.ScalarMult(e2, a) - e2.ScalarMult(e2, b) - - minusE2 := new(GT).Neg(e2) - e1.Add(e1, minusE2) - - if !e1.p.IsOne() { - t.Fatalf("bad pairing result: %s", e1) - } - } -} - -func TestG1Marshal(t *testing.T) { - g := new(G1).ScalarBaseMult(new(big.Int).SetInt64(1)) - form := g.Marshal() - _, ok := new(G1).Unmarshal(form) - if !ok { - t.Fatalf("failed to unmarshal") - } - - g.ScalarBaseMult(Order) - form = g.Marshal() - g2, ok := new(G1).Unmarshal(form) - if !ok { - t.Fatalf("failed to unmarshal ∞") - } - if !g2.p.IsInfinity() { - t.Fatalf("∞ unmarshaled incorrectly") - } -} - -func TestG2Marshal(t *testing.T) { - g := new(G2).ScalarBaseMult(new(big.Int).SetInt64(1)) - form := g.Marshal() - _, ok := new(G2).Unmarshal(form) - if !ok { - t.Fatalf("failed to unmarshal") - } - - g.ScalarBaseMult(Order) - form = g.Marshal() - g2, ok := new(G2).Unmarshal(form) - if !ok { - t.Fatalf("failed to unmarshal ∞") - } - if !g2.p.IsInfinity() { - t.Fatalf("∞ unmarshaled incorrectly") - } -} - -func TestG1Identity(t *testing.T) { - g := new(G1).ScalarBaseMult(new(big.Int).SetInt64(0)) - if !g.p.IsInfinity() { - t.Error("failure") - } -} - -func TestG2Identity(t *testing.T) { - g := new(G2).ScalarBaseMult(new(big.Int).SetInt64(0)) - if !g.p.IsInfinity() { - t.Error("failure") - } -} - -func TestTripartiteDiffieHellman(t *testing.T) { - a, _ := rand.Int(rand.Reader, Order) - b, _ := rand.Int(rand.Reader, Order) - c, _ := rand.Int(rand.Reader, Order) - - pa, _ := new(G1).Unmarshal(new(G1).ScalarBaseMult(a).Marshal()) - qa, _ := new(G2).Unmarshal(new(G2).ScalarBaseMult(a).Marshal()) - pb, _ := new(G1).Unmarshal(new(G1).ScalarBaseMult(b).Marshal()) - qb, _ := new(G2).Unmarshal(new(G2).ScalarBaseMult(b).Marshal()) - pc, _ := new(G1).Unmarshal(new(G1).ScalarBaseMult(c).Marshal()) - qc, _ := new(G2).Unmarshal(new(G2).ScalarBaseMult(c).Marshal()) - - k1 := Pair(pb, qc) - k1.ScalarMult(k1, a) - k1Bytes := k1.Marshal() - - k2 := Pair(pc, qa) - k2.ScalarMult(k2, b) - k2Bytes := k2.Marshal() - - k3 := Pair(pa, qb) - k3.ScalarMult(k3, c) - k3Bytes := k3.Marshal() - - if !bytes.Equal(k1Bytes, k2Bytes) || !bytes.Equal(k2Bytes, k3Bytes) { - t.Errorf("keys didn't agree") - } -} - -func BenchmarkPairing(b *testing.B) { - for i := 0; i < b.N; i++ { - Pair(&G1{curveGen}, &G2{twistGen}) - } -} diff --git a/src/ConfidentialTx/crypto/bn256/constants.go b/src/ConfidentialTx/crypto/bn256/constants.go deleted file mode 100644 index ab649d7..0000000 --- a/src/ConfidentialTx/crypto/bn256/constants.go +++ /dev/null @@ -1,44 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package bn256 - -import ( - "math/big" -) - -func bigFromBase10(s string) *big.Int { - n, _ := new(big.Int).SetString(s, 10) - return n -} - -// u is the BN parameter that determines the prime: 1868033³. -var u = bigFromBase10("4965661367192848881") - -// p is a prime over which we form a basic field: 36u⁴+36u³+24u²+6u+1. -var P = bigFromBase10("21888242871839275222246405745257275088696311157297823662689037894645226208583") - -// Order is the number of elements in both G₁ and G₂: 36u⁴+36u³+18u²+6u+1. -var Order = bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495617") - -// xiToPMinus1Over6 is ξ^((p-1)/6) where ξ = i+9. -var xiToPMinus1Over6 = &gfP2{bigFromBase10("16469823323077808223889137241176536799009286646108169935659301613961712198316"), bigFromBase10("8376118865763821496583973867626364092589906065868298776909617916018768340080")} - -// xiToPMinus1Over3 is ξ^((p-1)/3) where ξ = i+9. -var xiToPMinus1Over3 = &gfP2{bigFromBase10("10307601595873709700152284273816112264069230130616436755625194854815875713954"), bigFromBase10("21575463638280843010398324269430826099269044274347216827212613867836435027261")} - -// xiToPMinus1Over2 is ξ^((p-1)/2) where ξ = i+9. -var xiToPMinus1Over2 = &gfP2{bigFromBase10("3505843767911556378687030309984248845540243509899259641013678093033130930403"), bigFromBase10("2821565182194536844548159561693502659359617185244120367078079554186484126554")} - -// xiToPSquaredMinus1Over3 is ξ^((p²-1)/3) where ξ = i+9. -var xiToPSquaredMinus1Over3 = bigFromBase10("21888242871839275220042445260109153167277707414472061641714758635765020556616") - -// xiTo2PSquaredMinus2Over3 is ξ^((2p²-2)/3) where ξ = i+9 (a cubic root of unity, mod p). -var xiTo2PSquaredMinus2Over3 = bigFromBase10("2203960485148121921418603742825762020974279258880205651966") - -// xiToPSquaredMinus1Over6 is ξ^((1p²-1)/6) where ξ = i+9 (a cubic root of -1, mod p). -var xiToPSquaredMinus1Over6 = bigFromBase10("21888242871839275220042445260109153167277707414472061641714758635765020556617") - -// xiTo2PMinus2Over3 is ξ^((2p-2)/3) where ξ = i+9. -var xiTo2PMinus2Over3 = &gfP2{bigFromBase10("19937756971775647987995932169929341994314640652964949448313374472400716661030"), bigFromBase10("2581911344467009335267311115468803099551665605076196740867805258568234346338")} diff --git a/src/ConfidentialTx/crypto/bn256/curve.go b/src/ConfidentialTx/crypto/bn256/curve.go deleted file mode 100644 index 2f7594e..0000000 --- a/src/ConfidentialTx/crypto/bn256/curve.go +++ /dev/null @@ -1,286 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package bn256 - -import ( - "math/big" -) - -// curvePoint implements the elliptic curve y²=x³+3. Points are kept in -// Jacobian form and t=z² when valid. G₁ is the set of points of this curve on -// GF(p). -type curvePoint struct { - x, y, z, t *big.Int -} - -var curveB = new(big.Int).SetInt64(3) - -// curveGen is the generator of G₁. -var curveGen = &curvePoint{ - new(big.Int).SetInt64(1), - new(big.Int).SetInt64(-2), - new(big.Int).SetInt64(1), - new(big.Int).SetInt64(1), -} - -func newCurvePoint(pool *bnPool) *curvePoint { - return &curvePoint{ - pool.Get(), - pool.Get(), - pool.Get(), - pool.Get(), - } -} - -func (c *curvePoint) String() string { - c.MakeAffine(new(bnPool)) - return "(" + c.x.String() + ", " + c.y.String() + ")" -} - -func (c *curvePoint) Put(pool *bnPool) { - pool.Put(c.x) - pool.Put(c.y) - pool.Put(c.z) - pool.Put(c.t) -} - -func (c *curvePoint) Set(a *curvePoint) { - c.x.Set(a.x) - c.y.Set(a.y) - c.z.Set(a.z) - c.t.Set(a.t) -} - -// IsOnCurve returns true iff c is on the curve where c must be in affine form. -func (c *curvePoint) IsOnCurve() bool { - yy := new(big.Int).Mul(c.y, c.y) - xxx := new(big.Int).Mul(c.x, c.x) - xxx.Mul(xxx, c.x) - yy.Sub(yy, xxx) - yy.Sub(yy, curveB) - if yy.Sign() < 0 || yy.Cmp(P) >= 0 { - yy.Mod(yy, P) - } - return yy.Sign() == 0 -} - -func (c *curvePoint) SetInfinity() { - c.z.SetInt64(0) -} - -func (c *curvePoint) IsInfinity() bool { - return c.z.Sign() == 0 -} - -func (c *curvePoint) Add(a, b *curvePoint, pool *bnPool) { - if a.IsInfinity() { - c.Set(b) - return - } - if b.IsInfinity() { - c.Set(a) - return - } - - // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3 - - // Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2] - // by [u1:s1:z1·z2] and [u2:s2:z1·z2] - // where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³ - z1z1 := pool.Get().Mul(a.z, a.z) - z1z1.Mod(z1z1, P) - z2z2 := pool.Get().Mul(b.z, b.z) - z2z2.Mod(z2z2, P) - u1 := pool.Get().Mul(a.x, z2z2) - u1.Mod(u1, P) - u2 := pool.Get().Mul(b.x, z1z1) - u2.Mod(u2, P) - - t := pool.Get().Mul(b.z, z2z2) - t.Mod(t, P) - s1 := pool.Get().Mul(a.y, t) - s1.Mod(s1, P) - - t.Mul(a.z, z1z1) - t.Mod(t, P) - s2 := pool.Get().Mul(b.y, t) - s2.Mod(s2, P) - - // Compute x = (2h)²(s²-u1-u2) - // where s = (s2-s1)/(u2-u1) is the slope of the line through - // (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below. - // This is also: - // 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1) - // = r² - j - 2v - // with the notations below. - h := pool.Get().Sub(u2, u1) - xEqual := h.Sign() == 0 - - t.Add(h, h) - // i = 4h² - i := pool.Get().Mul(t, t) - i.Mod(i, P) - // j = 4h³ - j := pool.Get().Mul(h, i) - j.Mod(j, P) - - t.Sub(s2, s1) - yEqual := t.Sign() == 0 - if xEqual && yEqual { - c.Double(a, pool) - return - } - r := pool.Get().Add(t, t) - - v := pool.Get().Mul(u1, i) - v.Mod(v, P) - - // t4 = 4(s2-s1)² - t4 := pool.Get().Mul(r, r) - t4.Mod(t4, P) - t.Add(v, v) - t6 := pool.Get().Sub(t4, j) - c.x.Sub(t6, t) - - // Set y = -(2h)³(s1 + s*(x/4h²-u1)) - // This is also - // y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j - t.Sub(v, c.x) // t7 - t4.Mul(s1, j) // t8 - t4.Mod(t4, P) - t6.Add(t4, t4) // t9 - t4.Mul(r, t) // t10 - t4.Mod(t4, P) - c.y.Sub(t4, t6) - - // Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2 - t.Add(a.z, b.z) // t11 - t4.Mul(t, t) // t12 - t4.Mod(t4, P) - t.Sub(t4, z1z1) // t13 - t4.Sub(t, z2z2) // t14 - c.z.Mul(t4, h) - c.z.Mod(c.z, P) - - pool.Put(z1z1) - pool.Put(z2z2) - pool.Put(u1) - pool.Put(u2) - pool.Put(t) - pool.Put(s1) - pool.Put(s2) - pool.Put(h) - pool.Put(i) - pool.Put(j) - pool.Put(r) - pool.Put(v) - pool.Put(t4) - pool.Put(t6) -} - -func (c *curvePoint) Double(a *curvePoint, pool *bnPool) { - // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3 - A := pool.Get().Mul(a.x, a.x) - A.Mod(A, P) - B := pool.Get().Mul(a.y, a.y) - B.Mod(B, P) - C_ := pool.Get().Mul(B, B) - C_.Mod(C_, P) - - t := pool.Get().Add(a.x, B) - t2 := pool.Get().Mul(t, t) - t2.Mod(t2, P) - t.Sub(t2, A) - t2.Sub(t, C_) - d := pool.Get().Add(t2, t2) - t.Add(A, A) - e := pool.Get().Add(t, A) - f := pool.Get().Mul(e, e) - f.Mod(f, P) - - t.Add(d, d) - c.x.Sub(f, t) - - t.Add(C_, C_) - t2.Add(t, t) - t.Add(t2, t2) - c.y.Sub(d, c.x) - t2.Mul(e, c.y) - t2.Mod(t2, P) - c.y.Sub(t2, t) - - t.Mul(a.y, a.z) - t.Mod(t, P) - c.z.Add(t, t) - - pool.Put(A) - pool.Put(B) - pool.Put(C_) - pool.Put(t) - pool.Put(t2) - pool.Put(d) - pool.Put(e) - pool.Put(f) -} - -func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int, pool *bnPool) *curvePoint { - sum := newCurvePoint(pool) - sum.SetInfinity() - t := newCurvePoint(pool) - - for i := scalar.BitLen(); i >= 0; i-- { - t.Double(sum, pool) - if scalar.Bit(i) != 0 { - sum.Add(t, a, pool) - } else { - sum.Set(t) - } - } - - c.Set(sum) - sum.Put(pool) - t.Put(pool) - return c -} - -func (c *curvePoint) MakeAffine(pool *bnPool) *curvePoint { - if words := c.z.Bits(); len(words) == 1 && words[0] == 1 { - return c - } - - if c.IsInfinity() { - c.x.SetInt64(0) - c.y.SetInt64(1) - c.z.SetInt64(0) - c.t.SetInt64(0) - return c - } - - zInv := pool.Get().ModInverse(c.z, P) - t := pool.Get().Mul(c.y, zInv) - t.Mod(t, P) - zInv2 := pool.Get().Mul(zInv, zInv) - zInv2.Mod(zInv2, P) - c.y.Mul(t, zInv2) - c.y.Mod(c.y, P) - t.Mul(c.x, zInv2) - t.Mod(t, P) - c.x.Set(t) - c.z.SetInt64(1) - c.t.SetInt64(1) - - pool.Put(zInv) - pool.Put(t) - pool.Put(zInv2) - - return c -} - -func (c *curvePoint) Negative(a *curvePoint) { - c.x.Set(a.x) - c.y.Neg(a.y) - c.z.Set(a.z) - c.t.SetInt64(0) -} diff --git a/src/ConfidentialTx/crypto/bn256/gfp12.go b/src/ConfidentialTx/crypto/bn256/gfp12.go deleted file mode 100644 index f084edd..0000000 --- a/src/ConfidentialTx/crypto/bn256/gfp12.go +++ /dev/null @@ -1,200 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package bn256 - -// For details of the algorithms used, see "Multiplication and Squaring on -// Pairing-Friendly Fields, Devegili et al. -// http://eprint.iacr.org/2006/471.pdf. - -import ( - "math/big" -) - -// gfP12 implements the field of size p¹² as a quadratic extension of gfP6 -// where ω²=τ. -type gfP12 struct { - x, y *gfP6 // value is xω + y -} - -func newGFp12(pool *bnPool) *gfP12 { - return &gfP12{newGFp6(pool), newGFp6(pool)} -} - -func (e *gfP12) String() string { - return "(" + e.x.String() + "," + e.y.String() + ")" -} - -func (e *gfP12) Put(pool *bnPool) { - e.x.Put(pool) - e.y.Put(pool) -} - -func (e *gfP12) Set(a *gfP12) *gfP12 { - e.x.Set(a.x) - e.y.Set(a.y) - return e -} - -func (e *gfP12) SetZero() *gfP12 { - e.x.SetZero() - e.y.SetZero() - return e -} - -func (e *gfP12) SetOne() *gfP12 { - e.x.SetZero() - e.y.SetOne() - return e -} - -func (e *gfP12) Minimal() { - e.x.Minimal() - e.y.Minimal() -} - -func (e *gfP12) IsZero() bool { - e.Minimal() - return e.x.IsZero() && e.y.IsZero() -} - -func (e *gfP12) IsOne() bool { - e.Minimal() - return e.x.IsZero() && e.y.IsOne() -} - -func (e *gfP12) Conjugate(a *gfP12) *gfP12 { - e.x.Negative(a.x) - e.y.Set(a.y) - return a -} - -func (e *gfP12) Negative(a *gfP12) *gfP12 { - e.x.Negative(a.x) - e.y.Negative(a.y) - return e -} - -// Frobenius computes (xω+y)^p = x^p ω·ξ^((p-1)/6) + y^p -func (e *gfP12) Frobenius(a *gfP12, pool *bnPool) *gfP12 { - e.x.Frobenius(a.x, pool) - e.y.Frobenius(a.y, pool) - e.x.MulScalar(e.x, xiToPMinus1Over6, pool) - return e -} - -// FrobeniusP2 computes (xω+y)^p² = x^p² ω·ξ^((p²-1)/6) + y^p² -func (e *gfP12) FrobeniusP2(a *gfP12, pool *bnPool) *gfP12 { - e.x.FrobeniusP2(a.x) - e.x.MulGFP(e.x, xiToPSquaredMinus1Over6) - e.y.FrobeniusP2(a.y) - return e -} - -func (e *gfP12) Add(a, b *gfP12) *gfP12 { - e.x.Add(a.x, b.x) - e.y.Add(a.y, b.y) - return e -} - -func (e *gfP12) Sub(a, b *gfP12) *gfP12 { - e.x.Sub(a.x, b.x) - e.y.Sub(a.y, b.y) - return e -} - -func (e *gfP12) Mul(a, b *gfP12, pool *bnPool) *gfP12 { - tx := newGFp6(pool) - tx.Mul(a.x, b.y, pool) - t := newGFp6(pool) - t.Mul(b.x, a.y, pool) - tx.Add(tx, t) - - ty := newGFp6(pool) - ty.Mul(a.y, b.y, pool) - t.Mul(a.x, b.x, pool) - t.MulTau(t, pool) - e.y.Add(ty, t) - e.x.Set(tx) - - tx.Put(pool) - ty.Put(pool) - t.Put(pool) - return e -} - -func (e *gfP12) MulScalar(a *gfP12, b *gfP6, pool *bnPool) *gfP12 { - e.x.Mul(e.x, b, pool) - e.y.Mul(e.y, b, pool) - return e -} - -func (c *gfP12) Exp(a *gfP12, power *big.Int, pool *bnPool) *gfP12 { - sum := newGFp12(pool) - sum.SetOne() - t := newGFp12(pool) - - for i := power.BitLen() - 1; i >= 0; i-- { - t.Square(sum, pool) - if power.Bit(i) != 0 { - sum.Mul(t, a, pool) - } else { - sum.Set(t) - } - } - - c.Set(sum) - - sum.Put(pool) - t.Put(pool) - - return c -} - -func (e *gfP12) Square(a *gfP12, pool *bnPool) *gfP12 { - // Complex squaring algorithm - v0 := newGFp6(pool) - v0.Mul(a.x, a.y, pool) - - t := newGFp6(pool) - t.MulTau(a.x, pool) - t.Add(a.y, t) - ty := newGFp6(pool) - ty.Add(a.x, a.y) - ty.Mul(ty, t, pool) - ty.Sub(ty, v0) - t.MulTau(v0, pool) - ty.Sub(ty, t) - - e.y.Set(ty) - e.x.Double(v0) - - v0.Put(pool) - t.Put(pool) - ty.Put(pool) - - return e -} - -func (e *gfP12) Invert(a *gfP12, pool *bnPool) *gfP12 { - // See "Implementing cryptographic pairings", M. Scott, section 3.2. - // ftp://136.206.11.249/pub/crypto/pairings.pdf - t1 := newGFp6(pool) - t2 := newGFp6(pool) - - t1.Square(a.x, pool) - t2.Square(a.y, pool) - t1.MulTau(t1, pool) - t1.Sub(t2, t1) - t2.Invert(t1, pool) - - e.x.Negative(a.x) - e.y.Set(a.y) - e.MulScalar(e, t2, pool) - - t1.Put(pool) - t2.Put(pool) - - return e -} diff --git a/src/ConfidentialTx/crypto/bn256/gfp2.go b/src/ConfidentialTx/crypto/bn256/gfp2.go deleted file mode 100644 index 3981f6c..0000000 --- a/src/ConfidentialTx/crypto/bn256/gfp2.go +++ /dev/null @@ -1,227 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package bn256 - -// For details of the algorithms used, see "Multiplication and Squaring on -// Pairing-Friendly Fields, Devegili et al. -// http://eprint.iacr.org/2006/471.pdf. - -import ( - "math/big" -) - -// gfP2 implements a field of size p² as a quadratic extension of the base -// field where i²=-1. -type gfP2 struct { - x, y *big.Int // value is xi+y. -} - -func newGFp2(pool *bnPool) *gfP2 { - return &gfP2{pool.Get(), pool.Get()} -} - -func (e *gfP2) String() string { - x := new(big.Int).Mod(e.x, P) - y := new(big.Int).Mod(e.y, P) - return "(" + x.String() + "," + y.String() + ")" -} - -func (e *gfP2) Put(pool *bnPool) { - pool.Put(e.x) - pool.Put(e.y) -} - -func (e *gfP2) Set(a *gfP2) *gfP2 { - e.x.Set(a.x) - e.y.Set(a.y) - return e -} - -func (e *gfP2) SetZero() *gfP2 { - e.x.SetInt64(0) - e.y.SetInt64(0) - return e -} - -func (e *gfP2) SetOne() *gfP2 { - e.x.SetInt64(0) - e.y.SetInt64(1) - return e -} - -func (e *gfP2) Minimal() { - if e.x.Sign() < 0 || e.x.Cmp(P) >= 0 { - e.x.Mod(e.x, P) - } - if e.y.Sign() < 0 || e.y.Cmp(P) >= 0 { - e.y.Mod(e.y, P) - } -} - -func (e *gfP2) IsZero() bool { - return e.x.Sign() == 0 && e.y.Sign() == 0 -} - -func (e *gfP2) IsOne() bool { - if e.x.Sign() != 0 { - return false - } - words := e.y.Bits() - return len(words) == 1 && words[0] == 1 -} - -func (e *gfP2) Conjugate(a *gfP2) *gfP2 { - e.y.Set(a.y) - e.x.Neg(a.x) - return e -} - -func (e *gfP2) Negative(a *gfP2) *gfP2 { - e.x.Neg(a.x) - e.y.Neg(a.y) - return e -} - -func (e *gfP2) Add(a, b *gfP2) *gfP2 { - e.x.Add(a.x, b.x) - e.y.Add(a.y, b.y) - return e -} - -func (e *gfP2) Sub(a, b *gfP2) *gfP2 { - e.x.Sub(a.x, b.x) - e.y.Sub(a.y, b.y) - return e -} - -func (e *gfP2) Double(a *gfP2) *gfP2 { - e.x.Lsh(a.x, 1) - e.y.Lsh(a.y, 1) - return e -} - -func (c *gfP2) Exp(a *gfP2, power *big.Int, pool *bnPool) *gfP2 { - sum := newGFp2(pool) - sum.SetOne() - t := newGFp2(pool) - - for i := power.BitLen() - 1; i >= 0; i-- { - t.Square(sum, pool) - if power.Bit(i) != 0 { - sum.Mul(t, a, pool) - } else { - sum.Set(t) - } - } - - c.Set(sum) - - sum.Put(pool) - t.Put(pool) - - return c -} - -// See "Multiplication and Squaring in Pairing-Friendly Fields", -// http://eprint.iacr.org/2006/471.pdf -func (e *gfP2) Mul(a, b *gfP2, pool *bnPool) *gfP2 { - tx := pool.Get().Mul(a.x, b.y) - t := pool.Get().Mul(b.x, a.y) - tx.Add(tx, t) - tx.Mod(tx, P) - - ty := pool.Get().Mul(a.y, b.y) - t.Mul(a.x, b.x) - ty.Sub(ty, t) - e.y.Mod(ty, P) - e.x.Set(tx) - - pool.Put(tx) - pool.Put(ty) - pool.Put(t) - - return e -} - -func (e *gfP2) MulScalar(a *gfP2, b *big.Int) *gfP2 { - e.x.Mul(a.x, b) - e.y.Mul(a.y, b) - return e -} - -// MulXi sets e=ξa where ξ=i+9 and then returns e. -func (e *gfP2) MulXi(a *gfP2, pool *bnPool) *gfP2 { - // (xi+y)(i+3) = (9x+y)i+(9y-x) - tx := pool.Get().Lsh(a.x, 3) - tx.Add(tx, a.x) - tx.Add(tx, a.y) - - ty := pool.Get().Lsh(a.y, 3) - ty.Add(ty, a.y) - ty.Sub(ty, a.x) - - e.x.Set(tx) - e.y.Set(ty) - - pool.Put(tx) - pool.Put(ty) - - return e -} - -func (e *gfP2) Square(a *gfP2, pool *bnPool) *gfP2 { - // Complex squaring algorithm: - // (xi+b)² = (x+y)(y-x) + 2*i*x*y - t1 := pool.Get().Sub(a.y, a.x) - t2 := pool.Get().Add(a.x, a.y) - ty := pool.Get().Mul(t1, t2) - ty.Mod(ty, P) - - t1.Mul(a.x, a.y) - t1.Lsh(t1, 1) - - e.x.Mod(t1, P) - e.y.Set(ty) - - pool.Put(t1) - pool.Put(t2) - pool.Put(ty) - - return e -} - -func (e *gfP2) Invert(a *gfP2, pool *bnPool) *gfP2 { - // See "Implementing cryptographic pairings", M. Scott, section 3.2. - // ftp://136.206.11.249/pub/crypto/pairings.pdf - t := pool.Get() - t.Mul(a.y, a.y) - t2 := pool.Get() - t2.Mul(a.x, a.x) - t.Add(t, t2) - - inv := pool.Get() - inv.ModInverse(t, P) - - e.x.Neg(a.x) - e.x.Mul(e.x, inv) - e.x.Mod(e.x, P) - - e.y.Mul(a.y, inv) - e.y.Mod(e.y, P) - - pool.Put(t) - pool.Put(t2) - pool.Put(inv) - - return e -} - -func (e *gfP2) Real() *big.Int { - return e.x -} - -func (e *gfP2) Imag() *big.Int { - return e.y -} diff --git a/src/ConfidentialTx/crypto/bn256/gfp6.go b/src/ConfidentialTx/crypto/bn256/gfp6.go deleted file mode 100644 index 2188566..0000000 --- a/src/ConfidentialTx/crypto/bn256/gfp6.go +++ /dev/null @@ -1,296 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package bn256 - -// For details of the algorithms used, see "Multiplication and Squaring on -// Pairing-Friendly Fields, Devegili et al. -// http://eprint.iacr.org/2006/471.pdf. - -import ( - "math/big" -) - -// gfP6 implements the field of size p⁶ as a cubic extension of gfP2 where τ³=ξ -// and ξ=i+9. -type gfP6 struct { - x, y, z *gfP2 // value is xτ² + yτ + z -} - -func newGFp6(pool *bnPool) *gfP6 { - return &gfP6{newGFp2(pool), newGFp2(pool), newGFp2(pool)} -} - -func (e *gfP6) String() string { - return "(" + e.x.String() + "," + e.y.String() + "," + e.z.String() + ")" -} - -func (e *gfP6) Put(pool *bnPool) { - e.x.Put(pool) - e.y.Put(pool) - e.z.Put(pool) -} - -func (e *gfP6) Set(a *gfP6) *gfP6 { - e.x.Set(a.x) - e.y.Set(a.y) - e.z.Set(a.z) - return e -} - -func (e *gfP6) SetZero() *gfP6 { - e.x.SetZero() - e.y.SetZero() - e.z.SetZero() - return e -} - -func (e *gfP6) SetOne() *gfP6 { - e.x.SetZero() - e.y.SetZero() - e.z.SetOne() - return e -} - -func (e *gfP6) Minimal() { - e.x.Minimal() - e.y.Minimal() - e.z.Minimal() -} - -func (e *gfP6) IsZero() bool { - return e.x.IsZero() && e.y.IsZero() && e.z.IsZero() -} - -func (e *gfP6) IsOne() bool { - return e.x.IsZero() && e.y.IsZero() && e.z.IsOne() -} - -func (e *gfP6) Negative(a *gfP6) *gfP6 { - e.x.Negative(a.x) - e.y.Negative(a.y) - e.z.Negative(a.z) - return e -} - -func (e *gfP6) Frobenius(a *gfP6, pool *bnPool) *gfP6 { - e.x.Conjugate(a.x) - e.y.Conjugate(a.y) - e.z.Conjugate(a.z) - - e.x.Mul(e.x, xiTo2PMinus2Over3, pool) - e.y.Mul(e.y, xiToPMinus1Over3, pool) - return e -} - -// FrobeniusP2 computes (xτ²+yτ+z)^(p²) = xτ^(2p²) + yτ^(p²) + z -func (e *gfP6) FrobeniusP2(a *gfP6) *gfP6 { - // τ^(2p²) = τ²τ^(2p²-2) = τ²ξ^((2p²-2)/3) - e.x.MulScalar(a.x, xiTo2PSquaredMinus2Over3) - // τ^(p²) = ττ^(p²-1) = τξ^((p²-1)/3) - e.y.MulScalar(a.y, xiToPSquaredMinus1Over3) - e.z.Set(a.z) - return e -} - -func (e *gfP6) Add(a, b *gfP6) *gfP6 { - e.x.Add(a.x, b.x) - e.y.Add(a.y, b.y) - e.z.Add(a.z, b.z) - return e -} - -func (e *gfP6) Sub(a, b *gfP6) *gfP6 { - e.x.Sub(a.x, b.x) - e.y.Sub(a.y, b.y) - e.z.Sub(a.z, b.z) - return e -} - -func (e *gfP6) Double(a *gfP6) *gfP6 { - e.x.Double(a.x) - e.y.Double(a.y) - e.z.Double(a.z) - return e -} - -func (e *gfP6) Mul(a, b *gfP6, pool *bnPool) *gfP6 { - // "Multiplication and Squaring on Pairing-Friendly Fields" - // Section 4, Karatsuba method. - // http://eprint.iacr.org/2006/471.pdf - - v0 := newGFp2(pool) - v0.Mul(a.z, b.z, pool) - v1 := newGFp2(pool) - v1.Mul(a.y, b.y, pool) - v2 := newGFp2(pool) - v2.Mul(a.x, b.x, pool) - - t0 := newGFp2(pool) - t0.Add(a.x, a.y) - t1 := newGFp2(pool) - t1.Add(b.x, b.y) - tz := newGFp2(pool) - tz.Mul(t0, t1, pool) - - tz.Sub(tz, v1) - tz.Sub(tz, v2) - tz.MulXi(tz, pool) - tz.Add(tz, v0) - - t0.Add(a.y, a.z) - t1.Add(b.y, b.z) - ty := newGFp2(pool) - ty.Mul(t0, t1, pool) - ty.Sub(ty, v0) - ty.Sub(ty, v1) - t0.MulXi(v2, pool) - ty.Add(ty, t0) - - t0.Add(a.x, a.z) - t1.Add(b.x, b.z) - tx := newGFp2(pool) - tx.Mul(t0, t1, pool) - tx.Sub(tx, v0) - tx.Add(tx, v1) - tx.Sub(tx, v2) - - e.x.Set(tx) - e.y.Set(ty) - e.z.Set(tz) - - t0.Put(pool) - t1.Put(pool) - tx.Put(pool) - ty.Put(pool) - tz.Put(pool) - v0.Put(pool) - v1.Put(pool) - v2.Put(pool) - return e -} - -func (e *gfP6) MulScalar(a *gfP6, b *gfP2, pool *bnPool) *gfP6 { - e.x.Mul(a.x, b, pool) - e.y.Mul(a.y, b, pool) - e.z.Mul(a.z, b, pool) - return e -} - -func (e *gfP6) MulGFP(a *gfP6, b *big.Int) *gfP6 { - e.x.MulScalar(a.x, b) - e.y.MulScalar(a.y, b) - e.z.MulScalar(a.z, b) - return e -} - -// MulTau computes τ·(aτ²+bτ+c) = bτ²+cτ+aξ -func (e *gfP6) MulTau(a *gfP6, pool *bnPool) { - tz := newGFp2(pool) - tz.MulXi(a.x, pool) - ty := newGFp2(pool) - ty.Set(a.y) - e.y.Set(a.z) - e.x.Set(ty) - e.z.Set(tz) - tz.Put(pool) - ty.Put(pool) -} - -func (e *gfP6) Square(a *gfP6, pool *bnPool) *gfP6 { - v0 := newGFp2(pool).Square(a.z, pool) - v1 := newGFp2(pool).Square(a.y, pool) - v2 := newGFp2(pool).Square(a.x, pool) - - c0 := newGFp2(pool).Add(a.x, a.y) - c0.Square(c0, pool) - c0.Sub(c0, v1) - c0.Sub(c0, v2) - c0.MulXi(c0, pool) - c0.Add(c0, v0) - - c1 := newGFp2(pool).Add(a.y, a.z) - c1.Square(c1, pool) - c1.Sub(c1, v0) - c1.Sub(c1, v1) - xiV2 := newGFp2(pool).MulXi(v2, pool) - c1.Add(c1, xiV2) - - c2 := newGFp2(pool).Add(a.x, a.z) - c2.Square(c2, pool) - c2.Sub(c2, v0) - c2.Add(c2, v1) - c2.Sub(c2, v2) - - e.x.Set(c2) - e.y.Set(c1) - e.z.Set(c0) - - v0.Put(pool) - v1.Put(pool) - v2.Put(pool) - c0.Put(pool) - c1.Put(pool) - c2.Put(pool) - xiV2.Put(pool) - - return e -} - -func (e *gfP6) Invert(a *gfP6, pool *bnPool) *gfP6 { - // See "Implementing cryptographic pairings", M. Scott, section 3.2. - // ftp://136.206.11.249/pub/crypto/pairings.pdf - - // Here we can give a short explanation of how it works: let j be a cubic root of - // unity in GF(p²) so that 1+j+j²=0. - // Then (xτ² + yτ + z)(xj²τ² + yjτ + z)(xjτ² + yj²τ + z) - // = (xτ² + yτ + z)(Cτ²+Bτ+A) - // = (x³ξ²+y³ξ+z³-3ξxyz) = F is an element of the base field (the norm). - // - // On the other hand (xj²τ² + yjτ + z)(xjτ² + yj²τ + z) - // = τ²(y²-ξxz) + τ(ξx²-yz) + (z²-ξxy) - // - // So that's why A = (z²-ξxy), B = (ξx²-yz), C = (y²-ξxz) - t1 := newGFp2(pool) - - A := newGFp2(pool) - A.Square(a.z, pool) - t1.Mul(a.x, a.y, pool) - t1.MulXi(t1, pool) - A.Sub(A, t1) - - B := newGFp2(pool) - B.Square(a.x, pool) - B.MulXi(B, pool) - t1.Mul(a.y, a.z, pool) - B.Sub(B, t1) - - C_ := newGFp2(pool) - C_.Square(a.y, pool) - t1.Mul(a.x, a.z, pool) - C_.Sub(C_, t1) - - F := newGFp2(pool) - F.Mul(C_, a.y, pool) - F.MulXi(F, pool) - t1.Mul(A, a.z, pool) - F.Add(F, t1) - t1.Mul(B, a.x, pool) - t1.MulXi(t1, pool) - F.Add(F, t1) - - F.Invert(F, pool) - - e.x.Mul(C_, F, pool) - e.y.Mul(B, F, pool) - e.z.Mul(A, F, pool) - - t1.Put(pool) - A.Put(pool) - B.Put(pool) - C_.Put(pool) - F.Put(pool) - - return e -} diff --git a/src/ConfidentialTx/crypto/bn256/main_test.go b/src/ConfidentialTx/crypto/bn256/main_test.go deleted file mode 100644 index 0230f1b..0000000 --- a/src/ConfidentialTx/crypto/bn256/main_test.go +++ /dev/null @@ -1,71 +0,0 @@ -package bn256 - -import ( - "testing" - - "crypto/rand" -) - -func TestRandomG2Marshal(t *testing.T) { - for i := 0; i < 10; i++ { - n, g2, err := RandomG2(rand.Reader) - if err != nil { - t.Error(err) - continue - } - t.Logf("%d: %x\n", n, g2.Marshal()) - } -} - -func TestPairings(t *testing.T) { - a1 := new(G1).ScalarBaseMult(bigFromBase10("1")) - a2 := new(G1).ScalarBaseMult(bigFromBase10("2")) - a37 := new(G1).ScalarBaseMult(bigFromBase10("37")) - an1 := new(G1).ScalarBaseMult(bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495616")) - - b0 := new(G2).ScalarBaseMult(bigFromBase10("0")) - b1 := new(G2).ScalarBaseMult(bigFromBase10("1")) - b2 := new(G2).ScalarBaseMult(bigFromBase10("2")) - b27 := new(G2).ScalarBaseMult(bigFromBase10("27")) - b999 := new(G2).ScalarBaseMult(bigFromBase10("999")) - bn1 := new(G2).ScalarBaseMult(bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495616")) - - p1 := Pair(a1, b1) - pn1 := Pair(a1, bn1) - np1 := Pair(an1, b1) - if pn1.String() != np1.String() { - t.Error("Pairing mismatch: e(a, -b) != e(-a, b)") - } - if !PairingCheck([]*G1{a1, an1}, []*G2{b1, b1}) { - t.Error("MultiAte check gave false negative!") - } - p0 := new(GT).Add(p1, pn1) - p0_2 := Pair(a1, b0) - if p0.String() != p0_2.String() { - t.Error("Pairing mismatch: e(a, b) * e(a, -b) != 1") - } - p0_3 := new(GT).ScalarMult(p1, bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495617")) - if p0.String() != p0_3.String() { - t.Error("Pairing mismatch: e(a, b) has wrong order") - } - p2 := Pair(a2, b1) - p2_2 := Pair(a1, b2) - p2_3 := new(GT).ScalarMult(p1, bigFromBase10("2")) - if p2.String() != p2_2.String() { - t.Error("Pairing mismatch: e(a, b * 2) != e(a * 2, b)") - } - if p2.String() != p2_3.String() { - t.Error("Pairing mismatch: e(a, b * 2) != e(a, b) ** 2") - } - if p2.String() == p1.String() { - t.Error("Pairing is degenerate!") - } - if PairingCheck([]*G1{a1, a1}, []*G2{b1, b1}) { - t.Error("MultiAte check gave false positive!") - } - p999 := Pair(a37, b27) - p999_2 := Pair(a1, b999) - if p999.String() != p999_2.String() { - t.Error("Pairing mismatch: e(a * 37, b * 27) != e(a, b * 999)") - } -} diff --git a/src/ConfidentialTx/crypto/bn256/optate.go b/src/ConfidentialTx/crypto/bn256/optate.go deleted file mode 100644 index 9d69570..0000000 --- a/src/ConfidentialTx/crypto/bn256/optate.go +++ /dev/null @@ -1,397 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package bn256 - -func lineFunctionAdd(r, p *twistPoint, q *curvePoint, r2 *gfP2, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) { - // See the mixed addition algorithm from "Faster Computation of the - // Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf - - B := newGFp2(pool).Mul(p.x, r.t, pool) - - D := newGFp2(pool).Add(p.y, r.z) - D.Square(D, pool) - D.Sub(D, r2) - D.Sub(D, r.t) - D.Mul(D, r.t, pool) - - H := newGFp2(pool).Sub(B, r.x) - I := newGFp2(pool).Square(H, pool) - - E := newGFp2(pool).Add(I, I) - E.Add(E, E) - - J := newGFp2(pool).Mul(H, E, pool) - - L1 := newGFp2(pool).Sub(D, r.y) - L1.Sub(L1, r.y) - - V := newGFp2(pool).Mul(r.x, E, pool) - - rOut = newTwistPoint(pool) - rOut.x.Square(L1, pool) - rOut.x.Sub(rOut.x, J) - rOut.x.Sub(rOut.x, V) - rOut.x.Sub(rOut.x, V) - - rOut.z.Add(r.z, H) - rOut.z.Square(rOut.z, pool) - rOut.z.Sub(rOut.z, r.t) - rOut.z.Sub(rOut.z, I) - - t := newGFp2(pool).Sub(V, rOut.x) - t.Mul(t, L1, pool) - t2 := newGFp2(pool).Mul(r.y, J, pool) - t2.Add(t2, t2) - rOut.y.Sub(t, t2) - - rOut.t.Square(rOut.z, pool) - - t.Add(p.y, rOut.z) - t.Square(t, pool) - t.Sub(t, r2) - t.Sub(t, rOut.t) - - t2.Mul(L1, p.x, pool) - t2.Add(t2, t2) - a = newGFp2(pool) - a.Sub(t2, t) - - c = newGFp2(pool) - c.MulScalar(rOut.z, q.y) - c.Add(c, c) - - b = newGFp2(pool) - b.SetZero() - b.Sub(b, L1) - b.MulScalar(b, q.x) - b.Add(b, b) - - B.Put(pool) - D.Put(pool) - H.Put(pool) - I.Put(pool) - E.Put(pool) - J.Put(pool) - L1.Put(pool) - V.Put(pool) - t.Put(pool) - t2.Put(pool) - - return -} - -func lineFunctionDouble(r *twistPoint, q *curvePoint, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) { - // See the doubling algorithm for a=0 from "Faster Computation of the - // Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf - - A := newGFp2(pool).Square(r.x, pool) - B := newGFp2(pool).Square(r.y, pool) - C_ := newGFp2(pool).Square(B, pool) - - D := newGFp2(pool).Add(r.x, B) - D.Square(D, pool) - D.Sub(D, A) - D.Sub(D, C_) - D.Add(D, D) - - E := newGFp2(pool).Add(A, A) - E.Add(E, A) - - G := newGFp2(pool).Square(E, pool) - - rOut = newTwistPoint(pool) - rOut.x.Sub(G, D) - rOut.x.Sub(rOut.x, D) - - rOut.z.Add(r.y, r.z) - rOut.z.Square(rOut.z, pool) - rOut.z.Sub(rOut.z, B) - rOut.z.Sub(rOut.z, r.t) - - rOut.y.Sub(D, rOut.x) - rOut.y.Mul(rOut.y, E, pool) - t := newGFp2(pool).Add(C_, C_) - t.Add(t, t) - t.Add(t, t) - rOut.y.Sub(rOut.y, t) - - rOut.t.Square(rOut.z, pool) - - t.Mul(E, r.t, pool) - t.Add(t, t) - b = newGFp2(pool) - b.SetZero() - b.Sub(b, t) - b.MulScalar(b, q.x) - - a = newGFp2(pool) - a.Add(r.x, E) - a.Square(a, pool) - a.Sub(a, A) - a.Sub(a, G) - t.Add(B, B) - t.Add(t, t) - a.Sub(a, t) - - c = newGFp2(pool) - c.Mul(rOut.z, r.t, pool) - c.Add(c, c) - c.MulScalar(c, q.y) - - A.Put(pool) - B.Put(pool) - C_.Put(pool) - D.Put(pool) - E.Put(pool) - G.Put(pool) - t.Put(pool) - - return -} - -func mulLine(ret *gfP12, a, b, c *gfP2, pool *bnPool) { - a2 := newGFp6(pool) - a2.x.SetZero() - a2.y.Set(a) - a2.z.Set(b) - a2.Mul(a2, ret.x, pool) - t3 := newGFp6(pool).MulScalar(ret.y, c, pool) - - t := newGFp2(pool) - t.Add(b, c) - t2 := newGFp6(pool) - t2.x.SetZero() - t2.y.Set(a) - t2.z.Set(t) - ret.x.Add(ret.x, ret.y) - - ret.y.Set(t3) - - ret.x.Mul(ret.x, t2, pool) - ret.x.Sub(ret.x, a2) - ret.x.Sub(ret.x, ret.y) - a2.MulTau(a2, pool) - ret.y.Add(ret.y, a2) - - a2.Put(pool) - t3.Put(pool) - t2.Put(pool) - t.Put(pool) -} - -// sixuPlus2NAF is 6u+2 in non-adjacent form. -var sixuPlus2NAF = []int8{0, 0, 0, 1, 0, 1, 0, -1, 0, 0, 1, -1, 0, 0, 1, 0, - 0, 1, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 0, 0, 1, 1, - 1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1, - 1, 0, 0, -1, 0, 0, 0, 1, 1, 0, -1, 0, 0, 1, 0, 1, 1} - -// miller implements the Miller loop for calculating the Optimal Ate pairing. -// See algorithm 1 from http://cryptojedi.org/papers/dclxvi-20100714.pdf -func miller(q *twistPoint, p *curvePoint, pool *bnPool) *gfP12 { - ret := newGFp12(pool) - ret.SetOne() - - aAffine := newTwistPoint(pool) - aAffine.Set(q) - aAffine.MakeAffine(pool) - - bAffine := newCurvePoint(pool) - bAffine.Set(p) - bAffine.MakeAffine(pool) - - minusA := newTwistPoint(pool) - minusA.Negative(aAffine, pool) - - r := newTwistPoint(pool) - r.Set(aAffine) - - r2 := newGFp2(pool) - r2.Square(aAffine.y, pool) - - for i := len(sixuPlus2NAF) - 1; i > 0; i-- { - a, b, c, newR := lineFunctionDouble(r, bAffine, pool) - if i != len(sixuPlus2NAF)-1 { - ret.Square(ret, pool) - } - - mulLine(ret, a, b, c, pool) - a.Put(pool) - b.Put(pool) - c.Put(pool) - r.Put(pool) - r = newR - - switch sixuPlus2NAF[i-1] { - case 1: - a, b, c, newR = lineFunctionAdd(r, aAffine, bAffine, r2, pool) - case -1: - a, b, c, newR = lineFunctionAdd(r, minusA, bAffine, r2, pool) - default: - continue - } - - mulLine(ret, a, b, c, pool) - a.Put(pool) - b.Put(pool) - c.Put(pool) - r.Put(pool) - r = newR - } - - // In order to calculate Q1 we have to convert q from the sextic twist - // to the full GF(p^12) group, apply the Frobenius there, and convert - // back. - // - // The twist isomorphism is (x', y') -> (xω², yω³). If we consider just - // x for a moment, then after applying the Frobenius, we have x̄ω^(2p) - // where x̄ is the conjugate of x. If we are going to apply the inverse - // isomorphism we need a value with a single coefficient of ω² so we - // rewrite this as x̄ω^(2p-2)ω². ξ⁶ = ω and, due to the construction of - // p, 2p-2 is a multiple of six. Therefore we can rewrite as - // x̄ξ^((p-1)/3)ω² and applying the inverse isomorphism eliminates the - // ω². - // - // A similar argument can be made for the y value. - - q1 := newTwistPoint(pool) - q1.x.Conjugate(aAffine.x) - q1.x.Mul(q1.x, xiToPMinus1Over3, pool) - q1.y.Conjugate(aAffine.y) - q1.y.Mul(q1.y, xiToPMinus1Over2, pool) - q1.z.SetOne() - q1.t.SetOne() - - // For Q2 we are applying the p² Frobenius. The two conjugations cancel - // out and we are left only with the factors from the isomorphism. In - // the case of x, we end up with a pure number which is why - // xiToPSquaredMinus1Over3 is ∈ GF(p). With y we get a factor of -1. We - // ignore this to end up with -Q2. - - minusQ2 := newTwistPoint(pool) - minusQ2.x.MulScalar(aAffine.x, xiToPSquaredMinus1Over3) - minusQ2.y.Set(aAffine.y) - minusQ2.z.SetOne() - minusQ2.t.SetOne() - - r2.Square(q1.y, pool) - a, b, c, newR := lineFunctionAdd(r, q1, bAffine, r2, pool) - mulLine(ret, a, b, c, pool) - a.Put(pool) - b.Put(pool) - c.Put(pool) - r.Put(pool) - r = newR - - r2.Square(minusQ2.y, pool) - a, b, c, newR = lineFunctionAdd(r, minusQ2, bAffine, r2, pool) - mulLine(ret, a, b, c, pool) - a.Put(pool) - b.Put(pool) - c.Put(pool) - r.Put(pool) - r = newR - - aAffine.Put(pool) - bAffine.Put(pool) - minusA.Put(pool) - r.Put(pool) - r2.Put(pool) - - return ret -} - -// finalExponentiation computes the (p¹²-1)/Order-th power of an element of -// GF(p¹²) to obtain an element of GT (steps 13-15 of algorithm 1 from -// http://cryptojedi.org/papers/dclxvi-20100714.pdf) -func finalExponentiation(in *gfP12, pool *bnPool) *gfP12 { - t1 := newGFp12(pool) - - // This is the p^6-Frobenius - t1.x.Negative(in.x) - t1.y.Set(in.y) - - inv := newGFp12(pool) - inv.Invert(in, pool) - t1.Mul(t1, inv, pool) - - t2 := newGFp12(pool).FrobeniusP2(t1, pool) - t1.Mul(t1, t2, pool) - - fp := newGFp12(pool).Frobenius(t1, pool) - fp2 := newGFp12(pool).FrobeniusP2(t1, pool) - fp3 := newGFp12(pool).Frobenius(fp2, pool) - - fu, fu2, fu3 := newGFp12(pool), newGFp12(pool), newGFp12(pool) - fu.Exp(t1, u, pool) - fu2.Exp(fu, u, pool) - fu3.Exp(fu2, u, pool) - - y3 := newGFp12(pool).Frobenius(fu, pool) - fu2p := newGFp12(pool).Frobenius(fu2, pool) - fu3p := newGFp12(pool).Frobenius(fu3, pool) - y2 := newGFp12(pool).FrobeniusP2(fu2, pool) - - y0 := newGFp12(pool) - y0.Mul(fp, fp2, pool) - y0.Mul(y0, fp3, pool) - - y1, y4, y5 := newGFp12(pool), newGFp12(pool), newGFp12(pool) - y1.Conjugate(t1) - y5.Conjugate(fu2) - y3.Conjugate(y3) - y4.Mul(fu, fu2p, pool) - y4.Conjugate(y4) - - y6 := newGFp12(pool) - y6.Mul(fu3, fu3p, pool) - y6.Conjugate(y6) - - t0 := newGFp12(pool) - t0.Square(y6, pool) - t0.Mul(t0, y4, pool) - t0.Mul(t0, y5, pool) - t1.Mul(y3, y5, pool) - t1.Mul(t1, t0, pool) - t0.Mul(t0, y2, pool) - t1.Square(t1, pool) - t1.Mul(t1, t0, pool) - t1.Square(t1, pool) - t0.Mul(t1, y1, pool) - t1.Mul(t1, y0, pool) - t0.Square(t0, pool) - t0.Mul(t0, t1, pool) - - inv.Put(pool) - t1.Put(pool) - t2.Put(pool) - fp.Put(pool) - fp2.Put(pool) - fp3.Put(pool) - fu.Put(pool) - fu2.Put(pool) - fu3.Put(pool) - fu2p.Put(pool) - fu3p.Put(pool) - y0.Put(pool) - y1.Put(pool) - y2.Put(pool) - y3.Put(pool) - y4.Put(pool) - y5.Put(pool) - y6.Put(pool) - - return t0 -} - -func optimalAte(a *twistPoint, b *curvePoint, pool *bnPool) *gfP12 { - e := miller(a, b, pool) - ret := finalExponentiation(e, pool) - e.Put(pool) - - if a.IsInfinity() || b.IsInfinity() { - ret.SetOne() - } - return ret -} diff --git a/src/ConfidentialTx/crypto/bn256/twist.go b/src/ConfidentialTx/crypto/bn256/twist.go deleted file mode 100644 index 95b966e..0000000 --- a/src/ConfidentialTx/crypto/bn256/twist.go +++ /dev/null @@ -1,249 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package bn256 - -import ( - "math/big" -) - -// twistPoint implements the elliptic curve y²=x³+3/ξ over GF(p²). Points are -// kept in Jacobian form and t=z² when valid. The group G₂ is the set of -// n-torsion points of this curve over GF(p²) (where n = Order) -type twistPoint struct { - x, y, z, t *gfP2 -} - -var twistB = &gfP2{ - bigFromBase10("266929791119991161246907387137283842545076965332900288569378510910307636690"), - bigFromBase10("19485874751759354771024239261021720505790618469301721065564631296452457478373"), -} - -// twistGen is the generator of group G₂. -var twistGen = &twistPoint{ - &gfP2{ - bigFromBase10("11559732032986387107991004021392285783925812861821192530917403151452391805634"), - bigFromBase10("10857046999023057135944570762232829481370756359578518086990519993285655852781"), - }, - &gfP2{ - bigFromBase10("4082367875863433681332203403145435568316851327593401208105741076214120093531"), - bigFromBase10("8495653923123431417604973247489272438418190587263600148770280649306958101930"), - }, - &gfP2{ - bigFromBase10("0"), - bigFromBase10("1"), - }, - &gfP2{ - bigFromBase10("0"), - bigFromBase10("1"), - }, -} - -func newTwistPoint(pool *bnPool) *twistPoint { - return &twistPoint{ - newGFp2(pool), - newGFp2(pool), - newGFp2(pool), - newGFp2(pool), - } -} - -func (c *twistPoint) String() string { - return "(" + c.x.String() + ", " + c.y.String() + ", " + c.z.String() + ")" -} - -func (c *twistPoint) Put(pool *bnPool) { - c.x.Put(pool) - c.y.Put(pool) - c.z.Put(pool) - c.t.Put(pool) -} - -func (c *twistPoint) Set(a *twistPoint) { - c.x.Set(a.x) - c.y.Set(a.y) - c.z.Set(a.z) - c.t.Set(a.t) -} - -// IsOnCurve returns true iff c is on the curve where c must be in affine form. -func (c *twistPoint) IsOnCurve() bool { - pool := new(bnPool) - yy := newGFp2(pool).Square(c.y, pool) - xxx := newGFp2(pool).Square(c.x, pool) - xxx.Mul(xxx, c.x, pool) - yy.Sub(yy, xxx) - yy.Sub(yy, twistB) - yy.Minimal() - return yy.x.Sign() == 0 && yy.y.Sign() == 0 -} - -func (c *twistPoint) SetInfinity() { - c.z.SetZero() -} - -func (c *twistPoint) IsInfinity() bool { - return c.z.IsZero() -} - -func (c *twistPoint) Add(a, b *twistPoint, pool *bnPool) { - // For additional comments, see the same function in curve.go. - - if a.IsInfinity() { - c.Set(b) - return - } - if b.IsInfinity() { - c.Set(a) - return - } - - // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3 - z1z1 := newGFp2(pool).Square(a.z, pool) - z2z2 := newGFp2(pool).Square(b.z, pool) - u1 := newGFp2(pool).Mul(a.x, z2z2, pool) - u2 := newGFp2(pool).Mul(b.x, z1z1, pool) - - t := newGFp2(pool).Mul(b.z, z2z2, pool) - s1 := newGFp2(pool).Mul(a.y, t, pool) - - t.Mul(a.z, z1z1, pool) - s2 := newGFp2(pool).Mul(b.y, t, pool) - - h := newGFp2(pool).Sub(u2, u1) - xEqual := h.IsZero() - - t.Add(h, h) - i := newGFp2(pool).Square(t, pool) - j := newGFp2(pool).Mul(h, i, pool) - - t.Sub(s2, s1) - yEqual := t.IsZero() - if xEqual && yEqual { - c.Double(a, pool) - return - } - r := newGFp2(pool).Add(t, t) - - v := newGFp2(pool).Mul(u1, i, pool) - - t4 := newGFp2(pool).Square(r, pool) - t.Add(v, v) - t6 := newGFp2(pool).Sub(t4, j) - c.x.Sub(t6, t) - - t.Sub(v, c.x) // t7 - t4.Mul(s1, j, pool) // t8 - t6.Add(t4, t4) // t9 - t4.Mul(r, t, pool) // t10 - c.y.Sub(t4, t6) - - t.Add(a.z, b.z) // t11 - t4.Square(t, pool) // t12 - t.Sub(t4, z1z1) // t13 - t4.Sub(t, z2z2) // t14 - c.z.Mul(t4, h, pool) - - z1z1.Put(pool) - z2z2.Put(pool) - u1.Put(pool) - u2.Put(pool) - t.Put(pool) - s1.Put(pool) - s2.Put(pool) - h.Put(pool) - i.Put(pool) - j.Put(pool) - r.Put(pool) - v.Put(pool) - t4.Put(pool) - t6.Put(pool) -} - -func (c *twistPoint) Double(a *twistPoint, pool *bnPool) { - // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3 - A := newGFp2(pool).Square(a.x, pool) - B := newGFp2(pool).Square(a.y, pool) - C_ := newGFp2(pool).Square(B, pool) - - t := newGFp2(pool).Add(a.x, B) - t2 := newGFp2(pool).Square(t, pool) - t.Sub(t2, A) - t2.Sub(t, C_) - d := newGFp2(pool).Add(t2, t2) - t.Add(A, A) - e := newGFp2(pool).Add(t, A) - f := newGFp2(pool).Square(e, pool) - - t.Add(d, d) - c.x.Sub(f, t) - - t.Add(C_, C_) - t2.Add(t, t) - t.Add(t2, t2) - c.y.Sub(d, c.x) - t2.Mul(e, c.y, pool) - c.y.Sub(t2, t) - - t.Mul(a.y, a.z, pool) - c.z.Add(t, t) - - A.Put(pool) - B.Put(pool) - C_.Put(pool) - t.Put(pool) - t2.Put(pool) - d.Put(pool) - e.Put(pool) - f.Put(pool) -} - -func (c *twistPoint) Mul(a *twistPoint, scalar *big.Int, pool *bnPool) *twistPoint { - sum := newTwistPoint(pool) - sum.SetInfinity() - t := newTwistPoint(pool) - - for i := scalar.BitLen(); i >= 0; i-- { - t.Double(sum, pool) - if scalar.Bit(i) != 0 { - sum.Add(t, a, pool) - } else { - sum.Set(t) - } - } - - c.Set(sum) - sum.Put(pool) - t.Put(pool) - return c -} - -func (c *twistPoint) MakeAffine(pool *bnPool) *twistPoint { - if c.z.IsOne() { - return c - } - - zInv := newGFp2(pool).Invert(c.z, pool) - t := newGFp2(pool).Mul(c.y, zInv, pool) - zInv2 := newGFp2(pool).Square(zInv, pool) - c.y.Mul(t, zInv2, pool) - t.Mul(c.x, zInv2, pool) - c.x.Set(t) - c.z.SetOne() - c.t.SetOne() - - zInv.Put(pool) - t.Put(pool) - zInv2.Put(pool) - - return c -} - -func (c *twistPoint) Negative(a *twistPoint, pool *bnPool) { - c.x.Set(a.x) - c.y.SetZero() - c.y.Sub(c.y, a.y) - c.z.Set(a.z) - c.t.SetZero() -} diff --git a/src/ConfidentialTx/crypto/secp256k1/curve.go b/src/ConfidentialTx/crypto/secp256k1/curve.go deleted file mode 100644 index fa54bf6..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/curve.go +++ /dev/null @@ -1,316 +0,0 @@ -// Copyright 2010 The Go Authors. All rights reserved. -// Copyright 2011 ThePiachu. All rights reserved. -// -// Redistribution and use in source and binary forms, with or without -// modification, are permitted provided that the following conditions are -// met: -// -// * Redistributions of source code must retain the above copyright -// notice, this list of conditions and the following disclaimer. -// * Redistributions in binary form must reproduce the above -// copyright notice, this list of conditions and the following disclaimer -// in the documentation and/or other materials provided with the -// distribution. -// * Neither the name of Google Inc. nor the names of its -// contributors may be used to endorse or promote products derived from -// this software without specific prior written permission. -// * The name of ThePiachu may not be used to endorse or promote products -// derived from this software without specific prior written permission. -// -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT -// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, -// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY -// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - -package secp256k1 - -import ( - "crypto/elliptic" - "math/big" - "sync" - "unsafe" - - "github.com/ethereum/go-ethereum/common/math" -) - -/* -#include "libsecp256k1/include/secp256k1.h" -extern int secp256k1_pubkey_scalar_mul(const secp256k1_context* ctx, const unsigned char *point, const unsigned char *scalar); -*/ -import "C" - -// This code is from https://github.com/ThePiachu/GoBit and implements -// several Koblitz elliptic curves over prime fields. -// -// The curve methods, internally, on Jacobian coordinates. For a given -// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, -// z1) where x = x1/z1² and y = y1/z1³. The greatest speedups come -// when the whole calculation can be performed within the transform -// (as in ScalarMult and ScalarBaseMult). But even for Add and Double, -// it's faster to apply and reverse the transform than to operate in -// affine coordinates. - -// A BitCurve represents a Koblitz Curve with a=0. -// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html -type BitCurve struct { - P *big.Int // the order of the underlying field - N *big.Int // the order of the base point - B *big.Int // the constant of the BitCurve equation - Gx, Gy *big.Int // (x,y) of the base point - BitSize int // the size of the underlying field -} - -func (BitCurve *BitCurve) Params() *elliptic.CurveParams { - return &elliptic.CurveParams{ - P: BitCurve.P, - N: BitCurve.N, - B: BitCurve.B, - Gx: BitCurve.Gx, - Gy: BitCurve.Gy, - BitSize: BitCurve.BitSize, - } -} - -// IsOnBitCurve returns true if the given (x,y) lies on the BitCurve. -func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool { - // y² = x³ + b - y2 := new(big.Int).Mul(y, y) //y² - y2.Mod(y2, BitCurve.P) //y²%P - - x3 := new(big.Int).Mul(x, x) //x² - x3.Mul(x3, x) //x³ - - x3.Add(x3, BitCurve.B) //x³+B - x3.Mod(x3, BitCurve.P) //(x³+B)%P - - return x3.Cmp(y2) == 0 -} - -//TODO: double check if the function is okay -// affineFromJacobian reverses the Jacobian transform. See the comment at the -// top of the file. -func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) { - if z.Sign() == 0 { - return new(big.Int), new(big.Int) - } - - zinv := new(big.Int).ModInverse(z, BitCurve.P) - zinvsq := new(big.Int).Mul(zinv, zinv) - - xOut = new(big.Int).Mul(x, zinvsq) - xOut.Mod(xOut, BitCurve.P) - zinvsq.Mul(zinvsq, zinv) - yOut = new(big.Int).Mul(y, zinvsq) - yOut.Mod(yOut, BitCurve.P) - return -} - -// Add returns the sum of (x1,y1) and (x2,y2) -func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { - z := new(big.Int).SetInt64(1) - return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z)) -} - -// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and -// (x2, y2, z2) and returns their sum, also in Jacobian form. -func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) { - // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl - z1z1 := new(big.Int).Mul(z1, z1) - z1z1.Mod(z1z1, BitCurve.P) - z2z2 := new(big.Int).Mul(z2, z2) - z2z2.Mod(z2z2, BitCurve.P) - - u1 := new(big.Int).Mul(x1, z2z2) - u1.Mod(u1, BitCurve.P) - u2 := new(big.Int).Mul(x2, z1z1) - u2.Mod(u2, BitCurve.P) - h := new(big.Int).Sub(u2, u1) - if h.Sign() == -1 { - h.Add(h, BitCurve.P) - } - i := new(big.Int).Lsh(h, 1) - i.Mul(i, i) - j := new(big.Int).Mul(h, i) - - s1 := new(big.Int).Mul(y1, z2) - s1.Mul(s1, z2z2) - s1.Mod(s1, BitCurve.P) - s2 := new(big.Int).Mul(y2, z1) - s2.Mul(s2, z1z1) - s2.Mod(s2, BitCurve.P) - r := new(big.Int).Sub(s2, s1) - if r.Sign() == -1 { - r.Add(r, BitCurve.P) - } - r.Lsh(r, 1) - v := new(big.Int).Mul(u1, i) - - x3 := new(big.Int).Set(r) - x3.Mul(x3, x3) - x3.Sub(x3, j) - x3.Sub(x3, v) - x3.Sub(x3, v) - x3.Mod(x3, BitCurve.P) - - y3 := new(big.Int).Set(r) - v.Sub(v, x3) - y3.Mul(y3, v) - s1.Mul(s1, j) - s1.Lsh(s1, 1) - y3.Sub(y3, s1) - y3.Mod(y3, BitCurve.P) - - z3 := new(big.Int).Add(z1, z2) - z3.Mul(z3, z3) - z3.Sub(z3, z1z1) - if z3.Sign() == -1 { - z3.Add(z3, BitCurve.P) - } - z3.Sub(z3, z2z2) - if z3.Sign() == -1 { - z3.Add(z3, BitCurve.P) - } - z3.Mul(z3, h) - z3.Mod(z3, BitCurve.P) - - return x3, y3, z3 -} - -// Double returns 2*(x,y) -func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { - z1 := new(big.Int).SetInt64(1) - return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1)) -} - -// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and -// returns its double, also in Jacobian form. -func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) { - // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l - - a := new(big.Int).Mul(x, x) //X1² - b := new(big.Int).Mul(y, y) //Y1² - c := new(big.Int).Mul(b, b) //B² - - d := new(big.Int).Add(x, b) //X1+B - d.Mul(d, d) //(X1+B)² - d.Sub(d, a) //(X1+B)²-A - d.Sub(d, c) //(X1+B)²-A-C - d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C) - - e := new(big.Int).Mul(big.NewInt(3), a) //3*A - f := new(big.Int).Mul(e, e) //E² - - x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D - x3.Sub(f, x3) //F-2*D - x3.Mod(x3, BitCurve.P) - - y3 := new(big.Int).Sub(d, x3) //D-X3 - y3.Mul(e, y3) //E*(D-X3) - y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C - y3.Mod(y3, BitCurve.P) - - z3 := new(big.Int).Mul(y, z) //Y1*Z1 - z3.Mul(big.NewInt(2), z3) //3*Y1*Z1 - z3.Mod(z3, BitCurve.P) - - return x3, y3, z3 -} - -func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) { - // Ensure scalar is exactly 32 bytes. We pad always, even if - // scalar is 32 bytes long, to avoid a timing side channel. - if len(scalar) > 32 { - panic("can't handle scalars > 256 bits") - } - // NOTE: potential timing issue - padded := make([]byte, 32) - copy(padded[32-len(scalar):], scalar) - scalar = padded - - // Do the multiplication in C, updating point. - point := make([]byte, 64) - math.ReadBits(Bx, point[:32]) - math.ReadBits(By, point[32:]) - pointPtr := (*C.uchar)(unsafe.Pointer(&point[0])) - scalarPtr := (*C.uchar)(unsafe.Pointer(&scalar[0])) - res := C.secp256k1_pubkey_scalar_mul(context, pointPtr, scalarPtr) - - // Unpack the result and clear temporaries. - x := new(big.Int).SetBytes(point[:32]) - y := new(big.Int).SetBytes(point[32:]) - for i := range point { - point[i] = 0 - } - for i := range padded { - scalar[i] = 0 - } - if res != 1 { - return nil, nil - } - return x, y -} - -// ScalarBaseMult returns k*G, where G is the base point of the group and k is -// an integer in big-endian form. -func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { - return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k) -} - -// Marshal converts a point into the form specified in section 4.3.6 of ANSI -// X9.62. -func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte { - byteLen := (BitCurve.BitSize + 7) >> 3 - - ret := make([]byte, 1+2*byteLen) - ret[0] = 4 // uncompressed point - - xBytes := x.Bytes() - copy(ret[1+byteLen-len(xBytes):], xBytes) - yBytes := y.Bytes() - copy(ret[1+2*byteLen-len(yBytes):], yBytes) - return ret -} - -// Unmarshal converts a point, serialised by Marshal, into an x, y pair. On -// error, x = nil. -func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) { - byteLen := (BitCurve.BitSize + 7) >> 3 - if len(data) != 1+2*byteLen { - return - } - if data[0] != 4 { // uncompressed form - return - } - x = new(big.Int).SetBytes(data[1 : 1+byteLen]) - y = new(big.Int).SetBytes(data[1+byteLen:]) - return -} - -var ( - initonce sync.Once - theCurve *BitCurve -) - -// S256 returns a BitCurve which implements secp256k1 (see SEC 2 section 2.7.1) -func S256() *BitCurve { - initonce.Do(func() { - // See SEC 2 section 2.7.1 - // curve parameters taken from: - // http://www.secg.org/collateral/sec2_final.pdf - theCurve = new(BitCurve) - theCurve.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16) - theCurve.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16) - theCurve.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16) - theCurve.Gx, _ = new(big.Int).SetString("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16) - theCurve.Gy, _ = new(big.Int).SetString("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16) - theCurve.BitSize = 256 - }) - return theCurve -} diff --git a/src/ConfidentialTx/crypto/secp256k1/ext.h b/src/ConfidentialTx/crypto/secp256k1/ext.h deleted file mode 100644 index c28de21..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/ext.h +++ /dev/null @@ -1,245 +0,0 @@ -// Copyright 2015 The go-ethereum Authors -// This file is part of the go-ethereum library. -// -// The go-ethereum library is free software: you can redistribute it and/or modify -// it under the terms of the GNU Lesser General Public License as published by -// the Free Software Foundation, either version 3 of the License, or -// (at your option) any later version. -// -// The go-ethereum library is distributed in the hope that it will be useful, -// but WITHOUT ANY WARRANTY; without even the implied warranty of -// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -// GNU Lesser General Public License for more details. -// -// You should have received a copy of the GNU Lesser General Public License -// along with the go-ethereum library. If not, see . - -// secp256k1_context_create_sign_verify creates a context for signing and signature verification. -static secp256k1_context* secp256k1_context_create_sign_verify() { - return secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); -} - -// secp256k1_ecdsa_recover_pubkey recovers the public key of an encoded compact signature. -// -// Returns: 1: recovery was successful -// 0: recovery was not successful -// Args: ctx: pointer to a context object (cannot be NULL) -// Out: pubkey_out: the serialized 65-byte public key of the signer (cannot be NULL) -// In: sigdata: pointer to a 65-byte signature with the recovery id at the end (cannot be NULL) -// msgdata: pointer to a 32-byte message (cannot be NULL) -static int secp256k1_ecdsa_recover_pubkey( - const secp256k1_context* ctx, - unsigned char *pubkey_out, - const unsigned char *sigdata, - const unsigned char *msgdata -) { - secp256k1_ecdsa_recoverable_signature sig; - secp256k1_pubkey pubkey; - - if (!secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &sig, sigdata, (int)sigdata[64])) { - return 0; - } - if (!secp256k1_ecdsa_recover(ctx, &pubkey, &sig, msgdata)) { - return 0; - } - size_t outputlen = 65; - return secp256k1_ec_pubkey_serialize(ctx, pubkey_out, &outputlen, &pubkey, SECP256K1_EC_UNCOMPRESSED); -} - -// secp256k1_pubkey_scalar_mul multiplies a point by a scalar in constant time. -// -// Returns: 1: multiplication was successful -// 0: scalar was invalid (zero or overflow) -// Args: ctx: pointer to a context object (cannot be NULL) -// Out: point: the multiplied point (usually secret) -// In: point: pointer to a 64-byte public point, -// encoded as two 256bit big-endian numbers. -// scalar: a 32-byte scalar with which to multiply the point -int secp256k1_pubkey_scalar_mul(const secp256k1_context* ctx, unsigned char *point, const unsigned char *scalar) { - int ret = 0; - int overflow = 0; - secp256k1_fe feX, feY; - secp256k1_gej res; - secp256k1_ge ge; - secp256k1_scalar s; - ARG_CHECK(point != NULL); - ARG_CHECK(scalar != NULL); - (void)ctx; - - secp256k1_fe_set_b32(&feX, point); - secp256k1_fe_set_b32(&feY, point+32); - secp256k1_ge_set_xy(&ge, &feX, &feY); - secp256k1_scalar_set_b32(&s, scalar, &overflow); - if (overflow || secp256k1_scalar_is_zero(&s)) { - ret = 0; - } else { - secp256k1_ecmult_const(&res, &ge, &s, 256); - secp256k1_ge_set_gej(&ge, &res); - /* Note: can't use secp256k1_pubkey_save here because it is not constant time. */ - secp256k1_fe_normalize(&ge.x); - secp256k1_fe_normalize(&ge.y); - secp256k1_fe_get_b32(point, &ge.x); - secp256k1_fe_get_b32(point+32, &ge.y); - ret = 1; - } - secp256k1_scalar_clear(&s); - return ret; -} - -void test_rangeproof() { - size_t nbits, n_commits; - //bench_bulletproof_rangeproof_t *data; - ///////////////////////////////////////////////////////////// - bench_bulletproof_t odata; - bench_bulletproof_rangeproof_t rp_data; - - odata.blind_gen = secp256k1_generator_const_g; - odata.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); - odata.scratch = secp256k1_scratch_space_create(odata.ctx, 1024 * 1024 * 1024); - odata.generators = secp256k1_bulletproof_generators_create(odata.ctx, &odata.blind_gen, 64 * 1024); - - rp_data.common = &odata; - - //run_rangeproof_test(&rp_data, 8, 1); - ///////////////////////////////////////////////////////////// - nbits = 8; - n_commits = 1; - ///////////////////////////////////////////////////////////// - char str[64]; - - (&rp_data)->nbits = nbits; - (&rp_data)->n_commits = n_commits; - (&rp_data)->common->iters = 100; - - (&rp_data)->common->n_proofs = 1; - sprintf(str, "bulletproof_prove, %i, %i, 0, ", (int)nbits, (int) n_commits); - - //run_benchmark(str, bench_bulletproof_rangeproof_prove, bench_bulletproof_rangeproof_setup, bench_bulletproof_rangeproof_teardown, (void *)&rp_data, 5, 25); - ///////////////////////////////////////////////////////////// - if (bench_bulletproof_rangeproof_setup != NULL) { - bench_bulletproof_rangeproof_setup(&rp_data); - } - bench_bulletproof_rangeproof_prove(&rp_data); - if (bench_bulletproof_rangeproof_teardown != NULL) { - bench_bulletproof_rangeproof_teardown(&rp_data); - } - ///////////////////////////////////////////////////////////// - if (bench_bulletproof_rangeproof_setup != NULL) { - bench_bulletproof_rangeproof_setup(&rp_data); - } - bench_bulletproof_rangeproof_verify(&rp_data); - if (bench_bulletproof_rangeproof_teardown != NULL) { - bench_bulletproof_rangeproof_teardown(&rp_data); - } - ///////////////////////////////////////////////////////////// -} - -static void counting_illegal_callback_fn(const char* str, void* data) { - int32_t *p; - (void)str; - p = data; - (*p)++; -} - -typedef struct { - size_t nbits; - secp256k1_context *ctx_none; - secp256k1_context *ctx_both; - secp256k1_scratch *scratch; - secp256k1_bulletproof_generators *gens; - unsigned char *proof; - size_t plen; - uint64_t value; - const unsigned char **blind_ptr; - secp256k1_generator *value_gen; - const unsigned char *blind; - secp256k1_pedersen_commitment *pcommit; -} zkrp_t; - -void myprint(char *message, zkrp_t *dt) { - int i, len; - len = (int) dt->plen; - printf("================== %s =================\n", message); - printf("DT: %p\n", dt); - printf("DT->nbits: %zd\n", dt->nbits); - printf("DT->ctx_none: %p\n", dt->ctx_none); - printf("DT->ctx_both: %p\n", dt->ctx_both); - printf("DT->scratch: %p\n", dt->scratch); - printf("DT->gens: %p\n", dt->gens); - printf("DT->proof: %p\n", dt->proof); - printf("DT->proof:\n"); - printf("["); - for (i=0; iproof[i]); - } - printf("]\n"); - printf("DT->plen: %zd\n", dt->plen); - printf("DT->value: %lu\n", dt->value); - printf("DT->blind: %p\n", dt->blind); - printf("DT->pcommit: %p\n", dt->pcommit); -} - - -// setup should receive as input the range [A,B) -// and output a set of parameters -// - nbits means the interval is given by [0,2^nbits) -// - for now nbits must be in dt -void setup_rangeproof(zkrp_t *dt) { - secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE); - secp256k1_context *both = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); - secp256k1_scratch *scratch = secp256k1_scratch_space_create(both, 1024 * 1024); - secp256k1_generator *value_gen = malloc(sizeof(secp256k1_generator)); - unsigned char blind[32] = " i am not a blinding factor "; - - dt->ctx_none = none; - dt->ctx_both = both; - dt->scratch = scratch; - dt->value_gen = value_gen; - - dt->blind = (unsigned char*)malloc(sizeof(unsigned char) * 32); - strncpy(blind, dt->blind, 32); - - dt->blind_ptr = malloc(sizeof(unsigned char*)); - dt->blind_ptr[0] = dt->blind; - - CHECK(secp256k1_generator_generate(dt->ctx_both, dt->value_gen, dt->blind) != 0); -} - -void deallocate_memory(zkrp_t *dt) { - // TODO realloc everything.... -} - - -// prove should receive as input parameters and the commitment -// and output the proof -void prove_rangeproof(zkrp_t *dt) { - printf("Prove result: %d\n", (secp256k1_bulletproof_rangeproof_prove(dt->ctx_both, dt->scratch, dt->gens, dt->proof, &(dt->plen), &(dt->value), NULL, dt->blind_ptr, 1, dt->value_gen, dt->nbits, dt->blind, NULL, 0) == 1)); -} - -// verify should receive as input parameters and proof -// and output true or false -int verify_rangeproof(zkrp_t *dt) { - printf("Verification result: %d\n", (secp256k1_bulletproof_rangeproof_verify(dt->ctx_both, dt->scratch, dt->gens, dt->proof, dt->plen, NULL, dt->pcommit, 1, dt->nbits, dt->value_gen, NULL, 0) == 1)); - return 1; -} - -// commit should receive parameters and value as input -// and output the commitment -void commit_rangeproof(zkrp_t *dt) { - secp256k1_bulletproof_generators *gens; - secp256k1_pedersen_commitment *pcommit = malloc(sizeof(secp256k1_pedersen_commitment)); - // TODO: value as input - uint64_t value = 255; - - CHECK(secp256k1_pedersen_commit(dt->ctx_both, pcommit, dt->blind, value, dt->value_gen, &secp256k1_generator_const_h) != 0); - - gens = secp256k1_bulletproof_generators_create(dt->ctx_none, &secp256k1_generator_const_h, 256); - CHECK(gens != NULL); - - dt->gens = gens; - dt->proof = (unsigned char*)malloc(2000); - dt->plen = 2000; - dt->value = value; - dt->pcommit = pcommit; -} - diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/Makefile.am b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/Makefile.am deleted file mode 100644 index 9d914c7..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/Makefile.am +++ /dev/null @@ -1,207 +0,0 @@ -ACLOCAL_AMFLAGS = -I build-aux/m4 - -lib_LTLIBRARIES = libsecp256k1.la -if USE_JNI -JNI_LIB = libsecp256k1_jni.la -noinst_LTLIBRARIES = $(JNI_LIB) -else -JNI_LIB = -endif -include_HEADERS = include/secp256k1.h -noinst_HEADERS = -noinst_HEADERS += src/scalar.h -noinst_HEADERS += src/scalar_4x64.h -noinst_HEADERS += src/scalar_8x32.h -noinst_HEADERS += src/scalar_low.h -noinst_HEADERS += src/scalar_impl.h -noinst_HEADERS += src/scalar_4x64_impl.h -noinst_HEADERS += src/scalar_8x32_impl.h -noinst_HEADERS += src/scalar_low_impl.h -noinst_HEADERS += src/group.h -noinst_HEADERS += src/group_impl.h -noinst_HEADERS += src/num_gmp.h -noinst_HEADERS += src/num_gmp_impl.h -noinst_HEADERS += src/ecdsa.h -noinst_HEADERS += src/ecdsa_impl.h -noinst_HEADERS += src/eckey.h -noinst_HEADERS += src/eckey_impl.h -noinst_HEADERS += src/ecmult.h -noinst_HEADERS += src/ecmult_impl.h -noinst_HEADERS += src/ecmult_const.h -noinst_HEADERS += src/ecmult_const_impl.h -noinst_HEADERS += src/ecmult_gen.h -noinst_HEADERS += src/ecmult_gen_impl.h -noinst_HEADERS += src/num.h -noinst_HEADERS += src/num_impl.h -noinst_HEADERS += src/field_10x26.h -noinst_HEADERS += src/field_10x26_impl.h -noinst_HEADERS += src/field_5x52.h -noinst_HEADERS += src/field_5x52_impl.h -noinst_HEADERS += src/field_5x52_int128_impl.h -noinst_HEADERS += src/field_5x52_asm_impl.h -noinst_HEADERS += src/java/org_bitcoin_NativeSecp256k1.h -noinst_HEADERS += src/java/org_bitcoin_Secp256k1Context.h -noinst_HEADERS += src/util.h -noinst_HEADERS += src/scratch.h -noinst_HEADERS += src/scratch_impl.h -noinst_HEADERS += src/testrand.h -noinst_HEADERS += src/testrand_impl.h -noinst_HEADERS += src/hash.h -noinst_HEADERS += src/hash_impl.h -noinst_HEADERS += src/field.h -noinst_HEADERS += src/field_impl.h -noinst_HEADERS += src/bench.h -noinst_HEADERS += contrib/lax_der_parsing.h -noinst_HEADERS += contrib/lax_der_parsing.c -noinst_HEADERS += contrib/lax_der_privatekey_parsing.h -noinst_HEADERS += contrib/lax_der_privatekey_parsing.c - -if USE_EXTERNAL_ASM -COMMON_LIB = libsecp256k1_common.la -noinst_LTLIBRARIES = $(COMMON_LIB) -else -COMMON_LIB = -endif - -pkgconfigdir = $(libdir)/pkgconfig -pkgconfig_DATA = libsecp256k1.pc - -if USE_EXTERNAL_ASM -if USE_ASM_ARM -libsecp256k1_common_la_SOURCES = src/asm/field_10x26_arm.s -endif -endif - -libsecp256k1_la_SOURCES = src/secp256k1.c -libsecp256k1_la_CPPFLAGS = -DSECP256K1_BUILD -I$(top_srcdir)/include -I$(top_srcdir)/src $(SECP_INCLUDES) -libsecp256k1_la_LIBADD = $(JNI_LIB) $(SECP_LIBS) $(COMMON_LIB) - -libsecp256k1_jni_la_SOURCES = src/java/org_bitcoin_NativeSecp256k1.c src/java/org_bitcoin_Secp256k1Context.c -libsecp256k1_jni_la_CPPFLAGS = -DSECP256K1_BUILD $(JNI_INCLUDES) - -noinst_PROGRAMS = -if USE_BENCHMARK -noinst_PROGRAMS += bench_verify bench_sign bench_internal bench_ecmult -bench_verify_SOURCES = src/bench_verify.c -bench_verify_LDADD = libsecp256k1.la $(SECP_LIBS) $(SECP_TEST_LIBS) $(COMMON_LIB) -bench_sign_SOURCES = src/bench_sign.c -bench_sign_LDADD = libsecp256k1.la $(SECP_LIBS) $(SECP_TEST_LIBS) $(COMMON_LIB) -bench_internal_SOURCES = src/bench_internal.c -bench_internal_LDADD = $(SECP_LIBS) $(COMMON_LIB) -bench_internal_CPPFLAGS = -DSECP256K1_BUILD $(SECP_INCLUDES) -bench_ecmult_SOURCES = src/bench_ecmult.c -bench_ecmult_LDADD = $(SECP_LIBS) $(COMMON_LIB) -bench_ecmult_CPPFLAGS = -DSECP256K1_BUILD $(SECP_INCLUDES) -endif - -TESTS = -if USE_TESTS -noinst_PROGRAMS += tests -tests_SOURCES = src/tests.c -tests_CPPFLAGS = -DSECP256K1_BUILD -I$(top_srcdir)/src -I$(top_srcdir)/include $(SECP_INCLUDES) $(SECP_TEST_INCLUDES) -if !ENABLE_COVERAGE -tests_CPPFLAGS += -DVERIFY -endif -tests_LDADD = $(SECP_LIBS) $(SECP_TEST_LIBS) $(COMMON_LIB) -tests_LDFLAGS = -static -TESTS += tests -endif - -if USE_EXHAUSTIVE_TESTS -noinst_PROGRAMS += exhaustive_tests -exhaustive_tests_SOURCES = src/tests_exhaustive.c -exhaustive_tests_CPPFLAGS = -DSECP256K1_BUILD -I$(top_srcdir)/src $(SECP_INCLUDES) -if !ENABLE_COVERAGE -exhaustive_tests_CPPFLAGS += -DVERIFY -endif -exhaustive_tests_LDADD = $(SECP_LIBS) -exhaustive_tests_LDFLAGS = -static -TESTS += exhaustive_tests -endif - -JAVAROOT=src/java -JAVAORG=org/bitcoin -JAVA_GUAVA=$(srcdir)/$(JAVAROOT)/guava/guava-18.0.jar -CLASSPATH_ENV=CLASSPATH=$(JAVA_GUAVA) -JAVA_FILES= \ - $(JAVAROOT)/$(JAVAORG)/NativeSecp256k1.java \ - $(JAVAROOT)/$(JAVAORG)/NativeSecp256k1Test.java \ - $(JAVAROOT)/$(JAVAORG)/NativeSecp256k1Util.java \ - $(JAVAROOT)/$(JAVAORG)/Secp256k1Context.java - -if USE_JNI - -$(JAVA_GUAVA): - @echo Guava is missing. Fetch it via: \ - wget https://search.maven.org/remotecontent?filepath=com/google/guava/guava/18.0/guava-18.0.jar -O $(@) - @false - -.stamp-java: $(JAVA_FILES) - @echo Compiling $^ - $(AM_V_at)$(CLASSPATH_ENV) javac $^ - @touch $@ - -if USE_TESTS - -check-java: libsecp256k1.la $(JAVA_GUAVA) .stamp-java - $(AM_V_at)java -Djava.library.path="./:./src:./src/.libs:.libs/" -cp "$(JAVA_GUAVA):$(JAVAROOT)" $(JAVAORG)/NativeSecp256k1Test - -endif -endif - -if USE_ECMULT_STATIC_PRECOMPUTATION -CPPFLAGS_FOR_BUILD +=-I$(top_srcdir) -CFLAGS_FOR_BUILD += -Wall -Wextra -Wno-unused-function - -gen_context_OBJECTS = gen_context.o -gen_context_BIN = gen_context$(BUILD_EXEEXT) -gen_%.o: src/gen_%.c - $(CC_FOR_BUILD) $(CPPFLAGS_FOR_BUILD) $(CFLAGS_FOR_BUILD) -c $< -o $@ - -$(gen_context_BIN): $(gen_context_OBJECTS) - $(CC_FOR_BUILD) $^ -o $@ - -$(libsecp256k1_la_OBJECTS): src/ecmult_static_context.h -$(tests_OBJECTS): src/ecmult_static_context.h -$(bench_internal_OBJECTS): src/ecmult_static_context.h -$(bench_ecmult_OBJECTS): src/ecmult_static_context.h - -src/ecmult_static_context.h: $(gen_context_BIN) - ./$(gen_context_BIN) - -CLEANFILES = $(gen_context_BIN) src/ecmult_static_context.h $(JAVAROOT)/$(JAVAORG)/*.class .stamp-java -endif - -EXTRA_DIST = autogen.sh src/gen_context.c src/basic-config.h $(JAVA_FILES) - -if ENABLE_MODULE_ECDH -include src/modules/ecdh/Makefile.am.include -endif - -if ENABLE_MODULE_RECOVERY -include src/modules/recovery/Makefile.am.include -endif - -if ENABLE_MODULE_GENERATOR -include src/modules/generator/Makefile.am.include -endif - -if ENABLE_MODULE_COMMITMENT -include src/modules/commitment/Makefile.am.include -endif - -if ENABLE_MODULE_RANGEPROOF -include src/modules/rangeproof/Makefile.am.include -endif - -if ENABLE_MODULE_BULLETPROOF -include src/modules/bulletproofs/Makefile.am.include -endif - -if ENABLE_MODULE_WHITELIST -include src/modules/whitelist/Makefile.am.include -endif - -if ENABLE_MODULE_SURJECTIONPROOF -include src/modules/surjection/Makefile.am.include -endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/build-aux/m4/ax_jni_include_dir.m4 b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/build-aux/m4/ax_jni_include_dir.m4 deleted file mode 100644 index cdc78d8..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/build-aux/m4/ax_jni_include_dir.m4 +++ /dev/null @@ -1,145 +0,0 @@ -# =========================================================================== -# https://www.gnu.org/software/autoconf-archive/ax_jni_include_dir.html -# =========================================================================== -# -# SYNOPSIS -# -# AX_JNI_INCLUDE_DIR -# -# DESCRIPTION -# -# AX_JNI_INCLUDE_DIR finds include directories needed for compiling -# programs using the JNI interface. -# -# JNI include directories are usually in the Java distribution. This is -# deduced from the value of $JAVA_HOME, $JAVAC, or the path to "javac", in -# that order. When this macro completes, a list of directories is left in -# the variable JNI_INCLUDE_DIRS. -# -# Example usage follows: -# -# AX_JNI_INCLUDE_DIR -# -# for JNI_INCLUDE_DIR in $JNI_INCLUDE_DIRS -# do -# CPPFLAGS="$CPPFLAGS -I$JNI_INCLUDE_DIR" -# done -# -# If you want to force a specific compiler: -# -# - at the configure.in level, set JAVAC=yourcompiler before calling -# AX_JNI_INCLUDE_DIR -# -# - at the configure level, setenv JAVAC -# -# Note: This macro can work with the autoconf M4 macros for Java programs. -# This particular macro is not part of the original set of macros. -# -# LICENSE -# -# Copyright (c) 2008 Don Anderson -# -# Copying and distribution of this file, with or without modification, are -# permitted in any medium without royalty provided the copyright notice -# and this notice are preserved. This file is offered as-is, without any -# warranty. - -#serial 14 - -AU_ALIAS([AC_JNI_INCLUDE_DIR], [AX_JNI_INCLUDE_DIR]) -AC_DEFUN([AX_JNI_INCLUDE_DIR],[ - -JNI_INCLUDE_DIRS="" - -if test "x$JAVA_HOME" != x; then - _JTOPDIR="$JAVA_HOME" -else - if test "x$JAVAC" = x; then - JAVAC=javac - fi - AC_PATH_PROG([_ACJNI_JAVAC], [$JAVAC], [no]) - if test "x$_ACJNI_JAVAC" = xno; then - AC_MSG_WARN([cannot find JDK; try setting \$JAVAC or \$JAVA_HOME]) - fi - _ACJNI_FOLLOW_SYMLINKS("$_ACJNI_JAVAC") - _JTOPDIR=`echo "$_ACJNI_FOLLOWED" | sed -e 's://*:/:g' -e 's:/[[^/]]*$::'` -fi - -case "$host_os" in - darwin*) # Apple Java headers are inside the Xcode bundle. - macos_version=$(sw_vers -productVersion | sed -n -e 's/^@<:@0-9@:>@*.\(@<:@0-9@:>@*\).@<:@0-9@:>@*/\1/p') - if @<:@ "$macos_version" -gt "7" @:>@; then - _JTOPDIR="$(xcrun --show-sdk-path)/System/Library/Frameworks/JavaVM.framework" - _JINC="$_JTOPDIR/Headers" - else - _JTOPDIR="/System/Library/Frameworks/JavaVM.framework" - _JINC="$_JTOPDIR/Headers" - fi - ;; - *) _JINC="$_JTOPDIR/include";; -esac -_AS_ECHO_LOG([_JTOPDIR=$_JTOPDIR]) -_AS_ECHO_LOG([_JINC=$_JINC]) - -# On Mac OS X 10.6.4, jni.h is a symlink: -# /System/Library/Frameworks/JavaVM.framework/Versions/Current/Headers/jni.h -# -> ../../CurrentJDK/Headers/jni.h. -AC_CACHE_CHECK(jni headers, ac_cv_jni_header_path, -[ - if test -f "$_JINC/jni.h"; then - ac_cv_jni_header_path="$_JINC" - JNI_INCLUDE_DIRS="$JNI_INCLUDE_DIRS $ac_cv_jni_header_path" - else - _JTOPDIR=`echo "$_JTOPDIR" | sed -e 's:/[[^/]]*$::'` - if test -f "$_JTOPDIR/include/jni.h"; then - ac_cv_jni_header_path="$_JTOPDIR/include" - JNI_INCLUDE_DIRS="$JNI_INCLUDE_DIRS $ac_cv_jni_header_path" - else - ac_cv_jni_header_path=none - fi - fi -]) - -# get the likely subdirectories for system specific java includes -case "$host_os" in -bsdi*) _JNI_INC_SUBDIRS="bsdos";; -freebsd*) _JNI_INC_SUBDIRS="freebsd";; -darwin*) _JNI_INC_SUBDIRS="darwin";; -linux*) _JNI_INC_SUBDIRS="linux genunix";; -osf*) _JNI_INC_SUBDIRS="alpha";; -solaris*) _JNI_INC_SUBDIRS="solaris";; -mingw*) _JNI_INC_SUBDIRS="win32";; -cygwin*) _JNI_INC_SUBDIRS="win32";; -*) _JNI_INC_SUBDIRS="genunix";; -esac - -if test "x$ac_cv_jni_header_path" != "xnone"; then - # add any subdirectories that are present - for JINCSUBDIR in $_JNI_INC_SUBDIRS - do - if test -d "$_JTOPDIR/include/$JINCSUBDIR"; then - JNI_INCLUDE_DIRS="$JNI_INCLUDE_DIRS $_JTOPDIR/include/$JINCSUBDIR" - fi - done -fi -]) - -# _ACJNI_FOLLOW_SYMLINKS -# Follows symbolic links on , -# finally setting variable _ACJNI_FOLLOWED -# ---------------------------------------- -AC_DEFUN([_ACJNI_FOLLOW_SYMLINKS],[ -# find the include directory relative to the javac executable -_cur="$1" -while ls -ld "$_cur" 2>/dev/null | grep " -> " >/dev/null; do - AC_MSG_CHECKING([symlink for $_cur]) - _slink=`ls -ld "$_cur" | sed 's/.* -> //'` - case "$_slink" in - /*) _cur="$_slink";; - # 'X' avoids triggering unwanted echo options. - *) _cur=`echo "X$_cur" | sed -e 's/^X//' -e 's:[[^/]]*$::'`"$_slink";; - esac - AC_MSG_RESULT([$_cur]) -done -_ACJNI_FOLLOWED="$_cur" -])# _ACJNI diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/build-aux/m4/bitcoin_secp.m4 b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/build-aux/m4/bitcoin_secp.m4 deleted file mode 100644 index 3b3975c..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/build-aux/m4/bitcoin_secp.m4 +++ /dev/null @@ -1,68 +0,0 @@ -dnl libsecp25k1 helper checks -AC_DEFUN([SECP_INT128_CHECK],[ -has_int128=$ac_cv_type___int128 -]) - -dnl escape "$0x" below using the m4 quadrigaph @S|@, and escape it again with a \ for the shell. -AC_DEFUN([SECP_64BIT_ASM_CHECK],[ -AC_MSG_CHECKING(for x86_64 assembly availability) -AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ - #include ]],[[ - uint64_t a = 11, tmp; - __asm__ __volatile__("movq \@S|@0x100000000,%1; mulq %%rsi" : "+a"(a) : "S"(tmp) : "cc", "%rdx"); - ]])],[has_64bit_asm=yes],[has_64bit_asm=no]) -AC_MSG_RESULT([$has_64bit_asm]) -]) - -dnl -AC_DEFUN([SECP_OPENSSL_CHECK],[ - has_libcrypto=no - m4_ifdef([PKG_CHECK_MODULES],[ - PKG_CHECK_MODULES([CRYPTO], [libcrypto], [has_libcrypto=yes],[has_libcrypto=no]) - if test x"$has_libcrypto" = x"yes"; then - TEMP_LIBS="$LIBS" - LIBS="$LIBS $CRYPTO_LIBS" - AC_CHECK_LIB(crypto, main,[AC_DEFINE(HAVE_LIBCRYPTO,1,[Define this symbol if libcrypto is installed])],[has_libcrypto=no]) - LIBS="$TEMP_LIBS" - fi - ]) - if test x$has_libcrypto = xno; then - AC_CHECK_HEADER(openssl/crypto.h,[ - AC_CHECK_LIB(crypto, main,[ - has_libcrypto=yes - CRYPTO_LIBS=-lcrypto - AC_DEFINE(HAVE_LIBCRYPTO,1,[Define this symbol if libcrypto is installed]) - ]) - ]) - LIBS= - fi -if test x"$has_libcrypto" = x"yes" && test x"$has_openssl_ec" = x; then - AC_MSG_CHECKING(for EC functions in libcrypto) - AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ - #include - #include - #include ]],[[ - EC_KEY *eckey = EC_KEY_new_by_curve_name(NID_secp256k1); - ECDSA_sign(0, NULL, 0, NULL, NULL, eckey); - ECDSA_verify(0, NULL, 0, NULL, 0, eckey); - EC_KEY_free(eckey); - ECDSA_SIG *sig_openssl; - sig_openssl = ECDSA_SIG_new(); - ECDSA_SIG_free(sig_openssl); - ]])],[has_openssl_ec=yes],[has_openssl_ec=no]) - AC_MSG_RESULT([$has_openssl_ec]) -fi -]) - -dnl -AC_DEFUN([SECP_GMP_CHECK],[ -if test x"$has_gmp" != x"yes"; then - CPPFLAGS_TEMP="$CPPFLAGS" - CPPFLAGS="$GMP_CPPFLAGS $CPPFLAGS" - LIBS_TEMP="$LIBS" - LIBS="$GMP_LIBS $LIBS" - AC_CHECK_HEADER(gmp.h,[AC_CHECK_LIB(gmp, __gmpz_init,[has_gmp=yes; GMP_LIBS="$GMP_LIBS -lgmp"; AC_DEFINE(HAVE_LIBGMP,1,[Define this symbol if libgmp is installed])])]) - CPPFLAGS="$CPPFLAGS_TEMP" - LIBS="$LIBS_TEMP" -fi -]) diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/configure.ac b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/configure.ac deleted file mode 100644 index d430f8f..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/configure.ac +++ /dev/null @@ -1,618 +0,0 @@ -AC_PREREQ([2.60]) -AC_INIT([libsecp256k1],[0.1]) -AC_CONFIG_AUX_DIR([build-aux]) -AC_CONFIG_MACRO_DIR([build-aux/m4]) -AC_CANONICAL_HOST -AH_TOP([#ifndef LIBSECP256K1_CONFIG_H]) -AH_TOP([#define LIBSECP256K1_CONFIG_H]) -AH_BOTTOM([#endif /*LIBSECP256K1_CONFIG_H*/]) -AM_INIT_AUTOMAKE([foreign subdir-objects]) -LT_INIT - -dnl make the compilation flags quiet unless V=1 is used -m4_ifdef([AM_SILENT_RULES], [AM_SILENT_RULES([yes])]) - -PKG_PROG_PKG_CONFIG - -AC_PATH_TOOL(AR, ar) -AC_PATH_TOOL(RANLIB, ranlib) -AC_PATH_TOOL(STRIP, strip) -AX_PROG_CC_FOR_BUILD - -if test "x$CFLAGS" = "x"; then - CFLAGS="-g" -fi - -AM_PROG_CC_C_O - -AC_PROG_CC_C89 -if test x"$ac_cv_prog_cc_c89" = x"no"; then - AC_MSG_ERROR([c89 compiler support required]) -fi -AM_PROG_AS - -case $host_os in - *darwin*) - if test x$cross_compiling != xyes; then - AC_PATH_PROG([BREW],brew,) - if test x$BREW != x; then - dnl These Homebrew packages may be keg-only, meaning that they won't be found - dnl in expected paths because they may conflict with system files. Ask - dnl Homebrew where each one is located, then adjust paths accordingly. - - openssl_prefix=`$BREW --prefix openssl 2>/dev/null` - gmp_prefix=`$BREW --prefix gmp 2>/dev/null` - if test x$openssl_prefix != x; then - PKG_CONFIG_PATH="$openssl_prefix/lib/pkgconfig:$PKG_CONFIG_PATH" - export PKG_CONFIG_PATH - fi - if test x$gmp_prefix != x; then - GMP_CPPFLAGS="-I$gmp_prefix/include" - GMP_LIBS="-L$gmp_prefix/lib" - fi - else - AC_PATH_PROG([PORT],port,) - dnl if homebrew isn't installed and macports is, add the macports default paths - dnl as a last resort. - if test x$PORT != x; then - CPPFLAGS="$CPPFLAGS -isystem /opt/local/include" - LDFLAGS="$LDFLAGS -L/opt/local/lib" - fi - fi - fi - ;; -esac - -CFLAGS="$CFLAGS -W" - -warn_CFLAGS="-std=c89 -pedantic -Wall -Wextra -Wcast-align -Wnested-externs -Wshadow -Wstrict-prototypes -Wno-unused-function -Wno-long-long -Wno-overlength-strings" -saved_CFLAGS="$CFLAGS" -CFLAGS="$CFLAGS $warn_CFLAGS" -AC_MSG_CHECKING([if ${CC} supports ${warn_CFLAGS}]) -AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char foo;]])], - [ AC_MSG_RESULT([yes]) ], - [ AC_MSG_RESULT([no]) - CFLAGS="$saved_CFLAGS" - ]) - -saved_CFLAGS="$CFLAGS" -CFLAGS="$CFLAGS -fvisibility=hidden" -AC_MSG_CHECKING([if ${CC} supports -fvisibility=hidden]) -AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char foo;]])], - [ AC_MSG_RESULT([yes]) ], - [ AC_MSG_RESULT([no]) - CFLAGS="$saved_CFLAGS" - ]) - -AC_ARG_ENABLE(benchmark, - AS_HELP_STRING([--enable-benchmark],[compile benchmark (default is yes)]), - [use_benchmark=$enableval], - [use_benchmark=yes]) - -AC_ARG_ENABLE(coverage, - AS_HELP_STRING([--enable-coverage],[enable compiler flags to support kcov coverage analysis]), - [enable_coverage=$enableval], - [enable_coverage=no]) - -AC_ARG_ENABLE(tests, - AS_HELP_STRING([--enable-tests],[compile tests (default is yes)]), - [use_tests=$enableval], - [use_tests=yes]) - -AC_ARG_ENABLE(openssl_tests, - AS_HELP_STRING([--enable-openssl-tests],[enable OpenSSL tests, if OpenSSL is available (default is auto)]), - [enable_openssl_tests=$enableval], - [enable_openssl_tests=auto]) - -AC_ARG_ENABLE(experimental, - AS_HELP_STRING([--enable-experimental],[allow experimental configure options (default is no)]), - [use_experimental=$enableval], - [use_experimental=no]) - -AC_ARG_ENABLE(exhaustive_tests, - AS_HELP_STRING([--enable-exhaustive-tests],[compile exhaustive tests (default is yes)]), - [use_exhaustive_tests=$enableval], - [use_exhaustive_tests=yes]) - -AC_ARG_ENABLE(endomorphism, - AS_HELP_STRING([--enable-endomorphism],[enable endomorphism (default is no)]), - [use_endomorphism=$enableval], - [use_endomorphism=no]) - -AC_ARG_ENABLE(ecmult_static_precomputation, - AS_HELP_STRING([--enable-ecmult-static-precomputation],[enable precomputed ecmult table for signing (default is yes)]), - [use_ecmult_static_precomputation=$enableval], - [use_ecmult_static_precomputation=auto]) - -AC_ARG_ENABLE(module_ecdh, - AS_HELP_STRING([--enable-module-ecdh],[enable ECDH shared secret computation (experimental)]), - [enable_module_ecdh=$enableval], - [enable_module_ecdh=no]) - -AC_ARG_ENABLE(module_recovery, - AS_HELP_STRING([--enable-module-recovery],[enable ECDSA pubkey recovery module (default is no)]), - [enable_module_recovery=$enableval], - [enable_module_recovery=no]) - -AC_ARG_ENABLE(module_generator, - AS_HELP_STRING([--enable-module-generator],[enable NUMS generator module (default is no)]), - [enable_module_generator=$enableval], - [enable_module_generator=no]) - -AC_ARG_ENABLE(module_commitment, - AS_HELP_STRING([--enable-module-commitment],[enable Pedersen commitments module (default is no)]), - [enable_module_commitment=$enableval], - [enable_module_commitment=no]) - -AC_ARG_ENABLE(module_rangeproof, - AS_HELP_STRING([--enable-module-rangeproof],[enable zero-knowledge range proofs module (default is no)]), - [enable_module_rangeproof=$enableval], - [enable_module_rangeproof=no]) - -AC_ARG_ENABLE(module_bulletproof, - AS_HELP_STRING([--enable-module-bulletproof],[enable Pedersen / zero-knowledge bulletproofs module (default is no)]), - [enable_module_bulletproof=$enableval], - [enable_module_bulletproof=no]) - - -AC_ARG_ENABLE(module_whitelist, - AS_HELP_STRING([--enable-module-whitelist],[enable key whitelisting module (default is no)]), - [enable_module_whitelist=$enableval], - [enable_module_whitelist=no]) - -AC_ARG_ENABLE(jni, - AS_HELP_STRING([--enable-jni],[enable libsecp256k1_jni (default is no)]), - [use_jni=$enableval], - [use_jni=no]) - -AC_ARG_ENABLE(module_surjectionproof, - AS_HELP_STRING([--enable-module-surjectionproof],[enable surjection proof module (default is no)]), - [enable_module_surjectionproof=$enableval], - [enable_module_surjectionproof=no]) - -AC_ARG_WITH([field], [AS_HELP_STRING([--with-field=64bit|32bit|auto], -[Specify Field Implementation. Default is auto])],[req_field=$withval], [req_field=auto]) - -AC_ARG_WITH([bignum], [AS_HELP_STRING([--with-bignum=gmp|no|auto], -[Specify Bignum Implementation. Default is auto])],[req_bignum=$withval], [req_bignum=auto]) - -AC_ARG_WITH([scalar], [AS_HELP_STRING([--with-scalar=64bit|32bit|auto], -[Specify scalar implementation. Default is auto])],[req_scalar=$withval], [req_scalar=auto]) - -AC_ARG_WITH([asm], [AS_HELP_STRING([--with-asm=x86_64|arm|no|auto] -[Specify assembly optimizations to use. Default is auto (experimental: arm)])],[req_asm=$withval], [req_asm=auto]) - -AC_CHECK_TYPES([__int128]) - -AC_MSG_CHECKING([for __builtin_expect]) -AC_COMPILE_IFELSE([AC_LANG_SOURCE([[void myfunc() {__builtin_expect(0,0);}]])], - [ AC_MSG_RESULT([yes]);AC_DEFINE(HAVE_BUILTIN_EXPECT,1,[Define this symbol if __builtin_expect is available]) ], - [ AC_MSG_RESULT([no]) - ]) - -if test x"$enable_coverage" = x"yes"; then - AC_DEFINE(COVERAGE, 1, [Define this symbol to compile out all VERIFY code]) - CFLAGS="$CFLAGS -O0 --coverage" - LDFLAGS="--coverage" -else - CFLAGS="$CFLAGS -O3" -fi - -AC_MSG_CHECKING([for __builtin_popcount]) -AC_COMPILE_IFELSE([AC_LANG_SOURCE([[void myfunc() {__builtin_popcount(0);}]])], - [ AC_MSG_RESULT([yes]);AC_DEFINE(HAVE_BUILTIN_POPCOUNT,1,[Define this symbol if __builtin_popcount is available]) ], - [ AC_MSG_RESULT([no]) - ]) - -if test x"$use_ecmult_static_precomputation" != x"no"; then - save_cross_compiling=$cross_compiling - cross_compiling=no - TEMP_CC="$CC" - CC="$CC_FOR_BUILD" - AC_MSG_CHECKING([native compiler: ${CC_FOR_BUILD}]) - AC_RUN_IFELSE( - [AC_LANG_PROGRAM([], [return 0])], - [working_native_cc=yes], - [working_native_cc=no],[dnl]) - CC="$TEMP_CC" - cross_compiling=$save_cross_compiling - - if test x"$working_native_cc" = x"no"; then - set_precomp=no - if test x"$use_ecmult_static_precomputation" = x"yes"; then - AC_MSG_ERROR([${CC_FOR_BUILD} does not produce working binaries. Please set CC_FOR_BUILD]) - else - AC_MSG_RESULT([${CC_FOR_BUILD} does not produce working binaries. Please set CC_FOR_BUILD]) - fi - else - AC_MSG_RESULT([ok]) - set_precomp=yes - fi -else - set_precomp=no -fi - -AC_MSG_CHECKING([for __builtin_clzll]) -AC_COMPILE_IFELSE([AC_LANG_SOURCE([[void myfunc() { __builtin_clzll(1);}]])], - [ AC_MSG_RESULT([yes]);AC_DEFINE(HAVE_BUILTIN_CLZLL,1,[Define this symbol if __builtin_clzll is available]) ], - [ AC_MSG_RESULT([no]) - ]) - -if test x"$req_asm" = x"auto"; then - SECP_64BIT_ASM_CHECK - if test x"$has_64bit_asm" = x"yes"; then - set_asm=x86_64 - fi - if test x"$set_asm" = x; then - set_asm=no - fi -else - set_asm=$req_asm - case $set_asm in - x86_64) - SECP_64BIT_ASM_CHECK - if test x"$has_64bit_asm" != x"yes"; then - AC_MSG_ERROR([x86_64 assembly optimization requested but not available]) - fi - ;; - arm) - ;; - no) - ;; - *) - AC_MSG_ERROR([invalid assembly optimization selection]) - ;; - esac -fi - -if test x"$req_field" = x"auto"; then - if test x"set_asm" = x"x86_64"; then - set_field=64bit - fi - if test x"$set_field" = x; then - SECP_INT128_CHECK - if test x"$has_int128" = x"yes"; then - set_field=64bit - fi - fi - if test x"$set_field" = x; then - set_field=32bit - fi -else - set_field=$req_field - case $set_field in - 64bit) - if test x"$set_asm" != x"x86_64"; then - SECP_INT128_CHECK - if test x"$has_int128" != x"yes"; then - AC_MSG_ERROR([64bit field explicitly requested but neither __int128 support or x86_64 assembly available]) - fi - fi - ;; - 32bit) - ;; - *) - AC_MSG_ERROR([invalid field implementation selection]) - ;; - esac -fi - -if test x"$req_scalar" = x"auto"; then - SECP_INT128_CHECK - if test x"$has_int128" = x"yes"; then - set_scalar=64bit - fi - if test x"$set_scalar" = x; then - set_scalar=32bit - fi -else - set_scalar=$req_scalar - case $set_scalar in - 64bit) - SECP_INT128_CHECK - if test x"$has_int128" != x"yes"; then - AC_MSG_ERROR([64bit scalar explicitly requested but __int128 support not available]) - fi - ;; - 32bit) - ;; - *) - AC_MSG_ERROR([invalid scalar implementation selected]) - ;; - esac -fi - -if test x"$req_bignum" = x"auto"; then - SECP_GMP_CHECK - if test x"$has_gmp" = x"yes"; then - set_bignum=gmp - fi - - if test x"$set_bignum" = x; then - set_bignum=no - fi -else - set_bignum=$req_bignum - case $set_bignum in - gmp) - SECP_GMP_CHECK - if test x"$has_gmp" != x"yes"; then - AC_MSG_ERROR([gmp bignum explicitly requested but libgmp not available]) - fi - ;; - no) - ;; - *) - AC_MSG_ERROR([invalid bignum implementation selection]) - ;; - esac -fi - -# select assembly optimization -use_external_asm=no - -case $set_asm in -x86_64) - AC_DEFINE(USE_ASM_X86_64, 1, [Define this symbol to enable x86_64 assembly optimizations]) - ;; -arm) - use_external_asm=yes - ;; -no) - ;; -*) - AC_MSG_ERROR([invalid assembly optimizations]) - ;; -esac - -# select field implementation -case $set_field in -64bit) - AC_DEFINE(USE_FIELD_5X52, 1, [Define this symbol to use the FIELD_5X52 implementation]) - ;; -32bit) - AC_DEFINE(USE_FIELD_10X26, 1, [Define this symbol to use the FIELD_10X26 implementation]) - ;; -*) - AC_MSG_ERROR([invalid field implementation]) - ;; -esac - -# select bignum implementation -case $set_bignum in -gmp) - AC_DEFINE(HAVE_LIBGMP, 1, [Define this symbol if libgmp is installed]) - AC_DEFINE(USE_NUM_GMP, 1, [Define this symbol to use the gmp implementation for num]) - AC_DEFINE(USE_FIELD_INV_NUM, 1, [Define this symbol to use the num-based field inverse implementation]) - AC_DEFINE(USE_SCALAR_INV_NUM, 1, [Define this symbol to use the num-based scalar inverse implementation]) - ;; -no) - AC_DEFINE(USE_NUM_NONE, 1, [Define this symbol to use no num implementation]) - AC_DEFINE(USE_FIELD_INV_BUILTIN, 1, [Define this symbol to use the native field inverse implementation]) - AC_DEFINE(USE_SCALAR_INV_BUILTIN, 1, [Define this symbol to use the native scalar inverse implementation]) - ;; -*) - AC_MSG_ERROR([invalid bignum implementation]) - ;; -esac - -#select scalar implementation -case $set_scalar in -64bit) - AC_DEFINE(USE_SCALAR_4X64, 1, [Define this symbol to use the 4x64 scalar implementation]) - ;; -32bit) - AC_DEFINE(USE_SCALAR_8X32, 1, [Define this symbol to use the 8x32 scalar implementation]) - ;; -*) - AC_MSG_ERROR([invalid scalar implementation]) - ;; -esac - -if test x"$use_tests" = x"yes"; then - SECP_OPENSSL_CHECK - if test x"$has_openssl_ec" = x"yes"; then - if test x"$enable_openssl_tests" != x"no"; then - AC_DEFINE(ENABLE_OPENSSL_TESTS, 1, [Define this symbol if OpenSSL EC functions are available]) - SECP_TEST_INCLUDES="$SSL_CFLAGS $CRYPTO_CFLAGS" - SECP_TEST_LIBS="$CRYPTO_LIBS" - - case $host in - *mingw*) - SECP_TEST_LIBS="$SECP_TEST_LIBS -lgdi32" - ;; - esac - fi - else - if test x"$enable_openssl_tests" = x"yes"; then - AC_MSG_ERROR([OpenSSL tests requested but OpenSSL with EC support is not available]) - fi - fi -else - if test x"$enable_openssl_tests" = x"yes"; then - AC_MSG_ERROR([OpenSSL tests requested but tests are not enabled]) - fi -fi - -if test x"$use_jni" != x"no"; then - AX_JNI_INCLUDE_DIR - have_jni_dependencies=yes - if test x"$enable_module_ecdh" = x"no"; then - have_jni_dependencies=no - fi - if test "x$JNI_INCLUDE_DIRS" = "x"; then - have_jni_dependencies=no - fi - if test "x$have_jni_dependencies" = "xno"; then - if test x"$use_jni" = x"yes"; then - AC_MSG_ERROR([jni support explicitly requested but headers/dependencies were not found. Enable ECDH and try again.]) - fi - AC_MSG_WARN([jni headers/dependencies not found. jni support disabled]) - use_jni=no - else - use_jni=yes - for JNI_INCLUDE_DIR in $JNI_INCLUDE_DIRS; do - JNI_INCLUDES="$JNI_INCLUDES -I$JNI_INCLUDE_DIR" - done - fi -fi - -if test x"$set_bignum" = x"gmp"; then - SECP_LIBS="$SECP_LIBS $GMP_LIBS" - SECP_INCLUDES="$SECP_INCLUDES $GMP_CPPFLAGS" -fi - -if test x"$use_endomorphism" = x"yes"; then - AC_DEFINE(USE_ENDOMORPHISM, 1, [Define this symbol to use endomorphism optimization]) -fi - -if test x"$set_precomp" = x"yes"; then - AC_DEFINE(USE_ECMULT_STATIC_PRECOMPUTATION, 1, [Define this symbol to use a statically generated ecmult table]) -fi - -if test x"$enable_module_ecdh" = x"yes"; then - AC_DEFINE(ENABLE_MODULE_ECDH, 1, [Define this symbol to enable the ECDH module]) -fi - -if test x"$enable_module_recovery" = x"yes"; then - AC_DEFINE(ENABLE_MODULE_RECOVERY, 1, [Define this symbol to enable the ECDSA pubkey recovery module]) -fi - -if test x"$enable_module_generator" = x"yes"; then - AC_DEFINE(ENABLE_MODULE_GENERATOR, 1, [Define this symbol to enable the NUMS generator module]) -fi - -if test x"$enable_module_commitment" = x"yes"; then - AC_DEFINE(ENABLE_MODULE_COMMITMENT, 1, [Define this symbol to enable the Pedersen commitment module]) -fi - -if test x"$enable_module_rangeproof" = x"yes"; then - AC_DEFINE(ENABLE_MODULE_RANGEPROOF, 1, [Define this symbol to enable the zero knowledge range proof module]) -fi - -if test x"$enable_module_bulletproof" = x"yes"; then - AC_DEFINE(ENABLE_MODULE_BULLETPROOF, 1, [Define this symbol to enable the Pedersen / zero knowledge bulletproof module]) -fi - -if test x"$enable_module_whitelist" = x"yes"; then - AC_DEFINE(ENABLE_MODULE_WHITELIST, 1, [Define this symbol to enable the key whitelisting module]) -fi - -if test x"$enable_module_surjectionproof" = x"yes"; then - AC_DEFINE(ENABLE_MODULE_SURJECTIONPROOF, 1, [Define this symbol to enable the surjection proof module]) -fi - -AC_C_BIGENDIAN() - -if test x"$use_external_asm" = x"yes"; then - AC_DEFINE(USE_EXTERNAL_ASM, 1, [Define this symbol if an external (non-inline) assembly implementation is used]) -fi - -AC_MSG_NOTICE([Using static precomputation: $set_precomp]) -AC_MSG_NOTICE([Using assembly optimizations: $set_asm]) -AC_MSG_NOTICE([Using field implementation: $set_field]) -AC_MSG_NOTICE([Using bignum implementation: $set_bignum]) -AC_MSG_NOTICE([Using scalar implementation: $set_scalar]) -AC_MSG_NOTICE([Using endomorphism optimizations: $use_endomorphism]) -AC_MSG_NOTICE([Building benchmarks: $use_benchmark]) -AC_MSG_NOTICE([Building for coverage analysis: $enable_coverage]) -AC_MSG_NOTICE([Building ECDH module: $enable_module_ecdh]) -AC_MSG_NOTICE([Building ECDSA pubkey recovery module: $enable_module_recovery]) -AC_MSG_NOTICE([Using jni: $use_jni]) - -if test x"$enable_experimental" = x"yes"; then - AC_MSG_NOTICE([******]) - AC_MSG_NOTICE([WARNING: experimental build]) - AC_MSG_NOTICE([Experimental features do not have stable APIs or properties, and may not be safe for production use.]) - AC_MSG_NOTICE([Building ECDH module: $enable_module_ecdh]) - AC_MSG_NOTICE([Building NUMS generator module: $enable_module_generator]) - AC_MSG_NOTICE([Building Pedersen commitment module: $enable_module_commitment]) - AC_MSG_NOTICE([Building range proof module: $enable_module_rangeproof]) - AC_MSG_NOTICE([Building bulletproof module: $enable_module_bulletproof]) - AC_MSG_NOTICE([Building key whitelisting module: $enable_module_whitelist]) - AC_MSG_NOTICE([Building surjection proof module: $enable_module_surjectionproof]) - AC_MSG_NOTICE([******]) - - if test x"$enable_module_generator" != x"yes"; then - if test x"$enable_module_commitment" = x"yes"; then - AC_MSG_ERROR([Commitment module requires the generator module. Use --enable-module-generator to allow.]) - fi - if test x"$enable_module_bulletproof" = x"yes"; then - AC_MSG_ERROR([Bulletproof module requires the generator module. Use --enable-module-generator to allow.]) - fi - fi - - if test x"$enable_module_commitment" != x"yes"; then - if test x"$enable_module_rangeproof" = x"yes"; then - AC_MSG_ERROR([Rangeproof module requires the commitment module. Use --enable-module-commitment to allow.]) - fi - if test x"$enable_module_bulletproof" = x"yes"; then - AC_MSG_ERROR([Bulletproof module requires the commitment module. Use --enable-module-commitment to allow.]) - fi - fi - - if test x"$enable_module_rangeproof" != x"yes"; then - if test x"$enable_module_whitelist" = x"yes"; then - AC_MSG_ERROR([Whitelist module requires the rangeproof module. Use --enable-module-rangeproof to allow.]) - fi - if test x"$enable_module_surjectionproof" = x"yes"; then - AC_MSG_ERROR([Surjection proof module requires the rangeproof module. Use --enable-module-rangeproof to allow.]) - fi - fi -else - if test x"$enable_module_ecdh" = x"yes"; then - AC_MSG_ERROR([ECDH module is experimental. Use --enable-experimental to allow.]) - fi - if test x"$set_asm" = x"arm"; then - AC_MSG_ERROR([ARM assembly optimization is experimental. Use --enable-experimental to allow.]) - fi - if test x"$enable_module_generator" = x"yes"; then - AC_MSG_ERROR([NUMS generator module is experimental. Use --enable-experimental to allow.]) - fi - if test x"$enable_module_commitment" = x"yes"; then - AC_MSG_ERROR([Pedersen commitment module is experimental. Use --enable-experimental to allow.]) - fi - if test x"$enable_module_rangeproof" = x"yes"; then - AC_MSG_ERROR([Range proof module is experimental. Use --enable-experimental to allow.]) - fi - if test x"$enable_module_bulletproof" = x"yes"; then - AC_MSG_ERROR([Bulletproof module is experimental. Use --enable-experimental to allow.]) - fi - if test x"$enable_module_whitelist" = x"yes"; then - AC_MSG_ERROR([Key whitelisting module is experimental. Use --enable-experimental to allow.]) - fi - if test x"$enable_module_surjectionproof" = x"yes"; then - AC_MSG_ERROR([Surjection proof module is experimental. Use --enable-experimental to allow.]) - fi -fi - -AC_CONFIG_HEADERS([src/libsecp256k1-config.h]) -AC_CONFIG_FILES([Makefile libsecp256k1.pc]) -AC_SUBST(JNI_INCLUDES) -AC_SUBST(SECP_INCLUDES) -AC_SUBST(SECP_LIBS) -AC_SUBST(SECP_TEST_LIBS) -AC_SUBST(SECP_TEST_INCLUDES) -AM_CONDITIONAL([ENABLE_COVERAGE], [test x"$enable_coverage" = x"yes"]) -AM_CONDITIONAL([USE_TESTS], [test x"$use_tests" != x"no"]) -AM_CONDITIONAL([USE_EXHAUSTIVE_TESTS], [test x"$use_exhaustive_tests" != x"no"]) -AM_CONDITIONAL([USE_BENCHMARK], [test x"$use_benchmark" = x"yes"]) -AM_CONDITIONAL([USE_ECMULT_STATIC_PRECOMPUTATION], [test x"$set_precomp" = x"yes"]) -AM_CONDITIONAL([ENABLE_MODULE_ECDH], [test x"$enable_module_ecdh" = x"yes"]) -AM_CONDITIONAL([ENABLE_MODULE_RECOVERY], [test x"$enable_module_recovery" = x"yes"]) -AM_CONDITIONAL([ENABLE_MODULE_GENERATOR], [test x"$enable_module_generator" = x"yes"]) -AM_CONDITIONAL([ENABLE_MODULE_COMMITMENT], [test x"$enable_module_commitment" = x"yes"]) -AM_CONDITIONAL([ENABLE_MODULE_RANGEPROOF], [test x"$enable_module_rangeproof" = x"yes"]) -AM_CONDITIONAL([ENABLE_MODULE_BULLETPROOF], [test x"$enable_module_bulletproof" = x"yes"]) -AM_CONDITIONAL([ENABLE_MODULE_WHITELIST], [test x"$enable_module_whitelist" = x"yes"]) -AM_CONDITIONAL([USE_JNI], [test x"$use_jni" == x"yes"]) -AM_CONDITIONAL([USE_EXTERNAL_ASM], [test x"$use_external_asm" = x"yes"]) -AM_CONDITIONAL([USE_ASM_ARM], [test x"$set_asm" = x"arm"]) -AM_CONDITIONAL([ENABLE_MODULE_SURJECTIONPROOF], [test x"$enable_module_surjectionproof" = x"yes"]) - -dnl make sure nothing new is exported so that we don't break the cache -PKGCONFIG_PATH_TEMP="$PKG_CONFIG_PATH" -unset PKG_CONFIG_PATH -PKG_CONFIG_PATH="$PKGCONFIG_PATH_TEMP" - -AC_OUTPUT diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/contrib/lax_der_parsing.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/contrib/lax_der_parsing.h deleted file mode 100644 index 7eaf63b..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/contrib/lax_der_parsing.h +++ /dev/null @@ -1,91 +0,0 @@ -/********************************************************************** - * Copyright (c) 2015 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -/**** - * Please do not link this file directly. It is not part of the libsecp256k1 - * project and does not promise any stability in its API, functionality or - * presence. Projects which use this code should instead copy this header - * and its accompanying .c file directly into their codebase. - ****/ - -/* This file defines a function that parses DER with various errors and - * violations. This is not a part of the library itself, because the allowed - * violations are chosen arbitrarily and do not follow or establish any - * standard. - * - * In many places it matters that different implementations do not only accept - * the same set of valid signatures, but also reject the same set of signatures. - * The only means to accomplish that is by strictly obeying a standard, and not - * accepting anything else. - * - * Nonetheless, sometimes there is a need for compatibility with systems that - * use signatures which do not strictly obey DER. The snippet below shows how - * certain violations are easily supported. You may need to adapt it. - * - * Do not use this for new systems. Use well-defined DER or compact signatures - * instead if you have the choice (see secp256k1_ecdsa_signature_parse_der and - * secp256k1_ecdsa_signature_parse_compact). - * - * The supported violations are: - * - All numbers are parsed as nonnegative integers, even though X.609-0207 - * section 8.3.3 specifies that integers are always encoded as two's - * complement. - * - Integers can have length 0, even though section 8.3.1 says they can't. - * - Integers with overly long padding are accepted, violation section - * 8.3.2. - * - 127-byte long length descriptors are accepted, even though section - * 8.1.3.5.c says that they are not. - * - Trailing garbage data inside or after the signature is ignored. - * - The length descriptor of the sequence is ignored. - * - * Compared to for example OpenSSL, many violations are NOT supported: - * - Using overly long tag descriptors for the sequence or integers inside, - * violating section 8.1.2.2. - * - Encoding primitive integers as constructed values, violating section - * 8.3.1. - */ - -#ifndef SECP256K1_CONTRIB_LAX_DER_PARSING_H -#define SECP256K1_CONTRIB_LAX_DER_PARSING_H - -#include - -#ifdef __cplusplus -extern "C" { -#endif - -/** Parse a signature in "lax DER" format - * - * Returns: 1 when the signature could be parsed, 0 otherwise. - * Args: ctx: a secp256k1 context object - * Out: sig: a pointer to a signature object - * In: input: a pointer to the signature to be parsed - * inputlen: the length of the array pointed to be input - * - * This function will accept any valid DER encoded signature, even if the - * encoded numbers are out of range. In addition, it will accept signatures - * which violate the DER spec in various ways. Its purpose is to allow - * validation of the Bitcoin blockchain, which includes non-DER signatures - * from before the network rules were updated to enforce DER. Note that - * the set of supported violations is a strict subset of what OpenSSL will - * accept. - * - * After the call, sig will always be initialized. If parsing failed or the - * encoded numbers are out of range, signature validation with it is - * guaranteed to fail for every message and public key. - */ -int ecdsa_signature_parse_der_lax( - const secp256k1_context* ctx, - secp256k1_ecdsa_signature* sig, - const unsigned char *input, - size_t inputlen -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); - -#ifdef __cplusplus -} -#endif - -#endif /* SECP256K1_CONTRIB_LAX_DER_PARSING_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/contrib/lax_der_privatekey_parsing.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/contrib/lax_der_privatekey_parsing.h deleted file mode 100644 index fece261..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/contrib/lax_der_privatekey_parsing.h +++ /dev/null @@ -1,90 +0,0 @@ -/********************************************************************** - * Copyright (c) 2014, 2015 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -/**** - * Please do not link this file directly. It is not part of the libsecp256k1 - * project and does not promise any stability in its API, functionality or - * presence. Projects which use this code should instead copy this header - * and its accompanying .c file directly into their codebase. - ****/ - -/* This file contains code snippets that parse DER private keys with - * various errors and violations. This is not a part of the library - * itself, because the allowed violations are chosen arbitrarily and - * do not follow or establish any standard. - * - * It also contains code to serialize private keys in a compatible - * manner. - * - * These functions are meant for compatibility with applications - * that require BER encoded keys. When working with secp256k1-specific - * code, the simple 32-byte private keys normally used by the - * library are sufficient. - */ - -#ifndef SECP256K1_CONTRIB_BER_PRIVATEKEY_H -#define SECP256K1_CONTRIB_BER_PRIVATEKEY_H - -#include - -#ifdef __cplusplus -extern "C" { -#endif - -/** Export a private key in DER format. - * - * Returns: 1 if the private key was valid. - * Args: ctx: pointer to a context object, initialized for signing (cannot - * be NULL) - * Out: privkey: pointer to an array for storing the private key in BER. - * Should have space for 279 bytes, and cannot be NULL. - * privkeylen: Pointer to an int where the length of the private key in - * privkey will be stored. - * In: seckey: pointer to a 32-byte secret key to export. - * compressed: 1 if the key should be exported in - * compressed format, 0 otherwise - * - * This function is purely meant for compatibility with applications that - * require BER encoded keys. When working with secp256k1-specific code, the - * simple 32-byte private keys are sufficient. - * - * Note that this function does not guarantee correct DER output. It is - * guaranteed to be parsable by secp256k1_ec_privkey_import_der - */ -SECP256K1_WARN_UNUSED_RESULT int ec_privkey_export_der( - const secp256k1_context* ctx, - unsigned char *privkey, - size_t *privkeylen, - const unsigned char *seckey, - int compressed -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); - -/** Import a private key in DER format. - * Returns: 1 if a private key was extracted. - * Args: ctx: pointer to a context object (cannot be NULL). - * Out: seckey: pointer to a 32-byte array for storing the private key. - * (cannot be NULL). - * In: privkey: pointer to a private key in DER format (cannot be NULL). - * privkeylen: length of the DER private key pointed to be privkey. - * - * This function will accept more than just strict DER, and even allow some BER - * violations. The public key stored inside the DER-encoded private key is not - * verified for correctness, nor are the curve parameters. Use this function - * only if you know in advance it is supposed to contain a secp256k1 private - * key. - */ -SECP256K1_WARN_UNUSED_RESULT int ec_privkey_import_der( - const secp256k1_context* ctx, - unsigned char *seckey, - const unsigned char *privkey, - size_t privkeylen -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); - -#ifdef __cplusplus -} -#endif - -#endif /* SECP256K1_CONTRIB_BER_PRIVATEKEY_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1.h deleted file mode 100644 index 3c4a311..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1.h +++ /dev/null @@ -1,654 +0,0 @@ -#ifndef SECP256K1_H -#define SECP256K1_H - -#ifdef __cplusplus -extern "C" { -#endif - -#include - -/* These rules specify the order of arguments in API calls: - * - * 1. Context pointers go first, followed by output arguments, combined - * output/input arguments, and finally input-only arguments. - * 2. Array lengths always immediately the follow the argument whose length - * they describe, even if this violates rule 1. - * 3. Within the OUT/OUTIN/IN groups, pointers to data that is typically generated - * later go first. This means: signatures, public nonces, private nonces, - * messages, public keys, secret keys, tweaks. - * 4. Arguments that are not data pointers go last, from more complex to less - * complex: function pointers, algorithm names, messages, void pointers, - * counts, flags, booleans. - * 5. Opaque data pointers follow the function pointer they are to be passed to. - */ - -/** Opaque data structure that holds context information (precomputed tables etc.). - * - * The purpose of context structures is to cache large precomputed data tables - * that are expensive to construct, and also to maintain the randomization data - * for blinding. - * - * Do not create a new context object for each operation, as construction is - * far slower than all other API calls (~100 times slower than an ECDSA - * verification). - * - * A constructed context can safely be used from multiple threads - * simultaneously, but API call that take a non-const pointer to a context - * need exclusive access to it. In particular this is the case for - * secp256k1_context_destroy and secp256k1_context_randomize. - * - * Regarding randomization, either do it once at creation time (in which case - * you do not need any locking for the other calls), or use a read-write lock. - */ -typedef struct secp256k1_context_struct secp256k1_context; - -/** Opaque data structure that holds rewriteable "scratch space" - * - * The purpose of this structure is to replace dynamic memory allocations, - * because we target architectures where this may not be available. It is - * essentially a resizable (within specified parameters) block of bytes, - * which is initially created either by memory allocation or TODO as a pointer - * into some fixed rewritable space. - * - * Unlike the context object, this cannot safely be shared between threads - * without additional synchronization logic. - */ -typedef struct secp256k1_scratch_space_struct secp256k1_scratch_space; - -/** Opaque data structure that holds a parsed and valid public key. - * - * The exact representation of data inside is implementation defined and not - * guaranteed to be portable between different platforms or versions. It is - * however guaranteed to be 64 bytes in size, and can be safely copied/moved. - * If you need to convert to a format suitable for storage, transmission, or - * comparison, use secp256k1_ec_pubkey_serialize and secp256k1_ec_pubkey_parse. - */ -typedef struct { - unsigned char data[64]; -} secp256k1_pubkey; - -/** Opaque data structured that holds a parsed ECDSA signature. - * - * The exact representation of data inside is implementation defined and not - * guaranteed to be portable between different platforms or versions. It is - * however guaranteed to be 64 bytes in size, and can be safely copied/moved. - * If you need to convert to a format suitable for storage, transmission, or - * comparison, use the secp256k1_ecdsa_signature_serialize_* and - * secp256k1_ecdsa_signature_parse_* functions. - */ -typedef struct { - unsigned char data[64]; -} secp256k1_ecdsa_signature; - -/** A pointer to a function to deterministically generate a nonce. - * - * Returns: 1 if a nonce was successfully generated. 0 will cause signing to fail. - * Out: nonce32: pointer to a 32-byte array to be filled by the function. - * In: msg32: the 32-byte message hash being verified (will not be NULL) - * key32: pointer to a 32-byte secret key (will not be NULL) - * algo16: pointer to a 16-byte array describing the signature - * algorithm (will be NULL for ECDSA for compatibility). - * data: Arbitrary data pointer that is passed through. - * attempt: how many iterations we have tried to find a nonce. - * This will almost always be 0, but different attempt values - * are required to result in a different nonce. - * - * Except for test cases, this function should compute some cryptographic hash of - * the message, the algorithm, the key and the attempt. - */ -typedef int (*secp256k1_nonce_function)( - unsigned char *nonce32, - const unsigned char *msg32, - const unsigned char *key32, - const unsigned char *algo16, - void *data, - unsigned int attempt -); - -# if !defined(SECP256K1_GNUC_PREREQ) -# if defined(__GNUC__)&&defined(__GNUC_MINOR__) -# define SECP256K1_GNUC_PREREQ(_maj,_min) \ - ((__GNUC__<<16)+__GNUC_MINOR__>=((_maj)<<16)+(_min)) -# else -# define SECP256K1_GNUC_PREREQ(_maj,_min) 0 -# endif -# endif - -# if (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L) ) -# if SECP256K1_GNUC_PREREQ(2,7) -# define SECP256K1_INLINE __inline__ -# elif (defined(_MSC_VER)) -# define SECP256K1_INLINE __inline -# else -# define SECP256K1_INLINE -# endif -# else -# define SECP256K1_INLINE inline -# endif - -#ifndef SECP256K1_API -# if defined(_WIN32) -# ifdef SECP256K1_BUILD -# define SECP256K1_API __declspec(dllexport) -# else -# define SECP256K1_API -# endif -# elif defined(__GNUC__) && defined(SECP256K1_BUILD) -# define SECP256K1_API __attribute__ ((visibility ("default"))) -# else -# define SECP256K1_API -# endif -#endif - -/**Warning attributes - * NONNULL is not used if SECP256K1_BUILD is set to avoid the compiler optimizing out - * some paranoid null checks. */ -# if defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4) -# define SECP256K1_WARN_UNUSED_RESULT __attribute__ ((__warn_unused_result__)) -# else -# define SECP256K1_WARN_UNUSED_RESULT -# endif -# if !defined(SECP256K1_BUILD) && defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4) -# define SECP256K1_ARG_NONNULL(_x) __attribute__ ((__nonnull__(_x))) -# else -# define SECP256K1_ARG_NONNULL(_x) -# endif - -/** All flags' lower 8 bits indicate what they're for. Do not use directly. */ -#define SECP256K1_FLAGS_TYPE_MASK ((1 << 8) - 1) -#define SECP256K1_FLAGS_TYPE_CONTEXT (1 << 0) -#define SECP256K1_FLAGS_TYPE_COMPRESSION (1 << 1) -/** The higher bits contain the actual data. Do not use directly. */ -#define SECP256K1_FLAGS_BIT_CONTEXT_VERIFY (1 << 8) -#define SECP256K1_FLAGS_BIT_CONTEXT_SIGN (1 << 9) -#define SECP256K1_FLAGS_BIT_COMPRESSION (1 << 8) - -/** Flags to pass to secp256k1_context_create. */ -#define SECP256K1_CONTEXT_VERIFY (SECP256K1_FLAGS_TYPE_CONTEXT | SECP256K1_FLAGS_BIT_CONTEXT_VERIFY) -#define SECP256K1_CONTEXT_SIGN (SECP256K1_FLAGS_TYPE_CONTEXT | SECP256K1_FLAGS_BIT_CONTEXT_SIGN) -#define SECP256K1_CONTEXT_NONE (SECP256K1_FLAGS_TYPE_CONTEXT) - -/** Flag to pass to secp256k1_ec_pubkey_serialize and secp256k1_ec_privkey_export. */ -#define SECP256K1_EC_COMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION | SECP256K1_FLAGS_BIT_COMPRESSION) -#define SECP256K1_EC_UNCOMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION) - -/** Prefix byte used to tag various encoded curvepoints for specific purposes */ -#define SECP256K1_TAG_PUBKEY_EVEN 0x02 -#define SECP256K1_TAG_PUBKEY_ODD 0x03 -#define SECP256K1_TAG_PUBKEY_UNCOMPRESSED 0x04 -#define SECP256K1_TAG_PUBKEY_HYBRID_EVEN 0x06 -#define SECP256K1_TAG_PUBKEY_HYBRID_ODD 0x07 - -/** Create a secp256k1 context object. - * - * Returns: a newly created context object. - * In: flags: which parts of the context to initialize. - * - * See also secp256k1_context_randomize. - */ -SECP256K1_API secp256k1_context* secp256k1_context_create( - unsigned int flags -) SECP256K1_WARN_UNUSED_RESULT; - -/** Copies a secp256k1 context object. - * - * Returns: a newly created context object. - * Args: ctx: an existing context to copy (cannot be NULL) - */ -SECP256K1_API secp256k1_context* secp256k1_context_clone( - const secp256k1_context* ctx -) SECP256K1_ARG_NONNULL(1) SECP256K1_WARN_UNUSED_RESULT; - -/** Destroy a secp256k1 context object. - * - * The context pointer may not be used afterwards. - * Args: ctx: an existing context to destroy (cannot be NULL) - */ -SECP256K1_API void secp256k1_context_destroy( - secp256k1_context* ctx -); - -/** Set a callback function to be called when an illegal argument is passed to - * an API call. It will only trigger for violations that are mentioned - * explicitly in the header. - * - * The philosophy is that these shouldn't be dealt with through a - * specific return value, as calling code should not have branches to deal with - * the case that this code itself is broken. - * - * On the other hand, during debug stage, one would want to be informed about - * such mistakes, and the default (crashing) may be inadvisable. - * When this callback is triggered, the API function called is guaranteed not - * to cause a crash, though its return value and output arguments are - * undefined. - * - * Args: ctx: an existing context object (cannot be NULL) - * In: fun: a pointer to a function to call when an illegal argument is - * passed to the API, taking a message and an opaque pointer - * (NULL restores a default handler that calls abort). - * data: the opaque pointer to pass to fun above. - */ -SECP256K1_API void secp256k1_context_set_illegal_callback( - secp256k1_context* ctx, - void (*fun)(const char* message, void* data), - const void* data -) SECP256K1_ARG_NONNULL(1); - -/** Set a callback function to be called when an internal consistency check - * fails. The default is crashing. - * - * This can only trigger in case of a hardware failure, miscompilation, - * memory corruption, serious bug in the library, or other error would can - * otherwise result in undefined behaviour. It will not trigger due to mere - * incorrect usage of the API (see secp256k1_context_set_illegal_callback - * for that). After this callback returns, anything may happen, including - * crashing. - * - * Args: ctx: an existing context object (cannot be NULL) - * In: fun: a pointer to a function to call when an internal error occurs, - * taking a message and an opaque pointer (NULL restores a default - * handler that calls abort). - * data: the opaque pointer to pass to fun above. - */ -SECP256K1_API void secp256k1_context_set_error_callback( - secp256k1_context* ctx, - void (*fun)(const char* message, void* data), - const void* data -) SECP256K1_ARG_NONNULL(1); - -/** Create a secp256k1 scratch space object. - * - * Returns: a newly created scratch space. - * Args: ctx: an existing context object (cannot be NULL) - * In: max_size: maximum amount of memory to allocate - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT secp256k1_scratch_space* secp256k1_scratch_space_create( - const secp256k1_context* ctx, - size_t max_size -) SECP256K1_ARG_NONNULL(1); - -/** Destroy a secp256k1 scratch space. - * - * The pointer may not be used afterwards. - * Args: scratch: space to destroy - */ -SECP256K1_API void secp256k1_scratch_space_destroy( - secp256k1_scratch_space* scratch -); - -/** Parse a variable-length public key into the pubkey object. - * - * Returns: 1 if the public key was fully valid. - * 0 if the public key could not be parsed or is invalid. - * Args: ctx: a secp256k1 context object. - * Out: pubkey: pointer to a pubkey object. If 1 is returned, it is set to a - * parsed version of input. If not, its value is undefined. - * In: input: pointer to a serialized public key - * inputlen: length of the array pointed to by input - * - * This function supports parsing compressed (33 bytes, header byte 0x02 or - * 0x03), uncompressed (65 bytes, header byte 0x04), or hybrid (65 bytes, header - * byte 0x06 or 0x07) format public keys. - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_parse( - const secp256k1_context* ctx, - secp256k1_pubkey* pubkey, - const unsigned char *input, - size_t inputlen -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); - -/** Serialize a pubkey object into a serialized byte sequence. - * - * Returns: 1 always. - * Args: ctx: a secp256k1 context object. - * Out: output: a pointer to a 65-byte (if compressed==0) or 33-byte (if - * compressed==1) byte array to place the serialized key - * in. - * In/Out: outputlen: a pointer to an integer which is initially set to the - * size of output, and is overwritten with the written - * size. - * In: pubkey: a pointer to a secp256k1_pubkey containing an - * initialized public key. - * flags: SECP256K1_EC_COMPRESSED if serialization should be in - * compressed format, otherwise SECP256K1_EC_UNCOMPRESSED. - */ -SECP256K1_API int secp256k1_ec_pubkey_serialize( - const secp256k1_context* ctx, - unsigned char *output, - size_t *outputlen, - const secp256k1_pubkey* pubkey, - unsigned int flags -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); - -/** Parse an ECDSA signature in compact (64 bytes) format. - * - * Returns: 1 when the signature could be parsed, 0 otherwise. - * Args: ctx: a secp256k1 context object - * Out: sig: a pointer to a signature object - * In: input64: a pointer to the 64-byte array to parse - * - * The signature must consist of a 32-byte big endian R value, followed by a - * 32-byte big endian S value. If R or S fall outside of [0..order-1], the - * encoding is invalid. R and S with value 0 are allowed in the encoding. - * - * After the call, sig will always be initialized. If parsing failed or R or - * S are zero, the resulting sig value is guaranteed to fail validation for any - * message and public key. - */ -SECP256K1_API int secp256k1_ecdsa_signature_parse_compact( - const secp256k1_context* ctx, - secp256k1_ecdsa_signature* sig, - const unsigned char *input64 -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); - -/** Parse a DER ECDSA signature. - * - * Returns: 1 when the signature could be parsed, 0 otherwise. - * Args: ctx: a secp256k1 context object - * Out: sig: a pointer to a signature object - * In: input: a pointer to the signature to be parsed - * inputlen: the length of the array pointed to be input - * - * This function will accept any valid DER encoded signature, even if the - * encoded numbers are out of range. - * - * After the call, sig will always be initialized. If parsing failed or the - * encoded numbers are out of range, signature validation with it is - * guaranteed to fail for every message and public key. - */ -SECP256K1_API int secp256k1_ecdsa_signature_parse_der( - const secp256k1_context* ctx, - secp256k1_ecdsa_signature* sig, - const unsigned char *input, - size_t inputlen -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); - -/** Serialize an ECDSA signature in DER format. - * - * Returns: 1 if enough space was available to serialize, 0 otherwise - * Args: ctx: a secp256k1 context object - * Out: output: a pointer to an array to store the DER serialization - * In/Out: outputlen: a pointer to a length integer. Initially, this integer - * should be set to the length of output. After the call - * it will be set to the length of the serialization (even - * if 0 was returned). - * In: sig: a pointer to an initialized signature object - */ -SECP256K1_API int secp256k1_ecdsa_signature_serialize_der( - const secp256k1_context* ctx, - unsigned char *output, - size_t *outputlen, - const secp256k1_ecdsa_signature* sig -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); - -/** Serialize an ECDSA signature in compact (64 byte) format. - * - * Returns: 1 - * Args: ctx: a secp256k1 context object - * Out: output64: a pointer to a 64-byte array to store the compact serialization - * In: sig: a pointer to an initialized signature object - * - * See secp256k1_ecdsa_signature_parse_compact for details about the encoding. - */ -SECP256K1_API int secp256k1_ecdsa_signature_serialize_compact( - const secp256k1_context* ctx, - unsigned char *output64, - const secp256k1_ecdsa_signature* sig -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); - -/** Verify an ECDSA signature. - * - * Returns: 1: correct signature - * 0: incorrect or unparseable signature - * Args: ctx: a secp256k1 context object, initialized for verification. - * In: sig: the signature being verified (cannot be NULL) - * msg32: the 32-byte message hash being verified (cannot be NULL) - * pubkey: pointer to an initialized public key to verify with (cannot be NULL) - * - * To avoid accepting malleable signatures, only ECDSA signatures in lower-S - * form are accepted. - * - * If you need to accept ECDSA signatures from sources that do not obey this - * rule, apply secp256k1_ecdsa_signature_normalize to the signature prior to - * validation, but be aware that doing so results in malleable signatures. - * - * For details, see the comments for that function. - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify( - const secp256k1_context* ctx, - const secp256k1_ecdsa_signature *sig, - const unsigned char *msg32, - const secp256k1_pubkey *pubkey -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); - -/** Convert a signature to a normalized lower-S form. - * - * Returns: 1 if sigin was not normalized, 0 if it already was. - * Args: ctx: a secp256k1 context object - * Out: sigout: a pointer to a signature to fill with the normalized form, - * or copy if the input was already normalized. (can be NULL if - * you're only interested in whether the input was already - * normalized). - * In: sigin: a pointer to a signature to check/normalize (cannot be NULL, - * can be identical to sigout) - * - * With ECDSA a third-party can forge a second distinct signature of the same - * message, given a single initial signature, but without knowing the key. This - * is done by negating the S value modulo the order of the curve, 'flipping' - * the sign of the random point R which is not included in the signature. - * - * Forgery of the same message isn't universally problematic, but in systems - * where message malleability or uniqueness of signatures is important this can - * cause issues. This forgery can be blocked by all verifiers forcing signers - * to use a normalized form. - * - * The lower-S form reduces the size of signatures slightly on average when - * variable length encodings (such as DER) are used and is cheap to verify, - * making it a good choice. Security of always using lower-S is assured because - * anyone can trivially modify a signature after the fact to enforce this - * property anyway. - * - * The lower S value is always between 0x1 and - * 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0, - * inclusive. - * - * No other forms of ECDSA malleability are known and none seem likely, but - * there is no formal proof that ECDSA, even with this additional restriction, - * is free of other malleability. Commonly used serialization schemes will also - * accept various non-unique encodings, so care should be taken when this - * property is required for an application. - * - * The secp256k1_ecdsa_sign function will by default create signatures in the - * lower-S form, and secp256k1_ecdsa_verify will not accept others. In case - * signatures come from a system that cannot enforce this property, - * secp256k1_ecdsa_signature_normalize must be called before verification. - */ -SECP256K1_API int secp256k1_ecdsa_signature_normalize( - const secp256k1_context* ctx, - secp256k1_ecdsa_signature *sigout, - const secp256k1_ecdsa_signature *sigin -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(3); - -/** An implementation of RFC6979 (using HMAC-SHA256) as nonce generation function. - * If a data pointer is passed, it is assumed to be a pointer to 32 bytes of - * extra entropy. - */ -SECP256K1_API extern const secp256k1_nonce_function secp256k1_nonce_function_rfc6979; - -/** A default safe nonce generation function (currently equal to secp256k1_nonce_function_rfc6979). */ -SECP256K1_API extern const secp256k1_nonce_function secp256k1_nonce_function_default; - -/** Create an ECDSA signature. - * - * Returns: 1: signature created - * 0: the nonce generation function failed, or the private key was invalid. - * Args: ctx: pointer to a context object, initialized for signing (cannot be NULL) - * Out: sig: pointer to an array where the signature will be placed (cannot be NULL) - * In: msg32: the 32-byte message hash being signed (cannot be NULL) - * seckey: pointer to a 32-byte secret key (cannot be NULL) - * noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used - * ndata: pointer to arbitrary data used by the nonce generation function (can be NULL) - * - * The created signature is always in lower-S form. See - * secp256k1_ecdsa_signature_normalize for more details. - */ -SECP256K1_API int secp256k1_ecdsa_sign( - const secp256k1_context* ctx, - secp256k1_ecdsa_signature *sig, - const unsigned char *msg32, - const unsigned char *seckey, - secp256k1_nonce_function noncefp, - const void *ndata -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); - -/** Verify an ECDSA secret key. - * - * Returns: 1: secret key is valid - * 0: secret key is invalid - * Args: ctx: pointer to a context object (cannot be NULL) - * In: seckey: pointer to a 32-byte secret key (cannot be NULL) - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_verify( - const secp256k1_context* ctx, - const unsigned char *seckey -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2); - -/** Compute the public key for a secret key. - * - * Returns: 1: secret was valid, public key stores - * 0: secret was invalid, try again - * Args: ctx: pointer to a context object, initialized for signing (cannot be NULL) - * Out: pubkey: pointer to the created public key (cannot be NULL) - * In: seckey: pointer to a 32-byte private key (cannot be NULL) - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_create( - const secp256k1_context* ctx, - secp256k1_pubkey *pubkey, - const unsigned char *seckey -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); - -/** Negates a private key in place. - * - * Returns: 1 always - * Args: ctx: pointer to a context object - * In/Out: seckey: pointer to the 32-byte private key to be negated (cannot be NULL) - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_negate( - const secp256k1_context* ctx, - unsigned char *seckey -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2); - -/** Negates a public key in place. - * - * Returns: 1 always - * Args: ctx: pointer to a context object - * In/Out: pubkey: pointer to the public key to be negated (cannot be NULL) - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_negate( - const secp256k1_context* ctx, - secp256k1_pubkey *pubkey -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2); - -/** Tweak a private key by adding tweak to it. - * Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for - * uniformly random 32-byte arrays, or if the resulting private key - * would be invalid (only when the tweak is the complement of the - * private key). 1 otherwise. - * Args: ctx: pointer to a context object (cannot be NULL). - * In/Out: seckey: pointer to a 32-byte private key. - * In: tweak: pointer to a 32-byte tweak. - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_add( - const secp256k1_context* ctx, - unsigned char *seckey, - const unsigned char *tweak -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); - -/** Tweak a public key by adding tweak times the generator to it. - * Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for - * uniformly random 32-byte arrays, or if the resulting public key - * would be invalid (only when the tweak is the complement of the - * corresponding private key). 1 otherwise. - * Args: ctx: pointer to a context object initialized for validation - * (cannot be NULL). - * In/Out: pubkey: pointer to a public key object. - * In: tweak: pointer to a 32-byte tweak. - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_add( - const secp256k1_context* ctx, - secp256k1_pubkey *pubkey, - const unsigned char *tweak -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); - -/** Tweak a private key by multiplying it by a tweak. - * Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for - * uniformly random 32-byte arrays, or equal to zero. 1 otherwise. - * Args: ctx: pointer to a context object (cannot be NULL). - * In/Out: seckey: pointer to a 32-byte private key. - * In: tweak: pointer to a 32-byte tweak. - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_mul( - const secp256k1_context* ctx, - unsigned char *seckey, - const unsigned char *tweak -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); - -/** Tweak a public key by multiplying it by a tweak value. - * Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for - * uniformly random 32-byte arrays, or equal to zero. 1 otherwise. - * Args: ctx: pointer to a context object initialized for validation - * (cannot be NULL). - * In/Out: pubkey: pointer to a public key obkect. - * In: tweak: pointer to a 32-byte tweak. - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_mul( - const secp256k1_context* ctx, - secp256k1_pubkey *pubkey, - const unsigned char *tweak -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); - -/** Updates the context randomization to protect against side-channel leakage. - * Returns: 1: randomization successfully updated - * 0: error - * Args: ctx: pointer to a context object (cannot be NULL) - * In: seed32: pointer to a 32-byte random seed (NULL resets to initial state) - * - * While secp256k1 code is written to be constant-time no matter what secret - * values are, it's possible that a future compiler may output code which isn't, - * and also that the CPU may not emit the same radio frequencies or draw the same - * amount power for all values. - * - * This function provides a seed which is combined into the blinding value: that - * blinding value is added before each multiplication (and removed afterwards) so - * that it does not affect function results, but shields against attacks which - * rely on any input-dependent behaviour. - * - * You should call this after secp256k1_context_create or - * secp256k1_context_clone, and may call this repeatedly afterwards. - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_context_randomize( - secp256k1_context* ctx, - const unsigned char *seed32 -) SECP256K1_ARG_NONNULL(1); - -/** Add a number of public keys together. - * Returns: 1: the sum of the public keys is valid. - * 0: the sum of the public keys is not valid. - * Args: ctx: pointer to a context object - * Out: out: pointer to a public key object for placing the resulting public key - * (cannot be NULL) - * In: ins: pointer to array of pointers to public keys (cannot be NULL) - * n: the number of public keys to add together (must be at least 1) - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_combine( - const secp256k1_context* ctx, - secp256k1_pubkey *out, - const secp256k1_pubkey * const * ins, - size_t n -) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); - -#ifdef __cplusplus -} -#endif - -#endif /* SECP256K1_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_bulletproofs.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_bulletproofs.h deleted file mode 100644 index 46df2b5..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_bulletproofs.h +++ /dev/null @@ -1,176 +0,0 @@ -#ifndef _SECP256K1_BULLETPROOF_ -# define _SECP256K1_BULLETPROOF_ - -# include "secp256k1.h" -# include "secp256k1_generator.h" -# include "secp256k1_rangeproof.h" - -# ifdef __cplusplus -extern "C" { -# endif - -/** Opaque structure representing a large number of NUMS generators */ -typedef struct secp256k1_bulletproof_generators secp256k1_bulletproof_generators; - -/* Maximum depth of 31 lets us validate an aggregate of 2^25 64-bit proofs */ -#define SECP256K1_BULLETPROOF_MAX_DEPTH 31 - -/* Size of a hypothetical 31-depth rangeproof, in bytes */ -#define SECP256K1_BULLETPROOF_MAX_PROOF (160 + 36*32 + 7) - -/** Allocates and initializes a list of NUMS generators, along with precomputation data - * Returns a list of generators, or NULL if allocation failed. - * Args: ctx: pointer to a context object (cannot be NULL) - * In: blinding_gen: generator that blinding factors will be multiplied by (cannot be NULL) - * n: number of NUMS generators to produce - */ -SECP256K1_API secp256k1_bulletproof_generators *secp256k1_bulletproof_generators_create( - const secp256k1_context* ctx, - const secp256k1_generator *blinding_gen, - size_t n -) SECP256K1_ARG_NONNULL(1); - -/** Destroys a list of NUMS generators, freeing allocated memory - * Args: ctx: pointer to a context object (cannot be NULL) - * gen: pointer to the generator set to be destroyed - */ -SECP256K1_API void secp256k1_bulletproof_generators_destroy( - const secp256k1_context* ctx, - secp256k1_bulletproof_generators *gen -) SECP256K1_ARG_NONNULL(1); - -/** Verifies a single bulletproof (aggregate) rangeproof - * Returns: 1: rangeproof was valid - * 0: rangeproof was invalid, or out of memory - * Args: ctx: pointer to a context object initialized for verification (cannot be NULL) - * scratch: scratch space with enough memory for verification (cannot be NULL) - * gens: generator set with at least 2*nbits*n_commits many generators (cannot be NULL) - * In: proof: byte-serialized rangeproof (cannot be NULL) - * plen: length of the proof - * min_value: array of minimum values to prove ranges above, or NULL for all-zeroes - * commit: array of pedersen commitment that this rangeproof is over (cannot be NULL) - * n_commits: number of commitments in the above array (cannot be 0) - * nbits: number of bits proven for each range - * value_gen: generator multiplied by value in pedersen commitments (cannot be NULL) - * extra_commit: additonal data committed to by the rangeproof (may be NULL if `extra_commit_len` is 0) - * extra_commit_len: length of additional data - */ -SECP256K1_WARN_UNUSED_RESULT SECP256K1_API int secp256k1_bulletproof_rangeproof_verify( - const secp256k1_context* ctx, - secp256k1_scratch_space* scratch, - const secp256k1_bulletproof_generators *gens, - const unsigned char* proof, - size_t plen, - const uint64_t* min_value, - const secp256k1_pedersen_commitment* commit, - size_t n_commits, - size_t nbits, - const secp256k1_generator* value_gen, - const unsigned char* extra_commit, - size_t extra_commit_len -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(7) SECP256K1_ARG_NONNULL(10); - -/** Batch-verifies multiple bulletproof (aggregate) rangeproofs of the same size using same generator - * Returns: 1: all rangeproofs were valid - * 0: some rangeproof was invalid, or out of memory - * Args: ctx: pointer to a context object initialized for verification (cannot be NULL) - * scratch: scratch space with enough memory for verification (cannot be NULL) - * gens: generator set with at least 2*nbits*n_commits many generators (cannot be NULL) - * In: proof: array of byte-serialized rangeproofs (cannot be NULL) - * n_proofs: number of proofs in the above array, and number of arrays in the `commit` array - * plen: length of every individual proof - * min_value: array of arrays of minimum values to prove ranges above, or NULL for all-zeroes - * commit: array of arrays of pedersen commitment that the rangeproofs is over (cannot be NULL) - * n_commits: number of commitments in each element of the above array (cannot be 0) - * nbits: number of bits in each proof - * value_gen: generator multiplied by value in pedersen commitments (cannot be NULL) - * extra_commit: additonal data committed to by the rangeproof (may be NULL if `extra_commit_len` is 0) - * extra_commit_len: array of lengths of additional data - */ -SECP256K1_WARN_UNUSED_RESULT SECP256K1_API int secp256k1_bulletproof_rangeproof_verify_multi( - const secp256k1_context* ctx, - secp256k1_scratch_space* scratch, - const secp256k1_bulletproof_generators *gens, - const unsigned char* const* proof, - size_t n_proofs, - size_t plen, - const uint64_t* const* min_value, - const secp256k1_pedersen_commitment* const* commit, - size_t n_commits, - size_t nbits, - const secp256k1_generator* value_gen, - const unsigned char* const* extra_commit, - size_t *extra_commit_len -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(8); - -/** Extracts the value and blinding factor from a single-commit rangeproof given a secret nonce - * Returns: 1: value and blinding factor were extracted and matched the input commit - * 0: one of the above was not true, extraction failed - * Args: ctx: pointer to a context object (cannot be NULL) - * gens: generator set used to make original proof (cannot be NULL) - * Out: value: pointer to value that will be extracted - * blind: pointer to 32-byte array for blinding factor to be extracted - * In: proof: byte-serialized rangeproof (cannot be NULL) - * plen: length of every individual proof - * min_value: minimum value that the proof ranges over - * commit: pedersen commitment that the rangeproof is over (cannot be NULL) - * value_gen: generator multiplied by value in pedersen commitments (cannot be NULL) - * nonce: random 32-byte seed used to derive blinding factors (cannot be NULL) - * extra_commit: additonal data committed to by the rangeproof - * extra_commit_len: length of additional data - */ -SECP256K1_WARN_UNUSED_RESULT SECP256K1_API int secp256k1_bulletproof_rangeproof_rewind( - const secp256k1_context* ctx, - const secp256k1_bulletproof_generators* gens, - uint64_t* value, - unsigned char* blind, - const unsigned char* proof, - size_t plen, - uint64_t min_value, - const secp256k1_pedersen_commitment* commit, - const secp256k1_generator* value_gen, - const unsigned char* nonce, - const unsigned char* extra_commit, - size_t extra_commit_len -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(8) SECP256K1_ARG_NONNULL(9); - -/** Produces an aggregate Bulletproof rangeproof for a set of Pedersen commitments - * Returns: 1: rangeproof was successfully created - * 0: rangeproof could not be created, or out of memory - * Args: ctx: pointer to a context object initialized for signing and verification (cannot be NULL) - * scratch: scratch space with enough memory for verification (cannot be NULL) - * gens: generator set with at least 2*nbits*n_commits many generators (cannot be NULL) - * Out: proof: byte-serialized rangeproof (cannot be NULL) - * In/out: plen: pointer to size of `proof`, to be replaced with actual length of proof (cannot be NULL) - * In: value: array of values committed by the Pedersen commitments (cannot be NULL) - * min_value: array of minimum values to prove ranges above, or NULL for all-zeroes - * blind: array of blinding factors of the Pedersen commitments (cannot be NULL) - * n_commits: number of entries in the `value` and `blind` arrays - * value_gen: generator multiplied by value in pedersen commitments (cannot be NULL) - * nbits: number of bits proven for each range - * nonce: random 32-byte seed used to derive blinding factors (cannot be NULL) - * extra_commit: additonal data committed to by the rangeproof - * extra_commit_len: length of additional data - */ -SECP256K1_WARN_UNUSED_RESULT SECP256K1_API int secp256k1_bulletproof_rangeproof_prove( - const secp256k1_context* ctx, - secp256k1_scratch_space* scratch, - const secp256k1_bulletproof_generators *gens, - unsigned char* proof, - size_t* plen, - const uint64_t *value, - const uint64_t *min_value, - const unsigned char* const* blind, - size_t n_commits, - const secp256k1_generator* value_gen, - size_t nbits, - const unsigned char* nonce, - const unsigned char* extra_commit, - size_t extra_commit_len -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(6) SECP256K1_ARG_NONNULL(8) SECP256K1_ARG_NONNULL(10) SECP256K1_ARG_NONNULL(12); - -# ifdef __cplusplus -} -# endif - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_commitment.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_commitment.h deleted file mode 100644 index 83b7116..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_commitment.h +++ /dev/null @@ -1,164 +0,0 @@ -#ifndef _SECP256K1_COMMITMENT_ -# define _SECP256K1_COMMITMENT_ - -# include "secp256k1.h" -# include "secp256k1_generator.h" - -# ifdef __cplusplus -extern "C" { -# endif - -#include - -/** Opaque data structure that stores a Pedersen commitment - * - * The exact representation of data inside is implementation defined and not - * guaranteed to be portable between different platforms or versions. It is - * however guaranteed to be 33 bytes in size, and can be safely copied/moved. - * If you need to convert to a format suitable for storage or transmission, use - * secp256k1_pedersen_commitment_serialize and secp256k1_pedersen_commitment_parse. - */ -typedef struct { - unsigned char data[33]; -} secp256k1_pedersen_commitment; - -/** Parse a 33-byte commitment into a commitment object. - * - * Returns: 1 if input contains a valid commitment. - * Args: ctx: a secp256k1 context object. - * Out: commit: pointer to the output commitment object - * In: input: pointer to a 33-byte serialized commitment key - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_pedersen_commitment_parse( - const secp256k1_context* ctx, - secp256k1_pedersen_commitment* commit, - const unsigned char *input -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); - -/** Serialize a commitment object into a serialized byte sequence. - * - * Returns: 1 always. - * Args: ctx: a secp256k1 context object. - * Out: output: a pointer to a 33-byte byte array - * In: commit: a pointer to a secp256k1_pedersen_commitment containing an - * initialized commitment - */ -SECP256K1_API int secp256k1_pedersen_commitment_serialize( - const secp256k1_context* ctx, - unsigned char *output, - const secp256k1_pedersen_commitment* commit -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); - -/** Initialize a context for usage with Pedersen commitments. */ -void secp256k1_pedersen_context_initialize(secp256k1_context* ctx); - -/** Generate a Pedersen commitment. - * Returns 1: Commitment successfully created. - * 0: Error. The blinding factor is larger than the group order - * (probability for random 32 byte number < 2^-127) or results in the - * point at infinity. Retry with a different factor. - * In: ctx: pointer to a context object (cannot be NULL) - * blind: pointer to a 32-byte blinding factor (cannot be NULL) - * value: unsigned 64-bit integer value to commit to. - * value_gen: value generator 'h' - * blind_gen: blinding factor generator 'g' - * Out: commit: pointer to the commitment (cannot be NULL) - * - * Blinding factors can be generated and verified in the same way as secp256k1 private keys for ECDSA. - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_pedersen_commit( - const secp256k1_context* ctx, - secp256k1_pedersen_commitment *commit, - const unsigned char *blind, - uint64_t value, - const secp256k1_generator *value_gen, - const secp256k1_generator *blind_gen -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(6); - -/** Computes the sum of multiple positive and negative blinding factors. - * Returns 1: Sum successfully computed. - * 0: Error. A blinding factor is larger than the group order - * (probability for random 32 byte number < 2^-127). Retry with - * different factors. - * In: ctx: pointer to a context object (cannot be NULL) - * blinds: pointer to pointers to 32-byte character arrays for blinding factors. (cannot be NULL) - * n: number of factors pointed to by blinds. - * npositive: how many of the input factors should be treated with a positive sign. - * Out: blind_out: pointer to a 32-byte array for the sum (cannot be NULL) - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_pedersen_blind_sum( - const secp256k1_context* ctx, - unsigned char *blind_out, - const unsigned char * const *blinds, - size_t n, - size_t npositive -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); - -/** Verify a tally of Pedersen commitments - * Returns 1: commitments successfully sum to zero. - * 0: Commitments do not sum to zero or other error. - * In: ctx: pointer to a context object (cannot be NULL) - * pos: pointer to array of pointers to the commitments. (cannot be NULL if `n_pos` is non-zero) - * n_pos: number of commitments pointed to by `pos`. - * neg: pointer to array of pointers to the negative commitments. (cannot be NULL if `n_neg` is non-zero) - * n_neg: number of commitments pointed to by `neg`. - * - * This computes sum(pos[0..n_pos)) - sum(neg[0..n_neg)) == 0. - * - * A Pedersen commitment is xG + vA where G and A are generators for the secp256k1 group and x is a blinding factor, - * while v is the committed value. For a collection of commitments to sum to zero, for each distinct generator - * A all blinding factors and all values must sum to zero. - * - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_pedersen_verify_tally( - const secp256k1_context* ctx, - const secp256k1_pedersen_commitment * const* pos, - size_t n_pos, - const secp256k1_pedersen_commitment * const* neg, - size_t n_neg -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4); - -/** Sets the final Pedersen blinding factor correctly when the generators themselves - * have blinding factors. - * - * Consider a generator of the form A' = A + rG, where A is the "real" generator - * but A' is the generator provided to verifiers. Then a Pedersen commitment - * P = vA' + r'G really has the form vA + (vr + r')G. To get all these (vr + r') - * to sum to zero for multiple commitments, we take three arrays consisting of - * the `v`s, `r`s, and `r'`s, respectively called `value`s, `generator_blind`s - * and `blinding_factor`s, and sum them. - * - * The function then subtracts the sum of all (vr + r') from the last element - * of the `blinding_factor` array, setting the total sum to zero. - * - * Returns 1: Blinding factor successfully computed. - * 0: Error. A blinding_factor or generator_blind are larger than the group - * order (probability for random 32 byte number < 2^-127). Retry with - * different values. - * - * In: ctx: pointer to a context object - * value: array of asset values, `v` in the above paragraph. - * May not be NULL unless `n_total` is 0. - * generator_blind: array of asset blinding factors, `r` in the above paragraph - * May not be NULL unless `n_total` is 0. - * n_total: Total size of the above arrays - * n_inputs: How many of the initial array elements represent commitments that - * will be negated in the final sum - * In/Out: blinding_factor: array of commitment blinding factors, `r'` in the above paragraph - * May not be NULL unless `n_total` is 0. - * the last value will be modified to get the total sum to zero. - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_pedersen_blind_generator_blind_sum( - const secp256k1_context* ctx, - const uint64_t *value, - const unsigned char* const* generator_blind, - unsigned char* const* blinding_factor, - size_t n_total, - size_t n_inputs -); - -# ifdef __cplusplus -} -# endif - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_ecdh.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_ecdh.h deleted file mode 100644 index 88492dc..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_ecdh.h +++ /dev/null @@ -1,31 +0,0 @@ -#ifndef SECP256K1_ECDH_H -#define SECP256K1_ECDH_H - -#include "secp256k1.h" - -#ifdef __cplusplus -extern "C" { -#endif - -/** Compute an EC Diffie-Hellman secret in constant time - * Returns: 1: exponentiation was successful - * 0: scalar was invalid (zero or overflow) - * Args: ctx: pointer to a context object (cannot be NULL) - * Out: result: a 32-byte array which will be populated by an ECDH - * secret computed from the point and scalar - * In: pubkey: a pointer to a secp256k1_pubkey containing an - * initialized public key - * privkey: a 32-byte scalar with which to multiply the point - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdh( - const secp256k1_context* ctx, - unsigned char *result, - const secp256k1_pubkey *pubkey, - const unsigned char *privkey -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); - -#ifdef __cplusplus -} -#endif - -#endif /* SECP256K1_ECDH_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_generator.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_generator.h deleted file mode 100644 index 3f2baf2..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_generator.h +++ /dev/null @@ -1,102 +0,0 @@ -#ifndef _SECP256K1_GENERATOR_ -# define _SECP256K1_GENERATOR_ - -# include "secp256k1.h" - -# ifdef __cplusplus -extern "C" { -# endif - -#include - -/** Opaque data structure that stores a base point - * - * The exact representation of data inside is implementation defined and not - * guaranteed to be portable between different platforms or versions. It is - * however guaranteed to be 33 bytes in size, and can be safely copied/moved. - * If you need to convert to a format suitable for storage or transmission, use - * the secp256k1_generator_serialize_*. - * - * Furthermore, it is guaranteed to identical points will have identical - * representation, so they can be memcmp'ed. - */ -typedef struct { - unsigned char data[33]; -} secp256k1_generator; - -/** Standard secp256k1 generator G */ -extern const secp256k1_generator secp256k1_generator_const_g; - -/** Alternate secp256k1 generator from Elements Alpha */ -extern const secp256k1_generator secp256k1_generator_const_h; - -/** Parse a 33-byte generator byte sequence into a generator object. - * - * Returns: 1 if input contains a valid generator. - * Args: ctx: a secp256k1 context object. - * Out: commit: pointer to the output generator object - * In: input: pointer to a 33-byte serialized generator - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_generator_parse( - const secp256k1_context* ctx, - secp256k1_generator* commit, - const unsigned char *input -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); - -/** Serialize a 33-byte generator into a serialized byte sequence. - * - * Returns: 1 always. - * Args: ctx: a secp256k1 context object. - * Out: output: a pointer to a 33-byte byte array - * In: commit: a pointer to a generator - */ -SECP256K1_API int secp256k1_generator_serialize( - const secp256k1_context* ctx, - unsigned char *output, - const secp256k1_generator* commit -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); - -/** Generate a generator for the curve. - * - * Returns: 0 in the highly unlikely case the seed is not acceptable, - * 1 otherwise. - * Args: ctx: a secp256k1 context object - * Out: gen: a generator object - * In: seed32: a 32-byte seed - * - * If succesful, a valid generator will be placed in gen. The produced - * generators are distributed uniformly over the curve, and will not have a - * known dicrete logarithm with respect to any other generator produced, - * or to the base generator G. - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_generator_generate( - const secp256k1_context* ctx, - secp256k1_generator* gen, - const unsigned char *seed32 -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); - -/** Generate a blinded generator for the curve. - * - * Returns: 0 in the highly unlikely case the seed is not acceptable or when - * blind is out of range. 1 otherwise. - * Args: ctx: a secp256k1 context object, initialized for signing - * Out: gen: a generator object - * In: seed32: a 32-byte seed - * blind32: a 32-byte secret value to blind the generator with. - * - * The result is equivalent to first calling secp256k1_generator_generate, - * converting the result to a public key, calling secp256k1_ec_pubkey_tweak_add, - * and then converting back to generator form. - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_generator_generate_blinded( - const secp256k1_context* ctx, - secp256k1_generator* gen, - const unsigned char *key32, - const unsigned char *blind32 -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); - -# ifdef __cplusplus -} -# endif - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_rangeproof.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_rangeproof.h deleted file mode 100644 index be8d0df..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_rangeproof.h +++ /dev/null @@ -1,144 +0,0 @@ -#ifndef _SECP256K1_RANGEPROOF_ -# define _SECP256K1_RANGEPROOF_ - -# include "secp256k1.h" -# include "secp256k1_generator.h" -# include "secp256k1_commitment.h" - -# ifdef __cplusplus -extern "C" { -# endif - -#include - -/** Verify a proof that a committed value is within a range. - * Returns 1: Value is within the range [0..2^64), the specifically proven range is in the min/max value outputs. - * 0: Proof failed or other error. - * In: ctx: pointer to a context object, initialized for range-proof and commitment (cannot be NULL) - * commit: the commitment being proved. (cannot be NULL) - * proof: pointer to character array with the proof. (cannot be NULL) - * plen: length of proof in bytes. - * extra_commit: additional data covered in rangeproof signature - * extra_commit_len: length of extra_commit byte array (0 if NULL) - * gen: additional generator 'h' - * Out: min_value: pointer to a unsigned int64 which will be updated with the minimum value that commit could have. (cannot be NULL) - * max_value: pointer to a unsigned int64 which will be updated with the maximum value that commit could have. (cannot be NULL) - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_rangeproof_verify( - const secp256k1_context* ctx, - uint64_t *min_value, - uint64_t *max_value, - const secp256k1_pedersen_commitment *commit, - const unsigned char *proof, - size_t plen, - const unsigned char *extra_commit, - size_t extra_commit_len, - const secp256k1_generator* gen -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(9); - -/** Verify a range proof proof and rewind the proof to recover information sent by its author. - * Returns 1: Value is within the range [0..2^64), the specifically proven range is in the min/max value outputs, and the value and blinding were recovered. - * 0: Proof failed, rewind failed, or other error. - * In: ctx: pointer to a context object, initialized for range-proof and Pedersen commitment (cannot be NULL) - * commit: the commitment being proved. (cannot be NULL) - * proof: pointer to character array with the proof. (cannot be NULL) - * plen: length of proof in bytes. - * nonce: 32-byte secret nonce used by the prover (cannot be NULL) - * extra_commit: additional data covered in rangeproof signature - * extra_commit_len: length of extra_commit byte array (0 if NULL) - * gen: additional generator 'h' - * In/Out: blind_out: storage for the 32-byte blinding factor used for the commitment - * value_out: pointer to an unsigned int64 which has the exact value of the commitment. - * message_out: pointer to a 4096 byte character array to receive message data from the proof author. - * outlen: length of message data written to message_out. - * min_value: pointer to an unsigned int64 which will be updated with the minimum value that commit could have. (cannot be NULL) - * max_value: pointer to an unsigned int64 which will be updated with the maximum value that commit could have. (cannot be NULL) - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_rangeproof_rewind( - const secp256k1_context* ctx, - unsigned char *blind_out, - uint64_t *value_out, - unsigned char *message_out, - size_t *outlen, - const unsigned char *nonce, - uint64_t *min_value, - uint64_t *max_value, - const secp256k1_pedersen_commitment *commit, - const unsigned char *proof, - size_t plen, - const unsigned char *extra_commit, - size_t extra_commit_len, - const secp256k1_generator *gen -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(6) SECP256K1_ARG_NONNULL(7) SECP256K1_ARG_NONNULL(8) SECP256K1_ARG_NONNULL(9) SECP256K1_ARG_NONNULL(10) SECP256K1_ARG_NONNULL(14); - -/** Author a proof that a committed value is within a range. - * Returns 1: Proof successfully created. - * 0: Error - * In: ctx: pointer to a context object, initialized for range-proof, signing, and Pedersen commitment (cannot be NULL) - * proof: pointer to array to receive the proof, can be up to 5134 bytes. (cannot be NULL) - * min_value: constructs a proof where the verifer can tell the minimum value is at least the specified amount. - * commit: the commitment being proved. - * blind: 32-byte blinding factor used by commit. - * nonce: 32-byte secret nonce used to initialize the proof (value can be reverse-engineered out of the proof if this secret is known.) - * exp: Base-10 exponent. Digits below above will be made public, but the proof will be made smaller. Allowed range is -1 to 18. - * (-1 is a special case that makes the value public. 0 is the most private.) - * min_bits: Number of bits of the value to keep private. (0 = auto/minimal, - 64). - * value: Actual value of the commitment. - * message: pointer to a byte array of data to be embedded in the rangeproof that can be recovered by rewinding the proof - * msg_len: size of the message to be embedded in the rangeproof - * extra_commit: additional data to be covered in rangeproof signature - * extra_commit_len: length of extra_commit byte array (0 if NULL) - * gen: additional generator 'h' - * In/out: plen: point to an integer with the size of the proof buffer and the size of the constructed proof. - * - * If min_value or exp is non-zero then the value must be on the range [0, 2^63) to prevent the proof range from spanning past 2^64. - * - * If exp is -1 the value is revealed by the proof (e.g. it proves that the proof is a blinding of a specific value, without revealing the blinding key.) - * - * This can randomly fail with probability around one in 2^100. If this happens, buy a lottery ticket and retry with a different nonce or blinding. - * - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_rangeproof_sign( - const secp256k1_context* ctx, - unsigned char *proof, - size_t *plen, - uint64_t min_value, - const secp256k1_pedersen_commitment *commit, - const unsigned char *blind, - const unsigned char *nonce, - int exp, - int min_bits, - uint64_t value, - const unsigned char *message, - size_t msg_len, - const unsigned char *extra_commit, - size_t extra_commit_len, - const secp256k1_generator *gen -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(6) SECP256K1_ARG_NONNULL(7) SECP256K1_ARG_NONNULL(15); - -/** Extract some basic information from a range-proof. - * Returns 1: Information successfully extracted. - * 0: Decode failed. - * In: ctx: pointer to a context object - * proof: pointer to character array with the proof. - * plen: length of proof in bytes. - * Out: exp: Exponent used in the proof (-1 means the value isn't private). - * mantissa: Number of bits covered by the proof. - * min_value: pointer to an unsigned int64 which will be updated with the minimum value that commit could have. (cannot be NULL) - * max_value: pointer to an unsigned int64 which will be updated with the maximum value that commit could have. (cannot be NULL) - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_rangeproof_info( - const secp256k1_context* ctx, - int *exp, - int *mantissa, - uint64_t *min_value, - uint64_t *max_value, - const unsigned char *proof, - size_t plen -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5); - -# ifdef __cplusplus -} -# endif - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_recovery.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_recovery.h deleted file mode 100644 index cf6c5ed..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_recovery.h +++ /dev/null @@ -1,110 +0,0 @@ -#ifndef SECP256K1_RECOVERY_H -#define SECP256K1_RECOVERY_H - -#include "secp256k1.h" - -#ifdef __cplusplus -extern "C" { -#endif - -/** Opaque data structured that holds a parsed ECDSA signature, - * supporting pubkey recovery. - * - * The exact representation of data inside is implementation defined and not - * guaranteed to be portable between different platforms or versions. It is - * however guaranteed to be 65 bytes in size, and can be safely copied/moved. - * If you need to convert to a format suitable for storage or transmission, use - * the secp256k1_ecdsa_signature_serialize_* and - * secp256k1_ecdsa_signature_parse_* functions. - * - * Furthermore, it is guaranteed that identical signatures (including their - * recoverability) will have identical representation, so they can be - * memcmp'ed. - */ -typedef struct { - unsigned char data[65]; -} secp256k1_ecdsa_recoverable_signature; - -/** Parse a compact ECDSA signature (64 bytes + recovery id). - * - * Returns: 1 when the signature could be parsed, 0 otherwise - * Args: ctx: a secp256k1 context object - * Out: sig: a pointer to a signature object - * In: input64: a pointer to a 64-byte compact signature - * recid: the recovery id (0, 1, 2 or 3) - */ -SECP256K1_API int secp256k1_ecdsa_recoverable_signature_parse_compact( - const secp256k1_context* ctx, - secp256k1_ecdsa_recoverable_signature* sig, - const unsigned char *input64, - int recid -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); - -/** Convert a recoverable signature into a normal signature. - * - * Returns: 1 - * Out: sig: a pointer to a normal signature (cannot be NULL). - * In: sigin: a pointer to a recoverable signature (cannot be NULL). - */ -SECP256K1_API int secp256k1_ecdsa_recoverable_signature_convert( - const secp256k1_context* ctx, - secp256k1_ecdsa_signature* sig, - const secp256k1_ecdsa_recoverable_signature* sigin -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); - -/** Serialize an ECDSA signature in compact format (64 bytes + recovery id). - * - * Returns: 1 - * Args: ctx: a secp256k1 context object - * Out: output64: a pointer to a 64-byte array of the compact signature (cannot be NULL) - * recid: a pointer to an integer to hold the recovery id (can be NULL). - * In: sig: a pointer to an initialized signature object (cannot be NULL) - */ -SECP256K1_API int secp256k1_ecdsa_recoverable_signature_serialize_compact( - const secp256k1_context* ctx, - unsigned char *output64, - int *recid, - const secp256k1_ecdsa_recoverable_signature* sig -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); - -/** Create a recoverable ECDSA signature. - * - * Returns: 1: signature created - * 0: the nonce generation function failed, or the private key was invalid. - * Args: ctx: pointer to a context object, initialized for signing (cannot be NULL) - * Out: sig: pointer to an array where the signature will be placed (cannot be NULL) - * In: msg32: the 32-byte message hash being signed (cannot be NULL) - * seckey: pointer to a 32-byte secret key (cannot be NULL) - * noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used - * ndata: pointer to arbitrary data used by the nonce generation function (can be NULL) - */ -SECP256K1_API int secp256k1_ecdsa_sign_recoverable( - const secp256k1_context* ctx, - secp256k1_ecdsa_recoverable_signature *sig, - const unsigned char *msg32, - const unsigned char *seckey, - secp256k1_nonce_function noncefp, - const void *ndata -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); - -/** Recover an ECDSA public key from a signature. - * - * Returns: 1: public key successfully recovered (which guarantees a correct signature). - * 0: otherwise. - * Args: ctx: pointer to a context object, initialized for verification (cannot be NULL) - * Out: pubkey: pointer to the recovered public key (cannot be NULL) - * In: sig: pointer to initialized signature that supports pubkey recovery (cannot be NULL) - * msg32: the 32-byte message hash assumed to be signed (cannot be NULL) - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_recover( - const secp256k1_context* ctx, - secp256k1_pubkey *pubkey, - const secp256k1_ecdsa_recoverable_signature *sig, - const unsigned char *msg32 -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); - -#ifdef __cplusplus -} -#endif - -#endif /* SECP256K1_RECOVERY_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_surjectionproof.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_surjectionproof.h deleted file mode 100644 index 57f2afb..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_surjectionproof.h +++ /dev/null @@ -1,212 +0,0 @@ -#ifndef _SECP256K1_SURJECTIONPROOF_ -#define _SECP256K1_SURJECTIONPROOF_ - -#include "secp256k1.h" -#include "secp256k1_rangeproof.h" - -#ifdef __cplusplus -extern "C" { -#endif - -/** Maximum number of inputs that may be given in a surjection proof */ -#define SECP256K1_SURJECTIONPROOF_MAX_N_INPUTS 256 - -/** Number of bytes a serialized surjection proof requires given the - * number of inputs and the number of used inputs. - */ -#define SECP256K1_SURJECTIONPROOF_SERIALIZATION_BYTES(n_inputs, n_used_inputs) \ - (2 + (n_inputs + 7)/8 + 32 * (1 + (n_used_inputs))) - -/** Maximum number of bytes a serialized surjection proof requires. */ -#define SECP256K1_SURJECTIONPROOF_SERIALIZATION_BYTES_MAX \ - SECP256K1_SURJECTIONPROOF_SERIALIZATION_BYTES(SECP256K1_SURJECTIONPROOF_MAX_N_INPUTS, SECP256K1_SURJECTIONPROOF_MAX_N_INPUTS) - -/** Opaque data structure that holds a parsed surjection proof - * - * The exact representation of data inside is implementation defined and not - * guaranteed to be portable between different platforms or versions. Nor is - * it guaranteed to have any particular size, nor that identical proofs - * will have identical representation. (That is, memcmp may return nonzero - * even for identical proofs.) - * - * To obtain these properties, instead use secp256k1_surjectionproof_parse - * and secp256k1_surjectionproof_serialize to encode/decode proofs into a - * well-defined format. - * - * The representation is exposed to allow creation of these objects on the - * stack; please *do not* use these internals directly. - */ -typedef struct { -#ifdef VERIFY - /** Mark whether this proof has gone through `secp256k1_surjectionproof_initialize` */ - int initialized; -#endif - /** Total number of input asset tags */ - size_t n_inputs; - /** Bitmap of which input tags are used in the surjection proof */ - unsigned char used_inputs[SECP256K1_SURJECTIONPROOF_MAX_N_INPUTS / 8]; - /** Borromean signature: e0, scalars */ - unsigned char data[32 * (1 + SECP256K1_SURJECTIONPROOF_MAX_N_INPUTS)]; -} secp256k1_surjectionproof; - -/** Parse a surjection proof - * - * Returns: 1 when the proof could be parsed, 0 otherwise. - * Args: ctx: a secp256k1 context object - * Out: proof: a pointer to a proof object - * In: input: a pointer to the array to parse - * inputlen: length of the array pointed to by input - * - * The proof must consist of: - * - A 2-byte little-endian total input count `n` - * - A ceil(n/8)-byte bitmap indicating which inputs are used. - * - A big-endian 32-byte borromean signature e0 value - * - `m` big-endian 32-byte borromean signature s values, where `m` - * is the number of set bits in the bitmap - */ -SECP256K1_API int secp256k1_surjectionproof_parse( - const secp256k1_context* ctx, - secp256k1_surjectionproof *proof, - const unsigned char *input, - size_t inputlen -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); - -/** Serialize a surjection proof - * - * Returns: 1 if enough space was available to serialize, 0 otherwise - * Args: ctx: a secp256k1 context object - * Out: output: a pointer to an array to store the serialization - * In/Out: outputlen: a pointer to an integer which is initially set to the - * size of output, and is overwritten with the written - * size. - * In: proof: a pointer to an initialized proof object - * - * See secp256k1_surjectionproof_parse for details about the encoding. - */ -SECP256K1_API int secp256k1_surjectionproof_serialize( - const secp256k1_context* ctx, - unsigned char *output, - size_t *outputlen, - const secp256k1_surjectionproof *proof -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); - -/** Data structure that holds a fixed asset tag. - * - * This data type is *not* opaque. It will always be 32 bytes of whatever - * data the API user wants to use as an asset tag. Its contents have no - * semantic meaning to libsecp whatsoever. - */ -typedef struct { - unsigned char data[32]; -} secp256k1_fixed_asset_tag; - -/** Returns the total number of inputs a proof expects to be over. - * - * Returns: the number of inputs for the given proof - * In: ctx: pointer to a context object - * proof: a pointer to a proof object - */ -SECP256K1_API size_t secp256k1_surjectionproof_n_total_inputs( - const secp256k1_context* ctx, - const secp256k1_surjectionproof* proof -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2); - -/** Returns the actual number of inputs that a proof uses - * - * Returns: the number of inputs for the given proof - * In: ctx: pointer to a context object - * proof: a pointer to a proof object - */ -SECP256K1_API size_t secp256k1_surjectionproof_n_used_inputs( - const secp256k1_context* ctx, - const secp256k1_surjectionproof* proof -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2); - -/** Returns the total size this proof would take, in bytes, when serialized - * - * Returns: the total size - * In: ctx: pointer to a context object - * proof: a pointer to a proof object - */ -SECP256K1_API size_t secp256k1_surjectionproof_serialized_size( - const secp256k1_context* ctx, - const secp256k1_surjectionproof* proof -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2); - -/** Surjection proof initialization function; decides on inputs to use - * Returns 0: inputs could not be selected - * n: inputs were selected after n iterations of random selection - * - * In: ctx: pointer to a context object - * fixed_input_tags: fixed input tags `A_i` for all inputs. (If the fixed tag is not known, - * e.g. in a coinjoin with others' inputs, an ephemeral tag can be given; - * this won't match the output tag but might be used in the anonymity set.) - * n_input_tags: the number of entries in the fixed_input_tags array - * n_input_tags_to_use: the number of inputs to select randomly to put in the anonymity set - * fixed_output_tag: fixed output tag - * max_n_iterations: the maximum number of iterations to do before giving up - * random_seed32: a random seed to be used for input selection - * Out: proof: The proof whose bitvector will be initialized. In case of failure, - * the state of the proof is undefined. - * input_index: The index of the actual input that is secretly mapped to the output - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_surjectionproof_initialize( - const secp256k1_context* ctx, - secp256k1_surjectionproof* proof, - size_t *input_index, - const secp256k1_fixed_asset_tag* fixed_input_tags, - const size_t n_input_tags, - const size_t n_input_tags_to_use, - const secp256k1_fixed_asset_tag* fixed_output_tag, - const size_t n_max_iterations, - const unsigned char *random_seed32 -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(7); - -/** Surjection proof generation function - * Returns 0: proof could not be created - * 1: proof was successfully created - * - * In: ctx: pointer to a context object, initialized for signing and verification - * ephemeral_input_tags: the ephemeral asset tag of all inputs - * n_ephemeral_input_tags: the number of entries in the ephemeral_input_tags array - * ephemeral_output_tag: the ephemeral asset tag of the output - * input_index: the index of the input that actually maps to the output - * input_blinding_key: the blinding key of the input - * output_blinding_key: the blinding key of the output - * In/Out: proof: The produced surjection proof. Must have already gone through `secp256k1_surjectionproof_initialize` - */ -SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_surjectionproof_generate( - const secp256k1_context* ctx, - secp256k1_surjectionproof* proof, - const secp256k1_generator* ephemeral_input_tags, - size_t n_ephemeral_input_tags, - const secp256k1_generator* ephemeral_output_tag, - size_t input_index, - const unsigned char *input_blinding_key, - const unsigned char *output_blinding_key -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(7) SECP256K1_ARG_NONNULL(8); - - -/** Surjection proof verification function - * Returns 0: proof was invalid - * 1: proof was valid - * - * In: ctx: pointer to a context object, initialized for signing and verification - * proof: proof to be verified - * ephemeral_input_tags: the ephemeral asset tag of all inputs - * n_ephemeral_input_tags: the number of entries in the ephemeral_input_tags array - * ephemeral_output_tag: the ephemeral asset tag of the output - */ -SECP256K1_API int secp256k1_surjectionproof_verify( - const secp256k1_context* ctx, - const secp256k1_surjectionproof* proof, - const secp256k1_generator* ephemeral_input_tags, - size_t n_ephemeral_input_tags, - const secp256k1_generator* ephemeral_output_tag -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(5); - -#ifdef __cplusplus -} -#endif - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_whitelist.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_whitelist.h deleted file mode 100644 index c536c11..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/include/secp256k1_whitelist.h +++ /dev/null @@ -1,152 +0,0 @@ -/********************************************************************** - * Copyright (c) 2016 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef _SECP256K1_WHITELIST_ -#define _SECP256K1_WHITELIST_ - -#include "secp256k1.h" - -#ifdef __cplusplus -extern "C" { -#endif - -#define SECP256K1_WHITELIST_MAX_N_KEYS 256 - -/** Opaque data structure that holds a parsed whitelist proof - * - * The exact representation of data inside is implementation defined and not - * guaranteed to be portable between different platforms or versions. Nor is - * it guaranteed to have any particular size, nor that identical signatures - * will have identical representation. (That is, memcmp may return nonzero - * even for identical signatures.) - * - * To obtain these properties, instead use secp256k1_whitelist_signature_parse - * and secp256k1_whitelist_signature_serialize to encode/decode signatures - * into a well-defined format. - * - * The representation is exposed to allow creation of these objects on the - * stack; please *do not* use these internals directly. To learn the number - * of keys for a signature, use `secp256k1_whitelist_signature_n_keys`. - */ -typedef struct { - size_t n_keys; - /* e0, scalars */ - unsigned char data[32 * (1 + SECP256K1_WHITELIST_MAX_N_KEYS)]; -} secp256k1_whitelist_signature; - -/** Parse a whitelist signature - * - * Returns: 1 when the signature could be parsed, 0 otherwise. - * Args: ctx: a secp256k1 context object - * Out: sig: a pointer to a signature object - * In: input: a pointer to the array to parse - * input_len: the length of the above array - * - * The signature must consist of a 1-byte n_keys value, followed by a 32-byte - * big endian e0 value, followed by n_keys many 32-byte big endian s values. - * If n_keys falls outside of [0..SECP256K1_WHITELIST_MAX_N_KEYS] the encoding - * is invalid. - * - * The total length of the input array must therefore be 33 + 32 * n_keys. - * If the length `input_len` does not match this value, parsing will fail. - * - * After the call, sig will always be initialized. If parsing failed or any - * scalar values overflow or are zero, the resulting sig value is guaranteed - * to fail validation for any set of keys. - */ -SECP256K1_API int secp256k1_whitelist_signature_parse( - const secp256k1_context* ctx, - secp256k1_whitelist_signature *sig, - const unsigned char *input, - size_t input_len -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); - -/** Returns the number of keys a signature expects to have. - * - * Returns: the number of keys for the given signature - * In: sig: a pointer to a signature object - */ -SECP256K1_API size_t secp256k1_whitelist_signature_n_keys( - const secp256k1_whitelist_signature *sig -) SECP256K1_ARG_NONNULL(1); - -/** Serialize a whitelist signature - * - * Returns: 1 - * Args: ctx: a secp256k1 context object - * Out: output64: a pointer to an array to store the serialization - * In/Out: output_len: length of the above array, updated with the actual serialized length - * In: sig: a pointer to an initialized signature object - * - * See secp256k1_whitelist_signature_parse for details about the encoding. - */ -SECP256K1_API int secp256k1_whitelist_signature_serialize( - const secp256k1_context* ctx, - unsigned char *output, - size_t *output_len, - const secp256k1_whitelist_signature *sig -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); - -/** Compute a whitelist signature - * Returns 1: signature was successfully created - * 0: signature was not successfully created - * In: ctx: pointer to a context object, initialized for signing and verification - * online_pubkeys: list of all online pubkeys - * offline_pubkeys: list of all offline pubkeys - * n_keys: the number of entries in each of the above two arrays - * sub_pubkey: the key to be whitelisted - * online_seckey: the secret key to the signer's online pubkey - * summed_seckey: the secret key to the sum of (whitelisted key, signer's offline pubkey) - * index: the signer's index in the lists of keys - * noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used - * ndata: pointer to arbitrary data used by the nonce generation function (can be NULL) - * Out: sig: The produced signature. - * - * The signatures are of the list of all passed pubkeys in the order - * ( whitelist, online_1, offline_1, online_2, offline_2, ... ) - * The verification key list consists of - * online_i + H(offline_i + whitelist)(offline_i + whitelist) - * for each public key pair (offline_i, offline_i). Here H means sha256 of the - * compressed serialization of the key. - */ -SECP256K1_API int secp256k1_whitelist_sign( - const secp256k1_context* ctx, - secp256k1_whitelist_signature *sig, - const secp256k1_pubkey *online_pubkeys, - const secp256k1_pubkey *offline_pubkeys, - const size_t n_keys, - const secp256k1_pubkey *sub_pubkey, - const unsigned char *online_seckey, - const unsigned char *summed_seckey, - const size_t index, - secp256k1_nonce_function noncefp, - const void *noncedata -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(6) SECP256K1_ARG_NONNULL(7) SECP256K1_ARG_NONNULL(8); - -/** Verify a whitelist signature - * Returns 1: signature is valid - * 0: signature is not valid - * In: ctx: pointer to a context object, initialized for signing and verification - * sig: the signature to be verified - * online_pubkeys: list of all online pubkeys - * offline_pubkeys: list of all offline pubkeys - * n_keys: the number of entries in each of the above two arrays - * sub_pubkey: the key to be whitelisted - */ -SECP256K1_API int secp256k1_whitelist_verify( - const secp256k1_context* ctx, - const secp256k1_whitelist_signature *sig, - const secp256k1_pubkey *online_pubkeys, - const secp256k1_pubkey *offline_pubkeys, - const size_t n_keys, - const secp256k1_pubkey *sub_pubkey -) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(6); - -#ifdef __cplusplus -} -#endif - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/sage/group_prover.sage b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/sage/group_prover.sage deleted file mode 100644 index 8521f07..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/sage/group_prover.sage +++ /dev/null @@ -1,322 +0,0 @@ -# This code supports verifying group implementations which have branches -# or conditional statements (like cmovs), by allowing each execution path -# to independently set assumptions on input or intermediary variables. -# -# The general approach is: -# * A constraint is a tuple of two sets of symbolic expressions: -# the first of which are required to evaluate to zero, the second of which -# are required to evaluate to nonzero. -# - A constraint is said to be conflicting if any of its nonzero expressions -# is in the ideal with basis the zero expressions (in other words: when the -# zero expressions imply that one of the nonzero expressions are zero). -# * There is a list of laws that describe the intended behaviour, including -# laws for addition and doubling. Each law is called with the symbolic point -# coordinates as arguments, and returns: -# - A constraint describing the assumptions under which it is applicable, -# called "assumeLaw" -# - A constraint describing the requirements of the law, called "require" -# * Implementations are transliterated into functions that operate as well on -# algebraic input points, and are called once per combination of branches -# executed. Each execution returns: -# - A constraint describing the assumptions this implementation requires -# (such as Z1=1), called "assumeFormula" -# - A constraint describing the assumptions this specific branch requires, -# but which is by construction guaranteed to cover the entire space by -# merging the results from all branches, called "assumeBranch" -# - The result of the computation -# * All combinations of laws with implementation branches are tried, and: -# - If the combination of assumeLaw, assumeFormula, and assumeBranch results -# in a conflict, it means this law does not apply to this branch, and it is -# skipped. -# - For others, we try to prove the require constraints hold, assuming the -# information in assumeLaw + assumeFormula + assumeBranch, and if this does -# not succeed, we fail. -# + To prove an expression is zero, we check whether it belongs to the -# ideal with the assumed zero expressions as basis. This test is exact. -# + To prove an expression is nonzero, we check whether each of its -# factors is contained in the set of nonzero assumptions' factors. -# This test is not exact, so various combinations of original and -# reduced expressions' factors are tried. -# - If we succeed, we print out the assumptions from assumeFormula that -# weren't implied by assumeLaw already. Those from assumeBranch are skipped, -# as we assume that all constraints in it are complementary with each other. -# -# Based on the sage verification scripts used in the Explicit-Formulas Database -# by Tanja Lange and others, see http://hyperelliptic.org/EFD - -class fastfrac: - """Fractions over rings.""" - - def __init__(self,R,top,bot=1): - """Construct a fractional, given a ring, a numerator, and denominator.""" - self.R = R - if parent(top) == ZZ or parent(top) == R: - self.top = R(top) - self.bot = R(bot) - elif top.__class__ == fastfrac: - self.top = top.top - self.bot = top.bot * bot - else: - self.top = R(numerator(top)) - self.bot = R(denominator(top)) * bot - - def iszero(self,I): - """Return whether this fraction is zero given an ideal.""" - return self.top in I and self.bot not in I - - def reduce(self,assumeZero): - zero = self.R.ideal(map(numerator, assumeZero)) - return fastfrac(self.R, zero.reduce(self.top)) / fastfrac(self.R, zero.reduce(self.bot)) - - def __add__(self,other): - """Add two fractions.""" - if parent(other) == ZZ: - return fastfrac(self.R,self.top + self.bot * other,self.bot) - if other.__class__ == fastfrac: - return fastfrac(self.R,self.top * other.bot + self.bot * other.top,self.bot * other.bot) - return NotImplemented - - def __sub__(self,other): - """Subtract two fractions.""" - if parent(other) == ZZ: - return fastfrac(self.R,self.top - self.bot * other,self.bot) - if other.__class__ == fastfrac: - return fastfrac(self.R,self.top * other.bot - self.bot * other.top,self.bot * other.bot) - return NotImplemented - - def __neg__(self): - """Return the negation of a fraction.""" - return fastfrac(self.R,-self.top,self.bot) - - def __mul__(self,other): - """Multiply two fractions.""" - if parent(other) == ZZ: - return fastfrac(self.R,self.top * other,self.bot) - if other.__class__ == fastfrac: - return fastfrac(self.R,self.top * other.top,self.bot * other.bot) - return NotImplemented - - def __rmul__(self,other): - """Multiply something else with a fraction.""" - return self.__mul__(other) - - def __div__(self,other): - """Divide two fractions.""" - if parent(other) == ZZ: - return fastfrac(self.R,self.top,self.bot * other) - if other.__class__ == fastfrac: - return fastfrac(self.R,self.top * other.bot,self.bot * other.top) - return NotImplemented - - def __pow__(self,other): - """Compute a power of a fraction.""" - if parent(other) == ZZ: - if other < 0: - # Negative powers require flipping top and bottom - return fastfrac(self.R,self.bot ^ (-other),self.top ^ (-other)) - else: - return fastfrac(self.R,self.top ^ other,self.bot ^ other) - return NotImplemented - - def __str__(self): - return "fastfrac((" + str(self.top) + ") / (" + str(self.bot) + "))" - def __repr__(self): - return "%s" % self - - def numerator(self): - return self.top - -class constraints: - """A set of constraints, consisting of zero and nonzero expressions. - - Constraints can either be used to express knowledge or a requirement. - - Both the fields zero and nonzero are maps from expressions to description - strings. The expressions that are the keys in zero are required to be zero, - and the expressions that are the keys in nonzero are required to be nonzero. - - Note that (a != 0) and (b != 0) is the same as (a*b != 0), so all keys in - nonzero could be multiplied into a single key. This is often much less - efficient to work with though, so we keep them separate inside the - constraints. This allows higher-level code to do fast checks on the individual - nonzero elements, or combine them if needed for stronger checks. - - We can't multiply the different zero elements, as it would suffice for one of - the factors to be zero, instead of all of them. Instead, the zero elements are - typically combined into an ideal first. - """ - - def __init__(self, **kwargs): - if 'zero' in kwargs: - self.zero = dict(kwargs['zero']) - else: - self.zero = dict() - if 'nonzero' in kwargs: - self.nonzero = dict(kwargs['nonzero']) - else: - self.nonzero = dict() - - def negate(self): - return constraints(zero=self.nonzero, nonzero=self.zero) - - def __add__(self, other): - zero = self.zero.copy() - zero.update(other.zero) - nonzero = self.nonzero.copy() - nonzero.update(other.nonzero) - return constraints(zero=zero, nonzero=nonzero) - - def __str__(self): - return "constraints(zero=%s,nonzero=%s)" % (self.zero, self.nonzero) - - def __repr__(self): - return "%s" % self - - -def conflicts(R, con): - """Check whether any of the passed non-zero assumptions is implied by the zero assumptions""" - zero = R.ideal(map(numerator, con.zero)) - if 1 in zero: - return True - # First a cheap check whether any of the individual nonzero terms conflict on - # their own. - for nonzero in con.nonzero: - if nonzero.iszero(zero): - return True - # It can be the case that entries in the nonzero set do not individually - # conflict with the zero set, but their combination does. For example, knowing - # that either x or y is zero is equivalent to having x*y in the zero set. - # Having x or y individually in the nonzero set is not a conflict, but both - # simultaneously is, so that is the right thing to check for. - if reduce(lambda a,b: a * b, con.nonzero, fastfrac(R, 1)).iszero(zero): - return True - return False - - -def get_nonzero_set(R, assume): - """Calculate a simple set of nonzero expressions""" - zero = R.ideal(map(numerator, assume.zero)) - nonzero = set() - for nz in map(numerator, assume.nonzero): - for (f,n) in nz.factor(): - nonzero.add(f) - rnz = zero.reduce(nz) - for (f,n) in rnz.factor(): - nonzero.add(f) - return nonzero - - -def prove_nonzero(R, exprs, assume): - """Check whether an expression is provably nonzero, given assumptions""" - zero = R.ideal(map(numerator, assume.zero)) - nonzero = get_nonzero_set(R, assume) - expl = set() - ok = True - for expr in exprs: - if numerator(expr) in zero: - return (False, [exprs[expr]]) - allexprs = reduce(lambda a,b: numerator(a)*numerator(b), exprs, 1) - for (f, n) in allexprs.factor(): - if f not in nonzero: - ok = False - if ok: - return (True, None) - ok = True - for (f, n) in zero.reduce(numerator(allexprs)).factor(): - if f not in nonzero: - ok = False - if ok: - return (True, None) - ok = True - for expr in exprs: - for (f,n) in numerator(expr).factor(): - if f not in nonzero: - ok = False - if ok: - return (True, None) - ok = True - for expr in exprs: - for (f,n) in zero.reduce(numerator(expr)).factor(): - if f not in nonzero: - expl.add(exprs[expr]) - if expl: - return (False, list(expl)) - else: - return (True, None) - - -def prove_zero(R, exprs, assume): - """Check whether all of the passed expressions are provably zero, given assumptions""" - r, e = prove_nonzero(R, dict(map(lambda x: (fastfrac(R, x.bot, 1), exprs[x]), exprs)), assume) - if not r: - return (False, map(lambda x: "Possibly zero denominator: %s" % x, e)) - zero = R.ideal(map(numerator, assume.zero)) - nonzero = prod(x for x in assume.nonzero) - expl = [] - for expr in exprs: - if not expr.iszero(zero): - expl.append(exprs[expr]) - if not expl: - return (True, None) - return (False, expl) - - -def describe_extra(R, assume, assumeExtra): - """Describe what assumptions are added, given existing assumptions""" - zerox = assume.zero.copy() - zerox.update(assumeExtra.zero) - zero = R.ideal(map(numerator, assume.zero)) - zeroextra = R.ideal(map(numerator, zerox)) - nonzero = get_nonzero_set(R, assume) - ret = set() - # Iterate over the extra zero expressions - for base in assumeExtra.zero: - if base not in zero: - add = [] - for (f, n) in numerator(base).factor(): - if f not in nonzero: - add += ["%s" % f] - if add: - ret.add((" * ".join(add)) + " = 0 [%s]" % assumeExtra.zero[base]) - # Iterate over the extra nonzero expressions - for nz in assumeExtra.nonzero: - nzr = zeroextra.reduce(numerator(nz)) - if nzr not in zeroextra: - for (f,n) in nzr.factor(): - if zeroextra.reduce(f) not in nonzero: - ret.add("%s != 0" % zeroextra.reduce(f)) - return ", ".join(x for x in ret) - - -def check_symbolic(R, assumeLaw, assumeAssert, assumeBranch, require): - """Check a set of zero and nonzero requirements, given a set of zero and nonzero assumptions""" - assume = assumeLaw + assumeAssert + assumeBranch - - if conflicts(R, assume): - # This formula does not apply - return None - - describe = describe_extra(R, assumeLaw + assumeBranch, assumeAssert) - - ok, msg = prove_zero(R, require.zero, assume) - if not ok: - return "FAIL, %s fails (assuming %s)" % (str(msg), describe) - - res, expl = prove_nonzero(R, require.nonzero, assume) - if not res: - return "FAIL, %s fails (assuming %s)" % (str(expl), describe) - - if describe != "": - return "OK (assuming %s)" % describe - else: - return "OK" - - -def concrete_verify(c): - for k in c.zero: - if k != 0: - return (False, c.zero[k]) - for k in c.nonzero: - if k == 0: - return (False, c.nonzero[k]) - return (True, None) diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/sage/shallue_van_de_woestijne.sage b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/sage/shallue_van_de_woestijne.sage deleted file mode 100644 index 1cc97b6..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/sage/shallue_van_de_woestijne.sage +++ /dev/null @@ -1,51 +0,0 @@ - -### http://www.di.ens.fr/~fouque/pub/latincrypt12.pdf - -# Parameters for secp256k1 -p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F -a = 0 -b = 7 -F = FiniteField (p) -C = EllipticCurve ([F(a), F(b)]) - -def svdw(t): - sqrt_neg_3 = F(-3).nth_root(2) - - ## Compute candidate x values - w = sqrt_neg_3 * t / (1 + b + t^2) - x = [ F(0), F(0), F(0) ] - x[0] = (-1 + sqrt_neg_3) / 2 - t * w - x[1] = -1 - x[0] - x[2] = 1 + 1 / w^2 - - print - print "On %2d" % t - print " x1 %064x" % x[0] - print " x2 %064x" % x[1] - print " x3 %064x" % x[2] - - ## Select which to use - alph = jacobi_symbol(x[0]^3 + b, p) - beta = jacobi_symbol(x[1]^3 + b, p) - if alph == 1 and beta == 1: - i = 0 - elif alph == 1 and beta == -1: - i = 0 - elif alph == -1 and beta == 1: - i = 1 - elif alph == -1 and beta == -1: - i = 2 - else: - print "Help! I don't understand Python!" - - ## Expand to full point - sign = 1 - 2 * (int(F(t)) % 2) - ret_x = x[i] - ret_y = sign * F(x[i]^3 + b).nth_root(2) - return C.point((ret_x, ret_y)) - - -## main -for i in range(1, 11): - res = svdw(i) - print "Result: %064x %064x" % res.xy() diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/asm/field_10x26_arm.s b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/asm/field_10x26_arm.s deleted file mode 100644 index 5a9cc3f..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/asm/field_10x26_arm.s +++ /dev/null @@ -1,919 +0,0 @@ -@ vim: set tabstop=8 softtabstop=8 shiftwidth=8 noexpandtab syntax=armasm: -/********************************************************************** - * Copyright (c) 2014 Wladimir J. van der Laan * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ -/* -ARM implementation of field_10x26 inner loops. - -Note: - -- To avoid unnecessary loads and make use of available registers, two - 'passes' have every time been interleaved, with the odd passes accumulating c' and d' - which will be added to c and d respectively in the even passes - -*/ - - .syntax unified - .arch armv7-a - @ eabi attributes - see readelf -A - .eabi_attribute 8, 1 @ Tag_ARM_ISA_use = yes - .eabi_attribute 9, 0 @ Tag_Thumb_ISA_use = no - .eabi_attribute 10, 0 @ Tag_FP_arch = none - .eabi_attribute 24, 1 @ Tag_ABI_align_needed = 8-byte - .eabi_attribute 25, 1 @ Tag_ABI_align_preserved = 8-byte, except leaf SP - .eabi_attribute 30, 2 @ Tag_ABI_optimization_goals = Aggressive Speed - .eabi_attribute 34, 1 @ Tag_CPU_unaligned_access = v6 - .text - - @ Field constants - .set field_R0, 0x3d10 - .set field_R1, 0x400 - .set field_not_M, 0xfc000000 @ ~M = ~0x3ffffff - - .align 2 - .global secp256k1_fe_mul_inner - .type secp256k1_fe_mul_inner, %function - @ Arguments: - @ r0 r Restrict: can overlap with a, not with b - @ r1 a - @ r2 b - @ Stack (total 4+10*4 = 44) - @ sp + #0 saved 'r' pointer - @ sp + #4 + 4*X t0,t1,t2,t3,t4,t5,t6,t7,u8,t9 -secp256k1_fe_mul_inner: - stmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r14} - sub sp, sp, #48 @ frame=44 + alignment - str r0, [sp, #0] @ save result address, we need it only at the end - - /****************************************** - * Main computation code. - ****************************************** - - Allocation: - r0,r14,r7,r8 scratch - r1 a (pointer) - r2 b (pointer) - r3:r4 c - r5:r6 d - r11:r12 c' - r9:r10 d' - - Note: do not write to r[] here, it may overlap with a[] - */ - - /* A - interleaved with B */ - ldr r7, [r1, #0*4] @ a[0] - ldr r8, [r2, #9*4] @ b[9] - ldr r0, [r1, #1*4] @ a[1] - umull r5, r6, r7, r8 @ d = a[0] * b[9] - ldr r14, [r2, #8*4] @ b[8] - umull r9, r10, r0, r8 @ d' = a[1] * b[9] - ldr r7, [r1, #2*4] @ a[2] - umlal r5, r6, r0, r14 @ d += a[1] * b[8] - ldr r8, [r2, #7*4] @ b[7] - umlal r9, r10, r7, r14 @ d' += a[2] * b[8] - ldr r0, [r1, #3*4] @ a[3] - umlal r5, r6, r7, r8 @ d += a[2] * b[7] - ldr r14, [r2, #6*4] @ b[6] - umlal r9, r10, r0, r8 @ d' += a[3] * b[7] - ldr r7, [r1, #4*4] @ a[4] - umlal r5, r6, r0, r14 @ d += a[3] * b[6] - ldr r8, [r2, #5*4] @ b[5] - umlal r9, r10, r7, r14 @ d' += a[4] * b[6] - ldr r0, [r1, #5*4] @ a[5] - umlal r5, r6, r7, r8 @ d += a[4] * b[5] - ldr r14, [r2, #4*4] @ b[4] - umlal r9, r10, r0, r8 @ d' += a[5] * b[5] - ldr r7, [r1, #6*4] @ a[6] - umlal r5, r6, r0, r14 @ d += a[5] * b[4] - ldr r8, [r2, #3*4] @ b[3] - umlal r9, r10, r7, r14 @ d' += a[6] * b[4] - ldr r0, [r1, #7*4] @ a[7] - umlal r5, r6, r7, r8 @ d += a[6] * b[3] - ldr r14, [r2, #2*4] @ b[2] - umlal r9, r10, r0, r8 @ d' += a[7] * b[3] - ldr r7, [r1, #8*4] @ a[8] - umlal r5, r6, r0, r14 @ d += a[7] * b[2] - ldr r8, [r2, #1*4] @ b[1] - umlal r9, r10, r7, r14 @ d' += a[8] * b[2] - ldr r0, [r1, #9*4] @ a[9] - umlal r5, r6, r7, r8 @ d += a[8] * b[1] - ldr r14, [r2, #0*4] @ b[0] - umlal r9, r10, r0, r8 @ d' += a[9] * b[1] - ldr r7, [r1, #0*4] @ a[0] - umlal r5, r6, r0, r14 @ d += a[9] * b[0] - @ r7,r14 used in B - - bic r0, r5, field_not_M @ t9 = d & M - str r0, [sp, #4 + 4*9] - mov r5, r5, lsr #26 @ d >>= 26 - orr r5, r5, r6, asl #6 - mov r6, r6, lsr #26 - - /* B */ - umull r3, r4, r7, r14 @ c = a[0] * b[0] - adds r5, r5, r9 @ d += d' - adc r6, r6, r10 - - bic r0, r5, field_not_M @ u0 = d & M - mov r5, r5, lsr #26 @ d >>= 26 - orr r5, r5, r6, asl #6 - mov r6, r6, lsr #26 - movw r14, field_R0 @ c += u0 * R0 - umlal r3, r4, r0, r14 - - bic r14, r3, field_not_M @ t0 = c & M - str r14, [sp, #4 + 0*4] - mov r3, r3, lsr #26 @ c >>= 26 - orr r3, r3, r4, asl #6 - mov r4, r4, lsr #26 - mov r14, field_R1 @ c += u0 * R1 - umlal r3, r4, r0, r14 - - /* C - interleaved with D */ - ldr r7, [r1, #0*4] @ a[0] - ldr r8, [r2, #2*4] @ b[2] - ldr r14, [r2, #1*4] @ b[1] - umull r11, r12, r7, r8 @ c' = a[0] * b[2] - ldr r0, [r1, #1*4] @ a[1] - umlal r3, r4, r7, r14 @ c += a[0] * b[1] - ldr r8, [r2, #0*4] @ b[0] - umlal r11, r12, r0, r14 @ c' += a[1] * b[1] - ldr r7, [r1, #2*4] @ a[2] - umlal r3, r4, r0, r8 @ c += a[1] * b[0] - ldr r14, [r2, #9*4] @ b[9] - umlal r11, r12, r7, r8 @ c' += a[2] * b[0] - ldr r0, [r1, #3*4] @ a[3] - umlal r5, r6, r7, r14 @ d += a[2] * b[9] - ldr r8, [r2, #8*4] @ b[8] - umull r9, r10, r0, r14 @ d' = a[3] * b[9] - ldr r7, [r1, #4*4] @ a[4] - umlal r5, r6, r0, r8 @ d += a[3] * b[8] - ldr r14, [r2, #7*4] @ b[7] - umlal r9, r10, r7, r8 @ d' += a[4] * b[8] - ldr r0, [r1, #5*4] @ a[5] - umlal r5, r6, r7, r14 @ d += a[4] * b[7] - ldr r8, [r2, #6*4] @ b[6] - umlal r9, r10, r0, r14 @ d' += a[5] * b[7] - ldr r7, [r1, #6*4] @ a[6] - umlal r5, r6, r0, r8 @ d += a[5] * b[6] - ldr r14, [r2, #5*4] @ b[5] - umlal r9, r10, r7, r8 @ d' += a[6] * b[6] - ldr r0, [r1, #7*4] @ a[7] - umlal r5, r6, r7, r14 @ d += a[6] * b[5] - ldr r8, [r2, #4*4] @ b[4] - umlal r9, r10, r0, r14 @ d' += a[7] * b[5] - ldr r7, [r1, #8*4] @ a[8] - umlal r5, r6, r0, r8 @ d += a[7] * b[4] - ldr r14, [r2, #3*4] @ b[3] - umlal r9, r10, r7, r8 @ d' += a[8] * b[4] - ldr r0, [r1, #9*4] @ a[9] - umlal r5, r6, r7, r14 @ d += a[8] * b[3] - ldr r8, [r2, #2*4] @ b[2] - umlal r9, r10, r0, r14 @ d' += a[9] * b[3] - umlal r5, r6, r0, r8 @ d += a[9] * b[2] - - bic r0, r5, field_not_M @ u1 = d & M - mov r5, r5, lsr #26 @ d >>= 26 - orr r5, r5, r6, asl #6 - mov r6, r6, lsr #26 - movw r14, field_R0 @ c += u1 * R0 - umlal r3, r4, r0, r14 - - bic r14, r3, field_not_M @ t1 = c & M - str r14, [sp, #4 + 1*4] - mov r3, r3, lsr #26 @ c >>= 26 - orr r3, r3, r4, asl #6 - mov r4, r4, lsr #26 - mov r14, field_R1 @ c += u1 * R1 - umlal r3, r4, r0, r14 - - /* D */ - adds r3, r3, r11 @ c += c' - adc r4, r4, r12 - adds r5, r5, r9 @ d += d' - adc r6, r6, r10 - - bic r0, r5, field_not_M @ u2 = d & M - mov r5, r5, lsr #26 @ d >>= 26 - orr r5, r5, r6, asl #6 - mov r6, r6, lsr #26 - movw r14, field_R0 @ c += u2 * R0 - umlal r3, r4, r0, r14 - - bic r14, r3, field_not_M @ t2 = c & M - str r14, [sp, #4 + 2*4] - mov r3, r3, lsr #26 @ c >>= 26 - orr r3, r3, r4, asl #6 - mov r4, r4, lsr #26 - mov r14, field_R1 @ c += u2 * R1 - umlal r3, r4, r0, r14 - - /* E - interleaved with F */ - ldr r7, [r1, #0*4] @ a[0] - ldr r8, [r2, #4*4] @ b[4] - umull r11, r12, r7, r8 @ c' = a[0] * b[4] - ldr r8, [r2, #3*4] @ b[3] - umlal r3, r4, r7, r8 @ c += a[0] * b[3] - ldr r7, [r1, #1*4] @ a[1] - umlal r11, r12, r7, r8 @ c' += a[1] * b[3] - ldr r8, [r2, #2*4] @ b[2] - umlal r3, r4, r7, r8 @ c += a[1] * b[2] - ldr r7, [r1, #2*4] @ a[2] - umlal r11, r12, r7, r8 @ c' += a[2] * b[2] - ldr r8, [r2, #1*4] @ b[1] - umlal r3, r4, r7, r8 @ c += a[2] * b[1] - ldr r7, [r1, #3*4] @ a[3] - umlal r11, r12, r7, r8 @ c' += a[3] * b[1] - ldr r8, [r2, #0*4] @ b[0] - umlal r3, r4, r7, r8 @ c += a[3] * b[0] - ldr r7, [r1, #4*4] @ a[4] - umlal r11, r12, r7, r8 @ c' += a[4] * b[0] - ldr r8, [r2, #9*4] @ b[9] - umlal r5, r6, r7, r8 @ d += a[4] * b[9] - ldr r7, [r1, #5*4] @ a[5] - umull r9, r10, r7, r8 @ d' = a[5] * b[9] - ldr r8, [r2, #8*4] @ b[8] - umlal r5, r6, r7, r8 @ d += a[5] * b[8] - ldr r7, [r1, #6*4] @ a[6] - umlal r9, r10, r7, r8 @ d' += a[6] * b[8] - ldr r8, [r2, #7*4] @ b[7] - umlal r5, r6, r7, r8 @ d += a[6] * b[7] - ldr r7, [r1, #7*4] @ a[7] - umlal r9, r10, r7, r8 @ d' += a[7] * b[7] - ldr r8, [r2, #6*4] @ b[6] - umlal r5, r6, r7, r8 @ d += a[7] * b[6] - ldr r7, [r1, #8*4] @ a[8] - umlal r9, r10, r7, r8 @ d' += a[8] * b[6] - ldr r8, [r2, #5*4] @ b[5] - umlal r5, r6, r7, r8 @ d += a[8] * b[5] - ldr r7, [r1, #9*4] @ a[9] - umlal r9, r10, r7, r8 @ d' += a[9] * b[5] - ldr r8, [r2, #4*4] @ b[4] - umlal r5, r6, r7, r8 @ d += a[9] * b[4] - - bic r0, r5, field_not_M @ u3 = d & M - mov r5, r5, lsr #26 @ d >>= 26 - orr r5, r5, r6, asl #6 - mov r6, r6, lsr #26 - movw r14, field_R0 @ c += u3 * R0 - umlal r3, r4, r0, r14 - - bic r14, r3, field_not_M @ t3 = c & M - str r14, [sp, #4 + 3*4] - mov r3, r3, lsr #26 @ c >>= 26 - orr r3, r3, r4, asl #6 - mov r4, r4, lsr #26 - mov r14, field_R1 @ c += u3 * R1 - umlal r3, r4, r0, r14 - - /* F */ - adds r3, r3, r11 @ c += c' - adc r4, r4, r12 - adds r5, r5, r9 @ d += d' - adc r6, r6, r10 - - bic r0, r5, field_not_M @ u4 = d & M - mov r5, r5, lsr #26 @ d >>= 26 - orr r5, r5, r6, asl #6 - mov r6, r6, lsr #26 - movw r14, field_R0 @ c += u4 * R0 - umlal r3, r4, r0, r14 - - bic r14, r3, field_not_M @ t4 = c & M - str r14, [sp, #4 + 4*4] - mov r3, r3, lsr #26 @ c >>= 26 - orr r3, r3, r4, asl #6 - mov r4, r4, lsr #26 - mov r14, field_R1 @ c += u4 * R1 - umlal r3, r4, r0, r14 - - /* G - interleaved with H */ - ldr r7, [r1, #0*4] @ a[0] - ldr r8, [r2, #6*4] @ b[6] - ldr r14, [r2, #5*4] @ b[5] - umull r11, r12, r7, r8 @ c' = a[0] * b[6] - ldr r0, [r1, #1*4] @ a[1] - umlal r3, r4, r7, r14 @ c += a[0] * b[5] - ldr r8, [r2, #4*4] @ b[4] - umlal r11, r12, r0, r14 @ c' += a[1] * b[5] - ldr r7, [r1, #2*4] @ a[2] - umlal r3, r4, r0, r8 @ c += a[1] * b[4] - ldr r14, [r2, #3*4] @ b[3] - umlal r11, r12, r7, r8 @ c' += a[2] * b[4] - ldr r0, [r1, #3*4] @ a[3] - umlal r3, r4, r7, r14 @ c += a[2] * b[3] - ldr r8, [r2, #2*4] @ b[2] - umlal r11, r12, r0, r14 @ c' += a[3] * b[3] - ldr r7, [r1, #4*4] @ a[4] - umlal r3, r4, r0, r8 @ c += a[3] * b[2] - ldr r14, [r2, #1*4] @ b[1] - umlal r11, r12, r7, r8 @ c' += a[4] * b[2] - ldr r0, [r1, #5*4] @ a[5] - umlal r3, r4, r7, r14 @ c += a[4] * b[1] - ldr r8, [r2, #0*4] @ b[0] - umlal r11, r12, r0, r14 @ c' += a[5] * b[1] - ldr r7, [r1, #6*4] @ a[6] - umlal r3, r4, r0, r8 @ c += a[5] * b[0] - ldr r14, [r2, #9*4] @ b[9] - umlal r11, r12, r7, r8 @ c' += a[6] * b[0] - ldr r0, [r1, #7*4] @ a[7] - umlal r5, r6, r7, r14 @ d += a[6] * b[9] - ldr r8, [r2, #8*4] @ b[8] - umull r9, r10, r0, r14 @ d' = a[7] * b[9] - ldr r7, [r1, #8*4] @ a[8] - umlal r5, r6, r0, r8 @ d += a[7] * b[8] - ldr r14, [r2, #7*4] @ b[7] - umlal r9, r10, r7, r8 @ d' += a[8] * b[8] - ldr r0, [r1, #9*4] @ a[9] - umlal r5, r6, r7, r14 @ d += a[8] * b[7] - ldr r8, [r2, #6*4] @ b[6] - umlal r9, r10, r0, r14 @ d' += a[9] * b[7] - umlal r5, r6, r0, r8 @ d += a[9] * b[6] - - bic r0, r5, field_not_M @ u5 = d & M - mov r5, r5, lsr #26 @ d >>= 26 - orr r5, r5, r6, asl #6 - mov r6, r6, lsr #26 - movw r14, field_R0 @ c += u5 * R0 - umlal r3, r4, r0, r14 - - bic r14, r3, field_not_M @ t5 = c & M - str r14, [sp, #4 + 5*4] - mov r3, r3, lsr #26 @ c >>= 26 - orr r3, r3, r4, asl #6 - mov r4, r4, lsr #26 - mov r14, field_R1 @ c += u5 * R1 - umlal r3, r4, r0, r14 - - /* H */ - adds r3, r3, r11 @ c += c' - adc r4, r4, r12 - adds r5, r5, r9 @ d += d' - adc r6, r6, r10 - - bic r0, r5, field_not_M @ u6 = d & M - mov r5, r5, lsr #26 @ d >>= 26 - orr r5, r5, r6, asl #6 - mov r6, r6, lsr #26 - movw r14, field_R0 @ c += u6 * R0 - umlal r3, r4, r0, r14 - - bic r14, r3, field_not_M @ t6 = c & M - str r14, [sp, #4 + 6*4] - mov r3, r3, lsr #26 @ c >>= 26 - orr r3, r3, r4, asl #6 - mov r4, r4, lsr #26 - mov r14, field_R1 @ c += u6 * R1 - umlal r3, r4, r0, r14 - - /* I - interleaved with J */ - ldr r8, [r2, #8*4] @ b[8] - ldr r7, [r1, #0*4] @ a[0] - ldr r14, [r2, #7*4] @ b[7] - umull r11, r12, r7, r8 @ c' = a[0] * b[8] - ldr r0, [r1, #1*4] @ a[1] - umlal r3, r4, r7, r14 @ c += a[0] * b[7] - ldr r8, [r2, #6*4] @ b[6] - umlal r11, r12, r0, r14 @ c' += a[1] * b[7] - ldr r7, [r1, #2*4] @ a[2] - umlal r3, r4, r0, r8 @ c += a[1] * b[6] - ldr r14, [r2, #5*4] @ b[5] - umlal r11, r12, r7, r8 @ c' += a[2] * b[6] - ldr r0, [r1, #3*4] @ a[3] - umlal r3, r4, r7, r14 @ c += a[2] * b[5] - ldr r8, [r2, #4*4] @ b[4] - umlal r11, r12, r0, r14 @ c' += a[3] * b[5] - ldr r7, [r1, #4*4] @ a[4] - umlal r3, r4, r0, r8 @ c += a[3] * b[4] - ldr r14, [r2, #3*4] @ b[3] - umlal r11, r12, r7, r8 @ c' += a[4] * b[4] - ldr r0, [r1, #5*4] @ a[5] - umlal r3, r4, r7, r14 @ c += a[4] * b[3] - ldr r8, [r2, #2*4] @ b[2] - umlal r11, r12, r0, r14 @ c' += a[5] * b[3] - ldr r7, [r1, #6*4] @ a[6] - umlal r3, r4, r0, r8 @ c += a[5] * b[2] - ldr r14, [r2, #1*4] @ b[1] - umlal r11, r12, r7, r8 @ c' += a[6] * b[2] - ldr r0, [r1, #7*4] @ a[7] - umlal r3, r4, r7, r14 @ c += a[6] * b[1] - ldr r8, [r2, #0*4] @ b[0] - umlal r11, r12, r0, r14 @ c' += a[7] * b[1] - ldr r7, [r1, #8*4] @ a[8] - umlal r3, r4, r0, r8 @ c += a[7] * b[0] - ldr r14, [r2, #9*4] @ b[9] - umlal r11, r12, r7, r8 @ c' += a[8] * b[0] - ldr r0, [r1, #9*4] @ a[9] - umlal r5, r6, r7, r14 @ d += a[8] * b[9] - ldr r8, [r2, #8*4] @ b[8] - umull r9, r10, r0, r14 @ d' = a[9] * b[9] - umlal r5, r6, r0, r8 @ d += a[9] * b[8] - - bic r0, r5, field_not_M @ u7 = d & M - mov r5, r5, lsr #26 @ d >>= 26 - orr r5, r5, r6, asl #6 - mov r6, r6, lsr #26 - movw r14, field_R0 @ c += u7 * R0 - umlal r3, r4, r0, r14 - - bic r14, r3, field_not_M @ t7 = c & M - str r14, [sp, #4 + 7*4] - mov r3, r3, lsr #26 @ c >>= 26 - orr r3, r3, r4, asl #6 - mov r4, r4, lsr #26 - mov r14, field_R1 @ c += u7 * R1 - umlal r3, r4, r0, r14 - - /* J */ - adds r3, r3, r11 @ c += c' - adc r4, r4, r12 - adds r5, r5, r9 @ d += d' - adc r6, r6, r10 - - bic r0, r5, field_not_M @ u8 = d & M - str r0, [sp, #4 + 8*4] - mov r5, r5, lsr #26 @ d >>= 26 - orr r5, r5, r6, asl #6 - mov r6, r6, lsr #26 - movw r14, field_R0 @ c += u8 * R0 - umlal r3, r4, r0, r14 - - /****************************************** - * compute and write back result - ****************************************** - Allocation: - r0 r - r3:r4 c - r5:r6 d - r7 t0 - r8 t1 - r9 t2 - r11 u8 - r12 t9 - r1,r2,r10,r14 scratch - - Note: do not read from a[] after here, it may overlap with r[] - */ - ldr r0, [sp, #0] - add r1, sp, #4 + 3*4 @ r[3..7] = t3..7, r11=u8, r12=t9 - ldmia r1, {r2,r7,r8,r9,r10,r11,r12} - add r1, r0, #3*4 - stmia r1, {r2,r7,r8,r9,r10} - - bic r2, r3, field_not_M @ r[8] = c & M - str r2, [r0, #8*4] - mov r3, r3, lsr #26 @ c >>= 26 - orr r3, r3, r4, asl #6 - mov r4, r4, lsr #26 - mov r14, field_R1 @ c += u8 * R1 - umlal r3, r4, r11, r14 - movw r14, field_R0 @ c += d * R0 - umlal r3, r4, r5, r14 - adds r3, r3, r12 @ c += t9 - adc r4, r4, #0 - - add r1, sp, #4 + 0*4 @ r7,r8,r9 = t0,t1,t2 - ldmia r1, {r7,r8,r9} - - ubfx r2, r3, #0, #22 @ r[9] = c & (M >> 4) - str r2, [r0, #9*4] - mov r3, r3, lsr #22 @ c >>= 22 - orr r3, r3, r4, asl #10 - mov r4, r4, lsr #22 - movw r14, field_R1 << 4 @ c += d * (R1 << 4) - umlal r3, r4, r5, r14 - - movw r14, field_R0 >> 4 @ d = c * (R0 >> 4) + t0 (64x64 multiply+add) - umull r5, r6, r3, r14 @ d = c.lo * (R0 >> 4) - adds r5, r5, r7 @ d.lo += t0 - mla r6, r14, r4, r6 @ d.hi += c.hi * (R0 >> 4) - adc r6, r6, 0 @ d.hi += carry - - bic r2, r5, field_not_M @ r[0] = d & M - str r2, [r0, #0*4] - - mov r5, r5, lsr #26 @ d >>= 26 - orr r5, r5, r6, asl #6 - mov r6, r6, lsr #26 - - movw r14, field_R1 >> 4 @ d += c * (R1 >> 4) + t1 (64x64 multiply+add) - umull r1, r2, r3, r14 @ tmp = c.lo * (R1 >> 4) - adds r5, r5, r8 @ d.lo += t1 - adc r6, r6, #0 @ d.hi += carry - adds r5, r5, r1 @ d.lo += tmp.lo - mla r2, r14, r4, r2 @ tmp.hi += c.hi * (R1 >> 4) - adc r6, r6, r2 @ d.hi += carry + tmp.hi - - bic r2, r5, field_not_M @ r[1] = d & M - str r2, [r0, #1*4] - mov r5, r5, lsr #26 @ d >>= 26 (ignore hi) - orr r5, r5, r6, asl #6 - - add r5, r5, r9 @ d += t2 - str r5, [r0, #2*4] @ r[2] = d - - add sp, sp, #48 - ldmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, pc} - .size secp256k1_fe_mul_inner, .-secp256k1_fe_mul_inner - - .align 2 - .global secp256k1_fe_sqr_inner - .type secp256k1_fe_sqr_inner, %function - @ Arguments: - @ r0 r Can overlap with a - @ r1 a - @ Stack (total 4+10*4 = 44) - @ sp + #0 saved 'r' pointer - @ sp + #4 + 4*X t0,t1,t2,t3,t4,t5,t6,t7,u8,t9 -secp256k1_fe_sqr_inner: - stmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r14} - sub sp, sp, #48 @ frame=44 + alignment - str r0, [sp, #0] @ save result address, we need it only at the end - /****************************************** - * Main computation code. - ****************************************** - - Allocation: - r0,r14,r2,r7,r8 scratch - r1 a (pointer) - r3:r4 c - r5:r6 d - r11:r12 c' - r9:r10 d' - - Note: do not write to r[] here, it may overlap with a[] - */ - /* A interleaved with B */ - ldr r0, [r1, #1*4] @ a[1]*2 - ldr r7, [r1, #0*4] @ a[0] - mov r0, r0, asl #1 - ldr r14, [r1, #9*4] @ a[9] - umull r3, r4, r7, r7 @ c = a[0] * a[0] - ldr r8, [r1, #8*4] @ a[8] - mov r7, r7, asl #1 - umull r5, r6, r7, r14 @ d = a[0]*2 * a[9] - ldr r7, [r1, #2*4] @ a[2]*2 - umull r9, r10, r0, r14 @ d' = a[1]*2 * a[9] - ldr r14, [r1, #7*4] @ a[7] - umlal r5, r6, r0, r8 @ d += a[1]*2 * a[8] - mov r7, r7, asl #1 - ldr r0, [r1, #3*4] @ a[3]*2 - umlal r9, r10, r7, r8 @ d' += a[2]*2 * a[8] - ldr r8, [r1, #6*4] @ a[6] - umlal r5, r6, r7, r14 @ d += a[2]*2 * a[7] - mov r0, r0, asl #1 - ldr r7, [r1, #4*4] @ a[4]*2 - umlal r9, r10, r0, r14 @ d' += a[3]*2 * a[7] - ldr r14, [r1, #5*4] @ a[5] - mov r7, r7, asl #1 - umlal r5, r6, r0, r8 @ d += a[3]*2 * a[6] - umlal r9, r10, r7, r8 @ d' += a[4]*2 * a[6] - umlal r5, r6, r7, r14 @ d += a[4]*2 * a[5] - umlal r9, r10, r14, r14 @ d' += a[5] * a[5] - - bic r0, r5, field_not_M @ t9 = d & M - str r0, [sp, #4 + 9*4] - mov r5, r5, lsr #26 @ d >>= 26 - orr r5, r5, r6, asl #6 - mov r6, r6, lsr #26 - - /* B */ - adds r5, r5, r9 @ d += d' - adc r6, r6, r10 - - bic r0, r5, field_not_M @ u0 = d & M - mov r5, r5, lsr #26 @ d >>= 26 - orr r5, r5, r6, asl #6 - mov r6, r6, lsr #26 - movw r14, field_R0 @ c += u0 * R0 - umlal r3, r4, r0, r14 - bic r14, r3, field_not_M @ t0 = c & M - str r14, [sp, #4 + 0*4] - mov r3, r3, lsr #26 @ c >>= 26 - orr r3, r3, r4, asl #6 - mov r4, r4, lsr #26 - mov r14, field_R1 @ c += u0 * R1 - umlal r3, r4, r0, r14 - - /* C interleaved with D */ - ldr r0, [r1, #0*4] @ a[0]*2 - ldr r14, [r1, #1*4] @ a[1] - mov r0, r0, asl #1 - ldr r8, [r1, #2*4] @ a[2] - umlal r3, r4, r0, r14 @ c += a[0]*2 * a[1] - mov r7, r8, asl #1 @ a[2]*2 - umull r11, r12, r14, r14 @ c' = a[1] * a[1] - ldr r14, [r1, #9*4] @ a[9] - umlal r11, r12, r0, r8 @ c' += a[0]*2 * a[2] - ldr r0, [r1, #3*4] @ a[3]*2 - ldr r8, [r1, #8*4] @ a[8] - umlal r5, r6, r7, r14 @ d += a[2]*2 * a[9] - mov r0, r0, asl #1 - ldr r7, [r1, #4*4] @ a[4]*2 - umull r9, r10, r0, r14 @ d' = a[3]*2 * a[9] - ldr r14, [r1, #7*4] @ a[7] - umlal r5, r6, r0, r8 @ d += a[3]*2 * a[8] - mov r7, r7, asl #1 - ldr r0, [r1, #5*4] @ a[5]*2 - umlal r9, r10, r7, r8 @ d' += a[4]*2 * a[8] - ldr r8, [r1, #6*4] @ a[6] - mov r0, r0, asl #1 - umlal r5, r6, r7, r14 @ d += a[4]*2 * a[7] - umlal r9, r10, r0, r14 @ d' += a[5]*2 * a[7] - umlal r5, r6, r0, r8 @ d += a[5]*2 * a[6] - umlal r9, r10, r8, r8 @ d' += a[6] * a[6] - - bic r0, r5, field_not_M @ u1 = d & M - mov r5, r5, lsr #26 @ d >>= 26 - orr r5, r5, r6, asl #6 - mov r6, r6, lsr #26 - movw r14, field_R0 @ c += u1 * R0 - umlal r3, r4, r0, r14 - bic r14, r3, field_not_M @ t1 = c & M - str r14, [sp, #4 + 1*4] - mov r3, r3, lsr #26 @ c >>= 26 - orr r3, r3, r4, asl #6 - mov r4, r4, lsr #26 - mov r14, field_R1 @ c += u1 * R1 - umlal r3, r4, r0, r14 - - /* D */ - adds r3, r3, r11 @ c += c' - adc r4, r4, r12 - adds r5, r5, r9 @ d += d' - adc r6, r6, r10 - - bic r0, r5, field_not_M @ u2 = d & M - mov r5, r5, lsr #26 @ d >>= 26 - orr r5, r5, r6, asl #6 - mov r6, r6, lsr #26 - movw r14, field_R0 @ c += u2 * R0 - umlal r3, r4, r0, r14 - bic r14, r3, field_not_M @ t2 = c & M - str r14, [sp, #4 + 2*4] - mov r3, r3, lsr #26 @ c >>= 26 - orr r3, r3, r4, asl #6 - mov r4, r4, lsr #26 - mov r14, field_R1 @ c += u2 * R1 - umlal r3, r4, r0, r14 - - /* E interleaved with F */ - ldr r7, [r1, #0*4] @ a[0]*2 - ldr r0, [r1, #1*4] @ a[1]*2 - ldr r14, [r1, #2*4] @ a[2] - mov r7, r7, asl #1 - ldr r8, [r1, #3*4] @ a[3] - ldr r2, [r1, #4*4] - umlal r3, r4, r7, r8 @ c += a[0]*2 * a[3] - mov r0, r0, asl #1 - umull r11, r12, r7, r2 @ c' = a[0]*2 * a[4] - mov r2, r2, asl #1 @ a[4]*2 - umlal r11, r12, r0, r8 @ c' += a[1]*2 * a[3] - ldr r8, [r1, #9*4] @ a[9] - umlal r3, r4, r0, r14 @ c += a[1]*2 * a[2] - ldr r0, [r1, #5*4] @ a[5]*2 - umlal r11, r12, r14, r14 @ c' += a[2] * a[2] - ldr r14, [r1, #8*4] @ a[8] - mov r0, r0, asl #1 - umlal r5, r6, r2, r8 @ d += a[4]*2 * a[9] - ldr r7, [r1, #6*4] @ a[6]*2 - umull r9, r10, r0, r8 @ d' = a[5]*2 * a[9] - mov r7, r7, asl #1 - ldr r8, [r1, #7*4] @ a[7] - umlal r5, r6, r0, r14 @ d += a[5]*2 * a[8] - umlal r9, r10, r7, r14 @ d' += a[6]*2 * a[8] - umlal r5, r6, r7, r8 @ d += a[6]*2 * a[7] - umlal r9, r10, r8, r8 @ d' += a[7] * a[7] - - bic r0, r5, field_not_M @ u3 = d & M - mov r5, r5, lsr #26 @ d >>= 26 - orr r5, r5, r6, asl #6 - mov r6, r6, lsr #26 - movw r14, field_R0 @ c += u3 * R0 - umlal r3, r4, r0, r14 - bic r14, r3, field_not_M @ t3 = c & M - str r14, [sp, #4 + 3*4] - mov r3, r3, lsr #26 @ c >>= 26 - orr r3, r3, r4, asl #6 - mov r4, r4, lsr #26 - mov r14, field_R1 @ c += u3 * R1 - umlal r3, r4, r0, r14 - - /* F */ - adds r3, r3, r11 @ c += c' - adc r4, r4, r12 - adds r5, r5, r9 @ d += d' - adc r6, r6, r10 - - bic r0, r5, field_not_M @ u4 = d & M - mov r5, r5, lsr #26 @ d >>= 26 - orr r5, r5, r6, asl #6 - mov r6, r6, lsr #26 - movw r14, field_R0 @ c += u4 * R0 - umlal r3, r4, r0, r14 - bic r14, r3, field_not_M @ t4 = c & M - str r14, [sp, #4 + 4*4] - mov r3, r3, lsr #26 @ c >>= 26 - orr r3, r3, r4, asl #6 - mov r4, r4, lsr #26 - mov r14, field_R1 @ c += u4 * R1 - umlal r3, r4, r0, r14 - - /* G interleaved with H */ - ldr r7, [r1, #0*4] @ a[0]*2 - ldr r0, [r1, #1*4] @ a[1]*2 - mov r7, r7, asl #1 - ldr r8, [r1, #5*4] @ a[5] - ldr r2, [r1, #6*4] @ a[6] - umlal r3, r4, r7, r8 @ c += a[0]*2 * a[5] - ldr r14, [r1, #4*4] @ a[4] - mov r0, r0, asl #1 - umull r11, r12, r7, r2 @ c' = a[0]*2 * a[6] - ldr r7, [r1, #2*4] @ a[2]*2 - umlal r11, r12, r0, r8 @ c' += a[1]*2 * a[5] - mov r7, r7, asl #1 - ldr r8, [r1, #3*4] @ a[3] - umlal r3, r4, r0, r14 @ c += a[1]*2 * a[4] - mov r0, r2, asl #1 @ a[6]*2 - umlal r11, r12, r7, r14 @ c' += a[2]*2 * a[4] - ldr r14, [r1, #9*4] @ a[9] - umlal r3, r4, r7, r8 @ c += a[2]*2 * a[3] - ldr r7, [r1, #7*4] @ a[7]*2 - umlal r11, r12, r8, r8 @ c' += a[3] * a[3] - mov r7, r7, asl #1 - ldr r8, [r1, #8*4] @ a[8] - umlal r5, r6, r0, r14 @ d += a[6]*2 * a[9] - umull r9, r10, r7, r14 @ d' = a[7]*2 * a[9] - umlal r5, r6, r7, r8 @ d += a[7]*2 * a[8] - umlal r9, r10, r8, r8 @ d' += a[8] * a[8] - - bic r0, r5, field_not_M @ u5 = d & M - mov r5, r5, lsr #26 @ d >>= 26 - orr r5, r5, r6, asl #6 - mov r6, r6, lsr #26 - movw r14, field_R0 @ c += u5 * R0 - umlal r3, r4, r0, r14 - bic r14, r3, field_not_M @ t5 = c & M - str r14, [sp, #4 + 5*4] - mov r3, r3, lsr #26 @ c >>= 26 - orr r3, r3, r4, asl #6 - mov r4, r4, lsr #26 - mov r14, field_R1 @ c += u5 * R1 - umlal r3, r4, r0, r14 - - /* H */ - adds r3, r3, r11 @ c += c' - adc r4, r4, r12 - adds r5, r5, r9 @ d += d' - adc r6, r6, r10 - - bic r0, r5, field_not_M @ u6 = d & M - mov r5, r5, lsr #26 @ d >>= 26 - orr r5, r5, r6, asl #6 - mov r6, r6, lsr #26 - movw r14, field_R0 @ c += u6 * R0 - umlal r3, r4, r0, r14 - bic r14, r3, field_not_M @ t6 = c & M - str r14, [sp, #4 + 6*4] - mov r3, r3, lsr #26 @ c >>= 26 - orr r3, r3, r4, asl #6 - mov r4, r4, lsr #26 - mov r14, field_R1 @ c += u6 * R1 - umlal r3, r4, r0, r14 - - /* I interleaved with J */ - ldr r7, [r1, #0*4] @ a[0]*2 - ldr r0, [r1, #1*4] @ a[1]*2 - mov r7, r7, asl #1 - ldr r8, [r1, #7*4] @ a[7] - ldr r2, [r1, #8*4] @ a[8] - umlal r3, r4, r7, r8 @ c += a[0]*2 * a[7] - ldr r14, [r1, #6*4] @ a[6] - mov r0, r0, asl #1 - umull r11, r12, r7, r2 @ c' = a[0]*2 * a[8] - ldr r7, [r1, #2*4] @ a[2]*2 - umlal r11, r12, r0, r8 @ c' += a[1]*2 * a[7] - ldr r8, [r1, #5*4] @ a[5] - umlal r3, r4, r0, r14 @ c += a[1]*2 * a[6] - ldr r0, [r1, #3*4] @ a[3]*2 - mov r7, r7, asl #1 - umlal r11, r12, r7, r14 @ c' += a[2]*2 * a[6] - ldr r14, [r1, #4*4] @ a[4] - mov r0, r0, asl #1 - umlal r3, r4, r7, r8 @ c += a[2]*2 * a[5] - mov r2, r2, asl #1 @ a[8]*2 - umlal r11, r12, r0, r8 @ c' += a[3]*2 * a[5] - umlal r3, r4, r0, r14 @ c += a[3]*2 * a[4] - umlal r11, r12, r14, r14 @ c' += a[4] * a[4] - ldr r8, [r1, #9*4] @ a[9] - umlal r5, r6, r2, r8 @ d += a[8]*2 * a[9] - @ r8 will be used in J - - bic r0, r5, field_not_M @ u7 = d & M - mov r5, r5, lsr #26 @ d >>= 26 - orr r5, r5, r6, asl #6 - mov r6, r6, lsr #26 - movw r14, field_R0 @ c += u7 * R0 - umlal r3, r4, r0, r14 - bic r14, r3, field_not_M @ t7 = c & M - str r14, [sp, #4 + 7*4] - mov r3, r3, lsr #26 @ c >>= 26 - orr r3, r3, r4, asl #6 - mov r4, r4, lsr #26 - mov r14, field_R1 @ c += u7 * R1 - umlal r3, r4, r0, r14 - - /* J */ - adds r3, r3, r11 @ c += c' - adc r4, r4, r12 - umlal r5, r6, r8, r8 @ d += a[9] * a[9] - - bic r0, r5, field_not_M @ u8 = d & M - str r0, [sp, #4 + 8*4] - mov r5, r5, lsr #26 @ d >>= 26 - orr r5, r5, r6, asl #6 - mov r6, r6, lsr #26 - movw r14, field_R0 @ c += u8 * R0 - umlal r3, r4, r0, r14 - - /****************************************** - * compute and write back result - ****************************************** - Allocation: - r0 r - r3:r4 c - r5:r6 d - r7 t0 - r8 t1 - r9 t2 - r11 u8 - r12 t9 - r1,r2,r10,r14 scratch - - Note: do not read from a[] after here, it may overlap with r[] - */ - ldr r0, [sp, #0] - add r1, sp, #4 + 3*4 @ r[3..7] = t3..7, r11=u8, r12=t9 - ldmia r1, {r2,r7,r8,r9,r10,r11,r12} - add r1, r0, #3*4 - stmia r1, {r2,r7,r8,r9,r10} - - bic r2, r3, field_not_M @ r[8] = c & M - str r2, [r0, #8*4] - mov r3, r3, lsr #26 @ c >>= 26 - orr r3, r3, r4, asl #6 - mov r4, r4, lsr #26 - mov r14, field_R1 @ c += u8 * R1 - umlal r3, r4, r11, r14 - movw r14, field_R0 @ c += d * R0 - umlal r3, r4, r5, r14 - adds r3, r3, r12 @ c += t9 - adc r4, r4, #0 - - add r1, sp, #4 + 0*4 @ r7,r8,r9 = t0,t1,t2 - ldmia r1, {r7,r8,r9} - - ubfx r2, r3, #0, #22 @ r[9] = c & (M >> 4) - str r2, [r0, #9*4] - mov r3, r3, lsr #22 @ c >>= 22 - orr r3, r3, r4, asl #10 - mov r4, r4, lsr #22 - movw r14, field_R1 << 4 @ c += d * (R1 << 4) - umlal r3, r4, r5, r14 - - movw r14, field_R0 >> 4 @ d = c * (R0 >> 4) + t0 (64x64 multiply+add) - umull r5, r6, r3, r14 @ d = c.lo * (R0 >> 4) - adds r5, r5, r7 @ d.lo += t0 - mla r6, r14, r4, r6 @ d.hi += c.hi * (R0 >> 4) - adc r6, r6, 0 @ d.hi += carry - - bic r2, r5, field_not_M @ r[0] = d & M - str r2, [r0, #0*4] - - mov r5, r5, lsr #26 @ d >>= 26 - orr r5, r5, r6, asl #6 - mov r6, r6, lsr #26 - - movw r14, field_R1 >> 4 @ d += c * (R1 >> 4) + t1 (64x64 multiply+add) - umull r1, r2, r3, r14 @ tmp = c.lo * (R1 >> 4) - adds r5, r5, r8 @ d.lo += t1 - adc r6, r6, #0 @ d.hi += carry - adds r5, r5, r1 @ d.lo += tmp.lo - mla r2, r14, r4, r2 @ tmp.hi += c.hi * (R1 >> 4) - adc r6, r6, r2 @ d.hi += carry + tmp.hi - - bic r2, r5, field_not_M @ r[1] = d & M - str r2, [r0, #1*4] - mov r5, r5, lsr #26 @ d >>= 26 (ignore hi) - orr r5, r5, r6, asl #6 - - add r5, r5, r9 @ d += t2 - str r5, [r0, #2*4] @ r[2] = d - - add sp, sp, #48 - ldmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, pc} - .size secp256k1_fe_sqr_inner, .-secp256k1_fe_sqr_inner - diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/basic-config.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/basic-config.h deleted file mode 100644 index fc58806..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/basic-config.h +++ /dev/null @@ -1,33 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_BASIC_CONFIG_H -#define SECP256K1_BASIC_CONFIG_H - -#ifdef USE_BASIC_CONFIG - -#undef USE_ASM_X86_64 -#undef USE_ENDOMORPHISM -#undef USE_FIELD_10X26 -#undef USE_FIELD_5X52 -#undef USE_FIELD_INV_BUILTIN -#undef USE_FIELD_INV_NUM -#undef USE_NUM_GMP -#undef USE_NUM_NONE -#undef USE_SCALAR_4X64 -#undef USE_SCALAR_8X32 -#undef USE_SCALAR_INV_BUILTIN -#undef USE_SCALAR_INV_NUM - -#define USE_NUM_NONE 1 -#define USE_FIELD_INV_BUILTIN 1 -#define USE_SCALAR_INV_BUILTIN 1 -#define USE_FIELD_10X26 1 -#define USE_SCALAR_8X32 1 - -#endif /* USE_BASIC_CONFIG */ - -#endif /* SECP256K1_BASIC_CONFIG_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench.h deleted file mode 100644 index 5b59783..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench.h +++ /dev/null @@ -1,82 +0,0 @@ -/********************************************************************** - * Copyright (c) 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_BENCH_H -#define SECP256K1_BENCH_H - -#include -#include -#include -#include "sys/time.h" - -static double gettimedouble(void) { - struct timeval tv; - gettimeofday(&tv, NULL); - return tv.tv_usec * 0.000001 + tv.tv_sec; -} - -void print_number(double x) { - double y = x; - int c = 0; - if (y < 0.0) { - y = -y; - } - while (y > 0 && y < 100.0) { - y *= 10.0; - c++; - } - printf("%.*f", c, x); -} - -void run_benchmark(char *name, void (*benchmark)(void*), void (*setup)(void*), void (*teardown)(void*), void* data, int count, int iter) { - int i; - double min = HUGE_VAL; - double sum = 0.0; - double max = 0.0; - for (i = 0; i < count; i++) { - double begin, total; - if (setup != NULL) { - setup(data); - } - begin = gettimedouble(); - benchmark(data); - total = gettimedouble() - begin; - if (teardown != NULL) { - teardown(data); - } - if (total < min) { - min = total; - } - if (total > max) { - max = total; - } - sum += total; - } - printf("%s: min ", name); - print_number(min * 1000000.0 / iter); - printf("us / avg "); - print_number((sum / count) * 1000000.0 / iter); - printf("us / max "); - print_number(max * 1000000.0 / iter); - printf("us\n"); -} - -int have_flag(int argc, char** argv, char *flag) { - char** argm = argv + argc; - argv++; - if (argv == argm) { - return 1; - } - while (argv != NULL && argv != argm) { - if (strcmp(*argv, flag) == 0) { - return 1; - } - argv++; - } - return 0; -} - -#endif /* SECP256K1_BENCH_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_bulletproof.c b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_bulletproof.c deleted file mode 100644 index 896bd09..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_bulletproof.c +++ /dev/null @@ -1,243 +0,0 @@ -/********************************************************************** - * Copyright (c) 2017 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#include - -#include "include/secp256k1_generator.h" -#include "include/secp256k1_commitment.h" -#include "include/secp256k1_bulletproofs.h" -#include "util.h" -#include "bench.h" - -#define MAX_PROOF_SIZE 2000 - -typedef struct { - secp256k1_context *ctx; - secp256k1_scratch_space *scratch; - unsigned char nonce[32]; - unsigned char **proof; - secp256k1_bulletproof_generators *generators; - secp256k1_generator *value_gen; - secp256k1_generator blind_gen; - size_t n_proofs; - size_t plen; - size_t iters; -} bench_bulletproof_t; - -typedef struct { - bench_bulletproof_t *common; - secp256k1_pedersen_commitment **commit; - const unsigned char **blind; - size_t *value; - size_t n_commits; - size_t nbits; -} bench_bulletproof_rangeproof_t; - -static void bench_bulletproof_common_setup(bench_bulletproof_t *data) { - size_t i; - const unsigned char nonce[32] = "my kingdom for some randomness!!"; - const unsigned char genbd[32] = "yet more blinding, for the asset"; - - memcpy(data->nonce, nonce, 32); - data->proof = (unsigned char **)malloc(data->n_proofs * sizeof(*data->proof)); - data->value_gen = (secp256k1_generator *)malloc(data->n_proofs * sizeof(*data->value_gen)); - for (i = 0; i < data->n_proofs; i++) { - data->proof[i] = (unsigned char *)malloc(MAX_PROOF_SIZE); - CHECK(secp256k1_generator_generate(data->ctx, &data->value_gen[i], genbd)); - } - data->plen = MAX_PROOF_SIZE; -} - -static void bench_bulletproof_rangeproof_setup(void* arg) { - bench_bulletproof_rangeproof_t *data = (bench_bulletproof_rangeproof_t*)arg; - size_t i; - size_t v; - - unsigned char blind[32] = "and my kingdom too for a blinder"; - - bench_bulletproof_common_setup (data->common); - - data->commit = (secp256k1_pedersen_commitment **)malloc(data->common->n_proofs * sizeof(*data->commit)); - data->blind = (const unsigned char **)malloc(data->n_commits * sizeof(*data->blind)); - data->value = (size_t *)malloc(data->n_commits * sizeof(*data->commit)); - - for (i = 0; i < data->common->n_proofs; i++) { - data->commit[i] = (secp256k1_pedersen_commitment *)malloc(data->n_commits * sizeof(*data->commit[i])); - } - - for (i = 0; i < data->n_commits; i++) { - data->blind[i] = malloc(32); - blind[0] = i; - blind[1] = i >> 8; - memcpy((unsigned char*) data->blind[i], blind, 32); - data->value[i] = i * 17; - CHECK(secp256k1_pedersen_commit(data->common->ctx, &data->commit[0][i], data->blind[i], data->value[i], &data->common->value_gen[0], &data->common->blind_gen)); - } - for (i = 1; i < data->common->n_proofs; i++) { - memcpy(data->commit[i], data->commit[0], data->n_commits * sizeof(*data->commit[0])); - } - - CHECK(secp256k1_bulletproof_rangeproof_prove(data->common->ctx, data->common->scratch, data->common->generators, data->common->proof[0], &data->common->plen, data->value, NULL, data->blind, data->n_commits, data->common->value_gen, data->nbits, data->common->nonce, NULL, 0) == 1); - for (i = 1; i < data->common->n_proofs; i++) { - memcpy(data->common->proof[i], data->common->proof[0], data->common->plen); - CHECK(secp256k1_bulletproof_rangeproof_verify(data->common->ctx, data->common->scratch, data->common->generators, data->common->proof[i], data->common->plen, NULL, data->commit[i], data->n_commits, data->nbits, &data->common->value_gen[0], NULL, 0) == 1); - } - CHECK(secp256k1_bulletproof_rangeproof_verify(data->common->ctx, data->common->scratch, data->common->generators, data->common->proof[0], data->common->plen, NULL, data->commit[0], data->n_commits, data->nbits, data->common->value_gen, NULL, 0) == 1); - CHECK(secp256k1_bulletproof_rangeproof_verify_multi(data->common->ctx, data->common->scratch, data->common->generators, (const unsigned char **) data->common->proof, data->common->n_proofs, data->common->plen, NULL, (const secp256k1_pedersen_commitment **) data->commit, data->n_commits, data->nbits, data->common->value_gen, NULL, 0) == 1); - if (data->n_commits == 1) { - CHECK(secp256k1_bulletproof_rangeproof_rewind(data->common->ctx, data->common->generators, &v, blind, data->common->proof[0], data->common->plen, 0, data->commit[0], &data->common->value_gen[0], data->common->nonce, NULL, 0) == 1); - } -} - -static void bench_bulletproof_common_teardown(bench_bulletproof_t *data) { - size_t i; - - for (i = 0; i < data->n_proofs; i++) { - free(data->proof[i]); - } - free(data->proof); - free(data->value_gen); -} - -static void bench_bulletproof_rangeproof_teardown(void* arg) { - bench_bulletproof_rangeproof_t *data = (bench_bulletproof_rangeproof_t*)arg; - size_t i; - - if (data->blind != NULL) { - for (i = 0; i < data->n_commits; i++) { - free((unsigned char*) data->blind[i]); - } - } - if (data->commit != NULL) { - for (i = 0; i < data->common->n_proofs; i++) { - free(data->commit[i]); - } - free(data->commit); - } - free(data->blind); - free(data->value); - - bench_bulletproof_common_teardown(data->common); -} - -static void bench_bulletproof_rangeproof_prove(void* arg) { - bench_bulletproof_rangeproof_t *data = (bench_bulletproof_rangeproof_t*)arg; - size_t i; - for (i = 0; i < 25; i++) { - CHECK(secp256k1_bulletproof_rangeproof_prove(data->common->ctx, data->common->scratch, data->common->generators, data->common->proof[0], &data->common->plen, data->value, NULL, data->blind, data->n_commits, data->common->value_gen, data->nbits, data->common->nonce, NULL, 0) == 1); - } -} - -static void bench_bulletproof_rangeproof_verify(void* arg) { - size_t i; - bench_bulletproof_rangeproof_t *data = (bench_bulletproof_rangeproof_t*)arg; - - for (i = 0; i < data->common->iters; i++) { - CHECK(secp256k1_bulletproof_rangeproof_verify_multi(data->common->ctx, data->common->scratch, data->common->generators, (const unsigned char **) data->common->proof, data->common->n_proofs, data->common->plen, NULL, (const secp256k1_pedersen_commitment **) data->commit, data->n_commits, data->nbits, data->common->value_gen, NULL, 0) == 1); - } -} - -static void bench_bulletproof_rangeproof_rewind_succeed(void* arg) { - size_t i; - size_t v; - unsigned char blind[32]; - bench_bulletproof_rangeproof_t *data = (bench_bulletproof_rangeproof_t*)arg; - - for (i = 0; i < data->common->iters; i++) { - CHECK(secp256k1_bulletproof_rangeproof_rewind(data->common->ctx, data->common->generators, &v, blind, data->common->proof[0], data->common->plen, 0, data->commit[0], &data->common->value_gen[0], data->common->nonce, NULL, 0) == 1); - } -} - -static void bench_bulletproof_rangeproof_rewind_fail(void* arg) { - size_t i; - size_t v; - unsigned char blind[32]; - bench_bulletproof_rangeproof_t *data = (bench_bulletproof_rangeproof_t*)arg; - - data->common->nonce[0] ^= 1; - for (i = 0; i < data->common->iters; i++) { - CHECK(secp256k1_bulletproof_rangeproof_rewind(data->common->ctx, data->common->generators, &v, blind, data->common->proof[0], data->common->plen, 0, data->commit[0], &data->common->value_gen[0], data->common->nonce, NULL, 0) == 0); - } - data->common->nonce[0] ^= 1; -} - -static void run_rangeproof_test(bench_bulletproof_rangeproof_t *data, size_t nbits, size_t n_commits) { - char str[64]; - - data->nbits = nbits; - data->n_commits = n_commits; - data->common->iters = 100; - - data->common->n_proofs = 1; - sprintf(str, "bulletproof_prove, %i, %i, 0, ", (int)nbits, (int) n_commits); - run_benchmark(str, bench_bulletproof_rangeproof_prove, bench_bulletproof_rangeproof_setup, bench_bulletproof_rangeproof_teardown, (void *)data, 5, 25); - - data->common->n_proofs = 1; - sprintf(str, "bulletproof_verify, %i, %i, 1, ", (int)nbits, (int) n_commits); - run_benchmark(str, bench_bulletproof_rangeproof_verify, bench_bulletproof_rangeproof_setup, bench_bulletproof_rangeproof_teardown, (void *)data, 5, data->common->iters); - - if (n_commits == 1) { - sprintf(str, "bulletproof_rewind_succeed, %i, ", (int)nbits); - run_benchmark(str, bench_bulletproof_rangeproof_rewind_succeed, bench_bulletproof_rangeproof_setup, bench_bulletproof_rangeproof_teardown, (void *)data, 5, data->common->iters); - sprintf(str, "bulletproof_rewind_fail, %i, ", (int)nbits); - run_benchmark(str, bench_bulletproof_rangeproof_rewind_fail, bench_bulletproof_rangeproof_setup, bench_bulletproof_rangeproof_teardown, (void *)data, 5, data->common->iters); - } - - data->common->n_proofs = 2; - sprintf(str, "bulletproof_verify, %i, %i, 2, ", (int)nbits, (int) n_commits); - run_benchmark(str, bench_bulletproof_rangeproof_verify, bench_bulletproof_rangeproof_setup, bench_bulletproof_rangeproof_teardown, (void *)data, 5, data->common->iters); - - data->common->iters = 10; - data->common->n_proofs = 50; - sprintf(str, "bulletproof_verify, %i, %i, 50, ", (int)nbits, (int) n_commits); - run_benchmark(str, bench_bulletproof_rangeproof_verify, bench_bulletproof_rangeproof_setup, bench_bulletproof_rangeproof_teardown, (void *)data, 5, data->common->iters); - - data->common->iters = 1; - data->common->n_proofs = 100; - sprintf(str, "bulletproof_verify, %i, %i, 100, ", (int)nbits, (int) n_commits); - run_benchmark(str, bench_bulletproof_rangeproof_verify, bench_bulletproof_rangeproof_setup, bench_bulletproof_rangeproof_teardown, (void *)data, 5, data->common->iters); - - data->common->n_proofs = 500; - sprintf(str, "bulletproof_verify, %i, %i, 500, ", (int)nbits, (int) n_commits); - run_benchmark(str, bench_bulletproof_rangeproof_verify, bench_bulletproof_rangeproof_setup, bench_bulletproof_rangeproof_teardown, (void *)data, 5, data->common->iters); - - data->common->n_proofs = 1000; - sprintf(str, "bulletproof_verify, %i, %i, 1000, ", (int)nbits, (int) n_commits); - run_benchmark(str, bench_bulletproof_rangeproof_verify, bench_bulletproof_rangeproof_setup, bench_bulletproof_rangeproof_teardown, (void *)data, 5, data->common->iters); -} - -/*int main(void) { - bench_bulletproof_t data; - bench_bulletproof_rangeproof_t rp_data; - - data.blind_gen = secp256k1_generator_const_g; - data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); - data.scratch = secp256k1_scratch_space_create(data.ctx, 1024 * 1024 * 1024); - data.generators = secp256k1_bulletproof_generators_create(data.ctx, &data.blind_gen, 64 * 1024); - - rp_data.common = &data; - - run_rangeproof_test(&rp_data, 8, 1); - run_rangeproof_test(&rp_data, 16, 1); - run_rangeproof_test(&rp_data, 32, 1); - - run_rangeproof_test(&rp_data, 64, 1); - run_rangeproof_test(&rp_data, 64, 2); - run_rangeproof_test(&rp_data, 64, 4); - run_rangeproof_test(&rp_data, 64, 8); - run_rangeproof_test(&rp_data, 64, 16); - run_rangeproof_test(&rp_data, 64, 32); - run_rangeproof_test(&rp_data, 64, 64); - run_rangeproof_test(&rp_data, 64, 128); - run_rangeproof_test(&rp_data, 64, 256); - run_rangeproof_test(&rp_data, 64, 512); - // to add more, increase the number of generators above in `data.generators = ...` - - secp256k1_bulletproof_generators_destroy(data.ctx, data.generators); - secp256k1_scratch_space_destroy(data.scratch); - secp256k1_context_destroy(data.ctx); - return 0; -}*/ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_ecdh.c b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_ecdh.c deleted file mode 100644 index 5837f4e..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_ecdh.c +++ /dev/null @@ -1,54 +0,0 @@ -/********************************************************************** - * Copyright (c) 2015 Pieter Wuille, Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#include - -#include "include/secp256k1.h" -#include "include/secp256k1_ecdh.h" -#include "util.h" -#include "bench.h" - -typedef struct { - secp256k1_context *ctx; - secp256k1_pubkey point; - unsigned char scalar[32]; -} bench_ecdh_data; - -static void bench_ecdh_setup(void* arg) { - int i; - bench_ecdh_data *data = (bench_ecdh_data*)arg; - const unsigned char point[] = { - 0x03, - 0x54, 0x94, 0xc1, 0x5d, 0x32, 0x09, 0x97, 0x06, - 0xc2, 0x39, 0x5f, 0x94, 0x34, 0x87, 0x45, 0xfd, - 0x75, 0x7c, 0xe3, 0x0e, 0x4e, 0x8c, 0x90, 0xfb, - 0xa2, 0xba, 0xd1, 0x84, 0xf8, 0x83, 0xc6, 0x9f - }; - - /* create a context with no capabilities */ - data->ctx = secp256k1_context_create(SECP256K1_FLAGS_TYPE_CONTEXT); - for (i = 0; i < 32; i++) { - data->scalar[i] = i + 1; - } - CHECK(secp256k1_ec_pubkey_parse(data->ctx, &data->point, point, sizeof(point)) == 1); -} - -static void bench_ecdh(void* arg) { - int i; - unsigned char res[32]; - bench_ecdh_data *data = (bench_ecdh_data*)arg; - - for (i = 0; i < 20000; i++) { - CHECK(secp256k1_ecdh(data->ctx, res, &data->point, data->scalar) == 1); - } -} - -int main(void) { - bench_ecdh_data data; - - run_benchmark("ecdh", bench_ecdh, bench_ecdh_setup, NULL, &data, 10, 20000); - return 0; -} diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_ecmult.c b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_ecmult.c deleted file mode 100644 index 52d0476..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_ecmult.c +++ /dev/null @@ -1,196 +0,0 @@ -/********************************************************************** - * Copyright (c) 2017 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ -#include - -#include "include/secp256k1.h" - -#include "util.h" -#include "hash_impl.h" -#include "num_impl.h" -#include "field_impl.h" -#include "group_impl.h" -#include "scalar_impl.h" -#include "ecmult_impl.h" -#include "bench.h" -#include "secp256k1.c" - -#define POINTS 32768 -#define ITERS 10000 - -typedef struct { - /* Setup once in advance */ - secp256k1_context* ctx; - secp256k1_scratch_space* scratch; - secp256k1_scalar* scalars; - secp256k1_ge* pubkeys; - secp256k1_scalar* seckeys; - secp256k1_gej* expected_output; - secp256k1_ecmult_multi_func ecmult_multi; - - /* Changes per test */ - size_t count; - int includes_g; - - /* Changes per test iteration */ - size_t offset1; - size_t offset2; - - /* Test output. */ - secp256k1_gej* output; -} bench_data; - -static int bench_callback(secp256k1_scalar* sc, secp256k1_ge* ge, size_t idx, void* arg) { - bench_data* data = (bench_data*)arg; - if (data->includes_g) ++idx; - if (idx == 0) { - *sc = data->scalars[data->offset1]; - *ge = secp256k1_ge_const_g; - } else { - *sc = data->scalars[(data->offset1 + idx) % POINTS]; - *ge = data->pubkeys[(data->offset2 + idx - 1) % POINTS]; - } - return 1; -} - -static void bench_ecmult(void* arg) { - bench_data* data = (bench_data*)arg; - - size_t count = data->count; - int includes_g = data->includes_g; - size_t iters = 1 + ITERS / count; - size_t iter; - - for (iter = 0; iter < iters; ++iter) { - data->ecmult_multi(&data->ctx->ecmult_ctx, data->scratch, &data->output[iter], data->includes_g ? &data->scalars[data->offset1] : NULL, bench_callback, arg, count - includes_g); - data->offset1 = (data->offset1 + count) % POINTS; - data->offset2 = (data->offset2 + count - 1) % POINTS; - } -} - -static void bench_ecmult_setup(void* arg) { - bench_data* data = (bench_data*)arg; - data->offset1 = (data->count * 0x537b7f6f + 0x8f66a481) % POINTS; - data->offset2 = (data->count * 0x7f6f537b + 0x6a1a8f49) % POINTS; -} - -static void bench_ecmult_teardown(void* arg) { - bench_data* data = (bench_data*)arg; - size_t iters = 1 + ITERS / data->count; - size_t iter; - /* Verify the results in teardown, to avoid doing comparisons while benchmarking. */ - for (iter = 0; iter < iters; ++iter) { - secp256k1_gej tmp; - secp256k1_gej_add_var(&tmp, &data->output[iter], &data->expected_output[iter], NULL); - CHECK(secp256k1_gej_is_infinity(&tmp)); - } -} - -static void generate_scalar(uint32_t num, secp256k1_scalar* scalar) { - secp256k1_sha256 sha256; - unsigned char c[11] = {'e', 'c', 'm', 'u', 'l', 't', 0, 0, 0, 0}; - unsigned char buf[32]; - int overflow = 0; - c[6] = num; - c[7] = num >> 8; - c[8] = num >> 16; - c[9] = num >> 24; - secp256k1_sha256_initialize(&sha256); - secp256k1_sha256_write(&sha256, c, sizeof(c)); - secp256k1_sha256_finalize(&sha256, buf); - secp256k1_scalar_set_b32(scalar, buf, &overflow); - CHECK(!overflow); -} - -static void run_test(bench_data* data, size_t count, int includes_g) { - char str[32]; - static const secp256k1_scalar zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0); - size_t iters = 1 + ITERS / count; - size_t iter; - - data->count = count; - data->includes_g = includes_g; - - /* Compute (the negation of) the expected results directly. */ - data->offset1 = (data->count * 0x537b7f6f + 0x8f66a481) % POINTS; - data->offset2 = (data->count * 0x7f6f537b + 0x6a1a8f49) % POINTS; - for (iter = 0; iter < iters; ++iter) { - secp256k1_scalar tmp; - secp256k1_scalar total = data->scalars[(data->offset1++) % POINTS]; - size_t i = 0; - for (i = 0; i + 1 < count; ++i) { - secp256k1_scalar_mul(&tmp, &data->seckeys[(data->offset2++) % POINTS], &data->scalars[(data->offset1++) % POINTS]); - secp256k1_scalar_add(&total, &total, &tmp); - } - secp256k1_scalar_negate(&total, &total); - secp256k1_ecmult(&data->ctx->ecmult_ctx, &data->expected_output[iter], NULL, &zero, &total); - } - - /* Run the benchmark. */ - sprintf(str, includes_g ? "ecmult_%ig" : "ecmult_%i", (int)count); - run_benchmark(str, bench_ecmult, bench_ecmult_setup, bench_ecmult_teardown, data, 10, count * (1 + ITERS / count)); -} - -int main(int argc, char **argv) { - bench_data data; - int i, p; - secp256k1_gej* pubkeys_gej; - size_t scratch_size; - - if (argc > 1) { - if(have_flag(argc, argv, "pippenger_wnaf")) { - printf("Using pippenger_wnaf:\n"); - data.ecmult_multi = secp256k1_ecmult_pippenger_batch_single; - } else if(have_flag(argc, argv, "strauss_wnaf")) { - printf("Using strauss_wnaf:\n"); - data.ecmult_multi = secp256k1_ecmult_strauss_batch_single; - } - } else { - data.ecmult_multi = secp256k1_ecmult_multi_var; - } - - /* Allocate stuff */ - data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); - scratch_size = secp256k1_strauss_scratch_size(POINTS) + STRAUSS_SCRATCH_OBJECTS*16; - data.scratch = secp256k1_scratch_space_create(data.ctx, scratch_size); - data.scalars = malloc(sizeof(secp256k1_scalar) * POINTS); - data.seckeys = malloc(sizeof(secp256k1_scalar) * POINTS); - data.pubkeys = malloc(sizeof(secp256k1_ge) * POINTS); - data.expected_output = malloc(sizeof(secp256k1_gej) * (ITERS + 1)); - data.output = malloc(sizeof(secp256k1_gej) * (ITERS + 1)); - - /* Generate a set of scalars, and private/public keypairs. */ - pubkeys_gej = malloc(sizeof(secp256k1_gej) * POINTS); - secp256k1_gej_set_ge(&pubkeys_gej[0], &secp256k1_ge_const_g); - secp256k1_scalar_set_int(&data.seckeys[0], 1); - for (i = 0; i < POINTS; ++i) { - generate_scalar(i, &data.scalars[i]); - if (i) { - secp256k1_gej_double_var(&pubkeys_gej[i], &pubkeys_gej[i - 1], NULL); - secp256k1_scalar_add(&data.seckeys[i], &data.seckeys[i - 1], &data.seckeys[i - 1]); - } - } - secp256k1_ge_set_all_gej_var(data.pubkeys, pubkeys_gej, POINTS, &data.ctx->error_callback); - free(pubkeys_gej); - - for (i = 1; i <= 8; ++i) { - run_test(&data, i, 1); - } - - for (p = 0; p <= 11; ++p) { - for (i = 9; i <= 16; ++i) { - run_test(&data, i << p, 1); - } - } - secp256k1_context_destroy(data.ctx); - secp256k1_scratch_space_destroy(data.scratch); - free(data.scalars); - free(data.pubkeys); - free(data.seckeys); - free(data.output); - free(data.expected_output); - - return(0); -} diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_generator.c b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_generator.c deleted file mode 100644 index 7d7bb4d..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_generator.c +++ /dev/null @@ -1,59 +0,0 @@ -/********************************************************************** - * Copyright (c) 2016 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#include -#include - -#include "include/secp256k1_generator.h" -#include "util.h" -#include "bench.h" - -typedef struct { - secp256k1_context* ctx; - unsigned char key[32]; - unsigned char blind[32]; -} bench_generator_t; - -static void bench_generator_setup(void* arg) { - bench_generator_t *data = (bench_generator_t*)arg; - memset(data->key, 0x31, 32); - memset(data->blind, 0x13, 32); -} - -static void bench_generator_generate(void* arg) { - int i; - bench_generator_t *data = (bench_generator_t*)arg; - - for (i = 0; i < 20000; i++) { - secp256k1_generator gen; - CHECK(secp256k1_generator_generate(data->ctx, &gen, data->key)); - data->key[i & 31]++; - } -} - -static void bench_generator_generate_blinded(void* arg) { - int i; - bench_generator_t *data = (bench_generator_t*)arg; - - for (i = 0; i < 20000; i++) { - secp256k1_generator gen; - CHECK(secp256k1_generator_generate_blinded(data->ctx, &gen, data->key, data->blind)); - data->key[1 + (i & 30)]++; - data->blind[1 + (i & 30)]++; - } -} - -int main(void) { - bench_generator_t data; - - data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); - - run_benchmark("generator_generate", bench_generator_generate, bench_generator_setup, NULL, &data, 10, 20000); - run_benchmark("generator_generate_blinded", bench_generator_generate_blinded, bench_generator_setup, NULL, &data, 10, 20000); - - secp256k1_context_destroy(data.ctx); - return 0; -} diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_internal.c b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_internal.c deleted file mode 100644 index 9c0a07f..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_internal.c +++ /dev/null @@ -1,367 +0,0 @@ -/********************************************************************** - * Copyright (c) 2014-2015 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ -#include - -#include "include/secp256k1.h" - -#include "util.h" -#include "hash_impl.h" -#include "num_impl.h" -#include "field_impl.h" -#include "group_impl.h" -#include "scalar_impl.h" -#include "ecmult_const_impl.h" -#include "ecmult_impl.h" -#include "bench.h" -#include "secp256k1.c" - -typedef struct { - secp256k1_scalar scalar_x, scalar_y; - secp256k1_fe fe_x, fe_y; - secp256k1_ge ge_x, ge_y; - secp256k1_gej gej_x, gej_y; - unsigned char data[64]; - int wnaf[256]; -} bench_inv; - -void bench_setup(void* arg) { - bench_inv *data = (bench_inv*)arg; - - static const unsigned char init_x[32] = { - 0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13, - 0x17, 0x1d, 0x1f, 0x25, 0x29, 0x2b, 0x2f, 0x35, - 0x3b, 0x3d, 0x43, 0x47, 0x49, 0x4f, 0x53, 0x59, - 0x61, 0x65, 0x67, 0x6b, 0x6d, 0x71, 0x7f, 0x83 - }; - - static const unsigned char init_y[32] = { - 0x82, 0x83, 0x85, 0x87, 0x8b, 0x8d, 0x81, 0x83, - 0x97, 0xad, 0xaf, 0xb5, 0xb9, 0xbb, 0xbf, 0xc5, - 0xdb, 0xdd, 0xe3, 0xe7, 0xe9, 0xef, 0xf3, 0xf9, - 0x11, 0x15, 0x17, 0x1b, 0x1d, 0xb1, 0xbf, 0xd3 - }; - - secp256k1_scalar_set_b32(&data->scalar_x, init_x, NULL); - secp256k1_scalar_set_b32(&data->scalar_y, init_y, NULL); - secp256k1_fe_set_b32(&data->fe_x, init_x); - secp256k1_fe_set_b32(&data->fe_y, init_y); - CHECK(secp256k1_ge_set_xo_var(&data->ge_x, &data->fe_x, 0)); - CHECK(secp256k1_ge_set_xo_var(&data->ge_y, &data->fe_y, 1)); - secp256k1_gej_set_ge(&data->gej_x, &data->ge_x); - secp256k1_gej_set_ge(&data->gej_y, &data->ge_y); - memcpy(data->data, init_x, 32); - memcpy(data->data + 32, init_y, 32); -} - -void bench_scalar_add(void* arg) { - int i; - bench_inv *data = (bench_inv*)arg; - - for (i = 0; i < 2000000; i++) { - secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y); - } -} - -void bench_scalar_negate(void* arg) { - int i; - bench_inv *data = (bench_inv*)arg; - - for (i = 0; i < 2000000; i++) { - secp256k1_scalar_negate(&data->scalar_x, &data->scalar_x); - } -} - -void bench_scalar_sqr(void* arg) { - int i; - bench_inv *data = (bench_inv*)arg; - - for (i = 0; i < 200000; i++) { - secp256k1_scalar_sqr(&data->scalar_x, &data->scalar_x); - } -} - -void bench_scalar_mul(void* arg) { - int i; - bench_inv *data = (bench_inv*)arg; - - for (i = 0; i < 200000; i++) { - secp256k1_scalar_mul(&data->scalar_x, &data->scalar_x, &data->scalar_y); - } -} - -#ifdef USE_ENDOMORPHISM -void bench_scalar_split(void* arg) { - int i; - bench_inv *data = (bench_inv*)arg; - - for (i = 0; i < 20000; i++) { - secp256k1_scalar l, r; - secp256k1_scalar_split_lambda(&l, &r, &data->scalar_x); - secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y); - } -} -#endif - -void bench_scalar_inverse(void* arg) { - int i; - bench_inv *data = (bench_inv*)arg; - - for (i = 0; i < 2000; i++) { - secp256k1_scalar_inverse(&data->scalar_x, &data->scalar_x); - secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y); - } -} - -void bench_scalar_inverse_var(void* arg) { - int i; - bench_inv *data = (bench_inv*)arg; - - for (i = 0; i < 2000; i++) { - secp256k1_scalar_inverse_var(&data->scalar_x, &data->scalar_x); - secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y); - } -} - -void bench_field_normalize(void* arg) { - int i; - bench_inv *data = (bench_inv*)arg; - - for (i = 0; i < 2000000; i++) { - secp256k1_fe_normalize(&data->fe_x); - } -} - -void bench_field_normalize_weak(void* arg) { - int i; - bench_inv *data = (bench_inv*)arg; - - for (i = 0; i < 2000000; i++) { - secp256k1_fe_normalize_weak(&data->fe_x); - } -} - -void bench_field_mul(void* arg) { - int i; - bench_inv *data = (bench_inv*)arg; - - for (i = 0; i < 200000; i++) { - secp256k1_fe_mul(&data->fe_x, &data->fe_x, &data->fe_y); - } -} - -void bench_field_sqr(void* arg) { - int i; - bench_inv *data = (bench_inv*)arg; - - for (i = 0; i < 200000; i++) { - secp256k1_fe_sqr(&data->fe_x, &data->fe_x); - } -} - -void bench_field_inverse(void* arg) { - int i; - bench_inv *data = (bench_inv*)arg; - - for (i = 0; i < 20000; i++) { - secp256k1_fe_inv(&data->fe_x, &data->fe_x); - secp256k1_fe_add(&data->fe_x, &data->fe_y); - } -} - -void bench_field_inverse_var(void* arg) { - int i; - bench_inv *data = (bench_inv*)arg; - - for (i = 0; i < 20000; i++) { - secp256k1_fe_inv_var(&data->fe_x, &data->fe_x); - secp256k1_fe_add(&data->fe_x, &data->fe_y); - } -} - -void bench_field_sqrt(void* arg) { - int i; - bench_inv *data = (bench_inv*)arg; - - for (i = 0; i < 20000; i++) { - secp256k1_fe_sqrt(&data->fe_x, &data->fe_x); - secp256k1_fe_add(&data->fe_x, &data->fe_y); - } -} - -void bench_group_double_var(void* arg) { - int i; - bench_inv *data = (bench_inv*)arg; - - for (i = 0; i < 200000; i++) { - secp256k1_gej_double_var(&data->gej_x, &data->gej_x, NULL); - } -} - -void bench_group_add_var(void* arg) { - int i; - bench_inv *data = (bench_inv*)arg; - - for (i = 0; i < 200000; i++) { - secp256k1_gej_add_var(&data->gej_x, &data->gej_x, &data->gej_y, NULL); - } -} - -void bench_group_add_affine(void* arg) { - int i; - bench_inv *data = (bench_inv*)arg; - - for (i = 0; i < 200000; i++) { - secp256k1_gej_add_ge(&data->gej_x, &data->gej_x, &data->ge_y); - } -} - -void bench_group_add_affine_var(void* arg) { - int i; - bench_inv *data = (bench_inv*)arg; - - for (i = 0; i < 200000; i++) { - secp256k1_gej_add_ge_var(&data->gej_x, &data->gej_x, &data->ge_y, NULL); - } -} - -void bench_group_jacobi_var(void* arg) { - int i; - bench_inv *data = (bench_inv*)arg; - - for (i = 0; i < 20000; i++) { - secp256k1_gej_has_quad_y_var(&data->gej_x); - } -} - -void bench_ecmult_wnaf(void* arg) { - int i; - bench_inv *data = (bench_inv*)arg; - - for (i = 0; i < 20000; i++) { - secp256k1_ecmult_wnaf(data->wnaf, 256, &data->scalar_x, WINDOW_A); - secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y); - } -} - -void bench_wnaf_const(void* arg) { - int i; - bench_inv *data = (bench_inv*)arg; - - for (i = 0; i < 20000; i++) { - secp256k1_wnaf_const(data->wnaf, data->scalar_x, WINDOW_A, 256); - secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y); - } -} - - -void bench_sha256(void* arg) { - int i; - bench_inv *data = (bench_inv*)arg; - secp256k1_sha256 sha; - - for (i = 0; i < 20000; i++) { - secp256k1_sha256_initialize(&sha); - secp256k1_sha256_write(&sha, data->data, 32); - secp256k1_sha256_finalize(&sha, data->data); - } -} - -void bench_hmac_sha256(void* arg) { - int i; - bench_inv *data = (bench_inv*)arg; - secp256k1_hmac_sha256 hmac; - - for (i = 0; i < 20000; i++) { - secp256k1_hmac_sha256_initialize(&hmac, data->data, 32); - secp256k1_hmac_sha256_write(&hmac, data->data, 32); - secp256k1_hmac_sha256_finalize(&hmac, data->data); - } -} - -void bench_rfc6979_hmac_sha256(void* arg) { - int i; - bench_inv *data = (bench_inv*)arg; - secp256k1_rfc6979_hmac_sha256 rng; - - for (i = 0; i < 20000; i++) { - secp256k1_rfc6979_hmac_sha256_initialize(&rng, data->data, 64); - secp256k1_rfc6979_hmac_sha256_generate(&rng, data->data, 32); - } -} - -void bench_context_verify(void* arg) { - int i; - (void)arg; - for (i = 0; i < 20; i++) { - secp256k1_context_destroy(secp256k1_context_create(SECP256K1_CONTEXT_VERIFY)); - } -} - -void bench_context_sign(void* arg) { - int i; - (void)arg; - for (i = 0; i < 200; i++) { - secp256k1_context_destroy(secp256k1_context_create(SECP256K1_CONTEXT_SIGN)); - } -} - -#ifndef USE_NUM_NONE -void bench_num_jacobi(void* arg) { - int i; - bench_inv *data = (bench_inv*)arg; - secp256k1_num nx, norder; - - secp256k1_scalar_get_num(&nx, &data->scalar_x); - secp256k1_scalar_order_get_num(&norder); - secp256k1_scalar_get_num(&norder, &data->scalar_y); - - for (i = 0; i < 200000; i++) { - secp256k1_num_jacobi(&nx, &norder); - } -} -#endif - -int main(int argc, char **argv) { - bench_inv data; - if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "add")) run_benchmark("scalar_add", bench_scalar_add, bench_setup, NULL, &data, 10, 2000000); - if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "negate")) run_benchmark("scalar_negate", bench_scalar_negate, bench_setup, NULL, &data, 10, 2000000); - if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "sqr")) run_benchmark("scalar_sqr", bench_scalar_sqr, bench_setup, NULL, &data, 10, 200000); - if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "mul")) run_benchmark("scalar_mul", bench_scalar_mul, bench_setup, NULL, &data, 10, 200000); -#ifdef USE_ENDOMORPHISM - if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "split")) run_benchmark("scalar_split", bench_scalar_split, bench_setup, NULL, &data, 10, 20000); -#endif - if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse", bench_scalar_inverse, bench_setup, NULL, &data, 10, 2000); - if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse_var", bench_scalar_inverse_var, bench_setup, NULL, &data, 10, 2000); - - if (have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize", bench_field_normalize, bench_setup, NULL, &data, 10, 2000000); - if (have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize_weak", bench_field_normalize_weak, bench_setup, NULL, &data, 10, 2000000); - if (have_flag(argc, argv, "field") || have_flag(argc, argv, "sqr")) run_benchmark("field_sqr", bench_field_sqr, bench_setup, NULL, &data, 10, 200000); - if (have_flag(argc, argv, "field") || have_flag(argc, argv, "mul")) run_benchmark("field_mul", bench_field_mul, bench_setup, NULL, &data, 10, 200000); - if (have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse", bench_field_inverse, bench_setup, NULL, &data, 10, 20000); - if (have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse_var", bench_field_inverse_var, bench_setup, NULL, &data, 10, 20000); - if (have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt")) run_benchmark("field_sqrt", bench_field_sqrt, bench_setup, NULL, &data, 10, 20000); - - if (have_flag(argc, argv, "group") || have_flag(argc, argv, "double")) run_benchmark("group_double_var", bench_group_double_var, bench_setup, NULL, &data, 10, 200000); - if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_var", bench_group_add_var, bench_setup, NULL, &data, 10, 200000); - if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine", bench_group_add_affine, bench_setup, NULL, &data, 10, 200000); - if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine_var", bench_group_add_affine_var, bench_setup, NULL, &data, 10, 200000); - if (have_flag(argc, argv, "group") || have_flag(argc, argv, "jacobi")) run_benchmark("group_jacobi_var", bench_group_jacobi_var, bench_setup, NULL, &data, 10, 20000); - - if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("wnaf_const", bench_wnaf_const, bench_setup, NULL, &data, 10, 20000); - if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("ecmult_wnaf", bench_ecmult_wnaf, bench_setup, NULL, &data, 10, 20000); - - if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "sha256")) run_benchmark("hash_sha256", bench_sha256, bench_setup, NULL, &data, 10, 20000); - if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "hmac")) run_benchmark("hash_hmac_sha256", bench_hmac_sha256, bench_setup, NULL, &data, 10, 20000); - if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "rng6979")) run_benchmark("hash_rfc6979_hmac_sha256", bench_rfc6979_hmac_sha256, bench_setup, NULL, &data, 10, 20000); - - if (have_flag(argc, argv, "context") || have_flag(argc, argv, "verify")) run_benchmark("context_verify", bench_context_verify, bench_setup, NULL, &data, 10, 20); - if (have_flag(argc, argv, "context") || have_flag(argc, argv, "sign")) run_benchmark("context_sign", bench_context_sign, bench_setup, NULL, &data, 10, 200); - -#ifndef USE_NUM_NONE - if (have_flag(argc, argv, "num") || have_flag(argc, argv, "jacobi")) run_benchmark("num_jacobi", bench_num_jacobi, bench_setup, NULL, &data, 10, 200000); -#endif - return 0; -} diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_rangeproof.c b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_rangeproof.c deleted file mode 100644 index 67a987c..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_rangeproof.c +++ /dev/null @@ -1,64 +0,0 @@ -/********************************************************************** - * Copyright (c) 2014, 2015 Pieter Wuille, Gregory Maxwell * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#include - -#include "include/secp256k1_commitment.h" -#include "include/secp256k1_rangeproof.h" -#include "util.h" -#include "bench.h" - -typedef struct { - secp256k1_context* ctx; - secp256k1_pedersen_commitment commit; - unsigned char proof[5134]; - unsigned char blind[32]; - size_t len; - int min_bits; - uint64_t v; -} bench_rangeproof_t; - -static void bench_rangeproof_setup(void* arg) { - int i; - uint64_t minv; - uint64_t maxv; - bench_rangeproof_t *data = (bench_rangeproof_t*)arg; - - data->v = 0; - for (i = 0; i < 32; i++) data->blind[i] = i + 1; - CHECK(secp256k1_pedersen_commit(data->ctx, &data->commit, data->blind, data->v, &secp256k1_generator_const_h, &secp256k1_generator_const_g)); - data->len = 5134; - CHECK(secp256k1_rangeproof_sign(data->ctx, data->proof, &data->len, 0, &data->commit, data->blind, (const unsigned char*)&data->commit, 0, data->min_bits, data->v, NULL, 0, NULL, 0, &secp256k1_generator_const_h)); - CHECK(secp256k1_rangeproof_verify(data->ctx, &minv, &maxv, &data->commit, data->proof, data->len, NULL, 0, &secp256k1_generator_const_h)); -} - -static void bench_rangeproof(void* arg) { - int i; - bench_rangeproof_t *data = (bench_rangeproof_t*)arg; - - for (i = 0; i < 1000; i++) { - int j; - uint64_t minv; - uint64_t maxv; - j = secp256k1_rangeproof_verify(data->ctx, &minv, &maxv, &data->commit, data->proof, data->len, NULL, 0, &secp256k1_generator_const_h); - for (j = 0; j < 4; j++) { - data->proof[j + 2 + 32 *((data->min_bits + 1) >> 1) - 4] = (i >> 8)&255; - } - } -} - -int main(void) { - bench_rangeproof_t data; - - data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); - - data.min_bits = 32; - - run_benchmark("rangeproof_verify_bit", bench_rangeproof, bench_rangeproof_setup, NULL, &data, 10, 1000 * data.min_bits); - - secp256k1_context_destroy(data.ctx); - return 0; -} diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_recover.c b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_recover.c deleted file mode 100644 index b806eed..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_recover.c +++ /dev/null @@ -1,60 +0,0 @@ -/********************************************************************** - * Copyright (c) 2014-2015 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#include "include/secp256k1.h" -#include "include/secp256k1_recovery.h" -#include "util.h" -#include "bench.h" - -typedef struct { - secp256k1_context *ctx; - unsigned char msg[32]; - unsigned char sig[64]; -} bench_recover_data; - -void bench_recover(void* arg) { - int i; - bench_recover_data *data = (bench_recover_data*)arg; - secp256k1_pubkey pubkey; - unsigned char pubkeyc[33]; - - for (i = 0; i < 20000; i++) { - int j; - size_t pubkeylen = 33; - secp256k1_ecdsa_recoverable_signature sig; - CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(data->ctx, &sig, data->sig, i % 2)); - CHECK(secp256k1_ecdsa_recover(data->ctx, &pubkey, &sig, data->msg)); - CHECK(secp256k1_ec_pubkey_serialize(data->ctx, pubkeyc, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED)); - for (j = 0; j < 32; j++) { - data->sig[j + 32] = data->msg[j]; /* Move former message to S. */ - data->msg[j] = data->sig[j]; /* Move former R to message. */ - data->sig[j] = pubkeyc[j + 1]; /* Move recovered pubkey X coordinate to R (which must be a valid X coordinate). */ - } - } -} - -void bench_recover_setup(void* arg) { - int i; - bench_recover_data *data = (bench_recover_data*)arg; - - for (i = 0; i < 32; i++) { - data->msg[i] = 1 + i; - } - for (i = 0; i < 64; i++) { - data->sig[i] = 65 + i; - } -} - -int main(void) { - bench_recover_data data; - - data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY); - - run_benchmark("ecdsa_recover", bench_recover, bench_recover_setup, NULL, &data, 10, 20000); - - secp256k1_context_destroy(data.ctx); - return 0; -} diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_sign.c b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_sign.c deleted file mode 100644 index 544b439..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_sign.c +++ /dev/null @@ -1,56 +0,0 @@ -/********************************************************************** - * Copyright (c) 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#include "include/secp256k1.h" -#include "util.h" -#include "bench.h" - -typedef struct { - secp256k1_context* ctx; - unsigned char msg[32]; - unsigned char key[32]; -} bench_sign; - -static void bench_sign_setup(void* arg) { - int i; - bench_sign *data = (bench_sign*)arg; - - for (i = 0; i < 32; i++) { - data->msg[i] = i + 1; - } - for (i = 0; i < 32; i++) { - data->key[i] = i + 65; - } -} - -static void bench_sign_run(void* arg) { - int i; - bench_sign *data = (bench_sign*)arg; - - unsigned char sig[74]; - for (i = 0; i < 20000; i++) { - size_t siglen = 74; - int j; - secp256k1_ecdsa_signature signature; - CHECK(secp256k1_ecdsa_sign(data->ctx, &signature, data->msg, data->key, NULL, NULL)); - CHECK(secp256k1_ecdsa_signature_serialize_der(data->ctx, sig, &siglen, &signature)); - for (j = 0; j < 32; j++) { - data->msg[j] = sig[j]; - data->key[j] = sig[j + 32]; - } - } -} - -int main(void) { - bench_sign data; - - data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN); - - run_benchmark("ecdsa_sign", bench_sign_run, bench_sign_setup, NULL, &data, 10, 20000); - - secp256k1_context_destroy(data.ctx); - return 0; -} diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_verify.c b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_verify.c deleted file mode 100644 index 418defa..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_verify.c +++ /dev/null @@ -1,112 +0,0 @@ -/********************************************************************** - * Copyright (c) 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#include -#include - -#include "include/secp256k1.h" -#include "util.h" -#include "bench.h" - -#ifdef ENABLE_OPENSSL_TESTS -#include -#include -#include -#endif - -typedef struct { - secp256k1_context *ctx; - unsigned char msg[32]; - unsigned char key[32]; - unsigned char sig[72]; - size_t siglen; - unsigned char pubkey[33]; - size_t pubkeylen; -#ifdef ENABLE_OPENSSL_TESTS - EC_GROUP* ec_group; -#endif -} benchmark_verify_t; - -static void benchmark_verify(void* arg) { - int i; - benchmark_verify_t* data = (benchmark_verify_t*)arg; - - for (i = 0; i < 20000; i++) { - secp256k1_pubkey pubkey; - secp256k1_ecdsa_signature sig; - data->sig[data->siglen - 1] ^= (i & 0xFF); - data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF); - data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF); - CHECK(secp256k1_ec_pubkey_parse(data->ctx, &pubkey, data->pubkey, data->pubkeylen) == 1); - CHECK(secp256k1_ecdsa_signature_parse_der(data->ctx, &sig, data->sig, data->siglen) == 1); - CHECK(secp256k1_ecdsa_verify(data->ctx, &sig, data->msg, &pubkey) == (i == 0)); - data->sig[data->siglen - 1] ^= (i & 0xFF); - data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF); - data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF); - } -} - -#ifdef ENABLE_OPENSSL_TESTS -static void benchmark_verify_openssl(void* arg) { - int i; - benchmark_verify_t* data = (benchmark_verify_t*)arg; - - for (i = 0; i < 20000; i++) { - data->sig[data->siglen - 1] ^= (i & 0xFF); - data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF); - data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF); - { - EC_KEY *pkey = EC_KEY_new(); - const unsigned char *pubkey = &data->pubkey[0]; - int result; - - CHECK(pkey != NULL); - result = EC_KEY_set_group(pkey, data->ec_group); - CHECK(result); - result = (o2i_ECPublicKey(&pkey, &pubkey, data->pubkeylen)) != NULL; - CHECK(result); - result = ECDSA_verify(0, &data->msg[0], sizeof(data->msg), &data->sig[0], data->siglen, pkey) == (i == 0); - CHECK(result); - EC_KEY_free(pkey); - } - data->sig[data->siglen - 1] ^= (i & 0xFF); - data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF); - data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF); - } -} -#endif - -int main(void) { - int i; - secp256k1_pubkey pubkey; - secp256k1_ecdsa_signature sig; - benchmark_verify_t data; - - data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); - - for (i = 0; i < 32; i++) { - data.msg[i] = 1 + i; - } - for (i = 0; i < 32; i++) { - data.key[i] = 33 + i; - } - data.siglen = 72; - CHECK(secp256k1_ecdsa_sign(data.ctx, &sig, data.msg, data.key, NULL, NULL)); - CHECK(secp256k1_ecdsa_signature_serialize_der(data.ctx, data.sig, &data.siglen, &sig)); - CHECK(secp256k1_ec_pubkey_create(data.ctx, &pubkey, data.key)); - data.pubkeylen = 33; - CHECK(secp256k1_ec_pubkey_serialize(data.ctx, data.pubkey, &data.pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED) == 1); - - run_benchmark("ecdsa_verify", benchmark_verify, NULL, NULL, &data, 10, 20000); -#ifdef ENABLE_OPENSSL_TESTS - data.ec_group = EC_GROUP_new_by_curve_name(NID_secp256k1); - run_benchmark("ecdsa_verify_openssl", benchmark_verify_openssl, NULL, NULL, &data, 10, 20000); - EC_GROUP_free(data.ec_group); -#endif - - secp256k1_context_destroy(data.ctx); - return 0; -} diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_whitelist.c b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_whitelist.c deleted file mode 100644 index d011e92..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/bench_whitelist.c +++ /dev/null @@ -1,104 +0,0 @@ -/********************************************************************** - * Copyright (c) 2017 Jonas Nick * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ -#include - -#include "include/secp256k1.h" - -#include "include/secp256k1_whitelist.h" -#include "bench.h" -#include "util.h" -#include "hash_impl.h" -#include "num_impl.h" -#include "scalar_impl.h" -#include "testrand_impl.h" - -#define MAX_N_KEYS 30 - -typedef struct { - secp256k1_context* ctx; - unsigned char online_seckey[MAX_N_KEYS][32]; - unsigned char summed_seckey[MAX_N_KEYS][32]; - secp256k1_pubkey online_pubkeys[MAX_N_KEYS]; - secp256k1_pubkey offline_pubkeys[MAX_N_KEYS]; - unsigned char csub[32]; - secp256k1_pubkey sub_pubkey; - secp256k1_whitelist_signature sig; - size_t n_keys; -} bench_data; - -static void bench_whitelist(void* arg) { - bench_data* data = (bench_data*)arg; - CHECK(secp256k1_whitelist_verify(data->ctx, &data->sig, data->online_pubkeys, data->offline_pubkeys, data->n_keys, &data->sub_pubkey) == 1); -} - -static void bench_whitelist_setup(void* arg) { - bench_data* data = (bench_data*)arg; - int i = 0; - CHECK(secp256k1_whitelist_sign(data->ctx, &data->sig, data->online_pubkeys, data->offline_pubkeys, data->n_keys, &data->sub_pubkey, data->online_seckey[i], data->summed_seckey[i], i, NULL, NULL)); -} - -static void run_test(bench_data* data) { - char str[32]; - sprintf(str, "whitelist_%i", (int)data->n_keys); - run_benchmark(str, bench_whitelist, bench_whitelist_setup, NULL, data, 100, 1); -} - -void random_scalar_order(secp256k1_scalar *num) { - do { - unsigned char b32[32]; - int overflow = 0; - secp256k1_rand256(b32); - secp256k1_scalar_set_b32(num, b32, &overflow); - if (overflow || secp256k1_scalar_is_zero(num)) { - continue; - } - break; - } while(1); -} - -int main(void) { - bench_data data; - size_t i; - size_t n_keys = 30; - secp256k1_scalar ssub; - - data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); - - /* Start with subkey */ - random_scalar_order(&ssub); - secp256k1_scalar_get_b32(data.csub, &ssub); - CHECK(secp256k1_ec_seckey_verify(data.ctx, data.csub) == 1); - CHECK(secp256k1_ec_pubkey_create(data.ctx, &data.sub_pubkey, data.csub) == 1); - /* Then offline and online whitelist keys */ - for (i = 0; i < n_keys; i++) { - secp256k1_scalar son, soff; - - /* Create two keys */ - random_scalar_order(&son); - secp256k1_scalar_get_b32(data.online_seckey[i], &son); - CHECK(secp256k1_ec_seckey_verify(data.ctx, data.online_seckey[i]) == 1); - CHECK(secp256k1_ec_pubkey_create(data.ctx, &data.online_pubkeys[i], data.online_seckey[i]) == 1); - - random_scalar_order(&soff); - secp256k1_scalar_get_b32(data.summed_seckey[i], &soff); - CHECK(secp256k1_ec_seckey_verify(data.ctx, data.summed_seckey[i]) == 1); - CHECK(secp256k1_ec_pubkey_create(data.ctx, &data.offline_pubkeys[i], data.summed_seckey[i]) == 1); - - /* Make summed_seckey correspond to the sum of offline_pubkey and sub_pubkey */ - secp256k1_scalar_add(&soff, &soff, &ssub); - secp256k1_scalar_get_b32(data.summed_seckey[i], &soff); - CHECK(secp256k1_ec_seckey_verify(data.ctx, data.summed_seckey[i]) == 1); - } - - /* Run test */ - for (i = 1; i <= n_keys; ++i) { - data.n_keys = i; - run_test(&data); - } - - secp256k1_context_destroy(data.ctx); - return(0); -} diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecdsa.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecdsa.h deleted file mode 100644 index 80590c7..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecdsa.h +++ /dev/null @@ -1,21 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_ECDSA_H -#define SECP256K1_ECDSA_H - -#include - -#include "scalar.h" -#include "group.h" -#include "ecmult.h" - -static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *r, secp256k1_scalar *s, const unsigned char *sig, size_t size); -static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar *r, const secp256k1_scalar *s); -static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const secp256k1_scalar* r, const secp256k1_scalar* s, const secp256k1_ge *pubkey, const secp256k1_scalar *message); -static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar* r, secp256k1_scalar* s, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid); - -#endif /* SECP256K1_ECDSA_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecdsa_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecdsa_impl.h deleted file mode 100644 index c340004..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecdsa_impl.h +++ /dev/null @@ -1,313 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013-2015 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - - -#ifndef SECP256K1_ECDSA_IMPL_H -#define SECP256K1_ECDSA_IMPL_H - -#include "scalar.h" -#include "field.h" -#include "group.h" -#include "ecmult.h" -#include "ecmult_gen.h" -#include "ecdsa.h" - -/** Group order for secp256k1 defined as 'n' in "Standards for Efficient Cryptography" (SEC2) 2.7.1 - * sage: for t in xrange(1023, -1, -1): - * .. p = 2**256 - 2**32 - t - * .. if p.is_prime(): - * .. print '%x'%p - * .. break - * 'fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f' - * sage: a = 0 - * sage: b = 7 - * sage: F = FiniteField (p) - * sage: '%x' % (EllipticCurve ([F (a), F (b)]).order()) - * 'fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141' - */ -static const secp256k1_fe secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CONST( - 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, - 0xBAAEDCE6UL, 0xAF48A03BUL, 0xBFD25E8CUL, 0xD0364141UL -); - -/** Difference between field and order, values 'p' and 'n' values defined in - * "Standards for Efficient Cryptography" (SEC2) 2.7.1. - * sage: p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F - * sage: a = 0 - * sage: b = 7 - * sage: F = FiniteField (p) - * sage: '%x' % (p - EllipticCurve ([F (a), F (b)]).order()) - * '14551231950b75fc4402da1722fc9baee' - */ -static const secp256k1_fe secp256k1_ecdsa_const_p_minus_order = SECP256K1_FE_CONST( - 0, 0, 0, 1, 0x45512319UL, 0x50B75FC4UL, 0x402DA172UL, 0x2FC9BAEEUL -); - -static int secp256k1_der_read_len(const unsigned char **sigp, const unsigned char *sigend) { - int lenleft, b1; - size_t ret = 0; - if (*sigp >= sigend) { - return -1; - } - b1 = *((*sigp)++); - if (b1 == 0xFF) { - /* X.690-0207 8.1.3.5.c the value 0xFF shall not be used. */ - return -1; - } - if ((b1 & 0x80) == 0) { - /* X.690-0207 8.1.3.4 short form length octets */ - return b1; - } - if (b1 == 0x80) { - /* Indefinite length is not allowed in DER. */ - return -1; - } - /* X.690-207 8.1.3.5 long form length octets */ - lenleft = b1 & 0x7F; - if (lenleft > sigend - *sigp) { - return -1; - } - if (**sigp == 0) { - /* Not the shortest possible length encoding. */ - return -1; - } - if ((size_t)lenleft > sizeof(size_t)) { - /* The resulting length would exceed the range of a size_t, so - * certainly longer than the passed array size. - */ - return -1; - } - while (lenleft > 0) { - ret = (ret << 8) | **sigp; - if (ret + lenleft > (size_t)(sigend - *sigp)) { - /* Result exceeds the length of the passed array. */ - return -1; - } - (*sigp)++; - lenleft--; - } - if (ret < 128) { - /* Not the shortest possible length encoding. */ - return -1; - } - return ret; -} - -static int secp256k1_der_parse_integer(secp256k1_scalar *r, const unsigned char **sig, const unsigned char *sigend) { - int overflow = 0; - unsigned char ra[32] = {0}; - int rlen; - - if (*sig == sigend || **sig != 0x02) { - /* Not a primitive integer (X.690-0207 8.3.1). */ - return 0; - } - (*sig)++; - rlen = secp256k1_der_read_len(sig, sigend); - if (rlen <= 0 || (*sig) + rlen > sigend) { - /* Exceeds bounds or not at least length 1 (X.690-0207 8.3.1). */ - return 0; - } - if (**sig == 0x00 && rlen > 1 && (((*sig)[1]) & 0x80) == 0x00) { - /* Excessive 0x00 padding. */ - return 0; - } - if (**sig == 0xFF && rlen > 1 && (((*sig)[1]) & 0x80) == 0x80) { - /* Excessive 0xFF padding. */ - return 0; - } - if ((**sig & 0x80) == 0x80) { - /* Negative. */ - overflow = 1; - } - while (rlen > 0 && **sig == 0) { - /* Skip leading zero bytes */ - rlen--; - (*sig)++; - } - if (rlen > 32) { - overflow = 1; - } - if (!overflow) { - memcpy(ra + 32 - rlen, *sig, rlen); - secp256k1_scalar_set_b32(r, ra, &overflow); - } - if (overflow) { - secp256k1_scalar_set_int(r, 0); - } - (*sig) += rlen; - return 1; -} - -static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *rr, secp256k1_scalar *rs, const unsigned char *sig, size_t size) { - const unsigned char *sigend = sig + size; - int rlen; - if (sig == sigend || *(sig++) != 0x30) { - /* The encoding doesn't start with a constructed sequence (X.690-0207 8.9.1). */ - return 0; - } - rlen = secp256k1_der_read_len(&sig, sigend); - if (rlen < 0 || sig + rlen > sigend) { - /* Tuple exceeds bounds */ - return 0; - } - if (sig + rlen != sigend) { - /* Garbage after tuple. */ - return 0; - } - - if (!secp256k1_der_parse_integer(rr, &sig, sigend)) { - return 0; - } - if (!secp256k1_der_parse_integer(rs, &sig, sigend)) { - return 0; - } - - if (sig != sigend) { - /* Trailing garbage inside tuple. */ - return 0; - } - - return 1; -} - -static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar* ar, const secp256k1_scalar* as) { - unsigned char r[33] = {0}, s[33] = {0}; - unsigned char *rp = r, *sp = s; - size_t lenR = 33, lenS = 33; - secp256k1_scalar_get_b32(&r[1], ar); - secp256k1_scalar_get_b32(&s[1], as); - while (lenR > 1 && rp[0] == 0 && rp[1] < 0x80) { lenR--; rp++; } - while (lenS > 1 && sp[0] == 0 && sp[1] < 0x80) { lenS--; sp++; } - if (*size < 6+lenS+lenR) { - *size = 6 + lenS + lenR; - return 0; - } - *size = 6 + lenS + lenR; - sig[0] = 0x30; - sig[1] = 4 + lenS + lenR; - sig[2] = 0x02; - sig[3] = lenR; - memcpy(sig+4, rp, lenR); - sig[4+lenR] = 0x02; - sig[5+lenR] = lenS; - memcpy(sig+lenR+6, sp, lenS); - return 1; -} - -static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar *sigs, const secp256k1_ge *pubkey, const secp256k1_scalar *message) { - unsigned char c[32]; - secp256k1_scalar sn, u1, u2; -#if !defined(EXHAUSTIVE_TEST_ORDER) - secp256k1_fe xr; -#endif - secp256k1_gej pubkeyj; - secp256k1_gej pr; - - if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) { - return 0; - } - - secp256k1_scalar_inverse_var(&sn, sigs); - secp256k1_scalar_mul(&u1, &sn, message); - secp256k1_scalar_mul(&u2, &sn, sigr); - secp256k1_gej_set_ge(&pubkeyj, pubkey); - secp256k1_ecmult(ctx, &pr, &pubkeyj, &u2, &u1); - if (secp256k1_gej_is_infinity(&pr)) { - return 0; - } - -#if defined(EXHAUSTIVE_TEST_ORDER) -{ - secp256k1_scalar computed_r; - secp256k1_ge pr_ge; - secp256k1_ge_set_gej(&pr_ge, &pr); - secp256k1_fe_normalize(&pr_ge.x); - - secp256k1_fe_get_b32(c, &pr_ge.x); - secp256k1_scalar_set_b32(&computed_r, c, NULL); - return secp256k1_scalar_eq(sigr, &computed_r); -} -#else - secp256k1_scalar_get_b32(c, sigr); - secp256k1_fe_set_b32(&xr, c); - - /** We now have the recomputed R point in pr, and its claimed x coordinate (modulo n) - * in xr. Naively, we would extract the x coordinate from pr (requiring a inversion modulo p), - * compute the remainder modulo n, and compare it to xr. However: - * - * xr == X(pr) mod n - * <=> exists h. (xr + h * n < p && xr + h * n == X(pr)) - * [Since 2 * n > p, h can only be 0 or 1] - * <=> (xr == X(pr)) || (xr + n < p && xr + n == X(pr)) - * [In Jacobian coordinates, X(pr) is pr.x / pr.z^2 mod p] - * <=> (xr == pr.x / pr.z^2 mod p) || (xr + n < p && xr + n == pr.x / pr.z^2 mod p) - * [Multiplying both sides of the equations by pr.z^2 mod p] - * <=> (xr * pr.z^2 mod p == pr.x) || (xr + n < p && (xr + n) * pr.z^2 mod p == pr.x) - * - * Thus, we can avoid the inversion, but we have to check both cases separately. - * secp256k1_gej_eq_x implements the (xr * pr.z^2 mod p == pr.x) test. - */ - if (secp256k1_gej_eq_x_var(&xr, &pr)) { - /* xr * pr.z^2 mod p == pr.x, so the signature is valid. */ - return 1; - } - if (secp256k1_fe_cmp_var(&xr, &secp256k1_ecdsa_const_p_minus_order) >= 0) { - /* xr + n >= p, so we can skip testing the second case. */ - return 0; - } - secp256k1_fe_add(&xr, &secp256k1_ecdsa_const_order_as_fe); - if (secp256k1_gej_eq_x_var(&xr, &pr)) { - /* (xr + n) * pr.z^2 mod p == pr.x, so the signature is valid. */ - return 1; - } - return 0; -#endif -} - -static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid) { - unsigned char b[32]; - secp256k1_gej rp; - secp256k1_ge r; - secp256k1_scalar n; - int overflow = 0; - - secp256k1_ecmult_gen(ctx, &rp, nonce); - secp256k1_ge_set_gej(&r, &rp); - secp256k1_fe_normalize(&r.x); - secp256k1_fe_normalize(&r.y); - secp256k1_fe_get_b32(b, &r.x); - secp256k1_scalar_set_b32(sigr, b, &overflow); - /* These two conditions should be checked before calling */ - VERIFY_CHECK(!secp256k1_scalar_is_zero(sigr)); - VERIFY_CHECK(overflow == 0); - - if (recid) { - /* The overflow condition is cryptographically unreachable as hitting it requires finding the discrete log - * of some P where P.x >= order, and only 1 in about 2^127 points meet this criteria. - */ - *recid = (overflow ? 2 : 0) | (secp256k1_fe_is_odd(&r.y) ? 1 : 0); - } - secp256k1_scalar_mul(&n, sigr, seckey); - secp256k1_scalar_add(&n, &n, message); - secp256k1_scalar_inverse(sigs, nonce); - secp256k1_scalar_mul(sigs, sigs, &n); - secp256k1_scalar_clear(&n); - secp256k1_gej_clear(&rp); - secp256k1_ge_clear(&r); - if (secp256k1_scalar_is_zero(sigs)) { - return 0; - } - if (secp256k1_scalar_is_high(sigs)) { - secp256k1_scalar_negate(sigs, sigs); - if (recid) { - *recid ^= 1; - } - } - return 1; -} - -#endif /* SECP256K1_ECDSA_IMPL_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/eckey.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/eckey.h deleted file mode 100644 index b621f1e..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/eckey.h +++ /dev/null @@ -1,25 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_ECKEY_H -#define SECP256K1_ECKEY_H - -#include - -#include "group.h" -#include "scalar.h" -#include "ecmult.h" -#include "ecmult_gen.h" - -static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char *pub, size_t size); -static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *pub, size_t *size, int compressed); - -static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar *key, const secp256k1_scalar *tweak); -static int secp256k1_eckey_pubkey_tweak_add(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak); -static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar *key, const secp256k1_scalar *tweak); -static int secp256k1_eckey_pubkey_tweak_mul(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak); - -#endif /* SECP256K1_ECKEY_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/eckey_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/eckey_impl.h deleted file mode 100644 index 1ab9a68..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/eckey_impl.h +++ /dev/null @@ -1,100 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_ECKEY_IMPL_H -#define SECP256K1_ECKEY_IMPL_H - -#include "eckey.h" - -#include "scalar.h" -#include "field.h" -#include "group.h" -#include "ecmult_gen.h" - -static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char *pub, size_t size) { - if (size == 33 && (pub[0] == SECP256K1_TAG_PUBKEY_EVEN || pub[0] == SECP256K1_TAG_PUBKEY_ODD)) { - secp256k1_fe x; - return secp256k1_fe_set_b32(&x, pub+1) && secp256k1_ge_set_xo_var(elem, &x, pub[0] == SECP256K1_TAG_PUBKEY_ODD); - } else if (size == 65 && (pub[0] == 0x04 || pub[0] == 0x06 || pub[0] == 0x07)) { - secp256k1_fe x, y; - if (!secp256k1_fe_set_b32(&x, pub+1) || !secp256k1_fe_set_b32(&y, pub+33)) { - return 0; - } - secp256k1_ge_set_xy(elem, &x, &y); - if ((pub[0] == SECP256K1_TAG_PUBKEY_HYBRID_EVEN || pub[0] == SECP256K1_TAG_PUBKEY_HYBRID_ODD) && - secp256k1_fe_is_odd(&y) != (pub[0] == SECP256K1_TAG_PUBKEY_HYBRID_ODD)) { - return 0; - } - return secp256k1_ge_is_valid_var(elem); - } else { - return 0; - } -} - -static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *pub, size_t *size, int compressed) { - if (secp256k1_ge_is_infinity(elem)) { - return 0; - } - secp256k1_fe_normalize_var(&elem->x); - secp256k1_fe_normalize_var(&elem->y); - secp256k1_fe_get_b32(&pub[1], &elem->x); - if (compressed) { - *size = 33; - pub[0] = secp256k1_fe_is_odd(&elem->y) ? SECP256K1_TAG_PUBKEY_ODD : SECP256K1_TAG_PUBKEY_EVEN; - } else { - *size = 65; - pub[0] = SECP256K1_TAG_PUBKEY_UNCOMPRESSED; - secp256k1_fe_get_b32(&pub[33], &elem->y); - } - return 1; -} - -static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar *key, const secp256k1_scalar *tweak) { - secp256k1_scalar_add(key, key, tweak); - if (secp256k1_scalar_is_zero(key)) { - return 0; - } - return 1; -} - -static int secp256k1_eckey_pubkey_tweak_add(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak) { - secp256k1_gej pt; - secp256k1_scalar one; - secp256k1_gej_set_ge(&pt, key); - secp256k1_scalar_set_int(&one, 1); - secp256k1_ecmult(ctx, &pt, &pt, &one, tweak); - - if (secp256k1_gej_is_infinity(&pt)) { - return 0; - } - secp256k1_ge_set_gej(key, &pt); - return 1; -} - -static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar *key, const secp256k1_scalar *tweak) { - if (secp256k1_scalar_is_zero(tweak)) { - return 0; - } - - secp256k1_scalar_mul(key, key, tweak); - return 1; -} - -static int secp256k1_eckey_pubkey_tweak_mul(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak) { - secp256k1_scalar zero; - secp256k1_gej pt; - if (secp256k1_scalar_is_zero(tweak)) { - return 0; - } - - secp256k1_scalar_set_int(&zero, 0); - secp256k1_gej_set_ge(&pt, key); - secp256k1_ecmult(ctx, &pt, &pt, tweak, &zero); - secp256k1_ge_set_gej(key, &pt); - return 1; -} - -#endif /* SECP256K1_ECKEY_IMPL_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecmult.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecmult.h deleted file mode 100644 index ea1cd8a..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecmult.h +++ /dev/null @@ -1,47 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014, 2017 Pieter Wuille, Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_ECMULT_H -#define SECP256K1_ECMULT_H - -#include "num.h" -#include "group.h" -#include "scalar.h" -#include "scratch.h" - -typedef struct { - /* For accelerating the computation of a*P + b*G: */ - secp256k1_ge_storage (*pre_g)[]; /* odd multiples of the generator */ -#ifdef USE_ENDOMORPHISM - secp256k1_ge_storage (*pre_g_128)[]; /* odd multiples of 2^128*generator */ -#endif -} secp256k1_ecmult_context; - -static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx); -static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const secp256k1_callback *cb); -static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context *dst, - const secp256k1_ecmult_context *src, const secp256k1_callback *cb); -static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx); -static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx); - -/** Double multiply: R = na*A + ng*G */ -static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng); - -typedef int (secp256k1_ecmult_multi_callback)(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data); - -/** - * Multi-multiply: R = inp_g_sc * G + sum_i ni * Ai. - * Chooses the right algorithm for a given number of points and scratch space - * size. Resets and overwrites the given scratch space. If the points do not - * fit in the scratch space the algorithm is repeatedly run with batches of - * points. - * Returns: 1 on success (including when inp_g_sc is NULL and n is 0) - * 0 if there is not enough scratch space for a single point or - * callback returns 0 - */ -static int secp256k1_ecmult_multi_var(const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n); - -#endif /* SECP256K1_ECMULT_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecmult_const.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecmult_const.h deleted file mode 100644 index d4804b8..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecmult_const.h +++ /dev/null @@ -1,17 +0,0 @@ -/********************************************************************** - * Copyright (c) 2015 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_ECMULT_CONST_H -#define SECP256K1_ECMULT_CONST_H - -#include "scalar.h" -#include "group.h" - -/* Here `bits` should be set to the maximum bitlength of the _absolute value_ of `q`, plus - * one because we internally sometimes add 2 to the number during the WNAF conversion. */ -static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q, int bits); - -#endif /* SECP256K1_ECMULT_CONST_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecmult_const_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecmult_const_impl.h deleted file mode 100644 index 8411752..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecmult_const_impl.h +++ /dev/null @@ -1,257 +0,0 @@ -/********************************************************************** - * Copyright (c) 2015 Pieter Wuille, Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_ECMULT_CONST_IMPL_H -#define SECP256K1_ECMULT_CONST_IMPL_H - -#include "scalar.h" -#include "group.h" -#include "ecmult_const.h" -#include "ecmult_impl.h" - -/* This is like `ECMULT_TABLE_GET_GE` but is constant time */ -#define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \ - int m; \ - int abs_n = (n) * (((n) > 0) * 2 - 1); \ - int idx_n = abs_n / 2; \ - secp256k1_fe neg_y; \ - VERIFY_CHECK(((n) & 1) == 1); \ - VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \ - VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \ - VERIFY_SETUP(secp256k1_fe_clear(&(r)->x)); \ - VERIFY_SETUP(secp256k1_fe_clear(&(r)->y)); \ - for (m = 0; m < ECMULT_TABLE_SIZE(w); m++) { \ - /* This loop is used to avoid secret data in array indices. See - * the comment in ecmult_gen_impl.h for rationale. */ \ - secp256k1_fe_cmov(&(r)->x, &(pre)[m].x, m == idx_n); \ - secp256k1_fe_cmov(&(r)->y, &(pre)[m].y, m == idx_n); \ - } \ - (r)->infinity = 0; \ - secp256k1_fe_negate(&neg_y, &(r)->y, 1); \ - secp256k1_fe_cmov(&(r)->y, &neg_y, (n) != abs_n); \ -} while(0) - - -/** Convert a number to WNAF notation. - * The number becomes represented by sum(2^{wi} * wnaf[i], i=0..WNAF_SIZE(w)+1) - return_val. - * It has the following guarantees: - * - each wnaf[i] an odd integer between -(1 << w) and (1 << w) - * - each wnaf[i] is nonzero - * - the number of words set is always WNAF_SIZE(w) + 1 - * - * Adapted from `The Width-w NAF Method Provides Small Memory and Fast Elliptic Scalar - * Multiplications Secure against Side Channel Attacks`, Okeya and Tagaki. M. Joye (Ed.) - * CT-RSA 2003, LNCS 2612, pp. 328-443, 2003. Springer-Verlagy Berlin Heidelberg 2003 - * - * Numbers reference steps of `Algorithm SPA-resistant Width-w NAF with Odd Scalar` on pp. 335 - */ -static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w, int size) { - int global_sign; - int skew = 0; - int word = 0; - - /* 1 2 3 */ - int u_last; - int u; - - int flip; - int bit; - secp256k1_scalar neg_s; - int not_neg_one; - /* Note that we cannot handle even numbers by negating them to be odd, as is - * done in other implementations, since if our scalars were specified to have - * width < 256 for performance reasons, their negations would have width 256 - * and we'd lose any performance benefit. Instead, we use a technique from - * Section 4.2 of the Okeya/Tagaki paper, which is to add either 1 (for even) - * or 2 (for odd) to the number we are encoding, returning a skew value indicating - * this, and having the caller compensate after doing the multiplication. - * - * In fact, we _do_ want to negate numbers to minimize their bit-lengths (and in - * particular, to ensure that the outputs from the endomorphism-split fit into - * 128 bits). If we negate, the parity of our number flips, inverting which of - * {1, 2} we want to add to the scalar when ensuring that it's odd. Further - * complicating things, -1 interacts badly with `secp256k1_scalar_cadd_bit` and - * we need to special-case it in this logic. */ - flip = secp256k1_scalar_is_high(&s); - /* We add 1 to even numbers, 2 to odd ones, noting that negation flips parity */ - bit = flip ^ !secp256k1_scalar_is_even(&s); - /* We check for negative one, since adding 2 to it will cause an overflow */ - secp256k1_scalar_negate(&neg_s, &s); - not_neg_one = !secp256k1_scalar_is_one(&neg_s); - secp256k1_scalar_cadd_bit(&s, bit, not_neg_one); - /* If we had negative one, flip == 1, s.d[0] == 0, bit == 1, so caller expects - * that we added two to it and flipped it. In fact for -1 these operations are - * identical. We only flipped, but since skewing is required (in the sense that - * the skew must be 1 or 2, never zero) and flipping is not, we need to change - * our flags to claim that we only skewed. */ - global_sign = secp256k1_scalar_cond_negate(&s, flip); - global_sign *= not_neg_one * 2 - 1; - skew = 1 << bit; - - /* 4 */ - u_last = secp256k1_scalar_shr_int(&s, w); - while (word * w < size) { - int sign; - int even; - - /* 4.1 4.4 */ - u = secp256k1_scalar_shr_int(&s, w); - /* 4.2 */ - even = ((u & 1) == 0); - sign = 2 * (u_last > 0) - 1; - u += sign * even; - u_last -= sign * even * (1 << w); - - /* 4.3, adapted for global sign change */ - wnaf[word++] = u_last * global_sign; - - u_last = u; - } - wnaf[word] = u * global_sign; - - VERIFY_CHECK(secp256k1_scalar_is_zero(&s)); - VERIFY_CHECK(word == WNAF_SIZE_BITS(size, w)); - return skew; -} - -static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *scalar, int size) { - secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)]; - secp256k1_ge tmpa; - secp256k1_fe Z; - - int skew_1; -#ifdef USE_ENDOMORPHISM - secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)]; - int wnaf_lam[1 + WNAF_SIZE(WINDOW_A - 1)]; - int skew_lam; - secp256k1_scalar q_1, q_lam; -#endif - int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)]; - - int i; - secp256k1_scalar sc = *scalar; - - /* build wnaf representation for q. */ - int rsize = size; -#ifdef USE_ENDOMORPHISM - if (size > 128) { - rsize = 128; - /* split q into q_1 and q_lam (where q = q_1 + q_lam*lambda, and q_1 and q_lam are ~128 bit) */ - secp256k1_scalar_split_lambda(&q_1, &q_lam, &sc); - skew_1 = secp256k1_wnaf_const(wnaf_1, q_1, WINDOW_A - 1, 128); - skew_lam = secp256k1_wnaf_const(wnaf_lam, q_lam, WINDOW_A - 1, 128); - } else -#endif - { - skew_1 = secp256k1_wnaf_const(wnaf_1, sc, WINDOW_A - 1, size); -#ifdef USE_ENDOMORPHISM - skew_lam = 0; -#endif - } - - /* Calculate odd multiples of a. - * All multiples are brought to the same Z 'denominator', which is stored - * in Z. Due to secp256k1' isomorphism we can do all operations pretending - * that the Z coordinate was 1, use affine addition formulae, and correct - * the Z coordinate of the result once at the end. - */ - secp256k1_gej_set_ge(r, a); - secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, r); - for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) { - secp256k1_fe_normalize_weak(&pre_a[i].y); - } -#ifdef USE_ENDOMORPHISM - if (size > 128) { - for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) { - secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]); - } - } -#endif - - /* first loop iteration (separated out so we can directly set r, rather - * than having it start at infinity, get doubled several times, then have - * its new value added to it) */ - i = wnaf_1[WNAF_SIZE_BITS(rsize, WINDOW_A - 1)]; - VERIFY_CHECK(i != 0); - ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A); - secp256k1_gej_set_ge(r, &tmpa); -#ifdef USE_ENDOMORPHISM - if (size > 128) { - i = wnaf_lam[WNAF_SIZE_BITS(rsize, WINDOW_A - 1)]; - VERIFY_CHECK(i != 0); - ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, i, WINDOW_A); - secp256k1_gej_add_ge(r, r, &tmpa); - } -#endif - /* remaining loop iterations */ - for (i = WNAF_SIZE_BITS(rsize, WINDOW_A - 1) - 1; i >= 0; i--) { - int n; - int j; - for (j = 0; j < WINDOW_A - 1; ++j) { - secp256k1_gej_double_nonzero(r, r, NULL); - } - - n = wnaf_1[i]; - ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A); - VERIFY_CHECK(n != 0); - secp256k1_gej_add_ge(r, r, &tmpa); -#ifdef USE_ENDOMORPHISM - if (size > 128) { - n = wnaf_lam[i]; - ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A); - VERIFY_CHECK(n != 0); - secp256k1_gej_add_ge(r, r, &tmpa); - } -#endif - } - - secp256k1_fe_mul(&r->z, &r->z, &Z); - - { - /* Correct for wNAF skew */ - secp256k1_ge correction = *a; - secp256k1_ge_storage correction_1_stor; -#ifdef USE_ENDOMORPHISM - secp256k1_ge_storage correction_lam_stor; -#endif - secp256k1_ge_storage a2_stor; - secp256k1_gej tmpj; - secp256k1_gej_set_ge(&tmpj, &correction); - secp256k1_gej_double_var(&tmpj, &tmpj, NULL); - secp256k1_ge_set_gej(&correction, &tmpj); - secp256k1_ge_to_storage(&correction_1_stor, a); -#ifdef USE_ENDOMORPHISM - if (size > 128) { - secp256k1_ge_to_storage(&correction_lam_stor, a); - } -#endif - secp256k1_ge_to_storage(&a2_stor, &correction); - - /* For odd numbers this is 2a (so replace it), for even ones a (so no-op) */ - secp256k1_ge_storage_cmov(&correction_1_stor, &a2_stor, skew_1 == 2); -#ifdef USE_ENDOMORPHISM - if (size > 128) { - secp256k1_ge_storage_cmov(&correction_lam_stor, &a2_stor, skew_lam == 2); - } -#endif - - /* Apply the correction */ - secp256k1_ge_from_storage(&correction, &correction_1_stor); - secp256k1_ge_neg(&correction, &correction); - secp256k1_gej_add_ge(r, r, &correction); - -#ifdef USE_ENDOMORPHISM - if (size > 128) { - secp256k1_ge_from_storage(&correction, &correction_lam_stor); - secp256k1_ge_neg(&correction, &correction); - secp256k1_ge_mul_lambda(&correction, &correction); - secp256k1_gej_add_ge(r, r, &correction); - } -#endif - } -} - -#endif /* SECP256K1_ECMULT_CONST_IMPL_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecmult_gen.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecmult_gen.h deleted file mode 100644 index 7564b70..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecmult_gen.h +++ /dev/null @@ -1,43 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_ECMULT_GEN_H -#define SECP256K1_ECMULT_GEN_H - -#include "scalar.h" -#include "group.h" - -typedef struct { - /* For accelerating the computation of a*G: - * To harden against timing attacks, use the following mechanism: - * * Break up the multiplicand into groups of 4 bits, called n_0, n_1, n_2, ..., n_63. - * * Compute sum(n_i * 16^i * G + U_i, i=0..63), where: - * * U_i = U * 2^i (for i=0..62) - * * U_i = U * (1-2^63) (for i=63) - * where U is a point with no known corresponding scalar. Note that sum(U_i, i=0..63) = 0. - * For each i, and each of the 16 possible values of n_i, (n_i * 16^i * G + U_i) is - * precomputed (call it prec(i, n_i)). The formula now becomes sum(prec(i, n_i), i=0..63). - * None of the resulting prec group elements have a known scalar, and neither do any of - * the intermediate sums while computing a*G. - */ - secp256k1_ge_storage (*prec)[64][16]; /* prec[j][i] = 16^j * i * G + U_i */ - secp256k1_scalar blind; - secp256k1_gej initial; -} secp256k1_ecmult_gen_context; - -static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context* ctx); -static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context* ctx, const secp256k1_callback* cb); -static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst, - const secp256k1_ecmult_gen_context* src, const secp256k1_callback* cb); -static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context* ctx); -static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx); - -/** Multiply with the generator: R = a*G */ -static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context* ctx, secp256k1_gej *r, const secp256k1_scalar *a); - -static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32); - -#endif /* SECP256K1_ECMULT_GEN_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecmult_gen_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecmult_gen_impl.h deleted file mode 100644 index 714f02e..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecmult_gen_impl.h +++ /dev/null @@ -1,210 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_ECMULT_GEN_IMPL_H -#define SECP256K1_ECMULT_GEN_IMPL_H - -#include "scalar.h" -#include "group.h" -#include "ecmult_gen.h" -#include "hash_impl.h" -#ifdef USE_ECMULT_STATIC_PRECOMPUTATION -#include "ecmult_static_context.h" -#endif -static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context *ctx) { - ctx->prec = NULL; -} - -static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx, const secp256k1_callback* cb) { -#ifndef USE_ECMULT_STATIC_PRECOMPUTATION - secp256k1_ge prec[1024]; - secp256k1_gej gj; - secp256k1_gej nums_gej; - int i, j; -#endif - - if (ctx->prec != NULL) { - return; - } -#ifndef USE_ECMULT_STATIC_PRECOMPUTATION - ctx->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*ctx->prec)); - - /* get the generator */ - secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g); - - /* Construct a group element with no known corresponding scalar (nothing up my sleeve). */ - { - static const unsigned char nums_b32[33] = "The scalar for this x is unknown"; - secp256k1_fe nums_x; - secp256k1_ge nums_ge; - int r; - r = secp256k1_fe_set_b32(&nums_x, nums_b32); - (void)r; - VERIFY_CHECK(r); - r = secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0); - (void)r; - VERIFY_CHECK(r); - secp256k1_gej_set_ge(&nums_gej, &nums_ge); - /* Add G to make the bits in x uniformly distributed. */ - secp256k1_gej_add_ge_var(&nums_gej, &nums_gej, &secp256k1_ge_const_g, NULL); - } - - /* compute prec. */ - { - secp256k1_gej precj[1024]; /* Jacobian versions of prec. */ - secp256k1_gej gbase; - secp256k1_gej numsbase; - gbase = gj; /* 16^j * G */ - numsbase = nums_gej; /* 2^j * nums. */ - for (j = 0; j < 64; j++) { - /* Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase). */ - precj[j*16] = numsbase; - for (i = 1; i < 16; i++) { - secp256k1_gej_add_var(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase, NULL); - } - /* Multiply gbase by 16. */ - for (i = 0; i < 4; i++) { - secp256k1_gej_double_var(&gbase, &gbase, NULL); - } - /* Multiply numbase by 2. */ - secp256k1_gej_double_var(&numsbase, &numsbase, NULL); - if (j == 62) { - /* In the last iteration, numsbase is (1 - 2^j) * nums instead. */ - secp256k1_gej_neg(&numsbase, &numsbase); - secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej, NULL); - } - } - secp256k1_ge_set_all_gej_var(prec, precj, 1024, cb); - } - for (j = 0; j < 64; j++) { - for (i = 0; i < 16; i++) { - secp256k1_ge_to_storage(&(*ctx->prec)[j][i], &prec[j*16 + i]); - } - } -#else - (void)cb; - ctx->prec = (secp256k1_ge_storage (*)[64][16])secp256k1_ecmult_static_context; -#endif - secp256k1_ecmult_gen_blind(ctx, NULL); -} - -static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx) { - return ctx->prec != NULL; -} - -static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst, - const secp256k1_ecmult_gen_context *src, const secp256k1_callback* cb) { - if (src->prec == NULL) { - dst->prec = NULL; - } else { -#ifndef USE_ECMULT_STATIC_PRECOMPUTATION - dst->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*dst->prec)); - memcpy(dst->prec, src->prec, sizeof(*dst->prec)); -#else - (void)cb; - dst->prec = src->prec; -#endif - dst->initial = src->initial; - dst->blind = src->blind; - } -} - -static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context *ctx) { -#ifndef USE_ECMULT_STATIC_PRECOMPUTATION - free(ctx->prec); -#endif - secp256k1_scalar_clear(&ctx->blind); - secp256k1_gej_clear(&ctx->initial); - ctx->prec = NULL; -} - -static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *gn) { - secp256k1_ge add; - secp256k1_ge_storage adds; - secp256k1_scalar gnb; - int bits; - int i, j; - memset(&adds, 0, sizeof(adds)); - *r = ctx->initial; - /* Blind scalar/point multiplication by computing (n-b)G + bG instead of nG. */ - secp256k1_scalar_add(&gnb, gn, &ctx->blind); - add.infinity = 0; - for (j = 0; j < 64; j++) { - bits = secp256k1_scalar_get_bits(&gnb, j * 4, 4); - for (i = 0; i < 16; i++) { - /** This uses a conditional move to avoid any secret data in array indexes. - * _Any_ use of secret indexes has been demonstrated to result in timing - * sidechannels, even when the cache-line access patterns are uniform. - * See also: - * "A word of warning", CHES 2013 Rump Session, by Daniel J. Bernstein and Peter Schwabe - * (https://cryptojedi.org/peter/data/chesrump-20130822.pdf) and - * "Cache Attacks and Countermeasures: the Case of AES", RSA 2006, - * by Dag Arne Osvik, Adi Shamir, and Eran Tromer - * (http://www.tau.ac.il/~tromer/papers/cache.pdf) - */ - secp256k1_ge_storage_cmov(&adds, &(*ctx->prec)[j][i], i == bits); - } - secp256k1_ge_from_storage(&add, &adds); - secp256k1_gej_add_ge(r, r, &add); - } - bits = 0; - secp256k1_ge_clear(&add); - secp256k1_scalar_clear(&gnb); -} - -/* Setup blinding values for secp256k1_ecmult_gen. */ -static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32) { - secp256k1_scalar b; - secp256k1_gej gb; - secp256k1_fe s; - unsigned char nonce32[32]; - secp256k1_rfc6979_hmac_sha256 rng; - int retry; - unsigned char keydata[64] = {0}; - if (seed32 == NULL) { - /* When seed is NULL, reset the initial point and blinding value. */ - secp256k1_gej_set_ge(&ctx->initial, &secp256k1_ge_const_g); - secp256k1_gej_neg(&ctx->initial, &ctx->initial); - secp256k1_scalar_set_int(&ctx->blind, 1); - } - /* The prior blinding value (if not reset) is chained forward by including it in the hash. */ - secp256k1_scalar_get_b32(nonce32, &ctx->blind); - /** Using a CSPRNG allows a failure free interface, avoids needing large amounts of random data, - * and guards against weak or adversarial seeds. This is a simpler and safer interface than - * asking the caller for blinding values directly and expecting them to retry on failure. - */ - memcpy(keydata, nonce32, 32); - if (seed32 != NULL) { - memcpy(keydata + 32, seed32, 32); - } - secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, seed32 ? 64 : 32); - memset(keydata, 0, sizeof(keydata)); - /* Retry for out of range results to achieve uniformity. */ - do { - secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32); - retry = !secp256k1_fe_set_b32(&s, nonce32); - retry |= secp256k1_fe_is_zero(&s); - } while (retry); /* This branch true is cryptographically unreachable. Requires sha256_hmac output > Fp. */ - /* Randomize the projection to defend against multiplier sidechannels. */ - secp256k1_gej_rescale(&ctx->initial, &s); - secp256k1_fe_clear(&s); - do { - secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32); - secp256k1_scalar_set_b32(&b, nonce32, &retry); - /* A blinding value of 0 works, but would undermine the projection hardening. */ - retry |= secp256k1_scalar_is_zero(&b); - } while (retry); /* This branch true is cryptographically unreachable. Requires sha256_hmac output > order. */ - secp256k1_rfc6979_hmac_sha256_finalize(&rng); - memset(nonce32, 0, 32); - secp256k1_ecmult_gen(ctx, &gb, &b); - secp256k1_scalar_negate(&b, &b); - ctx->blind = b; - ctx->initial = gb; - secp256k1_scalar_clear(&b); - secp256k1_gej_clear(&gb); -} - -#endif /* SECP256K1_ECMULT_GEN_IMPL_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecmult_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecmult_impl.h deleted file mode 100644 index d5fb6c5..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/ecmult_impl.h +++ /dev/null @@ -1,1027 +0,0 @@ -/***************************************************************************** - * Copyright (c) 2013, 2014, 2017 Pieter Wuille, Andrew Poelstra, Jonas Nick * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php. * - *****************************************************************************/ - -#ifndef SECP256K1_ECMULT_IMPL_H -#define SECP256K1_ECMULT_IMPL_H - -#include -#include - -#include "group.h" -#include "scalar.h" -#include "ecmult.h" - -#if defined(EXHAUSTIVE_TEST_ORDER) -/* We need to lower these values for exhaustive tests because - * the tables cannot have infinities in them (this breaks the - * affine-isomorphism stuff which tracks z-ratios) */ -# if EXHAUSTIVE_TEST_ORDER > 128 -# define WINDOW_A 5 -# define WINDOW_G 8 -# elif EXHAUSTIVE_TEST_ORDER > 8 -# define WINDOW_A 4 -# define WINDOW_G 4 -# else -# define WINDOW_A 2 -# define WINDOW_G 2 -# endif -#else -/* optimal for 128-bit and 256-bit exponents. */ -#define WINDOW_A 5 -/** larger numbers may result in slightly better performance, at the cost of - exponentially larger precomputed tables. */ -#ifdef USE_ENDOMORPHISM -/** Two tables for window size 15: 1.375 MiB. */ -#define WINDOW_G 15 -#else -/** One table for window size 16: 1.375 MiB. */ -#define WINDOW_G 16 -#endif -#endif - -#ifdef USE_ENDOMORPHISM - #define WNAF_BITS 128 -#else - #define WNAF_BITS 256 -#endif -#define WNAF_SIZE_BITS(bits, w) (((bits) + (w) - 1) / (w)) -#define WNAF_SIZE(w) WNAF_SIZE_BITS(WNAF_BITS, w) - -/** The number of entries a table with precomputed multiples needs to have. */ -#define ECMULT_TABLE_SIZE(w) (1 << ((w)-2)) - -/* The number of objects allocated on the scratch space for ecmult_multi algorithms */ -#define PIPPENGER_SCRATCH_OBJECTS 6 -#define STRAUSS_SCRATCH_OBJECTS 6 - -#define PIPPENGER_MAX_BUCKET_WINDOW 12 - -/* Minimum number of points for which pippenger_wnaf is faster than strauss wnaf */ -#ifdef USE_ENDOMORPHISM - #define ECMULT_PIPPENGER_THRESHOLD 88 -#else - #define ECMULT_PIPPENGER_THRESHOLD 160 -#endif - -#ifdef USE_ENDOMORPHISM - #define ECMULT_MAX_POINTS_PER_BATCH 5000000 -#else - #define ECMULT_MAX_POINTS_PER_BATCH 10000000 -#endif - -/** Fill a table 'prej' with precomputed odd multiples of a. Prej will contain - * the values [1*a,3*a,...,(2*n-1)*a], so it space for n values. zr[0] will - * contain prej[0].z / a.z. The other zr[i] values = prej[i].z / prej[i-1].z. - * Prej's Z values are undefined, except for the last value. - */ -static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_gej *prej, secp256k1_fe *zr, const secp256k1_gej *a) { - secp256k1_gej d; - secp256k1_ge a_ge, d_ge; - int i; - - VERIFY_CHECK(!a->infinity); - - secp256k1_gej_double_var(&d, a, NULL); - - /* - * Perform the additions on an isomorphism where 'd' is affine: drop the z coordinate - * of 'd', and scale the 1P starting value's x/y coordinates without changing its z. - */ - d_ge.x = d.x; - d_ge.y = d.y; - d_ge.infinity = 0; - - secp256k1_ge_set_gej_zinv(&a_ge, a, &d.z); - prej[0].x = a_ge.x; - prej[0].y = a_ge.y; - prej[0].z = a->z; - prej[0].infinity = 0; - - zr[0] = d.z; - for (i = 1; i < n; i++) { - secp256k1_gej_add_ge_var(&prej[i], &prej[i-1], &d_ge, &zr[i]); - } - - /* - * Each point in 'prej' has a z coordinate too small by a factor of 'd.z'. Only - * the final point's z coordinate is actually used though, so just update that. - */ - secp256k1_fe_mul(&prej[n-1].z, &prej[n-1].z, &d.z); -} - -/** Fill a table 'pre' with precomputed odd multiples of a. - * - * There are two versions of this function: - * - secp256k1_ecmult_odd_multiples_table_globalz_windowa which brings its - * resulting point set to a single constant Z denominator, stores the X and Y - * coordinates as ge_storage points in pre, and stores the global Z in rz. - * It only operates on tables sized for WINDOW_A wnaf multiples. - * - secp256k1_ecmult_odd_multiples_table_storage_var, which converts its - * resulting point set to actually affine points, and stores those in pre. - * It operates on tables of any size, but uses heap-allocated temporaries. - * - * To compute a*P + b*G, we compute a table for P using the first function, - * and for G using the second (which requires an inverse, but it only needs to - * happen once). - */ -static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *pre, secp256k1_fe *globalz, const secp256k1_gej *a) { - secp256k1_gej prej[ECMULT_TABLE_SIZE(WINDOW_A)]; - secp256k1_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)]; - - /* Compute the odd multiples in Jacobian form. */ - secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), prej, zr, a); - /* Bring them to the same Z denominator. */ - secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A), pre, globalz, prej, zr); -} - -static void secp256k1_ecmult_odd_multiples_table_storage_var(int n, secp256k1_ge_storage *pre, const secp256k1_gej *a, const secp256k1_callback *cb) { - secp256k1_gej *prej = (secp256k1_gej*)checked_malloc(cb, sizeof(secp256k1_gej) * n); - secp256k1_ge *prea = (secp256k1_ge*)checked_malloc(cb, sizeof(secp256k1_ge) * n); - secp256k1_fe *zr = (secp256k1_fe*)checked_malloc(cb, sizeof(secp256k1_fe) * n); - int i; - - /* Compute the odd multiples in Jacobian form. */ - secp256k1_ecmult_odd_multiples_table(n, prej, zr, a); - /* Convert them in batch to affine coordinates. */ - secp256k1_ge_set_table_gej_var(prea, prej, zr, n); - /* Convert them to compact storage form. */ - for (i = 0; i < n; i++) { - secp256k1_ge_to_storage(&pre[i], &prea[i]); - } - - free(prea); - free(prej); - free(zr); -} - -/** The following two macro retrieves a particular odd multiple from a table - * of precomputed multiples. */ -#define ECMULT_TABLE_GET_GE(r,pre,n,w) do { \ - VERIFY_CHECK(((n) & 1) == 1); \ - VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \ - VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \ - if ((n) > 0) { \ - *(r) = (pre)[((n)-1)/2]; \ - } else { \ - secp256k1_ge_neg((r), &(pre)[(-(n)-1)/2]); \ - } \ -} while(0) - -#define ECMULT_TABLE_GET_GE_STORAGE(r,pre,n,w) do { \ - VERIFY_CHECK(((n) & 1) == 1); \ - VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \ - VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \ - if ((n) > 0) { \ - secp256k1_ge_from_storage((r), &(pre)[((n)-1)/2]); \ - } else { \ - secp256k1_ge_from_storage((r), &(pre)[(-(n)-1)/2]); \ - secp256k1_ge_neg((r), (r)); \ - } \ -} while(0) - -static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx) { - ctx->pre_g = NULL; -#ifdef USE_ENDOMORPHISM - ctx->pre_g_128 = NULL; -#endif -} - -static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const secp256k1_callback *cb) { - secp256k1_gej gj; - - if (ctx->pre_g != NULL) { - return; - } - - /* get the generator */ - secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g); - - ctx->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G)); - - /* precompute the tables with odd multiples */ - secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g, &gj, cb); - -#ifdef USE_ENDOMORPHISM - { - secp256k1_gej g_128j; - int i; - - ctx->pre_g_128 = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G)); - - /* calculate 2^128*generator */ - g_128j = gj; - for (i = 0; i < 128; i++) { - secp256k1_gej_double_var(&g_128j, &g_128j, NULL); - } - secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g_128, &g_128j, cb); - } -#endif -} - -static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context *dst, - const secp256k1_ecmult_context *src, const secp256k1_callback *cb) { - if (src->pre_g == NULL) { - dst->pre_g = NULL; - } else { - size_t size = sizeof((*dst->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G); - dst->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, size); - memcpy(dst->pre_g, src->pre_g, size); - } -#ifdef USE_ENDOMORPHISM - if (src->pre_g_128 == NULL) { - dst->pre_g_128 = NULL; - } else { - size_t size = sizeof((*dst->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G); - dst->pre_g_128 = (secp256k1_ge_storage (*)[])checked_malloc(cb, size); - memcpy(dst->pre_g_128, src->pre_g_128, size); - } -#endif -} - -static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx) { - return ctx->pre_g != NULL; -} - -static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx) { - free(ctx->pre_g); -#ifdef USE_ENDOMORPHISM - free(ctx->pre_g_128); -#endif - secp256k1_ecmult_context_init(ctx); -} - -/** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits), - * with the following guarantees: - * - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1) - * - two non-zero entries in wnaf are separated by at least w-1 zeroes. - * - the number of set values in wnaf is returned. This number is at most 256, and at most one more - * than the number of bits in the (absolute value) of the input. - */ -static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, int w) { - secp256k1_scalar s = *a; - int last_set_bit = -1; - int bit = 0; - int sign = 1; - int carry = 0; - - VERIFY_CHECK(wnaf != NULL); - VERIFY_CHECK(0 <= len && len <= 256); - VERIFY_CHECK(a != NULL); - VERIFY_CHECK(2 <= w && w <= 31); - - memset(wnaf, 0, len * sizeof(wnaf[0])); - - if (secp256k1_scalar_get_bits(&s, 255, 1)) { - secp256k1_scalar_negate(&s, &s); - sign = -1; - } - - while (bit < len) { - int now; - int word; - if (secp256k1_scalar_get_bits(&s, bit, 1) == (unsigned int)carry) { - bit++; - continue; - } - - now = w; - if (now > len - bit) { - now = len - bit; - } - - word = secp256k1_scalar_get_bits_var(&s, bit, now) + carry; - - carry = (word >> (w-1)) & 1; - word -= carry << w; - - wnaf[bit] = sign * word; - last_set_bit = bit; - - bit += now; - } -#ifdef VERIFY - CHECK(carry == 0); - while (bit < 256) { - CHECK(secp256k1_scalar_get_bits(&s, bit++, 1) == 0); - } -#endif - return last_set_bit + 1; -} - -struct secp256k1_strauss_point_state { -#ifdef USE_ENDOMORPHISM - secp256k1_scalar na_1, na_lam; - int wnaf_na_1[130]; - int wnaf_na_lam[130]; - int bits_na_1; - int bits_na_lam; -#else - int wnaf_na[256]; - int bits_na; -#endif - size_t input_pos; -}; - -struct secp256k1_strauss_state { - secp256k1_gej* prej; - secp256k1_fe* zr; - secp256k1_ge* pre_a; -#ifdef USE_ENDOMORPHISM - secp256k1_ge* pre_a_lam; -#endif - struct secp256k1_strauss_point_state* ps; -}; - -static void secp256k1_ecmult_strauss_wnaf(const secp256k1_ecmult_context *ctx, const struct secp256k1_strauss_state *state, secp256k1_gej *r, int num, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) { - secp256k1_ge tmpa; - secp256k1_fe Z; -#ifdef USE_ENDOMORPHISM - /* Splitted G factors. */ - secp256k1_scalar ng_1, ng_128; - int wnaf_ng_1[129]; - int bits_ng_1 = 0; - int wnaf_ng_128[129]; - int bits_ng_128 = 0; -#else - int wnaf_ng[256]; - int bits_ng = 0; -#endif - int i; - int bits = 0; - int np; - int no = 0; - - for (np = 0; np < num; ++np) { - if (secp256k1_scalar_is_zero(&na[np]) || secp256k1_gej_is_infinity(&a[np])) { - continue; - } - state->ps[no].input_pos = np; -#ifdef USE_ENDOMORPHISM - /* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */ - secp256k1_scalar_split_lambda(&state->ps[no].na_1, &state->ps[no].na_lam, &na[np]); - - /* build wnaf representation for na_1 and na_lam. */ - state->ps[no].bits_na_1 = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_1, 130, &state->ps[no].na_1, WINDOW_A); - state->ps[no].bits_na_lam = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_lam, 130, &state->ps[no].na_lam, WINDOW_A); - VERIFY_CHECK(state->ps[no].bits_na_1 <= 130); - VERIFY_CHECK(state->ps[no].bits_na_lam <= 130); - if (state->ps[no].bits_na_1 > bits) { - bits = state->ps[no].bits_na_1; - } - if (state->ps[no].bits_na_lam > bits) { - bits = state->ps[no].bits_na_lam; - } -#else - /* build wnaf representation for na. */ - state->ps[no].bits_na = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na, 256, &na[np], WINDOW_A); - if (state->ps[no].bits_na > bits) { - bits = state->ps[no].bits_na; - } -#endif - ++no; - } - - /* Calculate odd multiples of a. - * All multiples are brought to the same Z 'denominator', which is stored - * in Z. Due to secp256k1' isomorphism we can do all operations pretending - * that the Z coordinate was 1, use affine addition formulae, and correct - * the Z coordinate of the result once at the end. - * The exception is the precomputed G table points, which are actually - * affine. Compared to the base used for other points, they have a Z ratio - * of 1/Z, so we can use secp256k1_gej_add_zinv_var, which uses the same - * isomorphism to efficiently add with a known Z inverse. - */ - if (no > 0) { - /* Compute the odd multiples in Jacobian form. */ - secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), state->prej, state->zr, &a[state->ps[0].input_pos]); - for (np = 1; np < no; ++np) { - secp256k1_gej tmp = a[state->ps[np].input_pos]; -#ifdef VERIFY - secp256k1_fe_normalize_var(&(state->prej[(np - 1) * ECMULT_TABLE_SIZE(WINDOW_A) + ECMULT_TABLE_SIZE(WINDOW_A) - 1].z)); -#endif - secp256k1_gej_rescale(&tmp, &(state->prej[(np - 1) * ECMULT_TABLE_SIZE(WINDOW_A) + ECMULT_TABLE_SIZE(WINDOW_A) - 1].z)); - secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), state->prej + np * ECMULT_TABLE_SIZE(WINDOW_A), state->zr + np * ECMULT_TABLE_SIZE(WINDOW_A), &tmp); - secp256k1_fe_mul(state->zr + np * ECMULT_TABLE_SIZE(WINDOW_A), state->zr + np * ECMULT_TABLE_SIZE(WINDOW_A), &(a[state->ps[np].input_pos].z)); - } - /* Bring them to the same Z denominator. */ - secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A) * no, state->pre_a, &Z, state->prej, state->zr); - } else { - secp256k1_fe_set_int(&Z, 1); - } - -#ifdef USE_ENDOMORPHISM - for (np = 0; np < no; ++np) { - for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) { - secp256k1_ge_mul_lambda(&state->pre_a_lam[np * ECMULT_TABLE_SIZE(WINDOW_A) + i], &state->pre_a[np * ECMULT_TABLE_SIZE(WINDOW_A) + i]); - } - } - - if (ng) { - /* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */ - secp256k1_scalar_split_128(&ng_1, &ng_128, ng); - - /* Build wnaf representation for ng_1 and ng_128 */ - bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, 129, &ng_1, WINDOW_G); - bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, 129, &ng_128, WINDOW_G); - if (bits_ng_1 > bits) { - bits = bits_ng_1; - } - if (bits_ng_128 > bits) { - bits = bits_ng_128; - } - } -#else - if (ng) { - bits_ng = secp256k1_ecmult_wnaf(wnaf_ng, 256, ng, WINDOW_G); - if (bits_ng > bits) { - bits = bits_ng; - } - } -#endif - - secp256k1_gej_set_infinity(r); - - for (i = bits - 1; i >= 0; i--) { - int n; - secp256k1_gej_double_var(r, r, NULL); -#ifdef USE_ENDOMORPHISM - for (np = 0; np < no; ++np) { - if (i < state->ps[np].bits_na_1 && (n = state->ps[np].wnaf_na_1[i])) { - ECMULT_TABLE_GET_GE(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A); - secp256k1_gej_add_ge_var(r, r, &tmpa, NULL); - } - if (i < state->ps[np].bits_na_lam && (n = state->ps[np].wnaf_na_lam[i])) { - ECMULT_TABLE_GET_GE(&tmpa, state->pre_a_lam + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A); - secp256k1_gej_add_ge_var(r, r, &tmpa, NULL); - } - } - if (i < bits_ng_1 && (n = wnaf_ng_1[i])) { - ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G); - secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z); - } - if (i < bits_ng_128 && (n = wnaf_ng_128[i])) { - ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g_128, n, WINDOW_G); - secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z); - } -#else - for (np = 0; np < no; ++np) { - if (i < state->ps[np].bits_na && (n = state->ps[np].wnaf_na[i])) { - ECMULT_TABLE_GET_GE(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A); - secp256k1_gej_add_ge_var(r, r, &tmpa, NULL); - } - } - if (i < bits_ng && (n = wnaf_ng[i])) { - ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G); - secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z); - } -#endif - } - - if (!r->infinity) { - secp256k1_fe_mul(&r->z, &r->z, &Z); - } -} - -static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) { - secp256k1_gej prej[ECMULT_TABLE_SIZE(WINDOW_A)]; - secp256k1_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)]; - secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)]; - struct secp256k1_strauss_point_state ps[1]; -#ifdef USE_ENDOMORPHISM - secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)]; -#endif - struct secp256k1_strauss_state state; - - state.prej = prej; - state.zr = zr; - state.pre_a = pre_a; -#ifdef USE_ENDOMORPHISM - state.pre_a_lam = pre_a_lam; -#endif - state.ps = ps; - secp256k1_ecmult_strauss_wnaf(ctx, &state, r, 1, a, na, ng); -} - -static size_t secp256k1_strauss_scratch_size(size_t n_points) { -#ifdef USE_ENDOMORPHISM - static const size_t point_size = (2 * sizeof(secp256k1_ge) + sizeof(secp256k1_gej) + sizeof(secp256k1_fe)) * ECMULT_TABLE_SIZE(WINDOW_A) + sizeof(struct secp256k1_strauss_point_state) + sizeof(secp256k1_gej) + sizeof(secp256k1_scalar); -#else - static const size_t point_size = (sizeof(secp256k1_ge) + sizeof(secp256k1_gej) + sizeof(secp256k1_fe)) * ECMULT_TABLE_SIZE(WINDOW_A) + sizeof(struct secp256k1_strauss_point_state) + sizeof(secp256k1_gej) + sizeof(secp256k1_scalar); -#endif - return n_points*point_size; -} - -static int secp256k1_ecmult_strauss_batch(const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) { - secp256k1_gej* points; - secp256k1_scalar* scalars; - struct secp256k1_strauss_state state; - size_t i; - - secp256k1_gej_set_infinity(r); - if (inp_g_sc == NULL && n_points == 0) { - return 1; - } - - if (!secp256k1_scratch_allocate_frame(scratch, secp256k1_strauss_scratch_size(n_points), STRAUSS_SCRATCH_OBJECTS)) { - return 0; - } - points = (secp256k1_gej*)secp256k1_scratch_alloc(scratch, n_points * sizeof(secp256k1_gej)); - scalars = (secp256k1_scalar*)secp256k1_scratch_alloc(scratch, n_points * sizeof(secp256k1_scalar)); - state.prej = (secp256k1_gej*)secp256k1_scratch_alloc(scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_gej)); - state.zr = (secp256k1_fe*)secp256k1_scratch_alloc(scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_fe)); -#ifdef USE_ENDOMORPHISM - state.pre_a = (secp256k1_ge*)secp256k1_scratch_alloc(scratch, n_points * 2 * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_ge)); - state.pre_a_lam = state.pre_a + n_points * ECMULT_TABLE_SIZE(WINDOW_A); -#else - state.pre_a = (secp256k1_ge*)secp256k1_scratch_alloc(scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_ge)); -#endif - state.ps = (struct secp256k1_strauss_point_state*)secp256k1_scratch_alloc(scratch, n_points * sizeof(struct secp256k1_strauss_point_state)); - - for (i = 0; i < n_points; i++) { - secp256k1_ge point; - if (!cb(&scalars[i], &point, i+cb_offset, cbdata)) { - secp256k1_scratch_deallocate_frame(scratch); - return 0; - } - secp256k1_gej_set_ge(&points[i], &point); - } - secp256k1_ecmult_strauss_wnaf(ctx, &state, r, n_points, points, scalars, inp_g_sc); - secp256k1_scratch_deallocate_frame(scratch); - return 1; -} - -/* Wrapper for secp256k1_ecmult_multi_func interface */ -static int secp256k1_ecmult_strauss_batch_single(const secp256k1_ecmult_context *actx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) { - return secp256k1_ecmult_strauss_batch(actx, scratch, r, inp_g_sc, cb, cbdata, n, 0); -} - -static size_t secp256k1_strauss_max_points(secp256k1_scratch *scratch) { - return secp256k1_scratch_max_allocation(scratch, STRAUSS_SCRATCH_OBJECTS) / secp256k1_strauss_scratch_size(1); -} - -/** Convert a number to WNAF notation. - * The number becomes represented by sum(2^{wi} * wnaf[i], i=0..WNAF_SIZE(w)+1) - return_val. - * It has the following guarantees: - * - each wnaf[i] is either 0 or an odd integer between -(1 << w) and (1 << w) - * - the number of words set is always WNAF_SIZE(w) - * - the returned skew is 0 or 1 - */ -static int secp256k1_wnaf_fixed(int *wnaf, const secp256k1_scalar *s, int w) { - int skew = 0; - int pos; - int max_pos; - int last_w; - const secp256k1_scalar *work = s; - - if (secp256k1_scalar_is_zero(s)) { - for (pos = 0; pos < WNAF_SIZE(w); pos++) { - wnaf[pos] = 0; - } - return 0; - } - - if (secp256k1_scalar_is_even(s)) { - skew = 1; - } - - wnaf[0] = secp256k1_scalar_get_bits_var(work, 0, w) + skew; - /* Compute last window size. Relevant when window size doesn't divide the - * number of bits in the scalar */ - last_w = WNAF_BITS - (WNAF_SIZE(w) - 1) * w; - - /* Store the position of the first nonzero word in max_pos to allow - * skipping leading zeros when calculating the wnaf. */ - for (pos = WNAF_SIZE(w) - 1; pos > 0; pos--) { - int val = secp256k1_scalar_get_bits_var(work, pos * w, pos == WNAF_SIZE(w)-1 ? last_w : w); - if(val != 0) { - break; - } - wnaf[pos] = 0; - } - max_pos = pos; - pos = 1; - - while (pos <= max_pos) { - int val = secp256k1_scalar_get_bits_var(work, pos * w, pos == WNAF_SIZE(w)-1 ? last_w : w); - if ((val & 1) == 0) { - wnaf[pos - 1] -= (1 << w); - wnaf[pos] = (val + 1); - } else { - wnaf[pos] = val; - } - /* Set a coefficient to zero if it is 1 or -1 and the proceeding digit - * is strictly negative or strictly positive respectively. Only change - * coefficients at previous positions because above code assumes that - * wnaf[pos - 1] is odd. - */ - if (pos >= 2 && ((wnaf[pos - 1] == 1 && wnaf[pos - 2] < 0) || (wnaf[pos - 1] == -1 && wnaf[pos - 2] > 0))) { - if (wnaf[pos - 1] == 1) { - wnaf[pos - 2] += 1 << w; - } else { - wnaf[pos - 2] -= 1 << w; - } - wnaf[pos - 1] = 0; - } - ++pos; - } - - return skew; -} - -struct secp256k1_pippenger_point_state { - int skew_na; - size_t input_pos; -}; - -struct secp256k1_pippenger_state { - int *wnaf_na; - struct secp256k1_pippenger_point_state* ps; -}; - -/* - * pippenger_wnaf computes the result of a multi-point multiplication as - * follows: The scalars are brought into wnaf with n_wnaf elements each. Then - * for every i < n_wnaf, first each point is added to a "bucket" corresponding - * to the point's wnaf[i]. Second, the buckets are added together such that - * r += 1*bucket[0] + 3*bucket[1] + 5*bucket[2] + ... - */ -static int secp256k1_ecmult_pippenger_wnaf(secp256k1_gej *buckets, int bucket_window, struct secp256k1_pippenger_state *state, secp256k1_gej *r, const secp256k1_scalar *sc, const secp256k1_ge *pt, size_t num) { - size_t n_wnaf = WNAF_SIZE(bucket_window+1); - size_t np; - size_t no = 0; - int i; - int j; - - for (np = 0; np < num; ++np) { - if (secp256k1_scalar_is_zero(&sc[np]) || secp256k1_ge_is_infinity(&pt[np])) { - continue; - } - state->ps[no].input_pos = np; - state->ps[no].skew_na = secp256k1_wnaf_fixed(&state->wnaf_na[no*n_wnaf], &sc[np], bucket_window+1); - no++; - } - secp256k1_gej_set_infinity(r); - - if (no == 0) { - return 1; - } - - for (i = n_wnaf - 1; i >= 0; i--) { - secp256k1_gej running_sum; - - for(j = 0; j < ECMULT_TABLE_SIZE(bucket_window+2); j++) { - secp256k1_gej_set_infinity(&buckets[j]); - } - - for (np = 0; np < no; ++np) { - int n = state->wnaf_na[np*n_wnaf + i]; - struct secp256k1_pippenger_point_state point_state = state->ps[np]; - secp256k1_ge tmp; - int idx; - - if (i == 0) { - /* correct for wnaf skew */ - int skew = point_state.skew_na; - if (skew) { - secp256k1_ge_neg(&tmp, &pt[point_state.input_pos]); - secp256k1_gej_add_ge_var(&buckets[0], &buckets[0], &tmp, NULL); - } - } - if (n > 0) { - idx = (n - 1)/2; - secp256k1_gej_add_ge_var(&buckets[idx], &buckets[idx], &pt[point_state.input_pos], NULL); - } else if (n < 0) { - idx = -(n + 1)/2; - secp256k1_ge_neg(&tmp, &pt[point_state.input_pos]); - secp256k1_gej_add_ge_var(&buckets[idx], &buckets[idx], &tmp, NULL); - } - } - - for(j = 0; j < bucket_window; j++) { - secp256k1_gej_double_var(r, r, NULL); - } - - secp256k1_gej_set_infinity(&running_sum); - /* Accumulate the sum: bucket[0] + 3*bucket[1] + 5*bucket[2] + 7*bucket[3] + ... - * = bucket[0] + bucket[1] + bucket[2] + bucket[3] + ... - * + 2 * (bucket[1] + 2*bucket[2] + 3*bucket[3] + ...) - * using an intermediate running sum: - * running_sum = bucket[0] + bucket[1] + bucket[2] + ... - * - * The doubling is done implicitly by deferring the final window doubling (of 'r'). - */ - for(j = ECMULT_TABLE_SIZE(bucket_window+2) - 1; j > 0; j--) { - secp256k1_gej_add_var(&running_sum, &running_sum, &buckets[j], NULL); - secp256k1_gej_add_var(r, r, &running_sum, NULL); - } - - secp256k1_gej_add_var(&running_sum, &running_sum, &buckets[0], NULL); - secp256k1_gej_double_var(r, r, NULL); - secp256k1_gej_add_var(r, r, &running_sum, NULL); - } - return 1; -} - -/** - * Returns optimal bucket_window (number of bits of a scalar represented by a - * set of buckets) for a given number of points. - */ -static int secp256k1_pippenger_bucket_window(size_t n) { -#ifdef USE_ENDOMORPHISM - if (n <= 1) { - return 1; - } else if (n <= 4) { - return 2; - } else if (n <= 20) { - return 3; - } else if (n <= 57) { - return 4; - } else if (n <= 136) { - return 5; - } else if (n <= 235) { - return 6; - } else if (n <= 1260) { - return 7; - } else if (n <= 4420) { - return 9; - } else if (n <= 7880) { - return 10; - } else if (n <= 16050) { - return 11; - } else { - return PIPPENGER_MAX_BUCKET_WINDOW; - } -#else - if (n <= 1) { - return 1; - } else if (n <= 11) { - return 2; - } else if (n <= 45) { - return 3; - } else if (n <= 100) { - return 4; - } else if (n <= 275) { - return 5; - } else if (n <= 625) { - return 6; - } else if (n <= 1850) { - return 7; - } else if (n <= 3400) { - return 8; - } else if (n <= 9630) { - return 9; - } else if (n <= 17900) { - return 10; - } else if (n <= 32800) { - return 11; - } else { - return PIPPENGER_MAX_BUCKET_WINDOW; - } -#endif -} - -/** - * Returns the maximum optimal number of points for a bucket_window. - */ -static size_t secp256k1_pippenger_bucket_window_inv(int bucket_window) { - switch(bucket_window) { -#ifdef USE_ENDOMORPHISM - case 1: return 1; - case 2: return 4; - case 3: return 20; - case 4: return 57; - case 5: return 136; - case 6: return 235; - case 7: return 1260; - case 8: return 1260; - case 9: return 4420; - case 10: return 7880; - case 11: return 16050; - case PIPPENGER_MAX_BUCKET_WINDOW: return SIZE_MAX; -#else - case 1: return 1; - case 2: return 11; - case 3: return 45; - case 4: return 100; - case 5: return 275; - case 6: return 625; - case 7: return 1850; - case 8: return 3400; - case 9: return 9630; - case 10: return 17900; - case 11: return 32800; - case PIPPENGER_MAX_BUCKET_WINDOW: return SIZE_MAX; -#endif - } - return 0; -} - - -#ifdef USE_ENDOMORPHISM -SECP256K1_INLINE static void secp256k1_ecmult_endo_split(secp256k1_scalar *s1, secp256k1_scalar *s2, secp256k1_ge *p1, secp256k1_ge *p2) { - secp256k1_scalar tmp = *s1; - secp256k1_scalar_split_lambda(s1, s2, &tmp); - secp256k1_ge_mul_lambda(p2, p1); - - if (secp256k1_scalar_is_high(s1)) { - secp256k1_scalar_negate(s1, s1); - secp256k1_ge_neg(p1, p1); - } - if (secp256k1_scalar_is_high(s2)) { - secp256k1_scalar_negate(s2, s2); - secp256k1_ge_neg(p2, p2); - } -} -#endif - -/** - * Returns the scratch size required for a given number of points (excluding - * base point G) without considering alignment. - */ -static size_t secp256k1_pippenger_scratch_size(size_t n_points, int bucket_window) { -#ifdef USE_ENDOMORPHISM - size_t entries = 2*n_points + 2; -#else - size_t entries = n_points + 1; -#endif - size_t entry_size = sizeof(secp256k1_ge) + sizeof(secp256k1_scalar) + sizeof(struct secp256k1_pippenger_point_state) + (WNAF_SIZE(bucket_window+1)+1)*sizeof(int); - return ((1<ps = (struct secp256k1_pippenger_point_state *) secp256k1_scratch_alloc(scratch, entries * sizeof(*state_space->ps)); - state_space->wnaf_na = (int *) secp256k1_scratch_alloc(scratch, entries*(WNAF_SIZE(bucket_window+1)) * sizeof(int)); - buckets = (secp256k1_gej *) secp256k1_scratch_alloc(scratch, (1<ps[i].skew_na = 0; - for(j = 0; j < WNAF_SIZE(bucket_window+1); j++) { - state_space->wnaf_na[i * WNAF_SIZE(bucket_window+1) + j] = 0; - } - } - for(i = 0; i < 1< max_alloc) { - break; - } - space_for_points = max_alloc - space_overhead; - - n_points = space_for_points/entry_size; - n_points = n_points > max_points ? max_points : n_points; - if (n_points > res) { - res = n_points; - } - if (n_points < max_points) { - /* A larger bucket_window may support even more points. But if we - * would choose that then the caller couldn't safely use any number - * smaller than what this function returns */ - break; - } - } - return res; -} - -typedef int (*secp256k1_ecmult_multi_func)(const secp256k1_ecmult_context*, secp256k1_scratch*, secp256k1_gej*, const secp256k1_scalar*, secp256k1_ecmult_multi_callback cb, void*, size_t); -static int secp256k1_ecmult_multi_var(const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) { - size_t i; - - int (*f)(const secp256k1_ecmult_context*, secp256k1_scratch*, secp256k1_gej*, const secp256k1_scalar*, secp256k1_ecmult_multi_callback cb, void*, size_t, size_t); - size_t max_points; - size_t n_batches; - size_t n_batch_points; - - secp256k1_gej_set_infinity(r); - if (inp_g_sc == NULL && n == 0) { - return 1; - } else if (n == 0) { - secp256k1_scalar szero; - secp256k1_scalar_set_int(&szero, 0); - secp256k1_ecmult(ctx, r, r, &szero, inp_g_sc); - return 1; - } - - max_points = secp256k1_pippenger_max_points(scratch); - if (max_points == 0) { - return 0; - } else if (max_points > ECMULT_MAX_POINTS_PER_BATCH) { - max_points = ECMULT_MAX_POINTS_PER_BATCH; - } - n_batches = (n+max_points-1)/max_points; - n_batch_points = (n+n_batches-1)/n_batches; - - if (n_batch_points >= ECMULT_PIPPENGER_THRESHOLD) { - f = secp256k1_ecmult_pippenger_batch; - } else { - max_points = secp256k1_strauss_max_points(scratch); - if (max_points == 0) { - return 0; - } - n_batches = (n+max_points-1)/max_points; - n_batch_points = (n+n_batches-1)/n_batches; - f = secp256k1_ecmult_strauss_batch; - } - for(i = 0; i < n_batches; i++) { - size_t nbp = n < n_batch_points ? n : n_batch_points; - size_t offset = n_batch_points*i; - secp256k1_gej tmp; - if (!f(ctx, scratch, &tmp, i == 0 ? inp_g_sc : NULL, cb, cbdata, nbp, offset)) { - return 0; - } - secp256k1_gej_add_var(r, r, &tmp, NULL); - n -= nbp; - } - return 1; -} - -#endif /* SECP256K1_ECMULT_IMPL_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field.h deleted file mode 100644 index bb6692a..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field.h +++ /dev/null @@ -1,132 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_FIELD_H -#define SECP256K1_FIELD_H - -/** Field element module. - * - * Field elements can be represented in several ways, but code accessing - * it (and implementations) need to take certain properties into account: - * - Each field element can be normalized or not. - * - Each field element has a magnitude, which represents how far away - * its representation is away from normalization. Normalized elements - * always have a magnitude of 1, but a magnitude of 1 doesn't imply - * normality. - */ - -#if defined HAVE_CONFIG_H -#include "libsecp256k1-config.h" -#endif - -#if defined(USE_FIELD_10X26) -#include "field_10x26.h" -#elif defined(USE_FIELD_5X52) -#include "field_5x52.h" -#else -#error "Please select field implementation" -#endif - -#include "util.h" - -/** Normalize a field element. */ -static void secp256k1_fe_normalize(secp256k1_fe *r); - -/** Weakly normalize a field element: reduce it magnitude to 1, but don't fully normalize. */ -static void secp256k1_fe_normalize_weak(secp256k1_fe *r); - -/** Normalize a field element, without constant-time guarantee. */ -static void secp256k1_fe_normalize_var(secp256k1_fe *r); - -/** Verify whether a field element represents zero i.e. would normalize to a zero value. The field - * implementation may optionally normalize the input, but this should not be relied upon. */ -static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r); - -/** Verify whether a field element represents zero i.e. would normalize to a zero value. The field - * implementation may optionally normalize the input, but this should not be relied upon. */ -static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r); - -/** Set a field element equal to a small integer. Resulting field element is normalized. */ -static void secp256k1_fe_set_int(secp256k1_fe *r, int a); - -/** Sets a field element equal to zero, initializing all fields. */ -static void secp256k1_fe_clear(secp256k1_fe *a); - -/** Verify whether a field element is zero. Requires the input to be normalized. */ -static int secp256k1_fe_is_zero(const secp256k1_fe *a); - -/** Check the "oddness" of a field element. Requires the input to be normalized. */ -static int secp256k1_fe_is_odd(const secp256k1_fe *a); - -/** Compare two field elements. Requires magnitude-1 inputs. */ -static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b); - -/** Same as secp256k1_fe_equal, but may be variable time. */ -static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b); - -/** Compare two field elements. Requires both inputs to be normalized */ -static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b); - -/** Set a field element equal to 32-byte big endian value. If successful, the resulting field element is normalized. */ -static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a); - -/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */ -static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a); - -/** Set a field element equal to the additive inverse of another. Takes a maximum magnitude of the input - * as an argument. The magnitude of the output is one higher. */ -static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m); - -/** Multiplies the passed field element with a small integer constant. Multiplies the magnitude by that - * small integer. */ -static void secp256k1_fe_mul_int(secp256k1_fe *r, int a); - -/** Adds a field element to another. The result has the sum of the inputs' magnitudes as magnitude. */ -static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a); - -/** Sets a field element to be the product of two others. Requires the inputs' magnitudes to be at most 8. - * The output magnitude is 1 (but not guaranteed to be normalized). */ -static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b); - -/** Sets a field element to be the square of another. Requires the input's magnitude to be at most 8. - * The output magnitude is 1 (but not guaranteed to be normalized). */ -static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a); - -/** If a has a square root, it is computed in r and 1 is returned. If a does not - * have a square root, the root of its negation is computed and 0 is returned. - * The input's magnitude can be at most 8. The output magnitude is 1 (but not - * guaranteed to be normalized). The result in r will always be a square - * itself. */ -static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a); - -/** Checks whether a field element is a quadratic residue. */ -static int secp256k1_fe_is_quad_var(const secp256k1_fe *a); - -/** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be - * at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */ -static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a); - -/** Potentially faster version of secp256k1_fe_inv, without constant-time guarantee. */ -static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a); - -/** Calculate the (modular) inverses of a batch of field elements. Requires the inputs' magnitudes to be - * at most 8. The output magnitudes are 1 (but not guaranteed to be normalized). The inputs and - * outputs must not overlap in memory. */ -static void secp256k1_fe_inv_all_var(secp256k1_fe *r, const secp256k1_fe *a, size_t len); - -/** Convert a field element to the storage type. */ -static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a); - -/** Convert a field element back from the storage type. */ -static void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a); - -/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */ -static void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag); - -/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */ -static void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag); - -#endif /* SECP256K1_FIELD_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_10x26.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_10x26.h deleted file mode 100644 index 727c526..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_10x26.h +++ /dev/null @@ -1,48 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_FIELD_REPR_H -#define SECP256K1_FIELD_REPR_H - -#include - -typedef struct { - /* X = sum(i=0..9, elem[i]*2^26) mod n */ - uint32_t n[10]; -#ifdef VERIFY - int magnitude; - int normalized; -#endif -} secp256k1_fe; - -/* Unpacks a constant into a overlapping multi-limbed FE element. */ -#define SECP256K1_FE_CONST_INNER(d7, d6, d5, d4, d3, d2, d1, d0) { \ - (d0) & 0x3FFFFFFUL, \ - (((uint32_t)d0) >> 26) | (((uint32_t)(d1) & 0xFFFFFUL) << 6), \ - (((uint32_t)d1) >> 20) | (((uint32_t)(d2) & 0x3FFFUL) << 12), \ - (((uint32_t)d2) >> 14) | (((uint32_t)(d3) & 0xFFUL) << 18), \ - (((uint32_t)d3) >> 8) | (((uint32_t)(d4) & 0x3UL) << 24), \ - (((uint32_t)d4) >> 2) & 0x3FFFFFFUL, \ - (((uint32_t)d4) >> 28) | (((uint32_t)(d5) & 0x3FFFFFUL) << 4), \ - (((uint32_t)d5) >> 22) | (((uint32_t)(d6) & 0xFFFFUL) << 10), \ - (((uint32_t)d6) >> 16) | (((uint32_t)(d7) & 0x3FFUL) << 16), \ - (((uint32_t)d7) >> 10) \ -} - -#ifdef VERIFY -#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0)), 1, 1} -#else -#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0))} -#endif - -typedef struct { - uint32_t n[8]; -} secp256k1_fe_storage; - -#define SECP256K1_FE_STORAGE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{ (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }} -#define SECP256K1_FE_STORAGE_CONST_GET(d) d.n[7], d.n[6], d.n[5], d.n[4],d.n[3], d.n[2], d.n[1], d.n[0] - -#endif /* SECP256K1_FIELD_REPR_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_10x26_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_10x26_impl.h deleted file mode 100644 index 94f8132..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_10x26_impl.h +++ /dev/null @@ -1,1161 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_FIELD_REPR_IMPL_H -#define SECP256K1_FIELD_REPR_IMPL_H - -#include "util.h" -#include "num.h" -#include "field.h" - -#ifdef VERIFY -static void secp256k1_fe_verify(const secp256k1_fe *a) { - const uint32_t *d = a->n; - int m = a->normalized ? 1 : 2 * a->magnitude, r = 1; - r &= (d[0] <= 0x3FFFFFFUL * m); - r &= (d[1] <= 0x3FFFFFFUL * m); - r &= (d[2] <= 0x3FFFFFFUL * m); - r &= (d[3] <= 0x3FFFFFFUL * m); - r &= (d[4] <= 0x3FFFFFFUL * m); - r &= (d[5] <= 0x3FFFFFFUL * m); - r &= (d[6] <= 0x3FFFFFFUL * m); - r &= (d[7] <= 0x3FFFFFFUL * m); - r &= (d[8] <= 0x3FFFFFFUL * m); - r &= (d[9] <= 0x03FFFFFUL * m); - r &= (a->magnitude >= 0); - r &= (a->magnitude <= 32); - if (a->normalized) { - r &= (a->magnitude <= 1); - if (r && (d[9] == 0x03FFFFFUL)) { - uint32_t mid = d[8] & d[7] & d[6] & d[5] & d[4] & d[3] & d[2]; - if (mid == 0x3FFFFFFUL) { - r &= ((d[1] + 0x40UL + ((d[0] + 0x3D1UL) >> 26)) <= 0x3FFFFFFUL); - } - } - } - VERIFY_CHECK(r == 1); -} -#endif - -static void secp256k1_fe_normalize(secp256k1_fe *r) { - uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4], - t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9]; - - /* Reduce t9 at the start so there will be at most a single carry from the first pass */ - uint32_t m; - uint32_t x = t9 >> 22; t9 &= 0x03FFFFFUL; - - /* The first pass ensures the magnitude is 1, ... */ - t0 += x * 0x3D1UL; t1 += (x << 6); - t1 += (t0 >> 26); t0 &= 0x3FFFFFFUL; - t2 += (t1 >> 26); t1 &= 0x3FFFFFFUL; - t3 += (t2 >> 26); t2 &= 0x3FFFFFFUL; m = t2; - t4 += (t3 >> 26); t3 &= 0x3FFFFFFUL; m &= t3; - t5 += (t4 >> 26); t4 &= 0x3FFFFFFUL; m &= t4; - t6 += (t5 >> 26); t5 &= 0x3FFFFFFUL; m &= t5; - t7 += (t6 >> 26); t6 &= 0x3FFFFFFUL; m &= t6; - t8 += (t7 >> 26); t7 &= 0x3FFFFFFUL; m &= t7; - t9 += (t8 >> 26); t8 &= 0x3FFFFFFUL; m &= t8; - - /* ... except for a possible carry at bit 22 of t9 (i.e. bit 256 of the field element) */ - VERIFY_CHECK(t9 >> 23 == 0); - - /* At most a single final reduction is needed; check if the value is >= the field characteristic */ - x = (t9 >> 22) | ((t9 == 0x03FFFFFUL) & (m == 0x3FFFFFFUL) - & ((t1 + 0x40UL + ((t0 + 0x3D1UL) >> 26)) > 0x3FFFFFFUL)); - - /* Apply the final reduction (for constant-time behaviour, we do it always) */ - t0 += x * 0x3D1UL; t1 += (x << 6); - t1 += (t0 >> 26); t0 &= 0x3FFFFFFUL; - t2 += (t1 >> 26); t1 &= 0x3FFFFFFUL; - t3 += (t2 >> 26); t2 &= 0x3FFFFFFUL; - t4 += (t3 >> 26); t3 &= 0x3FFFFFFUL; - t5 += (t4 >> 26); t4 &= 0x3FFFFFFUL; - t6 += (t5 >> 26); t5 &= 0x3FFFFFFUL; - t7 += (t6 >> 26); t6 &= 0x3FFFFFFUL; - t8 += (t7 >> 26); t7 &= 0x3FFFFFFUL; - t9 += (t8 >> 26); t8 &= 0x3FFFFFFUL; - - /* If t9 didn't carry to bit 22 already, then it should have after any final reduction */ - VERIFY_CHECK(t9 >> 22 == x); - - /* Mask off the possible multiple of 2^256 from the final reduction */ - t9 &= 0x03FFFFFUL; - - r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4; - r->n[5] = t5; r->n[6] = t6; r->n[7] = t7; r->n[8] = t8; r->n[9] = t9; - -#ifdef VERIFY - r->magnitude = 1; - r->normalized = 1; - secp256k1_fe_verify(r); -#endif -} - -static void secp256k1_fe_normalize_weak(secp256k1_fe *r) { - uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4], - t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9]; - - /* Reduce t9 at the start so there will be at most a single carry from the first pass */ - uint32_t x = t9 >> 22; t9 &= 0x03FFFFFUL; - - /* The first pass ensures the magnitude is 1, ... */ - t0 += x * 0x3D1UL; t1 += (x << 6); - t1 += (t0 >> 26); t0 &= 0x3FFFFFFUL; - t2 += (t1 >> 26); t1 &= 0x3FFFFFFUL; - t3 += (t2 >> 26); t2 &= 0x3FFFFFFUL; - t4 += (t3 >> 26); t3 &= 0x3FFFFFFUL; - t5 += (t4 >> 26); t4 &= 0x3FFFFFFUL; - t6 += (t5 >> 26); t5 &= 0x3FFFFFFUL; - t7 += (t6 >> 26); t6 &= 0x3FFFFFFUL; - t8 += (t7 >> 26); t7 &= 0x3FFFFFFUL; - t9 += (t8 >> 26); t8 &= 0x3FFFFFFUL; - - /* ... except for a possible carry at bit 22 of t9 (i.e. bit 256 of the field element) */ - VERIFY_CHECK(t9 >> 23 == 0); - - r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4; - r->n[5] = t5; r->n[6] = t6; r->n[7] = t7; r->n[8] = t8; r->n[9] = t9; - -#ifdef VERIFY - r->magnitude = 1; - secp256k1_fe_verify(r); -#endif -} - -static void secp256k1_fe_normalize_var(secp256k1_fe *r) { - uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4], - t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9]; - - /* Reduce t9 at the start so there will be at most a single carry from the first pass */ - uint32_t m; - uint32_t x = t9 >> 22; t9 &= 0x03FFFFFUL; - - /* The first pass ensures the magnitude is 1, ... */ - t0 += x * 0x3D1UL; t1 += (x << 6); - t1 += (t0 >> 26); t0 &= 0x3FFFFFFUL; - t2 += (t1 >> 26); t1 &= 0x3FFFFFFUL; - t3 += (t2 >> 26); t2 &= 0x3FFFFFFUL; m = t2; - t4 += (t3 >> 26); t3 &= 0x3FFFFFFUL; m &= t3; - t5 += (t4 >> 26); t4 &= 0x3FFFFFFUL; m &= t4; - t6 += (t5 >> 26); t5 &= 0x3FFFFFFUL; m &= t5; - t7 += (t6 >> 26); t6 &= 0x3FFFFFFUL; m &= t6; - t8 += (t7 >> 26); t7 &= 0x3FFFFFFUL; m &= t7; - t9 += (t8 >> 26); t8 &= 0x3FFFFFFUL; m &= t8; - - /* ... except for a possible carry at bit 22 of t9 (i.e. bit 256 of the field element) */ - VERIFY_CHECK(t9 >> 23 == 0); - - /* At most a single final reduction is needed; check if the value is >= the field characteristic */ - x = (t9 >> 22) | ((t9 == 0x03FFFFFUL) & (m == 0x3FFFFFFUL) - & ((t1 + 0x40UL + ((t0 + 0x3D1UL) >> 26)) > 0x3FFFFFFUL)); - - if (x) { - t0 += 0x3D1UL; t1 += (x << 6); - t1 += (t0 >> 26); t0 &= 0x3FFFFFFUL; - t2 += (t1 >> 26); t1 &= 0x3FFFFFFUL; - t3 += (t2 >> 26); t2 &= 0x3FFFFFFUL; - t4 += (t3 >> 26); t3 &= 0x3FFFFFFUL; - t5 += (t4 >> 26); t4 &= 0x3FFFFFFUL; - t6 += (t5 >> 26); t5 &= 0x3FFFFFFUL; - t7 += (t6 >> 26); t6 &= 0x3FFFFFFUL; - t8 += (t7 >> 26); t7 &= 0x3FFFFFFUL; - t9 += (t8 >> 26); t8 &= 0x3FFFFFFUL; - - /* If t9 didn't carry to bit 22 already, then it should have after any final reduction */ - VERIFY_CHECK(t9 >> 22 == x); - - /* Mask off the possible multiple of 2^256 from the final reduction */ - t9 &= 0x03FFFFFUL; - } - - r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4; - r->n[5] = t5; r->n[6] = t6; r->n[7] = t7; r->n[8] = t8; r->n[9] = t9; - -#ifdef VERIFY - r->magnitude = 1; - r->normalized = 1; - secp256k1_fe_verify(r); -#endif -} - -static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r) { - uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4], - t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9]; - - /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */ - uint32_t z0, z1; - - /* Reduce t9 at the start so there will be at most a single carry from the first pass */ - uint32_t x = t9 >> 22; t9 &= 0x03FFFFFUL; - - /* The first pass ensures the magnitude is 1, ... */ - t0 += x * 0x3D1UL; t1 += (x << 6); - t1 += (t0 >> 26); t0 &= 0x3FFFFFFUL; z0 = t0; z1 = t0 ^ 0x3D0UL; - t2 += (t1 >> 26); t1 &= 0x3FFFFFFUL; z0 |= t1; z1 &= t1 ^ 0x40UL; - t3 += (t2 >> 26); t2 &= 0x3FFFFFFUL; z0 |= t2; z1 &= t2; - t4 += (t3 >> 26); t3 &= 0x3FFFFFFUL; z0 |= t3; z1 &= t3; - t5 += (t4 >> 26); t4 &= 0x3FFFFFFUL; z0 |= t4; z1 &= t4; - t6 += (t5 >> 26); t5 &= 0x3FFFFFFUL; z0 |= t5; z1 &= t5; - t7 += (t6 >> 26); t6 &= 0x3FFFFFFUL; z0 |= t6; z1 &= t6; - t8 += (t7 >> 26); t7 &= 0x3FFFFFFUL; z0 |= t7; z1 &= t7; - t9 += (t8 >> 26); t8 &= 0x3FFFFFFUL; z0 |= t8; z1 &= t8; - z0 |= t9; z1 &= t9 ^ 0x3C00000UL; - - /* ... except for a possible carry at bit 22 of t9 (i.e. bit 256 of the field element) */ - VERIFY_CHECK(t9 >> 23 == 0); - - return (z0 == 0) | (z1 == 0x3FFFFFFUL); -} - -static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r) { - uint32_t t0, t1, t2, t3, t4, t5, t6, t7, t8, t9; - uint32_t z0, z1; - uint32_t x; - - t0 = r->n[0]; - t9 = r->n[9]; - - /* Reduce t9 at the start so there will be at most a single carry from the first pass */ - x = t9 >> 22; - - /* The first pass ensures the magnitude is 1, ... */ - t0 += x * 0x3D1UL; - - /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */ - z0 = t0 & 0x3FFFFFFUL; - z1 = z0 ^ 0x3D0UL; - - /* Fast return path should catch the majority of cases */ - if ((z0 != 0UL) & (z1 != 0x3FFFFFFUL)) { - return 0; - } - - t1 = r->n[1]; - t2 = r->n[2]; - t3 = r->n[3]; - t4 = r->n[4]; - t5 = r->n[5]; - t6 = r->n[6]; - t7 = r->n[7]; - t8 = r->n[8]; - - t9 &= 0x03FFFFFUL; - t1 += (x << 6); - - t1 += (t0 >> 26); - t2 += (t1 >> 26); t1 &= 0x3FFFFFFUL; z0 |= t1; z1 &= t1 ^ 0x40UL; - t3 += (t2 >> 26); t2 &= 0x3FFFFFFUL; z0 |= t2; z1 &= t2; - t4 += (t3 >> 26); t3 &= 0x3FFFFFFUL; z0 |= t3; z1 &= t3; - t5 += (t4 >> 26); t4 &= 0x3FFFFFFUL; z0 |= t4; z1 &= t4; - t6 += (t5 >> 26); t5 &= 0x3FFFFFFUL; z0 |= t5; z1 &= t5; - t7 += (t6 >> 26); t6 &= 0x3FFFFFFUL; z0 |= t6; z1 &= t6; - t8 += (t7 >> 26); t7 &= 0x3FFFFFFUL; z0 |= t7; z1 &= t7; - t9 += (t8 >> 26); t8 &= 0x3FFFFFFUL; z0 |= t8; z1 &= t8; - z0 |= t9; z1 &= t9 ^ 0x3C00000UL; - - /* ... except for a possible carry at bit 22 of t9 (i.e. bit 256 of the field element) */ - VERIFY_CHECK(t9 >> 23 == 0); - - return (z0 == 0) | (z1 == 0x3FFFFFFUL); -} - -SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe *r, int a) { - r->n[0] = a; - r->n[1] = r->n[2] = r->n[3] = r->n[4] = r->n[5] = r->n[6] = r->n[7] = r->n[8] = r->n[9] = 0; -#ifdef VERIFY - r->magnitude = 1; - r->normalized = 1; - secp256k1_fe_verify(r); -#endif -} - -SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe *a) { - const uint32_t *t = a->n; -#ifdef VERIFY - VERIFY_CHECK(a->normalized); - secp256k1_fe_verify(a); -#endif - return (t[0] | t[1] | t[2] | t[3] | t[4] | t[5] | t[6] | t[7] | t[8] | t[9]) == 0; -} - -SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe *a) { -#ifdef VERIFY - VERIFY_CHECK(a->normalized); - secp256k1_fe_verify(a); -#endif - return a->n[0] & 1; -} - -SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe *a) { - int i; -#ifdef VERIFY - a->magnitude = 0; - a->normalized = 1; -#endif - for (i=0; i<10; i++) { - a->n[i] = 0; - } -} - -static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) { - int i; -#ifdef VERIFY - VERIFY_CHECK(a->normalized); - VERIFY_CHECK(b->normalized); - secp256k1_fe_verify(a); - secp256k1_fe_verify(b); -#endif - for (i = 9; i >= 0; i--) { - if (a->n[i] > b->n[i]) { - return 1; - } - if (a->n[i] < b->n[i]) { - return -1; - } - } - return 0; -} - -static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) { - r->n[0] = (uint32_t)a[31] | ((uint32_t)a[30] << 8) | ((uint32_t)a[29] << 16) | ((uint32_t)(a[28] & 0x3) << 24); - r->n[1] = (uint32_t)((a[28] >> 2) & 0x3f) | ((uint32_t)a[27] << 6) | ((uint32_t)a[26] << 14) | ((uint32_t)(a[25] & 0xf) << 22); - r->n[2] = (uint32_t)((a[25] >> 4) & 0xf) | ((uint32_t)a[24] << 4) | ((uint32_t)a[23] << 12) | ((uint32_t)(a[22] & 0x3f) << 20); - r->n[3] = (uint32_t)((a[22] >> 6) & 0x3) | ((uint32_t)a[21] << 2) | ((uint32_t)a[20] << 10) | ((uint32_t)a[19] << 18); - r->n[4] = (uint32_t)a[18] | ((uint32_t)a[17] << 8) | ((uint32_t)a[16] << 16) | ((uint32_t)(a[15] & 0x3) << 24); - r->n[5] = (uint32_t)((a[15] >> 2) & 0x3f) | ((uint32_t)a[14] << 6) | ((uint32_t)a[13] << 14) | ((uint32_t)(a[12] & 0xf) << 22); - r->n[6] = (uint32_t)((a[12] >> 4) & 0xf) | ((uint32_t)a[11] << 4) | ((uint32_t)a[10] << 12) | ((uint32_t)(a[9] & 0x3f) << 20); - r->n[7] = (uint32_t)((a[9] >> 6) & 0x3) | ((uint32_t)a[8] << 2) | ((uint32_t)a[7] << 10) | ((uint32_t)a[6] << 18); - r->n[8] = (uint32_t)a[5] | ((uint32_t)a[4] << 8) | ((uint32_t)a[3] << 16) | ((uint32_t)(a[2] & 0x3) << 24); - r->n[9] = (uint32_t)((a[2] >> 2) & 0x3f) | ((uint32_t)a[1] << 6) | ((uint32_t)a[0] << 14); - - if (r->n[9] == 0x3FFFFFUL && (r->n[8] & r->n[7] & r->n[6] & r->n[5] & r->n[4] & r->n[3] & r->n[2]) == 0x3FFFFFFUL && (r->n[1] + 0x40UL + ((r->n[0] + 0x3D1UL) >> 26)) > 0x3FFFFFFUL) { - return 0; - } -#ifdef VERIFY - r->magnitude = 1; - r->normalized = 1; - secp256k1_fe_verify(r); -#endif - return 1; -} - -/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */ -static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) { -#ifdef VERIFY - VERIFY_CHECK(a->normalized); - secp256k1_fe_verify(a); -#endif - r[0] = (a->n[9] >> 14) & 0xff; - r[1] = (a->n[9] >> 6) & 0xff; - r[2] = ((a->n[9] & 0x3F) << 2) | ((a->n[8] >> 24) & 0x3); - r[3] = (a->n[8] >> 16) & 0xff; - r[4] = (a->n[8] >> 8) & 0xff; - r[5] = a->n[8] & 0xff; - r[6] = (a->n[7] >> 18) & 0xff; - r[7] = (a->n[7] >> 10) & 0xff; - r[8] = (a->n[7] >> 2) & 0xff; - r[9] = ((a->n[7] & 0x3) << 6) | ((a->n[6] >> 20) & 0x3f); - r[10] = (a->n[6] >> 12) & 0xff; - r[11] = (a->n[6] >> 4) & 0xff; - r[12] = ((a->n[6] & 0xf) << 4) | ((a->n[5] >> 22) & 0xf); - r[13] = (a->n[5] >> 14) & 0xff; - r[14] = (a->n[5] >> 6) & 0xff; - r[15] = ((a->n[5] & 0x3f) << 2) | ((a->n[4] >> 24) & 0x3); - r[16] = (a->n[4] >> 16) & 0xff; - r[17] = (a->n[4] >> 8) & 0xff; - r[18] = a->n[4] & 0xff; - r[19] = (a->n[3] >> 18) & 0xff; - r[20] = (a->n[3] >> 10) & 0xff; - r[21] = (a->n[3] >> 2) & 0xff; - r[22] = ((a->n[3] & 0x3) << 6) | ((a->n[2] >> 20) & 0x3f); - r[23] = (a->n[2] >> 12) & 0xff; - r[24] = (a->n[2] >> 4) & 0xff; - r[25] = ((a->n[2] & 0xf) << 4) | ((a->n[1] >> 22) & 0xf); - r[26] = (a->n[1] >> 14) & 0xff; - r[27] = (a->n[1] >> 6) & 0xff; - r[28] = ((a->n[1] & 0x3f) << 2) | ((a->n[0] >> 24) & 0x3); - r[29] = (a->n[0] >> 16) & 0xff; - r[30] = (a->n[0] >> 8) & 0xff; - r[31] = a->n[0] & 0xff; -} - -SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) { -#ifdef VERIFY - VERIFY_CHECK(a->magnitude <= m); - secp256k1_fe_verify(a); -#endif - r->n[0] = 0x3FFFC2FUL * 2 * (m + 1) - a->n[0]; - r->n[1] = 0x3FFFFBFUL * 2 * (m + 1) - a->n[1]; - r->n[2] = 0x3FFFFFFUL * 2 * (m + 1) - a->n[2]; - r->n[3] = 0x3FFFFFFUL * 2 * (m + 1) - a->n[3]; - r->n[4] = 0x3FFFFFFUL * 2 * (m + 1) - a->n[4]; - r->n[5] = 0x3FFFFFFUL * 2 * (m + 1) - a->n[5]; - r->n[6] = 0x3FFFFFFUL * 2 * (m + 1) - a->n[6]; - r->n[7] = 0x3FFFFFFUL * 2 * (m + 1) - a->n[7]; - r->n[8] = 0x3FFFFFFUL * 2 * (m + 1) - a->n[8]; - r->n[9] = 0x03FFFFFUL * 2 * (m + 1) - a->n[9]; -#ifdef VERIFY - r->magnitude = m + 1; - r->normalized = 0; - secp256k1_fe_verify(r); -#endif -} - -SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe *r, int a) { - r->n[0] *= a; - r->n[1] *= a; - r->n[2] *= a; - r->n[3] *= a; - r->n[4] *= a; - r->n[5] *= a; - r->n[6] *= a; - r->n[7] *= a; - r->n[8] *= a; - r->n[9] *= a; -#ifdef VERIFY - r->magnitude *= a; - r->normalized = 0; - secp256k1_fe_verify(r); -#endif -} - -SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a) { -#ifdef VERIFY - secp256k1_fe_verify(a); -#endif - r->n[0] += a->n[0]; - r->n[1] += a->n[1]; - r->n[2] += a->n[2]; - r->n[3] += a->n[3]; - r->n[4] += a->n[4]; - r->n[5] += a->n[5]; - r->n[6] += a->n[6]; - r->n[7] += a->n[7]; - r->n[8] += a->n[8]; - r->n[9] += a->n[9]; -#ifdef VERIFY - r->magnitude += a->magnitude; - r->normalized = 0; - secp256k1_fe_verify(r); -#endif -} - -#if defined(USE_EXTERNAL_ASM) - -/* External assembler implementation */ -void secp256k1_fe_mul_inner(uint32_t *r, const uint32_t *a, const uint32_t * SECP256K1_RESTRICT b); -void secp256k1_fe_sqr_inner(uint32_t *r, const uint32_t *a); - -#else - -#ifdef VERIFY -#define VERIFY_BITS(x, n) VERIFY_CHECK(((x) >> (n)) == 0) -#else -#define VERIFY_BITS(x, n) do { } while(0) -#endif - -SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint32_t *r, const uint32_t *a, const uint32_t * SECP256K1_RESTRICT b) { - uint64_t c, d; - uint64_t u0, u1, u2, u3, u4, u5, u6, u7, u8; - uint32_t t9, t1, t0, t2, t3, t4, t5, t6, t7; - const uint32_t M = 0x3FFFFFFUL, R0 = 0x3D10UL, R1 = 0x400UL; - - VERIFY_BITS(a[0], 30); - VERIFY_BITS(a[1], 30); - VERIFY_BITS(a[2], 30); - VERIFY_BITS(a[3], 30); - VERIFY_BITS(a[4], 30); - VERIFY_BITS(a[5], 30); - VERIFY_BITS(a[6], 30); - VERIFY_BITS(a[7], 30); - VERIFY_BITS(a[8], 30); - VERIFY_BITS(a[9], 26); - VERIFY_BITS(b[0], 30); - VERIFY_BITS(b[1], 30); - VERIFY_BITS(b[2], 30); - VERIFY_BITS(b[3], 30); - VERIFY_BITS(b[4], 30); - VERIFY_BITS(b[5], 30); - VERIFY_BITS(b[6], 30); - VERIFY_BITS(b[7], 30); - VERIFY_BITS(b[8], 30); - VERIFY_BITS(b[9], 26); - - /** [... a b c] is a shorthand for ... + a<<52 + b<<26 + c<<0 mod n. - * px is a shorthand for sum(a[i]*b[x-i], i=0..x). - * Note that [x 0 0 0 0 0 0 0 0 0 0] = [x*R1 x*R0]. - */ - - d = (uint64_t)a[0] * b[9] - + (uint64_t)a[1] * b[8] - + (uint64_t)a[2] * b[7] - + (uint64_t)a[3] * b[6] - + (uint64_t)a[4] * b[5] - + (uint64_t)a[5] * b[4] - + (uint64_t)a[6] * b[3] - + (uint64_t)a[7] * b[2] - + (uint64_t)a[8] * b[1] - + (uint64_t)a[9] * b[0]; - /* VERIFY_BITS(d, 64); */ - /* [d 0 0 0 0 0 0 0 0 0] = [p9 0 0 0 0 0 0 0 0 0] */ - t9 = d & M; d >>= 26; - VERIFY_BITS(t9, 26); - VERIFY_BITS(d, 38); - /* [d t9 0 0 0 0 0 0 0 0 0] = [p9 0 0 0 0 0 0 0 0 0] */ - - c = (uint64_t)a[0] * b[0]; - VERIFY_BITS(c, 60); - /* [d t9 0 0 0 0 0 0 0 0 c] = [p9 0 0 0 0 0 0 0 0 p0] */ - d += (uint64_t)a[1] * b[9] - + (uint64_t)a[2] * b[8] - + (uint64_t)a[3] * b[7] - + (uint64_t)a[4] * b[6] - + (uint64_t)a[5] * b[5] - + (uint64_t)a[6] * b[4] - + (uint64_t)a[7] * b[3] - + (uint64_t)a[8] * b[2] - + (uint64_t)a[9] * b[1]; - VERIFY_BITS(d, 63); - /* [d t9 0 0 0 0 0 0 0 0 c] = [p10 p9 0 0 0 0 0 0 0 0 p0] */ - u0 = d & M; d >>= 26; c += u0 * R0; - VERIFY_BITS(u0, 26); - VERIFY_BITS(d, 37); - VERIFY_BITS(c, 61); - /* [d u0 t9 0 0 0 0 0 0 0 0 c-u0*R0] = [p10 p9 0 0 0 0 0 0 0 0 p0] */ - t0 = c & M; c >>= 26; c += u0 * R1; - VERIFY_BITS(t0, 26); - VERIFY_BITS(c, 37); - /* [d u0 t9 0 0 0 0 0 0 0 c-u0*R1 t0-u0*R0] = [p10 p9 0 0 0 0 0 0 0 0 p0] */ - /* [d 0 t9 0 0 0 0 0 0 0 c t0] = [p10 p9 0 0 0 0 0 0 0 0 p0] */ - - c += (uint64_t)a[0] * b[1] - + (uint64_t)a[1] * b[0]; - VERIFY_BITS(c, 62); - /* [d 0 t9 0 0 0 0 0 0 0 c t0] = [p10 p9 0 0 0 0 0 0 0 p1 p0] */ - d += (uint64_t)a[2] * b[9] - + (uint64_t)a[3] * b[8] - + (uint64_t)a[4] * b[7] - + (uint64_t)a[5] * b[6] - + (uint64_t)a[6] * b[5] - + (uint64_t)a[7] * b[4] - + (uint64_t)a[8] * b[3] - + (uint64_t)a[9] * b[2]; - VERIFY_BITS(d, 63); - /* [d 0 t9 0 0 0 0 0 0 0 c t0] = [p11 p10 p9 0 0 0 0 0 0 0 p1 p0] */ - u1 = d & M; d >>= 26; c += u1 * R0; - VERIFY_BITS(u1, 26); - VERIFY_BITS(d, 37); - VERIFY_BITS(c, 63); - /* [d u1 0 t9 0 0 0 0 0 0 0 c-u1*R0 t0] = [p11 p10 p9 0 0 0 0 0 0 0 p1 p0] */ - t1 = c & M; c >>= 26; c += u1 * R1; - VERIFY_BITS(t1, 26); - VERIFY_BITS(c, 38); - /* [d u1 0 t9 0 0 0 0 0 0 c-u1*R1 t1-u1*R0 t0] = [p11 p10 p9 0 0 0 0 0 0 0 p1 p0] */ - /* [d 0 0 t9 0 0 0 0 0 0 c t1 t0] = [p11 p10 p9 0 0 0 0 0 0 0 p1 p0] */ - - c += (uint64_t)a[0] * b[2] - + (uint64_t)a[1] * b[1] - + (uint64_t)a[2] * b[0]; - VERIFY_BITS(c, 62); - /* [d 0 0 t9 0 0 0 0 0 0 c t1 t0] = [p11 p10 p9 0 0 0 0 0 0 p2 p1 p0] */ - d += (uint64_t)a[3] * b[9] - + (uint64_t)a[4] * b[8] - + (uint64_t)a[5] * b[7] - + (uint64_t)a[6] * b[6] - + (uint64_t)a[7] * b[5] - + (uint64_t)a[8] * b[4] - + (uint64_t)a[9] * b[3]; - VERIFY_BITS(d, 63); - /* [d 0 0 t9 0 0 0 0 0 0 c t1 t0] = [p12 p11 p10 p9 0 0 0 0 0 0 p2 p1 p0] */ - u2 = d & M; d >>= 26; c += u2 * R0; - VERIFY_BITS(u2, 26); - VERIFY_BITS(d, 37); - VERIFY_BITS(c, 63); - /* [d u2 0 0 t9 0 0 0 0 0 0 c-u2*R0 t1 t0] = [p12 p11 p10 p9 0 0 0 0 0 0 p2 p1 p0] */ - t2 = c & M; c >>= 26; c += u2 * R1; - VERIFY_BITS(t2, 26); - VERIFY_BITS(c, 38); - /* [d u2 0 0 t9 0 0 0 0 0 c-u2*R1 t2-u2*R0 t1 t0] = [p12 p11 p10 p9 0 0 0 0 0 0 p2 p1 p0] */ - /* [d 0 0 0 t9 0 0 0 0 0 c t2 t1 t0] = [p12 p11 p10 p9 0 0 0 0 0 0 p2 p1 p0] */ - - c += (uint64_t)a[0] * b[3] - + (uint64_t)a[1] * b[2] - + (uint64_t)a[2] * b[1] - + (uint64_t)a[3] * b[0]; - VERIFY_BITS(c, 63); - /* [d 0 0 0 t9 0 0 0 0 0 c t2 t1 t0] = [p12 p11 p10 p9 0 0 0 0 0 p3 p2 p1 p0] */ - d += (uint64_t)a[4] * b[9] - + (uint64_t)a[5] * b[8] - + (uint64_t)a[6] * b[7] - + (uint64_t)a[7] * b[6] - + (uint64_t)a[8] * b[5] - + (uint64_t)a[9] * b[4]; - VERIFY_BITS(d, 63); - /* [d 0 0 0 t9 0 0 0 0 0 c t2 t1 t0] = [p13 p12 p11 p10 p9 0 0 0 0 0 p3 p2 p1 p0] */ - u3 = d & M; d >>= 26; c += u3 * R0; - VERIFY_BITS(u3, 26); - VERIFY_BITS(d, 37); - /* VERIFY_BITS(c, 64); */ - /* [d u3 0 0 0 t9 0 0 0 0 0 c-u3*R0 t2 t1 t0] = [p13 p12 p11 p10 p9 0 0 0 0 0 p3 p2 p1 p0] */ - t3 = c & M; c >>= 26; c += u3 * R1; - VERIFY_BITS(t3, 26); - VERIFY_BITS(c, 39); - /* [d u3 0 0 0 t9 0 0 0 0 c-u3*R1 t3-u3*R0 t2 t1 t0] = [p13 p12 p11 p10 p9 0 0 0 0 0 p3 p2 p1 p0] */ - /* [d 0 0 0 0 t9 0 0 0 0 c t3 t2 t1 t0] = [p13 p12 p11 p10 p9 0 0 0 0 0 p3 p2 p1 p0] */ - - c += (uint64_t)a[0] * b[4] - + (uint64_t)a[1] * b[3] - + (uint64_t)a[2] * b[2] - + (uint64_t)a[3] * b[1] - + (uint64_t)a[4] * b[0]; - VERIFY_BITS(c, 63); - /* [d 0 0 0 0 t9 0 0 0 0 c t3 t2 t1 t0] = [p13 p12 p11 p10 p9 0 0 0 0 p4 p3 p2 p1 p0] */ - d += (uint64_t)a[5] * b[9] - + (uint64_t)a[6] * b[8] - + (uint64_t)a[7] * b[7] - + (uint64_t)a[8] * b[6] - + (uint64_t)a[9] * b[5]; - VERIFY_BITS(d, 62); - /* [d 0 0 0 0 t9 0 0 0 0 c t3 t2 t1 t0] = [p14 p13 p12 p11 p10 p9 0 0 0 0 p4 p3 p2 p1 p0] */ - u4 = d & M; d >>= 26; c += u4 * R0; - VERIFY_BITS(u4, 26); - VERIFY_BITS(d, 36); - /* VERIFY_BITS(c, 64); */ - /* [d u4 0 0 0 0 t9 0 0 0 0 c-u4*R0 t3 t2 t1 t0] = [p14 p13 p12 p11 p10 p9 0 0 0 0 p4 p3 p2 p1 p0] */ - t4 = c & M; c >>= 26; c += u4 * R1; - VERIFY_BITS(t4, 26); - VERIFY_BITS(c, 39); - /* [d u4 0 0 0 0 t9 0 0 0 c-u4*R1 t4-u4*R0 t3 t2 t1 t0] = [p14 p13 p12 p11 p10 p9 0 0 0 0 p4 p3 p2 p1 p0] */ - /* [d 0 0 0 0 0 t9 0 0 0 c t4 t3 t2 t1 t0] = [p14 p13 p12 p11 p10 p9 0 0 0 0 p4 p3 p2 p1 p0] */ - - c += (uint64_t)a[0] * b[5] - + (uint64_t)a[1] * b[4] - + (uint64_t)a[2] * b[3] - + (uint64_t)a[3] * b[2] - + (uint64_t)a[4] * b[1] - + (uint64_t)a[5] * b[0]; - VERIFY_BITS(c, 63); - /* [d 0 0 0 0 0 t9 0 0 0 c t4 t3 t2 t1 t0] = [p14 p13 p12 p11 p10 p9 0 0 0 p5 p4 p3 p2 p1 p0] */ - d += (uint64_t)a[6] * b[9] - + (uint64_t)a[7] * b[8] - + (uint64_t)a[8] * b[7] - + (uint64_t)a[9] * b[6]; - VERIFY_BITS(d, 62); - /* [d 0 0 0 0 0 t9 0 0 0 c t4 t3 t2 t1 t0] = [p15 p14 p13 p12 p11 p10 p9 0 0 0 p5 p4 p3 p2 p1 p0] */ - u5 = d & M; d >>= 26; c += u5 * R0; - VERIFY_BITS(u5, 26); - VERIFY_BITS(d, 36); - /* VERIFY_BITS(c, 64); */ - /* [d u5 0 0 0 0 0 t9 0 0 0 c-u5*R0 t4 t3 t2 t1 t0] = [p15 p14 p13 p12 p11 p10 p9 0 0 0 p5 p4 p3 p2 p1 p0] */ - t5 = c & M; c >>= 26; c += u5 * R1; - VERIFY_BITS(t5, 26); - VERIFY_BITS(c, 39); - /* [d u5 0 0 0 0 0 t9 0 0 c-u5*R1 t5-u5*R0 t4 t3 t2 t1 t0] = [p15 p14 p13 p12 p11 p10 p9 0 0 0 p5 p4 p3 p2 p1 p0] */ - /* [d 0 0 0 0 0 0 t9 0 0 c t5 t4 t3 t2 t1 t0] = [p15 p14 p13 p12 p11 p10 p9 0 0 0 p5 p4 p3 p2 p1 p0] */ - - c += (uint64_t)a[0] * b[6] - + (uint64_t)a[1] * b[5] - + (uint64_t)a[2] * b[4] - + (uint64_t)a[3] * b[3] - + (uint64_t)a[4] * b[2] - + (uint64_t)a[5] * b[1] - + (uint64_t)a[6] * b[0]; - VERIFY_BITS(c, 63); - /* [d 0 0 0 0 0 0 t9 0 0 c t5 t4 t3 t2 t1 t0] = [p15 p14 p13 p12 p11 p10 p9 0 0 p6 p5 p4 p3 p2 p1 p0] */ - d += (uint64_t)a[7] * b[9] - + (uint64_t)a[8] * b[8] - + (uint64_t)a[9] * b[7]; - VERIFY_BITS(d, 61); - /* [d 0 0 0 0 0 0 t9 0 0 c t5 t4 t3 t2 t1 t0] = [p16 p15 p14 p13 p12 p11 p10 p9 0 0 p6 p5 p4 p3 p2 p1 p0] */ - u6 = d & M; d >>= 26; c += u6 * R0; - VERIFY_BITS(u6, 26); - VERIFY_BITS(d, 35); - /* VERIFY_BITS(c, 64); */ - /* [d u6 0 0 0 0 0 0 t9 0 0 c-u6*R0 t5 t4 t3 t2 t1 t0] = [p16 p15 p14 p13 p12 p11 p10 p9 0 0 p6 p5 p4 p3 p2 p1 p0] */ - t6 = c & M; c >>= 26; c += u6 * R1; - VERIFY_BITS(t6, 26); - VERIFY_BITS(c, 39); - /* [d u6 0 0 0 0 0 0 t9 0 c-u6*R1 t6-u6*R0 t5 t4 t3 t2 t1 t0] = [p16 p15 p14 p13 p12 p11 p10 p9 0 0 p6 p5 p4 p3 p2 p1 p0] */ - /* [d 0 0 0 0 0 0 0 t9 0 c t6 t5 t4 t3 t2 t1 t0] = [p16 p15 p14 p13 p12 p11 p10 p9 0 0 p6 p5 p4 p3 p2 p1 p0] */ - - c += (uint64_t)a[0] * b[7] - + (uint64_t)a[1] * b[6] - + (uint64_t)a[2] * b[5] - + (uint64_t)a[3] * b[4] - + (uint64_t)a[4] * b[3] - + (uint64_t)a[5] * b[2] - + (uint64_t)a[6] * b[1] - + (uint64_t)a[7] * b[0]; - /* VERIFY_BITS(c, 64); */ - VERIFY_CHECK(c <= 0x8000007C00000007ULL); - /* [d 0 0 0 0 0 0 0 t9 0 c t6 t5 t4 t3 t2 t1 t0] = [p16 p15 p14 p13 p12 p11 p10 p9 0 p7 p6 p5 p4 p3 p2 p1 p0] */ - d += (uint64_t)a[8] * b[9] - + (uint64_t)a[9] * b[8]; - VERIFY_BITS(d, 58); - /* [d 0 0 0 0 0 0 0 t9 0 c t6 t5 t4 t3 t2 t1 t0] = [p17 p16 p15 p14 p13 p12 p11 p10 p9 0 p7 p6 p5 p4 p3 p2 p1 p0] */ - u7 = d & M; d >>= 26; c += u7 * R0; - VERIFY_BITS(u7, 26); - VERIFY_BITS(d, 32); - /* VERIFY_BITS(c, 64); */ - VERIFY_CHECK(c <= 0x800001703FFFC2F7ULL); - /* [d u7 0 0 0 0 0 0 0 t9 0 c-u7*R0 t6 t5 t4 t3 t2 t1 t0] = [p17 p16 p15 p14 p13 p12 p11 p10 p9 0 p7 p6 p5 p4 p3 p2 p1 p0] */ - t7 = c & M; c >>= 26; c += u7 * R1; - VERIFY_BITS(t7, 26); - VERIFY_BITS(c, 38); - /* [d u7 0 0 0 0 0 0 0 t9 c-u7*R1 t7-u7*R0 t6 t5 t4 t3 t2 t1 t0] = [p17 p16 p15 p14 p13 p12 p11 p10 p9 0 p7 p6 p5 p4 p3 p2 p1 p0] */ - /* [d 0 0 0 0 0 0 0 0 t9 c t7 t6 t5 t4 t3 t2 t1 t0] = [p17 p16 p15 p14 p13 p12 p11 p10 p9 0 p7 p6 p5 p4 p3 p2 p1 p0] */ - - c += (uint64_t)a[0] * b[8] - + (uint64_t)a[1] * b[7] - + (uint64_t)a[2] * b[6] - + (uint64_t)a[3] * b[5] - + (uint64_t)a[4] * b[4] - + (uint64_t)a[5] * b[3] - + (uint64_t)a[6] * b[2] - + (uint64_t)a[7] * b[1] - + (uint64_t)a[8] * b[0]; - /* VERIFY_BITS(c, 64); */ - VERIFY_CHECK(c <= 0x9000007B80000008ULL); - /* [d 0 0 0 0 0 0 0 0 t9 c t7 t6 t5 t4 t3 t2 t1 t0] = [p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - d += (uint64_t)a[9] * b[9]; - VERIFY_BITS(d, 57); - /* [d 0 0 0 0 0 0 0 0 t9 c t7 t6 t5 t4 t3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - u8 = d & M; d >>= 26; c += u8 * R0; - VERIFY_BITS(u8, 26); - VERIFY_BITS(d, 31); - /* VERIFY_BITS(c, 64); */ - VERIFY_CHECK(c <= 0x9000016FBFFFC2F8ULL); - /* [d u8 0 0 0 0 0 0 0 0 t9 c-u8*R0 t7 t6 t5 t4 t3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - - r[3] = t3; - VERIFY_BITS(r[3], 26); - /* [d u8 0 0 0 0 0 0 0 0 t9 c-u8*R0 t7 t6 t5 t4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - r[4] = t4; - VERIFY_BITS(r[4], 26); - /* [d u8 0 0 0 0 0 0 0 0 t9 c-u8*R0 t7 t6 t5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - r[5] = t5; - VERIFY_BITS(r[5], 26); - /* [d u8 0 0 0 0 0 0 0 0 t9 c-u8*R0 t7 t6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - r[6] = t6; - VERIFY_BITS(r[6], 26); - /* [d u8 0 0 0 0 0 0 0 0 t9 c-u8*R0 t7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - r[7] = t7; - VERIFY_BITS(r[7], 26); - /* [d u8 0 0 0 0 0 0 0 0 t9 c-u8*R0 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - - r[8] = c & M; c >>= 26; c += u8 * R1; - VERIFY_BITS(r[8], 26); - VERIFY_BITS(c, 39); - /* [d u8 0 0 0 0 0 0 0 0 t9+c-u8*R1 r8-u8*R0 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - /* [d 0 0 0 0 0 0 0 0 0 t9+c r8 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - c += d * R0 + t9; - VERIFY_BITS(c, 45); - /* [d 0 0 0 0 0 0 0 0 0 c-d*R0 r8 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - r[9] = c & (M >> 4); c >>= 22; c += d * (R1 << 4); - VERIFY_BITS(r[9], 22); - VERIFY_BITS(c, 46); - /* [d 0 0 0 0 0 0 0 0 r9+((c-d*R1<<4)<<22)-d*R0 r8 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - /* [d 0 0 0 0 0 0 0 -d*R1 r9+(c<<22)-d*R0 r8 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - /* [r9+(c<<22) r8 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - - d = c * (R0 >> 4) + t0; - VERIFY_BITS(d, 56); - /* [r9+(c<<22) r8 r7 r6 r5 r4 r3 t2 t1 d-c*R0>>4] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - r[0] = d & M; d >>= 26; - VERIFY_BITS(r[0], 26); - VERIFY_BITS(d, 30); - /* [r9+(c<<22) r8 r7 r6 r5 r4 r3 t2 t1+d r0-c*R0>>4] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - d += c * (R1 >> 4) + t1; - VERIFY_BITS(d, 53); - VERIFY_CHECK(d <= 0x10000003FFFFBFULL); - /* [r9+(c<<22) r8 r7 r6 r5 r4 r3 t2 d-c*R1>>4 r0-c*R0>>4] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - /* [r9 r8 r7 r6 r5 r4 r3 t2 d r0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - r[1] = d & M; d >>= 26; - VERIFY_BITS(r[1], 26); - VERIFY_BITS(d, 27); - VERIFY_CHECK(d <= 0x4000000ULL); - /* [r9 r8 r7 r6 r5 r4 r3 t2+d r1 r0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - d += t2; - VERIFY_BITS(d, 27); - /* [r9 r8 r7 r6 r5 r4 r3 d r1 r0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - r[2] = d; - VERIFY_BITS(r[2], 27); - /* [r9 r8 r7 r6 r5 r4 r3 r2 r1 r0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ -} - -SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint32_t *r, const uint32_t *a) { - uint64_t c, d; - uint64_t u0, u1, u2, u3, u4, u5, u6, u7, u8; - uint32_t t9, t0, t1, t2, t3, t4, t5, t6, t7; - const uint32_t M = 0x3FFFFFFUL, R0 = 0x3D10UL, R1 = 0x400UL; - - VERIFY_BITS(a[0], 30); - VERIFY_BITS(a[1], 30); - VERIFY_BITS(a[2], 30); - VERIFY_BITS(a[3], 30); - VERIFY_BITS(a[4], 30); - VERIFY_BITS(a[5], 30); - VERIFY_BITS(a[6], 30); - VERIFY_BITS(a[7], 30); - VERIFY_BITS(a[8], 30); - VERIFY_BITS(a[9], 26); - - /** [... a b c] is a shorthand for ... + a<<52 + b<<26 + c<<0 mod n. - * px is a shorthand for sum(a[i]*a[x-i], i=0..x). - * Note that [x 0 0 0 0 0 0 0 0 0 0] = [x*R1 x*R0]. - */ - - d = (uint64_t)(a[0]*2) * a[9] - + (uint64_t)(a[1]*2) * a[8] - + (uint64_t)(a[2]*2) * a[7] - + (uint64_t)(a[3]*2) * a[6] - + (uint64_t)(a[4]*2) * a[5]; - /* VERIFY_BITS(d, 64); */ - /* [d 0 0 0 0 0 0 0 0 0] = [p9 0 0 0 0 0 0 0 0 0] */ - t9 = d & M; d >>= 26; - VERIFY_BITS(t9, 26); - VERIFY_BITS(d, 38); - /* [d t9 0 0 0 0 0 0 0 0 0] = [p9 0 0 0 0 0 0 0 0 0] */ - - c = (uint64_t)a[0] * a[0]; - VERIFY_BITS(c, 60); - /* [d t9 0 0 0 0 0 0 0 0 c] = [p9 0 0 0 0 0 0 0 0 p0] */ - d += (uint64_t)(a[1]*2) * a[9] - + (uint64_t)(a[2]*2) * a[8] - + (uint64_t)(a[3]*2) * a[7] - + (uint64_t)(a[4]*2) * a[6] - + (uint64_t)a[5] * a[5]; - VERIFY_BITS(d, 63); - /* [d t9 0 0 0 0 0 0 0 0 c] = [p10 p9 0 0 0 0 0 0 0 0 p0] */ - u0 = d & M; d >>= 26; c += u0 * R0; - VERIFY_BITS(u0, 26); - VERIFY_BITS(d, 37); - VERIFY_BITS(c, 61); - /* [d u0 t9 0 0 0 0 0 0 0 0 c-u0*R0] = [p10 p9 0 0 0 0 0 0 0 0 p0] */ - t0 = c & M; c >>= 26; c += u0 * R1; - VERIFY_BITS(t0, 26); - VERIFY_BITS(c, 37); - /* [d u0 t9 0 0 0 0 0 0 0 c-u0*R1 t0-u0*R0] = [p10 p9 0 0 0 0 0 0 0 0 p0] */ - /* [d 0 t9 0 0 0 0 0 0 0 c t0] = [p10 p9 0 0 0 0 0 0 0 0 p0] */ - - c += (uint64_t)(a[0]*2) * a[1]; - VERIFY_BITS(c, 62); - /* [d 0 t9 0 0 0 0 0 0 0 c t0] = [p10 p9 0 0 0 0 0 0 0 p1 p0] */ - d += (uint64_t)(a[2]*2) * a[9] - + (uint64_t)(a[3]*2) * a[8] - + (uint64_t)(a[4]*2) * a[7] - + (uint64_t)(a[5]*2) * a[6]; - VERIFY_BITS(d, 63); - /* [d 0 t9 0 0 0 0 0 0 0 c t0] = [p11 p10 p9 0 0 0 0 0 0 0 p1 p0] */ - u1 = d & M; d >>= 26; c += u1 * R0; - VERIFY_BITS(u1, 26); - VERIFY_BITS(d, 37); - VERIFY_BITS(c, 63); - /* [d u1 0 t9 0 0 0 0 0 0 0 c-u1*R0 t0] = [p11 p10 p9 0 0 0 0 0 0 0 p1 p0] */ - t1 = c & M; c >>= 26; c += u1 * R1; - VERIFY_BITS(t1, 26); - VERIFY_BITS(c, 38); - /* [d u1 0 t9 0 0 0 0 0 0 c-u1*R1 t1-u1*R0 t0] = [p11 p10 p9 0 0 0 0 0 0 0 p1 p0] */ - /* [d 0 0 t9 0 0 0 0 0 0 c t1 t0] = [p11 p10 p9 0 0 0 0 0 0 0 p1 p0] */ - - c += (uint64_t)(a[0]*2) * a[2] - + (uint64_t)a[1] * a[1]; - VERIFY_BITS(c, 62); - /* [d 0 0 t9 0 0 0 0 0 0 c t1 t0] = [p11 p10 p9 0 0 0 0 0 0 p2 p1 p0] */ - d += (uint64_t)(a[3]*2) * a[9] - + (uint64_t)(a[4]*2) * a[8] - + (uint64_t)(a[5]*2) * a[7] - + (uint64_t)a[6] * a[6]; - VERIFY_BITS(d, 63); - /* [d 0 0 t9 0 0 0 0 0 0 c t1 t0] = [p12 p11 p10 p9 0 0 0 0 0 0 p2 p1 p0] */ - u2 = d & M; d >>= 26; c += u2 * R0; - VERIFY_BITS(u2, 26); - VERIFY_BITS(d, 37); - VERIFY_BITS(c, 63); - /* [d u2 0 0 t9 0 0 0 0 0 0 c-u2*R0 t1 t0] = [p12 p11 p10 p9 0 0 0 0 0 0 p2 p1 p0] */ - t2 = c & M; c >>= 26; c += u2 * R1; - VERIFY_BITS(t2, 26); - VERIFY_BITS(c, 38); - /* [d u2 0 0 t9 0 0 0 0 0 c-u2*R1 t2-u2*R0 t1 t0] = [p12 p11 p10 p9 0 0 0 0 0 0 p2 p1 p0] */ - /* [d 0 0 0 t9 0 0 0 0 0 c t2 t1 t0] = [p12 p11 p10 p9 0 0 0 0 0 0 p2 p1 p0] */ - - c += (uint64_t)(a[0]*2) * a[3] - + (uint64_t)(a[1]*2) * a[2]; - VERIFY_BITS(c, 63); - /* [d 0 0 0 t9 0 0 0 0 0 c t2 t1 t0] = [p12 p11 p10 p9 0 0 0 0 0 p3 p2 p1 p0] */ - d += (uint64_t)(a[4]*2) * a[9] - + (uint64_t)(a[5]*2) * a[8] - + (uint64_t)(a[6]*2) * a[7]; - VERIFY_BITS(d, 63); - /* [d 0 0 0 t9 0 0 0 0 0 c t2 t1 t0] = [p13 p12 p11 p10 p9 0 0 0 0 0 p3 p2 p1 p0] */ - u3 = d & M; d >>= 26; c += u3 * R0; - VERIFY_BITS(u3, 26); - VERIFY_BITS(d, 37); - /* VERIFY_BITS(c, 64); */ - /* [d u3 0 0 0 t9 0 0 0 0 0 c-u3*R0 t2 t1 t0] = [p13 p12 p11 p10 p9 0 0 0 0 0 p3 p2 p1 p0] */ - t3 = c & M; c >>= 26; c += u3 * R1; - VERIFY_BITS(t3, 26); - VERIFY_BITS(c, 39); - /* [d u3 0 0 0 t9 0 0 0 0 c-u3*R1 t3-u3*R0 t2 t1 t0] = [p13 p12 p11 p10 p9 0 0 0 0 0 p3 p2 p1 p0] */ - /* [d 0 0 0 0 t9 0 0 0 0 c t3 t2 t1 t0] = [p13 p12 p11 p10 p9 0 0 0 0 0 p3 p2 p1 p0] */ - - c += (uint64_t)(a[0]*2) * a[4] - + (uint64_t)(a[1]*2) * a[3] - + (uint64_t)a[2] * a[2]; - VERIFY_BITS(c, 63); - /* [d 0 0 0 0 t9 0 0 0 0 c t3 t2 t1 t0] = [p13 p12 p11 p10 p9 0 0 0 0 p4 p3 p2 p1 p0] */ - d += (uint64_t)(a[5]*2) * a[9] - + (uint64_t)(a[6]*2) * a[8] - + (uint64_t)a[7] * a[7]; - VERIFY_BITS(d, 62); - /* [d 0 0 0 0 t9 0 0 0 0 c t3 t2 t1 t0] = [p14 p13 p12 p11 p10 p9 0 0 0 0 p4 p3 p2 p1 p0] */ - u4 = d & M; d >>= 26; c += u4 * R0; - VERIFY_BITS(u4, 26); - VERIFY_BITS(d, 36); - /* VERIFY_BITS(c, 64); */ - /* [d u4 0 0 0 0 t9 0 0 0 0 c-u4*R0 t3 t2 t1 t0] = [p14 p13 p12 p11 p10 p9 0 0 0 0 p4 p3 p2 p1 p0] */ - t4 = c & M; c >>= 26; c += u4 * R1; - VERIFY_BITS(t4, 26); - VERIFY_BITS(c, 39); - /* [d u4 0 0 0 0 t9 0 0 0 c-u4*R1 t4-u4*R0 t3 t2 t1 t0] = [p14 p13 p12 p11 p10 p9 0 0 0 0 p4 p3 p2 p1 p0] */ - /* [d 0 0 0 0 0 t9 0 0 0 c t4 t3 t2 t1 t0] = [p14 p13 p12 p11 p10 p9 0 0 0 0 p4 p3 p2 p1 p0] */ - - c += (uint64_t)(a[0]*2) * a[5] - + (uint64_t)(a[1]*2) * a[4] - + (uint64_t)(a[2]*2) * a[3]; - VERIFY_BITS(c, 63); - /* [d 0 0 0 0 0 t9 0 0 0 c t4 t3 t2 t1 t0] = [p14 p13 p12 p11 p10 p9 0 0 0 p5 p4 p3 p2 p1 p0] */ - d += (uint64_t)(a[6]*2) * a[9] - + (uint64_t)(a[7]*2) * a[8]; - VERIFY_BITS(d, 62); - /* [d 0 0 0 0 0 t9 0 0 0 c t4 t3 t2 t1 t0] = [p15 p14 p13 p12 p11 p10 p9 0 0 0 p5 p4 p3 p2 p1 p0] */ - u5 = d & M; d >>= 26; c += u5 * R0; - VERIFY_BITS(u5, 26); - VERIFY_BITS(d, 36); - /* VERIFY_BITS(c, 64); */ - /* [d u5 0 0 0 0 0 t9 0 0 0 c-u5*R0 t4 t3 t2 t1 t0] = [p15 p14 p13 p12 p11 p10 p9 0 0 0 p5 p4 p3 p2 p1 p0] */ - t5 = c & M; c >>= 26; c += u5 * R1; - VERIFY_BITS(t5, 26); - VERIFY_BITS(c, 39); - /* [d u5 0 0 0 0 0 t9 0 0 c-u5*R1 t5-u5*R0 t4 t3 t2 t1 t0] = [p15 p14 p13 p12 p11 p10 p9 0 0 0 p5 p4 p3 p2 p1 p0] */ - /* [d 0 0 0 0 0 0 t9 0 0 c t5 t4 t3 t2 t1 t0] = [p15 p14 p13 p12 p11 p10 p9 0 0 0 p5 p4 p3 p2 p1 p0] */ - - c += (uint64_t)(a[0]*2) * a[6] - + (uint64_t)(a[1]*2) * a[5] - + (uint64_t)(a[2]*2) * a[4] - + (uint64_t)a[3] * a[3]; - VERIFY_BITS(c, 63); - /* [d 0 0 0 0 0 0 t9 0 0 c t5 t4 t3 t2 t1 t0] = [p15 p14 p13 p12 p11 p10 p9 0 0 p6 p5 p4 p3 p2 p1 p0] */ - d += (uint64_t)(a[7]*2) * a[9] - + (uint64_t)a[8] * a[8]; - VERIFY_BITS(d, 61); - /* [d 0 0 0 0 0 0 t9 0 0 c t5 t4 t3 t2 t1 t0] = [p16 p15 p14 p13 p12 p11 p10 p9 0 0 p6 p5 p4 p3 p2 p1 p0] */ - u6 = d & M; d >>= 26; c += u6 * R0; - VERIFY_BITS(u6, 26); - VERIFY_BITS(d, 35); - /* VERIFY_BITS(c, 64); */ - /* [d u6 0 0 0 0 0 0 t9 0 0 c-u6*R0 t5 t4 t3 t2 t1 t0] = [p16 p15 p14 p13 p12 p11 p10 p9 0 0 p6 p5 p4 p3 p2 p1 p0] */ - t6 = c & M; c >>= 26; c += u6 * R1; - VERIFY_BITS(t6, 26); - VERIFY_BITS(c, 39); - /* [d u6 0 0 0 0 0 0 t9 0 c-u6*R1 t6-u6*R0 t5 t4 t3 t2 t1 t0] = [p16 p15 p14 p13 p12 p11 p10 p9 0 0 p6 p5 p4 p3 p2 p1 p0] */ - /* [d 0 0 0 0 0 0 0 t9 0 c t6 t5 t4 t3 t2 t1 t0] = [p16 p15 p14 p13 p12 p11 p10 p9 0 0 p6 p5 p4 p3 p2 p1 p0] */ - - c += (uint64_t)(a[0]*2) * a[7] - + (uint64_t)(a[1]*2) * a[6] - + (uint64_t)(a[2]*2) * a[5] - + (uint64_t)(a[3]*2) * a[4]; - /* VERIFY_BITS(c, 64); */ - VERIFY_CHECK(c <= 0x8000007C00000007ULL); - /* [d 0 0 0 0 0 0 0 t9 0 c t6 t5 t4 t3 t2 t1 t0] = [p16 p15 p14 p13 p12 p11 p10 p9 0 p7 p6 p5 p4 p3 p2 p1 p0] */ - d += (uint64_t)(a[8]*2) * a[9]; - VERIFY_BITS(d, 58); - /* [d 0 0 0 0 0 0 0 t9 0 c t6 t5 t4 t3 t2 t1 t0] = [p17 p16 p15 p14 p13 p12 p11 p10 p9 0 p7 p6 p5 p4 p3 p2 p1 p0] */ - u7 = d & M; d >>= 26; c += u7 * R0; - VERIFY_BITS(u7, 26); - VERIFY_BITS(d, 32); - /* VERIFY_BITS(c, 64); */ - VERIFY_CHECK(c <= 0x800001703FFFC2F7ULL); - /* [d u7 0 0 0 0 0 0 0 t9 0 c-u7*R0 t6 t5 t4 t3 t2 t1 t0] = [p17 p16 p15 p14 p13 p12 p11 p10 p9 0 p7 p6 p5 p4 p3 p2 p1 p0] */ - t7 = c & M; c >>= 26; c += u7 * R1; - VERIFY_BITS(t7, 26); - VERIFY_BITS(c, 38); - /* [d u7 0 0 0 0 0 0 0 t9 c-u7*R1 t7-u7*R0 t6 t5 t4 t3 t2 t1 t0] = [p17 p16 p15 p14 p13 p12 p11 p10 p9 0 p7 p6 p5 p4 p3 p2 p1 p0] */ - /* [d 0 0 0 0 0 0 0 0 t9 c t7 t6 t5 t4 t3 t2 t1 t0] = [p17 p16 p15 p14 p13 p12 p11 p10 p9 0 p7 p6 p5 p4 p3 p2 p1 p0] */ - - c += (uint64_t)(a[0]*2) * a[8] - + (uint64_t)(a[1]*2) * a[7] - + (uint64_t)(a[2]*2) * a[6] - + (uint64_t)(a[3]*2) * a[5] - + (uint64_t)a[4] * a[4]; - /* VERIFY_BITS(c, 64); */ - VERIFY_CHECK(c <= 0x9000007B80000008ULL); - /* [d 0 0 0 0 0 0 0 0 t9 c t7 t6 t5 t4 t3 t2 t1 t0] = [p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - d += (uint64_t)a[9] * a[9]; - VERIFY_BITS(d, 57); - /* [d 0 0 0 0 0 0 0 0 t9 c t7 t6 t5 t4 t3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - u8 = d & M; d >>= 26; c += u8 * R0; - VERIFY_BITS(u8, 26); - VERIFY_BITS(d, 31); - /* VERIFY_BITS(c, 64); */ - VERIFY_CHECK(c <= 0x9000016FBFFFC2F8ULL); - /* [d u8 0 0 0 0 0 0 0 0 t9 c-u8*R0 t7 t6 t5 t4 t3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - - r[3] = t3; - VERIFY_BITS(r[3], 26); - /* [d u8 0 0 0 0 0 0 0 0 t9 c-u8*R0 t7 t6 t5 t4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - r[4] = t4; - VERIFY_BITS(r[4], 26); - /* [d u8 0 0 0 0 0 0 0 0 t9 c-u8*R0 t7 t6 t5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - r[5] = t5; - VERIFY_BITS(r[5], 26); - /* [d u8 0 0 0 0 0 0 0 0 t9 c-u8*R0 t7 t6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - r[6] = t6; - VERIFY_BITS(r[6], 26); - /* [d u8 0 0 0 0 0 0 0 0 t9 c-u8*R0 t7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - r[7] = t7; - VERIFY_BITS(r[7], 26); - /* [d u8 0 0 0 0 0 0 0 0 t9 c-u8*R0 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - - r[8] = c & M; c >>= 26; c += u8 * R1; - VERIFY_BITS(r[8], 26); - VERIFY_BITS(c, 39); - /* [d u8 0 0 0 0 0 0 0 0 t9+c-u8*R1 r8-u8*R0 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - /* [d 0 0 0 0 0 0 0 0 0 t9+c r8 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - c += d * R0 + t9; - VERIFY_BITS(c, 45); - /* [d 0 0 0 0 0 0 0 0 0 c-d*R0 r8 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - r[9] = c & (M >> 4); c >>= 22; c += d * (R1 << 4); - VERIFY_BITS(r[9], 22); - VERIFY_BITS(c, 46); - /* [d 0 0 0 0 0 0 0 0 r9+((c-d*R1<<4)<<22)-d*R0 r8 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - /* [d 0 0 0 0 0 0 0 -d*R1 r9+(c<<22)-d*R0 r8 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - /* [r9+(c<<22) r8 r7 r6 r5 r4 r3 t2 t1 t0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - - d = c * (R0 >> 4) + t0; - VERIFY_BITS(d, 56); - /* [r9+(c<<22) r8 r7 r6 r5 r4 r3 t2 t1 d-c*R0>>4] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - r[0] = d & M; d >>= 26; - VERIFY_BITS(r[0], 26); - VERIFY_BITS(d, 30); - /* [r9+(c<<22) r8 r7 r6 r5 r4 r3 t2 t1+d r0-c*R0>>4] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - d += c * (R1 >> 4) + t1; - VERIFY_BITS(d, 53); - VERIFY_CHECK(d <= 0x10000003FFFFBFULL); - /* [r9+(c<<22) r8 r7 r6 r5 r4 r3 t2 d-c*R1>>4 r0-c*R0>>4] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - /* [r9 r8 r7 r6 r5 r4 r3 t2 d r0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - r[1] = d & M; d >>= 26; - VERIFY_BITS(r[1], 26); - VERIFY_BITS(d, 27); - VERIFY_CHECK(d <= 0x4000000ULL); - /* [r9 r8 r7 r6 r5 r4 r3 t2+d r1 r0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - d += t2; - VERIFY_BITS(d, 27); - /* [r9 r8 r7 r6 r5 r4 r3 d r1 r0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - r[2] = d; - VERIFY_BITS(r[2], 27); - /* [r9 r8 r7 r6 r5 r4 r3 r2 r1 r0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ -} -#endif - -static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) { -#ifdef VERIFY - VERIFY_CHECK(a->magnitude <= 8); - VERIFY_CHECK(b->magnitude <= 8); - secp256k1_fe_verify(a); - secp256k1_fe_verify(b); - VERIFY_CHECK(r != b); -#endif - secp256k1_fe_mul_inner(r->n, a->n, b->n); -#ifdef VERIFY - r->magnitude = 1; - r->normalized = 0; - secp256k1_fe_verify(r); -#endif -} - -static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) { -#ifdef VERIFY - VERIFY_CHECK(a->magnitude <= 8); - secp256k1_fe_verify(a); -#endif - secp256k1_fe_sqr_inner(r->n, a->n); -#ifdef VERIFY - r->magnitude = 1; - r->normalized = 0; - secp256k1_fe_verify(r); -#endif -} - -static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) { - uint32_t mask0, mask1; - mask0 = flag + ~((uint32_t)0); - mask1 = ~mask0; - r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1); - r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1); - r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1); - r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1); - r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1); - r->n[5] = (r->n[5] & mask0) | (a->n[5] & mask1); - r->n[6] = (r->n[6] & mask0) | (a->n[6] & mask1); - r->n[7] = (r->n[7] & mask0) | (a->n[7] & mask1); - r->n[8] = (r->n[8] & mask0) | (a->n[8] & mask1); - r->n[9] = (r->n[9] & mask0) | (a->n[9] & mask1); -#ifdef VERIFY - if (a->magnitude > r->magnitude) { - r->magnitude = a->magnitude; - } - r->normalized &= a->normalized; -#endif -} - -static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag) { - uint32_t mask0, mask1; - mask0 = flag + ~((uint32_t)0); - mask1 = ~mask0; - r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1); - r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1); - r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1); - r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1); - r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1); - r->n[5] = (r->n[5] & mask0) | (a->n[5] & mask1); - r->n[6] = (r->n[6] & mask0) | (a->n[6] & mask1); - r->n[7] = (r->n[7] & mask0) | (a->n[7] & mask1); -} - -static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) { -#ifdef VERIFY - VERIFY_CHECK(a->normalized); -#endif - r->n[0] = a->n[0] | a->n[1] << 26; - r->n[1] = a->n[1] >> 6 | a->n[2] << 20; - r->n[2] = a->n[2] >> 12 | a->n[3] << 14; - r->n[3] = a->n[3] >> 18 | a->n[4] << 8; - r->n[4] = a->n[4] >> 24 | a->n[5] << 2 | a->n[6] << 28; - r->n[5] = a->n[6] >> 4 | a->n[7] << 22; - r->n[6] = a->n[7] >> 10 | a->n[8] << 16; - r->n[7] = a->n[8] >> 16 | a->n[9] << 10; -} - -static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) { - r->n[0] = a->n[0] & 0x3FFFFFFUL; - r->n[1] = a->n[0] >> 26 | ((a->n[1] << 6) & 0x3FFFFFFUL); - r->n[2] = a->n[1] >> 20 | ((a->n[2] << 12) & 0x3FFFFFFUL); - r->n[3] = a->n[2] >> 14 | ((a->n[3] << 18) & 0x3FFFFFFUL); - r->n[4] = a->n[3] >> 8 | ((a->n[4] << 24) & 0x3FFFFFFUL); - r->n[5] = (a->n[4] >> 2) & 0x3FFFFFFUL; - r->n[6] = a->n[4] >> 28 | ((a->n[5] << 4) & 0x3FFFFFFUL); - r->n[7] = a->n[5] >> 22 | ((a->n[6] << 10) & 0x3FFFFFFUL); - r->n[8] = a->n[6] >> 16 | ((a->n[7] << 16) & 0x3FFFFFFUL); - r->n[9] = a->n[7] >> 10; -#ifdef VERIFY - r->magnitude = 1; - r->normalized = 1; -#endif -} - -#endif /* SECP256K1_FIELD_REPR_IMPL_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_5x52.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_5x52.h deleted file mode 100644 index bccd8fe..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_5x52.h +++ /dev/null @@ -1,47 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_FIELD_REPR_H -#define SECP256K1_FIELD_REPR_H - -#include - -typedef struct { - /* X = sum(i=0..4, elem[i]*2^52) mod n */ - uint64_t n[5]; -#ifdef VERIFY - int magnitude; - int normalized; -#endif -} secp256k1_fe; - -/* Unpacks a constant into a overlapping multi-limbed FE element. */ -#define SECP256K1_FE_CONST_INNER(d7, d6, d5, d4, d3, d2, d1, d0) { \ - (d0) | (((uint64_t)(d1) & 0xFFFFFUL) << 32), \ - ((uint64_t)(d1) >> 20) | (((uint64_t)(d2)) << 12) | (((uint64_t)(d3) & 0xFFUL) << 44), \ - ((uint64_t)(d3) >> 8) | (((uint64_t)(d4) & 0xFFFFFFFUL) << 24), \ - ((uint64_t)(d4) >> 28) | (((uint64_t)(d5)) << 4) | (((uint64_t)(d6) & 0xFFFFUL) << 36), \ - ((uint64_t)(d6) >> 16) | (((uint64_t)(d7)) << 16) \ -} - -#ifdef VERIFY -#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0)), 1, 1} -#else -#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0))} -#endif - -typedef struct { - uint64_t n[4]; -} secp256k1_fe_storage; - -#define SECP256K1_FE_STORAGE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{ \ - (d0) | (((uint64_t)(d1)) << 32), \ - (d2) | (((uint64_t)(d3)) << 32), \ - (d4) | (((uint64_t)(d5)) << 32), \ - (d6) | (((uint64_t)(d7)) << 32) \ -}} - -#endif /* SECP256K1_FIELD_REPR_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_5x52_asm_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_5x52_asm_impl.h deleted file mode 100644 index 1fc3171..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_5x52_asm_impl.h +++ /dev/null @@ -1,502 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013-2014 Diederik Huys, Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -/** - * Changelog: - * - March 2013, Diederik Huys: original version - * - November 2014, Pieter Wuille: updated to use Peter Dettman's parallel multiplication algorithm - * - December 2014, Pieter Wuille: converted from YASM to GCC inline assembly - */ - -#ifndef SECP256K1_FIELD_INNER5X52_IMPL_H -#define SECP256K1_FIELD_INNER5X52_IMPL_H - -SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint64_t *r, const uint64_t *a, const uint64_t * SECP256K1_RESTRICT b) { -/** - * Registers: rdx:rax = multiplication accumulator - * r9:r8 = c - * r15:rcx = d - * r10-r14 = a0-a4 - * rbx = b - * rdi = r - * rsi = a / t? - */ - uint64_t tmp1, tmp2, tmp3; -__asm__ __volatile__( - "movq 0(%%rsi),%%r10\n" - "movq 8(%%rsi),%%r11\n" - "movq 16(%%rsi),%%r12\n" - "movq 24(%%rsi),%%r13\n" - "movq 32(%%rsi),%%r14\n" - - /* d += a3 * b0 */ - "movq 0(%%rbx),%%rax\n" - "mulq %%r13\n" - "movq %%rax,%%rcx\n" - "movq %%rdx,%%r15\n" - /* d += a2 * b1 */ - "movq 8(%%rbx),%%rax\n" - "mulq %%r12\n" - "addq %%rax,%%rcx\n" - "adcq %%rdx,%%r15\n" - /* d += a1 * b2 */ - "movq 16(%%rbx),%%rax\n" - "mulq %%r11\n" - "addq %%rax,%%rcx\n" - "adcq %%rdx,%%r15\n" - /* d = a0 * b3 */ - "movq 24(%%rbx),%%rax\n" - "mulq %%r10\n" - "addq %%rax,%%rcx\n" - "adcq %%rdx,%%r15\n" - /* c = a4 * b4 */ - "movq 32(%%rbx),%%rax\n" - "mulq %%r14\n" - "movq %%rax,%%r8\n" - "movq %%rdx,%%r9\n" - /* d += (c & M) * R */ - "movq $0xfffffffffffff,%%rdx\n" - "andq %%rdx,%%rax\n" - "movq $0x1000003d10,%%rdx\n" - "mulq %%rdx\n" - "addq %%rax,%%rcx\n" - "adcq %%rdx,%%r15\n" - /* c >>= 52 (%%r8 only) */ - "shrdq $52,%%r9,%%r8\n" - /* t3 (tmp1) = d & M */ - "movq %%rcx,%%rsi\n" - "movq $0xfffffffffffff,%%rdx\n" - "andq %%rdx,%%rsi\n" - "movq %%rsi,%q1\n" - /* d >>= 52 */ - "shrdq $52,%%r15,%%rcx\n" - "xorq %%r15,%%r15\n" - /* d += a4 * b0 */ - "movq 0(%%rbx),%%rax\n" - "mulq %%r14\n" - "addq %%rax,%%rcx\n" - "adcq %%rdx,%%r15\n" - /* d += a3 * b1 */ - "movq 8(%%rbx),%%rax\n" - "mulq %%r13\n" - "addq %%rax,%%rcx\n" - "adcq %%rdx,%%r15\n" - /* d += a2 * b2 */ - "movq 16(%%rbx),%%rax\n" - "mulq %%r12\n" - "addq %%rax,%%rcx\n" - "adcq %%rdx,%%r15\n" - /* d += a1 * b3 */ - "movq 24(%%rbx),%%rax\n" - "mulq %%r11\n" - "addq %%rax,%%rcx\n" - "adcq %%rdx,%%r15\n" - /* d += a0 * b4 */ - "movq 32(%%rbx),%%rax\n" - "mulq %%r10\n" - "addq %%rax,%%rcx\n" - "adcq %%rdx,%%r15\n" - /* d += c * R */ - "movq %%r8,%%rax\n" - "movq $0x1000003d10,%%rdx\n" - "mulq %%rdx\n" - "addq %%rax,%%rcx\n" - "adcq %%rdx,%%r15\n" - /* t4 = d & M (%%rsi) */ - "movq %%rcx,%%rsi\n" - "movq $0xfffffffffffff,%%rdx\n" - "andq %%rdx,%%rsi\n" - /* d >>= 52 */ - "shrdq $52,%%r15,%%rcx\n" - "xorq %%r15,%%r15\n" - /* tx = t4 >> 48 (tmp3) */ - "movq %%rsi,%%rax\n" - "shrq $48,%%rax\n" - "movq %%rax,%q3\n" - /* t4 &= (M >> 4) (tmp2) */ - "movq $0xffffffffffff,%%rax\n" - "andq %%rax,%%rsi\n" - "movq %%rsi,%q2\n" - /* c = a0 * b0 */ - "movq 0(%%rbx),%%rax\n" - "mulq %%r10\n" - "movq %%rax,%%r8\n" - "movq %%rdx,%%r9\n" - /* d += a4 * b1 */ - "movq 8(%%rbx),%%rax\n" - "mulq %%r14\n" - "addq %%rax,%%rcx\n" - "adcq %%rdx,%%r15\n" - /* d += a3 * b2 */ - "movq 16(%%rbx),%%rax\n" - "mulq %%r13\n" - "addq %%rax,%%rcx\n" - "adcq %%rdx,%%r15\n" - /* d += a2 * b3 */ - "movq 24(%%rbx),%%rax\n" - "mulq %%r12\n" - "addq %%rax,%%rcx\n" - "adcq %%rdx,%%r15\n" - /* d += a1 * b4 */ - "movq 32(%%rbx),%%rax\n" - "mulq %%r11\n" - "addq %%rax,%%rcx\n" - "adcq %%rdx,%%r15\n" - /* u0 = d & M (%%rsi) */ - "movq %%rcx,%%rsi\n" - "movq $0xfffffffffffff,%%rdx\n" - "andq %%rdx,%%rsi\n" - /* d >>= 52 */ - "shrdq $52,%%r15,%%rcx\n" - "xorq %%r15,%%r15\n" - /* u0 = (u0 << 4) | tx (%%rsi) */ - "shlq $4,%%rsi\n" - "movq %q3,%%rax\n" - "orq %%rax,%%rsi\n" - /* c += u0 * (R >> 4) */ - "movq $0x1000003d1,%%rax\n" - "mulq %%rsi\n" - "addq %%rax,%%r8\n" - "adcq %%rdx,%%r9\n" - /* r[0] = c & M */ - "movq %%r8,%%rax\n" - "movq $0xfffffffffffff,%%rdx\n" - "andq %%rdx,%%rax\n" - "movq %%rax,0(%%rdi)\n" - /* c >>= 52 */ - "shrdq $52,%%r9,%%r8\n" - "xorq %%r9,%%r9\n" - /* c += a1 * b0 */ - "movq 0(%%rbx),%%rax\n" - "mulq %%r11\n" - "addq %%rax,%%r8\n" - "adcq %%rdx,%%r9\n" - /* c += a0 * b1 */ - "movq 8(%%rbx),%%rax\n" - "mulq %%r10\n" - "addq %%rax,%%r8\n" - "adcq %%rdx,%%r9\n" - /* d += a4 * b2 */ - "movq 16(%%rbx),%%rax\n" - "mulq %%r14\n" - "addq %%rax,%%rcx\n" - "adcq %%rdx,%%r15\n" - /* d += a3 * b3 */ - "movq 24(%%rbx),%%rax\n" - "mulq %%r13\n" - "addq %%rax,%%rcx\n" - "adcq %%rdx,%%r15\n" - /* d += a2 * b4 */ - "movq 32(%%rbx),%%rax\n" - "mulq %%r12\n" - "addq %%rax,%%rcx\n" - "adcq %%rdx,%%r15\n" - /* c += (d & M) * R */ - "movq %%rcx,%%rax\n" - "movq $0xfffffffffffff,%%rdx\n" - "andq %%rdx,%%rax\n" - "movq $0x1000003d10,%%rdx\n" - "mulq %%rdx\n" - "addq %%rax,%%r8\n" - "adcq %%rdx,%%r9\n" - /* d >>= 52 */ - "shrdq $52,%%r15,%%rcx\n" - "xorq %%r15,%%r15\n" - /* r[1] = c & M */ - "movq %%r8,%%rax\n" - "movq $0xfffffffffffff,%%rdx\n" - "andq %%rdx,%%rax\n" - "movq %%rax,8(%%rdi)\n" - /* c >>= 52 */ - "shrdq $52,%%r9,%%r8\n" - "xorq %%r9,%%r9\n" - /* c += a2 * b0 */ - "movq 0(%%rbx),%%rax\n" - "mulq %%r12\n" - "addq %%rax,%%r8\n" - "adcq %%rdx,%%r9\n" - /* c += a1 * b1 */ - "movq 8(%%rbx),%%rax\n" - "mulq %%r11\n" - "addq %%rax,%%r8\n" - "adcq %%rdx,%%r9\n" - /* c += a0 * b2 (last use of %%r10 = a0) */ - "movq 16(%%rbx),%%rax\n" - "mulq %%r10\n" - "addq %%rax,%%r8\n" - "adcq %%rdx,%%r9\n" - /* fetch t3 (%%r10, overwrites a0), t4 (%%rsi) */ - "movq %q2,%%rsi\n" - "movq %q1,%%r10\n" - /* d += a4 * b3 */ - "movq 24(%%rbx),%%rax\n" - "mulq %%r14\n" - "addq %%rax,%%rcx\n" - "adcq %%rdx,%%r15\n" - /* d += a3 * b4 */ - "movq 32(%%rbx),%%rax\n" - "mulq %%r13\n" - "addq %%rax,%%rcx\n" - "adcq %%rdx,%%r15\n" - /* c += (d & M) * R */ - "movq %%rcx,%%rax\n" - "movq $0xfffffffffffff,%%rdx\n" - "andq %%rdx,%%rax\n" - "movq $0x1000003d10,%%rdx\n" - "mulq %%rdx\n" - "addq %%rax,%%r8\n" - "adcq %%rdx,%%r9\n" - /* d >>= 52 (%%rcx only) */ - "shrdq $52,%%r15,%%rcx\n" - /* r[2] = c & M */ - "movq %%r8,%%rax\n" - "movq $0xfffffffffffff,%%rdx\n" - "andq %%rdx,%%rax\n" - "movq %%rax,16(%%rdi)\n" - /* c >>= 52 */ - "shrdq $52,%%r9,%%r8\n" - "xorq %%r9,%%r9\n" - /* c += t3 */ - "addq %%r10,%%r8\n" - /* c += d * R */ - "movq %%rcx,%%rax\n" - "movq $0x1000003d10,%%rdx\n" - "mulq %%rdx\n" - "addq %%rax,%%r8\n" - "adcq %%rdx,%%r9\n" - /* r[3] = c & M */ - "movq %%r8,%%rax\n" - "movq $0xfffffffffffff,%%rdx\n" - "andq %%rdx,%%rax\n" - "movq %%rax,24(%%rdi)\n" - /* c >>= 52 (%%r8 only) */ - "shrdq $52,%%r9,%%r8\n" - /* c += t4 (%%r8 only) */ - "addq %%rsi,%%r8\n" - /* r[4] = c */ - "movq %%r8,32(%%rdi)\n" -: "+S"(a), "=m"(tmp1), "=m"(tmp2), "=m"(tmp3) -: "b"(b), "D"(r) -: "%rax", "%rcx", "%rdx", "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", "cc", "memory" -); -} - -SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint64_t *r, const uint64_t *a) { -/** - * Registers: rdx:rax = multiplication accumulator - * r9:r8 = c - * rcx:rbx = d - * r10-r14 = a0-a4 - * r15 = M (0xfffffffffffff) - * rdi = r - * rsi = a / t? - */ - uint64_t tmp1, tmp2, tmp3; -__asm__ __volatile__( - "movq 0(%%rsi),%%r10\n" - "movq 8(%%rsi),%%r11\n" - "movq 16(%%rsi),%%r12\n" - "movq 24(%%rsi),%%r13\n" - "movq 32(%%rsi),%%r14\n" - "movq $0xfffffffffffff,%%r15\n" - - /* d = (a0*2) * a3 */ - "leaq (%%r10,%%r10,1),%%rax\n" - "mulq %%r13\n" - "movq %%rax,%%rbx\n" - "movq %%rdx,%%rcx\n" - /* d += (a1*2) * a2 */ - "leaq (%%r11,%%r11,1),%%rax\n" - "mulq %%r12\n" - "addq %%rax,%%rbx\n" - "adcq %%rdx,%%rcx\n" - /* c = a4 * a4 */ - "movq %%r14,%%rax\n" - "mulq %%r14\n" - "movq %%rax,%%r8\n" - "movq %%rdx,%%r9\n" - /* d += (c & M) * R */ - "andq %%r15,%%rax\n" - "movq $0x1000003d10,%%rdx\n" - "mulq %%rdx\n" - "addq %%rax,%%rbx\n" - "adcq %%rdx,%%rcx\n" - /* c >>= 52 (%%r8 only) */ - "shrdq $52,%%r9,%%r8\n" - /* t3 (tmp1) = d & M */ - "movq %%rbx,%%rsi\n" - "andq %%r15,%%rsi\n" - "movq %%rsi,%q1\n" - /* d >>= 52 */ - "shrdq $52,%%rcx,%%rbx\n" - "xorq %%rcx,%%rcx\n" - /* a4 *= 2 */ - "addq %%r14,%%r14\n" - /* d += a0 * a4 */ - "movq %%r10,%%rax\n" - "mulq %%r14\n" - "addq %%rax,%%rbx\n" - "adcq %%rdx,%%rcx\n" - /* d+= (a1*2) * a3 */ - "leaq (%%r11,%%r11,1),%%rax\n" - "mulq %%r13\n" - "addq %%rax,%%rbx\n" - "adcq %%rdx,%%rcx\n" - /* d += a2 * a2 */ - "movq %%r12,%%rax\n" - "mulq %%r12\n" - "addq %%rax,%%rbx\n" - "adcq %%rdx,%%rcx\n" - /* d += c * R */ - "movq %%r8,%%rax\n" - "movq $0x1000003d10,%%rdx\n" - "mulq %%rdx\n" - "addq %%rax,%%rbx\n" - "adcq %%rdx,%%rcx\n" - /* t4 = d & M (%%rsi) */ - "movq %%rbx,%%rsi\n" - "andq %%r15,%%rsi\n" - /* d >>= 52 */ - "shrdq $52,%%rcx,%%rbx\n" - "xorq %%rcx,%%rcx\n" - /* tx = t4 >> 48 (tmp3) */ - "movq %%rsi,%%rax\n" - "shrq $48,%%rax\n" - "movq %%rax,%q3\n" - /* t4 &= (M >> 4) (tmp2) */ - "movq $0xffffffffffff,%%rax\n" - "andq %%rax,%%rsi\n" - "movq %%rsi,%q2\n" - /* c = a0 * a0 */ - "movq %%r10,%%rax\n" - "mulq %%r10\n" - "movq %%rax,%%r8\n" - "movq %%rdx,%%r9\n" - /* d += a1 * a4 */ - "movq %%r11,%%rax\n" - "mulq %%r14\n" - "addq %%rax,%%rbx\n" - "adcq %%rdx,%%rcx\n" - /* d += (a2*2) * a3 */ - "leaq (%%r12,%%r12,1),%%rax\n" - "mulq %%r13\n" - "addq %%rax,%%rbx\n" - "adcq %%rdx,%%rcx\n" - /* u0 = d & M (%%rsi) */ - "movq %%rbx,%%rsi\n" - "andq %%r15,%%rsi\n" - /* d >>= 52 */ - "shrdq $52,%%rcx,%%rbx\n" - "xorq %%rcx,%%rcx\n" - /* u0 = (u0 << 4) | tx (%%rsi) */ - "shlq $4,%%rsi\n" - "movq %q3,%%rax\n" - "orq %%rax,%%rsi\n" - /* c += u0 * (R >> 4) */ - "movq $0x1000003d1,%%rax\n" - "mulq %%rsi\n" - "addq %%rax,%%r8\n" - "adcq %%rdx,%%r9\n" - /* r[0] = c & M */ - "movq %%r8,%%rax\n" - "andq %%r15,%%rax\n" - "movq %%rax,0(%%rdi)\n" - /* c >>= 52 */ - "shrdq $52,%%r9,%%r8\n" - "xorq %%r9,%%r9\n" - /* a0 *= 2 */ - "addq %%r10,%%r10\n" - /* c += a0 * a1 */ - "movq %%r10,%%rax\n" - "mulq %%r11\n" - "addq %%rax,%%r8\n" - "adcq %%rdx,%%r9\n" - /* d += a2 * a4 */ - "movq %%r12,%%rax\n" - "mulq %%r14\n" - "addq %%rax,%%rbx\n" - "adcq %%rdx,%%rcx\n" - /* d += a3 * a3 */ - "movq %%r13,%%rax\n" - "mulq %%r13\n" - "addq %%rax,%%rbx\n" - "adcq %%rdx,%%rcx\n" - /* c += (d & M) * R */ - "movq %%rbx,%%rax\n" - "andq %%r15,%%rax\n" - "movq $0x1000003d10,%%rdx\n" - "mulq %%rdx\n" - "addq %%rax,%%r8\n" - "adcq %%rdx,%%r9\n" - /* d >>= 52 */ - "shrdq $52,%%rcx,%%rbx\n" - "xorq %%rcx,%%rcx\n" - /* r[1] = c & M */ - "movq %%r8,%%rax\n" - "andq %%r15,%%rax\n" - "movq %%rax,8(%%rdi)\n" - /* c >>= 52 */ - "shrdq $52,%%r9,%%r8\n" - "xorq %%r9,%%r9\n" - /* c += a0 * a2 (last use of %%r10) */ - "movq %%r10,%%rax\n" - "mulq %%r12\n" - "addq %%rax,%%r8\n" - "adcq %%rdx,%%r9\n" - /* fetch t3 (%%r10, overwrites a0),t4 (%%rsi) */ - "movq %q2,%%rsi\n" - "movq %q1,%%r10\n" - /* c += a1 * a1 */ - "movq %%r11,%%rax\n" - "mulq %%r11\n" - "addq %%rax,%%r8\n" - "adcq %%rdx,%%r9\n" - /* d += a3 * a4 */ - "movq %%r13,%%rax\n" - "mulq %%r14\n" - "addq %%rax,%%rbx\n" - "adcq %%rdx,%%rcx\n" - /* c += (d & M) * R */ - "movq %%rbx,%%rax\n" - "andq %%r15,%%rax\n" - "movq $0x1000003d10,%%rdx\n" - "mulq %%rdx\n" - "addq %%rax,%%r8\n" - "adcq %%rdx,%%r9\n" - /* d >>= 52 (%%rbx only) */ - "shrdq $52,%%rcx,%%rbx\n" - /* r[2] = c & M */ - "movq %%r8,%%rax\n" - "andq %%r15,%%rax\n" - "movq %%rax,16(%%rdi)\n" - /* c >>= 52 */ - "shrdq $52,%%r9,%%r8\n" - "xorq %%r9,%%r9\n" - /* c += t3 */ - "addq %%r10,%%r8\n" - /* c += d * R */ - "movq %%rbx,%%rax\n" - "movq $0x1000003d10,%%rdx\n" - "mulq %%rdx\n" - "addq %%rax,%%r8\n" - "adcq %%rdx,%%r9\n" - /* r[3] = c & M */ - "movq %%r8,%%rax\n" - "andq %%r15,%%rax\n" - "movq %%rax,24(%%rdi)\n" - /* c >>= 52 (%%r8 only) */ - "shrdq $52,%%r9,%%r8\n" - /* c += t4 (%%r8 only) */ - "addq %%rsi,%%r8\n" - /* r[4] = c */ - "movq %%r8,32(%%rdi)\n" -: "+S"(a), "=m"(tmp1), "=m"(tmp2), "=m"(tmp3) -: "D"(r) -: "%rax", "%rbx", "%rcx", "%rdx", "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", "cc", "memory" -); -} - -#endif /* SECP256K1_FIELD_INNER5X52_IMPL_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_5x52_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_5x52_impl.h deleted file mode 100644 index 957c61b..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_5x52_impl.h +++ /dev/null @@ -1,496 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_FIELD_REPR_IMPL_H -#define SECP256K1_FIELD_REPR_IMPL_H - -#if defined HAVE_CONFIG_H -#include "libsecp256k1-config.h" -#endif - -#include "util.h" -#include "num.h" -#include "field.h" - -#if defined(USE_ASM_X86_64) -#include "field_5x52_asm_impl.h" -#else -#include "field_5x52_int128_impl.h" -#endif - -/** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F, - * represented as 5 uint64_t's in base 2^52. The values are allowed to contain >52 each. In particular, - * each FieldElem has a 'magnitude' associated with it. Internally, a magnitude M means each element - * is at most M*(2^53-1), except the most significant one, which is limited to M*(2^49-1). All operations - * accept any input with magnitude at most M, and have different rules for propagating magnitude to their - * output. - */ - -#ifdef VERIFY -static void secp256k1_fe_verify(const secp256k1_fe *a) { - const uint64_t *d = a->n; - int m = a->normalized ? 1 : 2 * a->magnitude, r = 1; - /* secp256k1 'p' value defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */ - r &= (d[0] <= 0xFFFFFFFFFFFFFULL * m); - r &= (d[1] <= 0xFFFFFFFFFFFFFULL * m); - r &= (d[2] <= 0xFFFFFFFFFFFFFULL * m); - r &= (d[3] <= 0xFFFFFFFFFFFFFULL * m); - r &= (d[4] <= 0x0FFFFFFFFFFFFULL * m); - r &= (a->magnitude >= 0); - r &= (a->magnitude <= 2048); - if (a->normalized) { - r &= (a->magnitude <= 1); - if (r && (d[4] == 0x0FFFFFFFFFFFFULL) && ((d[3] & d[2] & d[1]) == 0xFFFFFFFFFFFFFULL)) { - r &= (d[0] < 0xFFFFEFFFFFC2FULL); - } - } - VERIFY_CHECK(r == 1); -} -#endif - -static void secp256k1_fe_normalize(secp256k1_fe *r) { - uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4]; - - /* Reduce t4 at the start so there will be at most a single carry from the first pass */ - uint64_t m; - uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL; - - /* The first pass ensures the magnitude is 1, ... */ - t0 += x * 0x1000003D1ULL; - t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; - t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1; - t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2; - t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3; - - /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */ - VERIFY_CHECK(t4 >> 49 == 0); - - /* At most a single final reduction is needed; check if the value is >= the field characteristic */ - x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL) - & (t0 >= 0xFFFFEFFFFFC2FULL)); - - /* Apply the final reduction (for constant-time behaviour, we do it always) */ - t0 += x * 0x1000003D1ULL; - t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; - t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; - t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; - t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; - - /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */ - VERIFY_CHECK(t4 >> 48 == x); - - /* Mask off the possible multiple of 2^256 from the final reduction */ - t4 &= 0x0FFFFFFFFFFFFULL; - - r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4; - -#ifdef VERIFY - r->magnitude = 1; - r->normalized = 1; - secp256k1_fe_verify(r); -#endif -} - -static void secp256k1_fe_normalize_weak(secp256k1_fe *r) { - uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4]; - - /* Reduce t4 at the start so there will be at most a single carry from the first pass */ - uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL; - - /* The first pass ensures the magnitude is 1, ... */ - t0 += x * 0x1000003D1ULL; - t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; - t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; - t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; - t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; - - /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */ - VERIFY_CHECK(t4 >> 49 == 0); - - r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4; - -#ifdef VERIFY - r->magnitude = 1; - secp256k1_fe_verify(r); -#endif -} - -static void secp256k1_fe_normalize_var(secp256k1_fe *r) { - uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4]; - - /* Reduce t4 at the start so there will be at most a single carry from the first pass */ - uint64_t m; - uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL; - - /* The first pass ensures the magnitude is 1, ... */ - t0 += x * 0x1000003D1ULL; - t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; - t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1; - t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2; - t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3; - - /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */ - VERIFY_CHECK(t4 >> 49 == 0); - - /* At most a single final reduction is needed; check if the value is >= the field characteristic */ - x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL) - & (t0 >= 0xFFFFEFFFFFC2FULL)); - - if (x) { - t0 += 0x1000003D1ULL; - t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; - t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; - t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; - t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; - - /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */ - VERIFY_CHECK(t4 >> 48 == x); - - /* Mask off the possible multiple of 2^256 from the final reduction */ - t4 &= 0x0FFFFFFFFFFFFULL; - } - - r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4; - -#ifdef VERIFY - r->magnitude = 1; - r->normalized = 1; - secp256k1_fe_verify(r); -#endif -} - -static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r) { - uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4]; - - /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */ - uint64_t z0, z1; - - /* Reduce t4 at the start so there will be at most a single carry from the first pass */ - uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL; - - /* The first pass ensures the magnitude is 1, ... */ - t0 += x * 0x1000003D1ULL; - t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; z0 = t0; z1 = t0 ^ 0x1000003D0ULL; - t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1; - t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2; - t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3; - z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL; - - /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */ - VERIFY_CHECK(t4 >> 49 == 0); - - return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL); -} - -static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r) { - uint64_t t0, t1, t2, t3, t4; - uint64_t z0, z1; - uint64_t x; - - t0 = r->n[0]; - t4 = r->n[4]; - - /* Reduce t4 at the start so there will be at most a single carry from the first pass */ - x = t4 >> 48; - - /* The first pass ensures the magnitude is 1, ... */ - t0 += x * 0x1000003D1ULL; - - /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */ - z0 = t0 & 0xFFFFFFFFFFFFFULL; - z1 = z0 ^ 0x1000003D0ULL; - - /* Fast return path should catch the majority of cases */ - if ((z0 != 0ULL) & (z1 != 0xFFFFFFFFFFFFFULL)) { - return 0; - } - - t1 = r->n[1]; - t2 = r->n[2]; - t3 = r->n[3]; - - t4 &= 0x0FFFFFFFFFFFFULL; - - t1 += (t0 >> 52); - t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1; - t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2; - t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3; - z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL; - - /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */ - VERIFY_CHECK(t4 >> 49 == 0); - - return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL); -} - -SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe *r, int a) { - r->n[0] = a; - r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0; -#ifdef VERIFY - r->magnitude = 1; - r->normalized = 1; - secp256k1_fe_verify(r); -#endif -} - -SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe *a) { - const uint64_t *t = a->n; -#ifdef VERIFY - VERIFY_CHECK(a->normalized); - secp256k1_fe_verify(a); -#endif - return (t[0] | t[1] | t[2] | t[3] | t[4]) == 0; -} - -SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe *a) { -#ifdef VERIFY - VERIFY_CHECK(a->normalized); - secp256k1_fe_verify(a); -#endif - return a->n[0] & 1; -} - -SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe *a) { - int i; -#ifdef VERIFY - a->magnitude = 0; - a->normalized = 1; -#endif - for (i=0; i<5; i++) { - a->n[i] = 0; - } -} - -static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) { - int i; -#ifdef VERIFY - VERIFY_CHECK(a->normalized); - VERIFY_CHECK(b->normalized); - secp256k1_fe_verify(a); - secp256k1_fe_verify(b); -#endif - for (i = 4; i >= 0; i--) { - if (a->n[i] > b->n[i]) { - return 1; - } - if (a->n[i] < b->n[i]) { - return -1; - } - } - return 0; -} - -static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) { - r->n[0] = (uint64_t)a[31] - | ((uint64_t)a[30] << 8) - | ((uint64_t)a[29] << 16) - | ((uint64_t)a[28] << 24) - | ((uint64_t)a[27] << 32) - | ((uint64_t)a[26] << 40) - | ((uint64_t)(a[25] & 0xF) << 48); - r->n[1] = (uint64_t)((a[25] >> 4) & 0xF) - | ((uint64_t)a[24] << 4) - | ((uint64_t)a[23] << 12) - | ((uint64_t)a[22] << 20) - | ((uint64_t)a[21] << 28) - | ((uint64_t)a[20] << 36) - | ((uint64_t)a[19] << 44); - r->n[2] = (uint64_t)a[18] - | ((uint64_t)a[17] << 8) - | ((uint64_t)a[16] << 16) - | ((uint64_t)a[15] << 24) - | ((uint64_t)a[14] << 32) - | ((uint64_t)a[13] << 40) - | ((uint64_t)(a[12] & 0xF) << 48); - r->n[3] = (uint64_t)((a[12] >> 4) & 0xF) - | ((uint64_t)a[11] << 4) - | ((uint64_t)a[10] << 12) - | ((uint64_t)a[9] << 20) - | ((uint64_t)a[8] << 28) - | ((uint64_t)a[7] << 36) - | ((uint64_t)a[6] << 44); - r->n[4] = (uint64_t)a[5] - | ((uint64_t)a[4] << 8) - | ((uint64_t)a[3] << 16) - | ((uint64_t)a[2] << 24) - | ((uint64_t)a[1] << 32) - | ((uint64_t)a[0] << 40); - if (r->n[4] == 0x0FFFFFFFFFFFFULL && (r->n[3] & r->n[2] & r->n[1]) == 0xFFFFFFFFFFFFFULL && r->n[0] >= 0xFFFFEFFFFFC2FULL) { - return 0; - } -#ifdef VERIFY - r->magnitude = 1; - r->normalized = 1; - secp256k1_fe_verify(r); -#endif - return 1; -} - -/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */ -static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) { -#ifdef VERIFY - VERIFY_CHECK(a->normalized); - secp256k1_fe_verify(a); -#endif - r[0] = (a->n[4] >> 40) & 0xFF; - r[1] = (a->n[4] >> 32) & 0xFF; - r[2] = (a->n[4] >> 24) & 0xFF; - r[3] = (a->n[4] >> 16) & 0xFF; - r[4] = (a->n[4] >> 8) & 0xFF; - r[5] = a->n[4] & 0xFF; - r[6] = (a->n[3] >> 44) & 0xFF; - r[7] = (a->n[3] >> 36) & 0xFF; - r[8] = (a->n[3] >> 28) & 0xFF; - r[9] = (a->n[3] >> 20) & 0xFF; - r[10] = (a->n[3] >> 12) & 0xFF; - r[11] = (a->n[3] >> 4) & 0xFF; - r[12] = ((a->n[2] >> 48) & 0xF) | ((a->n[3] & 0xF) << 4); - r[13] = (a->n[2] >> 40) & 0xFF; - r[14] = (a->n[2] >> 32) & 0xFF; - r[15] = (a->n[2] >> 24) & 0xFF; - r[16] = (a->n[2] >> 16) & 0xFF; - r[17] = (a->n[2] >> 8) & 0xFF; - r[18] = a->n[2] & 0xFF; - r[19] = (a->n[1] >> 44) & 0xFF; - r[20] = (a->n[1] >> 36) & 0xFF; - r[21] = (a->n[1] >> 28) & 0xFF; - r[22] = (a->n[1] >> 20) & 0xFF; - r[23] = (a->n[1] >> 12) & 0xFF; - r[24] = (a->n[1] >> 4) & 0xFF; - r[25] = ((a->n[0] >> 48) & 0xF) | ((a->n[1] & 0xF) << 4); - r[26] = (a->n[0] >> 40) & 0xFF; - r[27] = (a->n[0] >> 32) & 0xFF; - r[28] = (a->n[0] >> 24) & 0xFF; - r[29] = (a->n[0] >> 16) & 0xFF; - r[30] = (a->n[0] >> 8) & 0xFF; - r[31] = a->n[0] & 0xFF; -} - -SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) { -#ifdef VERIFY - VERIFY_CHECK(a->magnitude <= m); - secp256k1_fe_verify(a); -#endif - r->n[0] = 0xFFFFEFFFFFC2FULL * 2 * (m + 1) - a->n[0]; - r->n[1] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[1]; - r->n[2] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[2]; - r->n[3] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[3]; - r->n[4] = 0x0FFFFFFFFFFFFULL * 2 * (m + 1) - a->n[4]; -#ifdef VERIFY - r->magnitude = m + 1; - r->normalized = 0; - secp256k1_fe_verify(r); -#endif -} - -SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe *r, int a) { - r->n[0] *= a; - r->n[1] *= a; - r->n[2] *= a; - r->n[3] *= a; - r->n[4] *= a; -#ifdef VERIFY - r->magnitude *= a; - r->normalized = 0; - secp256k1_fe_verify(r); -#endif -} - -SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a) { -#ifdef VERIFY - secp256k1_fe_verify(a); -#endif - r->n[0] += a->n[0]; - r->n[1] += a->n[1]; - r->n[2] += a->n[2]; - r->n[3] += a->n[3]; - r->n[4] += a->n[4]; -#ifdef VERIFY - r->magnitude += a->magnitude; - r->normalized = 0; - secp256k1_fe_verify(r); -#endif -} - -static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) { -#ifdef VERIFY - VERIFY_CHECK(a->magnitude <= 8); - VERIFY_CHECK(b->magnitude <= 8); - secp256k1_fe_verify(a); - secp256k1_fe_verify(b); - VERIFY_CHECK(r != b); -#endif - secp256k1_fe_mul_inner(r->n, a->n, b->n); -#ifdef VERIFY - r->magnitude = 1; - r->normalized = 0; - secp256k1_fe_verify(r); -#endif -} - -static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) { -#ifdef VERIFY - VERIFY_CHECK(a->magnitude <= 8); - secp256k1_fe_verify(a); -#endif - secp256k1_fe_sqr_inner(r->n, a->n); -#ifdef VERIFY - r->magnitude = 1; - r->normalized = 0; - secp256k1_fe_verify(r); -#endif -} - -static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) { - uint64_t mask0, mask1; - mask0 = flag + ~((uint64_t)0); - mask1 = ~mask0; - r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1); - r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1); - r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1); - r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1); - r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1); -#ifdef VERIFY - if (a->magnitude > r->magnitude) { - r->magnitude = a->magnitude; - } - r->normalized &= a->normalized; -#endif -} - -static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag) { - uint64_t mask0, mask1; - mask0 = flag + ~((uint64_t)0); - mask1 = ~mask0; - r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1); - r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1); - r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1); - r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1); -} - -static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) { -#ifdef VERIFY - VERIFY_CHECK(a->normalized); -#endif - r->n[0] = a->n[0] | a->n[1] << 52; - r->n[1] = a->n[1] >> 12 | a->n[2] << 40; - r->n[2] = a->n[2] >> 24 | a->n[3] << 28; - r->n[3] = a->n[3] >> 36 | a->n[4] << 16; -} - -static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) { - r->n[0] = a->n[0] & 0xFFFFFFFFFFFFFULL; - r->n[1] = a->n[0] >> 52 | ((a->n[1] << 12) & 0xFFFFFFFFFFFFFULL); - r->n[2] = a->n[1] >> 40 | ((a->n[2] << 24) & 0xFFFFFFFFFFFFFULL); - r->n[3] = a->n[2] >> 28 | ((a->n[3] << 36) & 0xFFFFFFFFFFFFFULL); - r->n[4] = a->n[3] >> 16; -#ifdef VERIFY - r->magnitude = 1; - r->normalized = 1; -#endif -} - -#endif /* SECP256K1_FIELD_REPR_IMPL_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_5x52_int128_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_5x52_int128_impl.h deleted file mode 100644 index 95a0d17..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_5x52_int128_impl.h +++ /dev/null @@ -1,277 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_FIELD_INNER5X52_IMPL_H -#define SECP256K1_FIELD_INNER5X52_IMPL_H - -#include - -#ifdef VERIFY -#define VERIFY_BITS(x, n) VERIFY_CHECK(((x) >> (n)) == 0) -#else -#define VERIFY_BITS(x, n) do { } while(0) -#endif - -SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint64_t *r, const uint64_t *a, const uint64_t * SECP256K1_RESTRICT b) { - uint128_t c, d; - uint64_t t3, t4, tx, u0; - uint64_t a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4]; - const uint64_t M = 0xFFFFFFFFFFFFFULL, R = 0x1000003D10ULL; - - VERIFY_BITS(a[0], 56); - VERIFY_BITS(a[1], 56); - VERIFY_BITS(a[2], 56); - VERIFY_BITS(a[3], 56); - VERIFY_BITS(a[4], 52); - VERIFY_BITS(b[0], 56); - VERIFY_BITS(b[1], 56); - VERIFY_BITS(b[2], 56); - VERIFY_BITS(b[3], 56); - VERIFY_BITS(b[4], 52); - VERIFY_CHECK(r != b); - - /* [... a b c] is a shorthand for ... + a<<104 + b<<52 + c<<0 mod n. - * px is a shorthand for sum(a[i]*b[x-i], i=0..x). - * Note that [x 0 0 0 0 0] = [x*R]. - */ - - d = (uint128_t)a0 * b[3] - + (uint128_t)a1 * b[2] - + (uint128_t)a2 * b[1] - + (uint128_t)a3 * b[0]; - VERIFY_BITS(d, 114); - /* [d 0 0 0] = [p3 0 0 0] */ - c = (uint128_t)a4 * b[4]; - VERIFY_BITS(c, 112); - /* [c 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */ - d += (c & M) * R; c >>= 52; - VERIFY_BITS(d, 115); - VERIFY_BITS(c, 60); - /* [c 0 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */ - t3 = d & M; d >>= 52; - VERIFY_BITS(t3, 52); - VERIFY_BITS(d, 63); - /* [c 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */ - - d += (uint128_t)a0 * b[4] - + (uint128_t)a1 * b[3] - + (uint128_t)a2 * b[2] - + (uint128_t)a3 * b[1] - + (uint128_t)a4 * b[0]; - VERIFY_BITS(d, 115); - /* [c 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */ - d += c * R; - VERIFY_BITS(d, 116); - /* [d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */ - t4 = d & M; d >>= 52; - VERIFY_BITS(t4, 52); - VERIFY_BITS(d, 64); - /* [d t4 t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */ - tx = (t4 >> 48); t4 &= (M >> 4); - VERIFY_BITS(tx, 4); - VERIFY_BITS(t4, 48); - /* [d t4+(tx<<48) t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */ - - c = (uint128_t)a0 * b[0]; - VERIFY_BITS(c, 112); - /* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 0 p4 p3 0 0 p0] */ - d += (uint128_t)a1 * b[4] - + (uint128_t)a2 * b[3] - + (uint128_t)a3 * b[2] - + (uint128_t)a4 * b[1]; - VERIFY_BITS(d, 115); - /* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */ - u0 = d & M; d >>= 52; - VERIFY_BITS(u0, 52); - VERIFY_BITS(d, 63); - /* [d u0 t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */ - /* [d 0 t4+(tx<<48)+(u0<<52) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */ - u0 = (u0 << 4) | tx; - VERIFY_BITS(u0, 56); - /* [d 0 t4+(u0<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */ - c += (uint128_t)u0 * (R >> 4); - VERIFY_BITS(c, 115); - /* [d 0 t4 t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */ - r[0] = c & M; c >>= 52; - VERIFY_BITS(r[0], 52); - VERIFY_BITS(c, 61); - /* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 0 p0] */ - - c += (uint128_t)a0 * b[1] - + (uint128_t)a1 * b[0]; - VERIFY_BITS(c, 114); - /* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 p1 p0] */ - d += (uint128_t)a2 * b[4] - + (uint128_t)a3 * b[3] - + (uint128_t)a4 * b[2]; - VERIFY_BITS(d, 114); - /* [d 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */ - c += (d & M) * R; d >>= 52; - VERIFY_BITS(c, 115); - VERIFY_BITS(d, 62); - /* [d 0 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */ - r[1] = c & M; c >>= 52; - VERIFY_BITS(r[1], 52); - VERIFY_BITS(c, 63); - /* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */ - - c += (uint128_t)a0 * b[2] - + (uint128_t)a1 * b[1] - + (uint128_t)a2 * b[0]; - VERIFY_BITS(c, 114); - /* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 p2 p1 p0] */ - d += (uint128_t)a3 * b[4] - + (uint128_t)a4 * b[3]; - VERIFY_BITS(d, 114); - /* [d 0 0 t4 t3 c t1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - c += (d & M) * R; d >>= 52; - VERIFY_BITS(c, 115); - VERIFY_BITS(d, 62); - /* [d 0 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - - /* [d 0 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - r[2] = c & M; c >>= 52; - VERIFY_BITS(r[2], 52); - VERIFY_BITS(c, 63); - /* [d 0 0 0 t4 t3+c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - c += d * R + t3; - VERIFY_BITS(c, 100); - /* [t4 c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - r[3] = c & M; c >>= 52; - VERIFY_BITS(r[3], 52); - VERIFY_BITS(c, 48); - /* [t4+c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - c += t4; - VERIFY_BITS(c, 49); - /* [c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - r[4] = c; - VERIFY_BITS(r[4], 49); - /* [r4 r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */ -} - -SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint64_t *r, const uint64_t *a) { - uint128_t c, d; - uint64_t a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4]; - int64_t t3, t4, tx, u0; - const uint64_t M = 0xFFFFFFFFFFFFFULL, R = 0x1000003D10ULL; - - VERIFY_BITS(a[0], 56); - VERIFY_BITS(a[1], 56); - VERIFY_BITS(a[2], 56); - VERIFY_BITS(a[3], 56); - VERIFY_BITS(a[4], 52); - - /** [... a b c] is a shorthand for ... + a<<104 + b<<52 + c<<0 mod n. - * px is a shorthand for sum(a[i]*a[x-i], i=0..x). - * Note that [x 0 0 0 0 0] = [x*R]. - */ - - d = (uint128_t)(a0*2) * a3 - + (uint128_t)(a1*2) * a2; - VERIFY_BITS(d, 114); - /* [d 0 0 0] = [p3 0 0 0] */ - c = (uint128_t)a4 * a4; - VERIFY_BITS(c, 112); - /* [c 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */ - d += (c & M) * R; c >>= 52; - VERIFY_BITS(d, 115); - VERIFY_BITS(c, 60); - /* [c 0 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */ - t3 = d & M; d >>= 52; - VERIFY_BITS(t3, 52); - VERIFY_BITS(d, 63); - /* [c 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */ - - a4 *= 2; - d += (uint128_t)a0 * a4 - + (uint128_t)(a1*2) * a3 - + (uint128_t)a2 * a2; - VERIFY_BITS(d, 115); - /* [c 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */ - d += c * R; - VERIFY_BITS(d, 116); - /* [d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */ - t4 = d & M; d >>= 52; - VERIFY_BITS(t4, 52); - VERIFY_BITS(d, 64); - /* [d t4 t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */ - tx = (t4 >> 48); t4 &= (M >> 4); - VERIFY_BITS(tx, 4); - VERIFY_BITS(t4, 48); - /* [d t4+(tx<<48) t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */ - - c = (uint128_t)a0 * a0; - VERIFY_BITS(c, 112); - /* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 0 p4 p3 0 0 p0] */ - d += (uint128_t)a1 * a4 - + (uint128_t)(a2*2) * a3; - VERIFY_BITS(d, 114); - /* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */ - u0 = d & M; d >>= 52; - VERIFY_BITS(u0, 52); - VERIFY_BITS(d, 62); - /* [d u0 t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */ - /* [d 0 t4+(tx<<48)+(u0<<52) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */ - u0 = (u0 << 4) | tx; - VERIFY_BITS(u0, 56); - /* [d 0 t4+(u0<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */ - c += (uint128_t)u0 * (R >> 4); - VERIFY_BITS(c, 113); - /* [d 0 t4 t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */ - r[0] = c & M; c >>= 52; - VERIFY_BITS(r[0], 52); - VERIFY_BITS(c, 61); - /* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 0 p0] */ - - a0 *= 2; - c += (uint128_t)a0 * a1; - VERIFY_BITS(c, 114); - /* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 p1 p0] */ - d += (uint128_t)a2 * a4 - + (uint128_t)a3 * a3; - VERIFY_BITS(d, 114); - /* [d 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */ - c += (d & M) * R; d >>= 52; - VERIFY_BITS(c, 115); - VERIFY_BITS(d, 62); - /* [d 0 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */ - r[1] = c & M; c >>= 52; - VERIFY_BITS(r[1], 52); - VERIFY_BITS(c, 63); - /* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */ - - c += (uint128_t)a0 * a2 - + (uint128_t)a1 * a1; - VERIFY_BITS(c, 114); - /* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 p2 p1 p0] */ - d += (uint128_t)a3 * a4; - VERIFY_BITS(d, 114); - /* [d 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - c += (d & M) * R; d >>= 52; - VERIFY_BITS(c, 115); - VERIFY_BITS(d, 62); - /* [d 0 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - r[2] = c & M; c >>= 52; - VERIFY_BITS(r[2], 52); - VERIFY_BITS(c, 63); - /* [d 0 0 0 t4 t3+c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - - c += d * R + t3; - VERIFY_BITS(c, 100); - /* [t4 c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - r[3] = c & M; c >>= 52; - VERIFY_BITS(r[3], 52); - VERIFY_BITS(c, 48); - /* [t4+c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - c += t4; - VERIFY_BITS(c, 49); - /* [c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */ - r[4] = c; - VERIFY_BITS(r[4], 49); - /* [r4 r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */ -} - -#endif /* SECP256K1_FIELD_INNER5X52_IMPL_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_impl.h deleted file mode 100644 index 2042864..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/field_impl.h +++ /dev/null @@ -1,315 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_FIELD_IMPL_H -#define SECP256K1_FIELD_IMPL_H - -#if defined HAVE_CONFIG_H -#include "libsecp256k1-config.h" -#endif - -#include "util.h" - -#if defined(USE_FIELD_10X26) -#include "field_10x26_impl.h" -#elif defined(USE_FIELD_5X52) -#include "field_5x52_impl.h" -#else -#error "Please select field implementation" -#endif - -SECP256K1_INLINE static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) { - secp256k1_fe na; - secp256k1_fe_negate(&na, a, 1); - secp256k1_fe_add(&na, b); - return secp256k1_fe_normalizes_to_zero(&na); -} - -SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b) { - secp256k1_fe na; - secp256k1_fe_negate(&na, a, 1); - secp256k1_fe_add(&na, b); - return secp256k1_fe_normalizes_to_zero_var(&na); -} - -static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a) { - /** Given that p is congruent to 3 mod 4, we can compute the square root of - * a mod p as the (p+1)/4'th power of a. - * - * As (p+1)/4 is an even number, it will have the same result for a and for - * (-a). Only one of these two numbers actually has a square root however, - * so we test at the end by squaring and comparing to the input. - * Also because (p+1)/4 is an even number, the computed square root is - * itself always a square (a ** ((p+1)/4) is the square of a ** ((p+1)/8)). - */ - secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1; - int j; - - /** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in - * { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block: - * 1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223] - */ - - secp256k1_fe_sqr(&x2, a); - secp256k1_fe_mul(&x2, &x2, a); - - secp256k1_fe_sqr(&x3, &x2); - secp256k1_fe_mul(&x3, &x3, a); - - x6 = x3; - for (j=0; j<3; j++) { - secp256k1_fe_sqr(&x6, &x6); - } - secp256k1_fe_mul(&x6, &x6, &x3); - - x9 = x6; - for (j=0; j<3; j++) { - secp256k1_fe_sqr(&x9, &x9); - } - secp256k1_fe_mul(&x9, &x9, &x3); - - x11 = x9; - for (j=0; j<2; j++) { - secp256k1_fe_sqr(&x11, &x11); - } - secp256k1_fe_mul(&x11, &x11, &x2); - - x22 = x11; - for (j=0; j<11; j++) { - secp256k1_fe_sqr(&x22, &x22); - } - secp256k1_fe_mul(&x22, &x22, &x11); - - x44 = x22; - for (j=0; j<22; j++) { - secp256k1_fe_sqr(&x44, &x44); - } - secp256k1_fe_mul(&x44, &x44, &x22); - - x88 = x44; - for (j=0; j<44; j++) { - secp256k1_fe_sqr(&x88, &x88); - } - secp256k1_fe_mul(&x88, &x88, &x44); - - x176 = x88; - for (j=0; j<88; j++) { - secp256k1_fe_sqr(&x176, &x176); - } - secp256k1_fe_mul(&x176, &x176, &x88); - - x220 = x176; - for (j=0; j<44; j++) { - secp256k1_fe_sqr(&x220, &x220); - } - secp256k1_fe_mul(&x220, &x220, &x44); - - x223 = x220; - for (j=0; j<3; j++) { - secp256k1_fe_sqr(&x223, &x223); - } - secp256k1_fe_mul(&x223, &x223, &x3); - - /* The final result is then assembled using a sliding window over the blocks. */ - - t1 = x223; - for (j=0; j<23; j++) { - secp256k1_fe_sqr(&t1, &t1); - } - secp256k1_fe_mul(&t1, &t1, &x22); - for (j=0; j<6; j++) { - secp256k1_fe_sqr(&t1, &t1); - } - secp256k1_fe_mul(&t1, &t1, &x2); - secp256k1_fe_sqr(&t1, &t1); - secp256k1_fe_sqr(r, &t1); - - /* Check that a square root was actually calculated */ - - secp256k1_fe_sqr(&t1, r); - return secp256k1_fe_equal(&t1, a); -} - -static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a) { - secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1; - int j; - - /** The binary representation of (p - 2) has 5 blocks of 1s, with lengths in - * { 1, 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block: - * [1], [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223] - */ - - secp256k1_fe_sqr(&x2, a); - secp256k1_fe_mul(&x2, &x2, a); - - secp256k1_fe_sqr(&x3, &x2); - secp256k1_fe_mul(&x3, &x3, a); - - x6 = x3; - for (j=0; j<3; j++) { - secp256k1_fe_sqr(&x6, &x6); - } - secp256k1_fe_mul(&x6, &x6, &x3); - - x9 = x6; - for (j=0; j<3; j++) { - secp256k1_fe_sqr(&x9, &x9); - } - secp256k1_fe_mul(&x9, &x9, &x3); - - x11 = x9; - for (j=0; j<2; j++) { - secp256k1_fe_sqr(&x11, &x11); - } - secp256k1_fe_mul(&x11, &x11, &x2); - - x22 = x11; - for (j=0; j<11; j++) { - secp256k1_fe_sqr(&x22, &x22); - } - secp256k1_fe_mul(&x22, &x22, &x11); - - x44 = x22; - for (j=0; j<22; j++) { - secp256k1_fe_sqr(&x44, &x44); - } - secp256k1_fe_mul(&x44, &x44, &x22); - - x88 = x44; - for (j=0; j<44; j++) { - secp256k1_fe_sqr(&x88, &x88); - } - secp256k1_fe_mul(&x88, &x88, &x44); - - x176 = x88; - for (j=0; j<88; j++) { - secp256k1_fe_sqr(&x176, &x176); - } - secp256k1_fe_mul(&x176, &x176, &x88); - - x220 = x176; - for (j=0; j<44; j++) { - secp256k1_fe_sqr(&x220, &x220); - } - secp256k1_fe_mul(&x220, &x220, &x44); - - x223 = x220; - for (j=0; j<3; j++) { - secp256k1_fe_sqr(&x223, &x223); - } - secp256k1_fe_mul(&x223, &x223, &x3); - - /* The final result is then assembled using a sliding window over the blocks. */ - - t1 = x223; - for (j=0; j<23; j++) { - secp256k1_fe_sqr(&t1, &t1); - } - secp256k1_fe_mul(&t1, &t1, &x22); - for (j=0; j<5; j++) { - secp256k1_fe_sqr(&t1, &t1); - } - secp256k1_fe_mul(&t1, &t1, a); - for (j=0; j<3; j++) { - secp256k1_fe_sqr(&t1, &t1); - } - secp256k1_fe_mul(&t1, &t1, &x2); - for (j=0; j<2; j++) { - secp256k1_fe_sqr(&t1, &t1); - } - secp256k1_fe_mul(r, a, &t1); -} - -static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a) { -#if defined(USE_FIELD_INV_BUILTIN) - secp256k1_fe_inv(r, a); -#elif defined(USE_FIELD_INV_NUM) - secp256k1_num n, m; - static const secp256k1_fe negone = SECP256K1_FE_CONST( - 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, - 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, 0xFFFFFC2EUL - ); - /* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */ - static const unsigned char prime[32] = { - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, - 0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F - }; - unsigned char b[32]; - int res; - secp256k1_fe c = *a; - secp256k1_fe_normalize_var(&c); - secp256k1_fe_get_b32(b, &c); - secp256k1_num_set_bin(&n, b, 32); - secp256k1_num_set_bin(&m, prime, 32); - secp256k1_num_mod_inverse(&n, &n, &m); - secp256k1_num_get_bin(b, 32, &n); - res = secp256k1_fe_set_b32(r, b); - (void)res; - VERIFY_CHECK(res); - /* Verify the result is the (unique) valid inverse using non-GMP code. */ - secp256k1_fe_mul(&c, &c, r); - secp256k1_fe_add(&c, &negone); - CHECK(secp256k1_fe_normalizes_to_zero_var(&c)); -#else -#error "Please select field inverse implementation" -#endif -} - -static void secp256k1_fe_inv_all_var(secp256k1_fe *r, const secp256k1_fe *a, size_t len) { - secp256k1_fe u; - size_t i; - if (len < 1) { - return; - } - - VERIFY_CHECK((r + len <= a) || (a + len <= r)); - - r[0] = a[0]; - - i = 0; - while (++i < len) { - secp256k1_fe_mul(&r[i], &r[i - 1], &a[i]); - } - - secp256k1_fe_inv_var(&u, &r[--i]); - - while (i > 0) { - size_t j = i--; - secp256k1_fe_mul(&r[j], &r[i], &u); - secp256k1_fe_mul(&u, &u, &a[j]); - } - - r[0] = u; -} - -static int secp256k1_fe_is_quad_var(const secp256k1_fe *a) { -#ifndef USE_NUM_NONE - unsigned char b[32]; - secp256k1_num n; - secp256k1_num m; - /* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */ - static const unsigned char prime[32] = { - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, - 0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F - }; - - secp256k1_fe c = *a; - secp256k1_fe_normalize_var(&c); - secp256k1_fe_get_b32(b, &c); - secp256k1_num_set_bin(&n, b, 32); - secp256k1_num_set_bin(&m, prime, 32); - return secp256k1_num_jacobi(&n, &m) >= 0; -#else - secp256k1_fe r; - return secp256k1_fe_sqrt(&r, a); -#endif -} - -#endif /* SECP256K1_FIELD_IMPL_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/gen_context.c b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/gen_context.c deleted file mode 100644 index 87d296e..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/gen_context.c +++ /dev/null @@ -1,74 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014, 2015 Thomas Daede, Cory Fields * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#define USE_BASIC_CONFIG 1 - -#include "basic-config.h" -#include "include/secp256k1.h" -#include "field_impl.h" -#include "scalar_impl.h" -#include "group_impl.h" -#include "ecmult_gen_impl.h" - -static void default_error_callback_fn(const char* str, void* data) { - (void)data; - fprintf(stderr, "[libsecp256k1] internal consistency check failed: %s\n", str); - abort(); -} - -static const secp256k1_callback default_error_callback = { - default_error_callback_fn, - NULL -}; - -int main(int argc, char **argv) { - secp256k1_ecmult_gen_context ctx; - int inner; - int outer; - FILE* fp; - - (void)argc; - (void)argv; - - fp = fopen("src/ecmult_static_context.h","w"); - if (fp == NULL) { - fprintf(stderr, "Could not open src/ecmult_static_context.h for writing!\n"); - return -1; - } - - fprintf(fp, "#ifndef _SECP256K1_ECMULT_STATIC_CONTEXT_\n"); - fprintf(fp, "#define _SECP256K1_ECMULT_STATIC_CONTEXT_\n"); - fprintf(fp, "#include \"src/group.h\"\n"); - fprintf(fp, "#define SC SECP256K1_GE_STORAGE_CONST\n"); - fprintf(fp, "static const secp256k1_ge_storage secp256k1_ecmult_static_context[64][16] = {\n"); - - secp256k1_ecmult_gen_context_init(&ctx); - secp256k1_ecmult_gen_context_build(&ctx, &default_error_callback); - for(outer = 0; outer != 64; outer++) { - fprintf(fp,"{\n"); - for(inner = 0; inner != 16; inner++) { - fprintf(fp," SC(%uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu)", SECP256K1_GE_STORAGE_CONST_GET((*ctx.prec)[outer][inner])); - if (inner != 15) { - fprintf(fp,",\n"); - } else { - fprintf(fp,"\n"); - } - } - if (outer != 63) { - fprintf(fp,"},\n"); - } else { - fprintf(fp,"}\n"); - } - } - fprintf(fp,"};\n"); - secp256k1_ecmult_gen_context_clear(&ctx); - - fprintf(fp, "#undef SC\n"); - fprintf(fp, "#endif\n"); - fclose(fp); - - return 0; -} diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/group.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/group.h deleted file mode 100644 index 3947ea2..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/group.h +++ /dev/null @@ -1,147 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_GROUP_H -#define SECP256K1_GROUP_H - -#include "num.h" -#include "field.h" - -/** A group element of the secp256k1 curve, in affine coordinates. */ -typedef struct { - secp256k1_fe x; - secp256k1_fe y; - int infinity; /* whether this represents the point at infinity */ -} secp256k1_ge; - -#define SECP256K1_GE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), 0} -#define SECP256K1_GE_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1} - -/** A group element of the secp256k1 curve, in jacobian coordinates. */ -typedef struct { - secp256k1_fe x; /* actual X: x/z^2 */ - secp256k1_fe y; /* actual Y: y/z^3 */ - secp256k1_fe z; - int infinity; /* whether this represents the point at infinity */ -} secp256k1_gej; - -#define SECP256K1_GEJ_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1), 0} -#define SECP256K1_GEJ_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1} - -typedef struct { - secp256k1_fe_storage x; - secp256k1_fe_storage y; -} secp256k1_ge_storage; - -#define SECP256K1_GE_STORAGE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_STORAGE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_STORAGE_CONST((i),(j),(k),(l),(m),(n),(o),(p))} - -#define SECP256K1_GE_STORAGE_CONST_GET(t) SECP256K1_FE_STORAGE_CONST_GET(t.x), SECP256K1_FE_STORAGE_CONST_GET(t.y) - -/** Set a group element equal to the point with given X and Y coordinates */ -static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y); - -/** Set a group element (affine) equal to the point with the given X coordinate - * and a Y coordinate that is a quadratic residue modulo p. The return value - * is true iff a coordinate with the given X coordinate exists. - */ -static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x); - -/** Set a group element (affine) equal to the point with the given X coordinate, and given oddness - * for Y. Return value indicates whether the result is valid. */ -static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd); - -/** Check whether a group element is the point at infinity. */ -static int secp256k1_ge_is_infinity(const secp256k1_ge *a); - -/** Check whether a group element is valid (i.e., on the curve). */ -static int secp256k1_ge_is_valid_var(const secp256k1_ge *a); - -static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a); - -/** Set a group element equal to another which is given in jacobian coordinates */ -static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a); - -/** Set a batch of group elements equal to the inputs given in jacobian coordinates */ -static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len, const secp256k1_callback *cb); - -/** Set a batch of group elements equal to the inputs given in jacobian - * coordinates (with known z-ratios). zr must contain the known z-ratios such - * that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. */ -static void secp256k1_ge_set_table_gej_var(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr, size_t len); - -/** Bring a batch inputs given in jacobian coordinates (with known z-ratios) to - * the same global z "denominator". zr must contain the known z-ratios such - * that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. The x and y - * coordinates of the result are stored in r, the common z coordinate is - * stored in globalz. */ -static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr); - -/** Set a group element (affine) equal to the point at infinity. */ -static void secp256k1_ge_set_infinity(secp256k1_ge *r); - -/** Set a group element (jacobian) equal to the point at infinity. */ -static void secp256k1_gej_set_infinity(secp256k1_gej *r); - -/** Set a group element (jacobian) equal to another which is given in affine coordinates. */ -static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a); - -/** Compare the X coordinate of a group element (jacobian). */ -static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a); - -/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */ -static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a); - -/** Check whether a group element is the point at infinity. */ -static int secp256k1_gej_is_infinity(const secp256k1_gej *a); - -/** Check whether a group element's y coordinate is a quadratic residue. */ -static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a); - -/** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0). - * a may not be zero. Constant time. */ -static void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr); - -/** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0). */ -static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr); - -/** Set r equal to the sum of a and b. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be infinity in that case). */ -static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr); - -/** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */ -static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b); - -/** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient - than secp256k1_gej_add_var. It is identical to secp256k1_gej_add_ge but without constant-time - guarantee, and b is allowed to be infinity. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be infinity in that case). */ -static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr); - -/** Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv). */ -static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv); - -#ifdef USE_ENDOMORPHISM -/** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */ -static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a); -#endif - -/** Clear a secp256k1_gej to prevent leaking sensitive information. */ -static void secp256k1_gej_clear(secp256k1_gej *r); - -/** Clear a secp256k1_ge to prevent leaking sensitive information. */ -static void secp256k1_ge_clear(secp256k1_ge *r); - -/** Convert a group element to the storage type. */ -static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a); - -/** Convert a group element back from the storage type. */ -static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a); - -/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */ -static void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag); - -/** Rescale a jacobian point by b which must be non-zero. Constant-time. */ -static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b); - -#endif /* SECP256K1_GROUP_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/group_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/group_impl.h deleted file mode 100644 index b1ace87..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/group_impl.h +++ /dev/null @@ -1,706 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_GROUP_IMPL_H -#define SECP256K1_GROUP_IMPL_H - -#include "num.h" -#include "field.h" -#include "group.h" - -/* These points can be generated in sage as follows: - * - * 0. Setup a worksheet with the following parameters. - * b = 4 # whatever CURVE_B will be set to - * F = FiniteField (0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F) - * C = EllipticCurve ([F (0), F (b)]) - * - * 1. Determine all the small orders available to you. (If there are - * no satisfactory ones, go back and change b.) - * print C.order().factor(limit=1000) - * - * 2. Choose an order as one of the prime factors listed in the above step. - * (You can also multiply some to get a composite order, though the - * tests will crash trying to invert scalars during signing.) We take a - * random point and scale it to drop its order to the desired value. - * There is some probability this won't work; just try again. - * order = 199 - * P = C.random_point() - * P = (int(P.order()) / int(order)) * P - * assert(P.order() == order) - * - * 3. Print the values. You'll need to use a vim macro or something to - * split the hex output into 4-byte chunks. - * print "%x %x" % P.xy() - */ -#if defined(EXHAUSTIVE_TEST_ORDER) -# if EXHAUSTIVE_TEST_ORDER == 199 -const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST( - 0xFA7CC9A7, 0x0737F2DB, 0xA749DD39, 0x2B4FB069, - 0x3B017A7D, 0xA808C2F1, 0xFB12940C, 0x9EA66C18, - 0x78AC123A, 0x5ED8AEF3, 0x8732BC91, 0x1F3A2868, - 0x48DF246C, 0x808DAE72, 0xCFE52572, 0x7F0501ED -); - -const int CURVE_B = 4; -# elif EXHAUSTIVE_TEST_ORDER == 13 -const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST( - 0xedc60018, 0xa51a786b, 0x2ea91f4d, 0x4c9416c0, - 0x9de54c3b, 0xa1316554, 0x6cf4345c, 0x7277ef15, - 0x54cb1b6b, 0xdc8c1273, 0x087844ea, 0x43f4603e, - 0x0eaf9a43, 0xf6effe55, 0x939f806d, 0x37adf8ac -); -const int CURVE_B = 2; -# else -# error No known generator for the specified exhaustive test group order. -# endif -#else -/** Generator for secp256k1, value 'g' defined in - * "Standards for Efficient Cryptography" (SEC2) 2.7.1. - */ -static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST( - 0x79BE667EUL, 0xF9DCBBACUL, 0x55A06295UL, 0xCE870B07UL, - 0x029BFCDBUL, 0x2DCE28D9UL, 0x59F2815BUL, 0x16F81798UL, - 0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL, - 0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL -); - -const int CURVE_B = 7; -#endif - -static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) { - secp256k1_fe zi2; - secp256k1_fe zi3; - secp256k1_fe_sqr(&zi2, zi); - secp256k1_fe_mul(&zi3, &zi2, zi); - secp256k1_fe_mul(&r->x, &a->x, &zi2); - secp256k1_fe_mul(&r->y, &a->y, &zi3); - r->infinity = a->infinity; -} - -static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y) { - r->infinity = 0; - r->x = *x; - r->y = *y; -} - -static int secp256k1_ge_is_infinity(const secp256k1_ge *a) { - return a->infinity; -} - -static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a) { - *r = *a; - secp256k1_fe_normalize_weak(&r->y); - secp256k1_fe_negate(&r->y, &r->y, 1); -} - -static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a) { - secp256k1_fe z2, z3; - r->infinity = a->infinity; - secp256k1_fe_inv(&a->z, &a->z); - secp256k1_fe_sqr(&z2, &a->z); - secp256k1_fe_mul(&z3, &a->z, &z2); - secp256k1_fe_mul(&a->x, &a->x, &z2); - secp256k1_fe_mul(&a->y, &a->y, &z3); - secp256k1_fe_set_int(&a->z, 1); - r->x = a->x; - r->y = a->y; -} - -static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) { - secp256k1_fe z2, z3; - r->infinity = a->infinity; - if (a->infinity) { - return; - } - secp256k1_fe_inv_var(&a->z, &a->z); - secp256k1_fe_sqr(&z2, &a->z); - secp256k1_fe_mul(&z3, &a->z, &z2); - secp256k1_fe_mul(&a->x, &a->x, &z2); - secp256k1_fe_mul(&a->y, &a->y, &z3); - secp256k1_fe_set_int(&a->z, 1); - r->x = a->x; - r->y = a->y; -} - -static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len, const secp256k1_callback *cb) { - secp256k1_fe *az; - secp256k1_fe *azi; - size_t i; - size_t count = 0; - az = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * len); - for (i = 0; i < len; i++) { - if (!a[i].infinity) { - az[count++] = a[i].z; - } - } - - azi = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * count); - secp256k1_fe_inv_all_var(azi, az, count); - free(az); - - count = 0; - for (i = 0; i < len; i++) { - r[i].infinity = a[i].infinity; - if (!a[i].infinity) { - secp256k1_ge_set_gej_zinv(&r[i], &a[i], &azi[count++]); - } - } - free(azi); -} - -static void secp256k1_ge_set_table_gej_var(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr, size_t len) { - size_t i = len - 1; - secp256k1_fe zi; - - if (len > 0) { - /* Compute the inverse of the last z coordinate, and use it to compute the last affine output. */ - secp256k1_fe_inv(&zi, &a[i].z); - secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi); - - /* Work out way backwards, using the z-ratios to scale the x/y values. */ - while (i > 0) { - secp256k1_fe_mul(&zi, &zi, &zr[i]); - i--; - secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi); - } - } -} - -static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr) { - size_t i = len - 1; - secp256k1_fe zs; - - if (len > 0) { - /* The z of the final point gives us the "global Z" for the table. */ - r[i].x = a[i].x; - r[i].y = a[i].y; - *globalz = a[i].z; - r[i].infinity = 0; - zs = zr[i]; - - /* Work our way backwards, using the z-ratios to scale the x/y values. */ - while (i > 0) { - if (i != len - 1) { - secp256k1_fe_mul(&zs, &zs, &zr[i]); - } - i--; - secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zs); - } - } -} - -static void secp256k1_gej_set_infinity(secp256k1_gej *r) { - r->infinity = 1; - secp256k1_fe_clear(&r->x); - secp256k1_fe_clear(&r->y); - secp256k1_fe_clear(&r->z); -} - -static void secp256k1_ge_set_infinity(secp256k1_ge *r) { - r->infinity = 1; - secp256k1_fe_clear(&r->x); - secp256k1_fe_clear(&r->y); -} - -static void secp256k1_gej_clear(secp256k1_gej *r) { - r->infinity = 0; - secp256k1_fe_clear(&r->x); - secp256k1_fe_clear(&r->y); - secp256k1_fe_clear(&r->z); -} - -static void secp256k1_ge_clear(secp256k1_ge *r) { - r->infinity = 0; - secp256k1_fe_clear(&r->x); - secp256k1_fe_clear(&r->y); -} - -static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x) { - secp256k1_fe x2, x3, c; - r->x = *x; - secp256k1_fe_sqr(&x2, x); - secp256k1_fe_mul(&x3, x, &x2); - r->infinity = 0; - secp256k1_fe_set_int(&c, CURVE_B); - secp256k1_fe_add(&c, &x3); - return secp256k1_fe_sqrt(&r->y, &c); -} - -static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) { - if (!secp256k1_ge_set_xquad(r, x)) { - return 0; - } - secp256k1_fe_normalize_var(&r->y); - if (secp256k1_fe_is_odd(&r->y) != odd) { - secp256k1_fe_negate(&r->y, &r->y, 1); - } - return 1; - -} - -static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a) { - r->infinity = a->infinity; - r->x = a->x; - r->y = a->y; - secp256k1_fe_set_int(&r->z, 1); -} - -static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a) { - secp256k1_fe r, r2; - VERIFY_CHECK(!a->infinity); - secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x); - r2 = a->x; secp256k1_fe_normalize_weak(&r2); - return secp256k1_fe_equal_var(&r, &r2); -} - -static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a) { - r->infinity = a->infinity; - r->x = a->x; - r->y = a->y; - r->z = a->z; - secp256k1_fe_normalize_weak(&r->y); - secp256k1_fe_negate(&r->y, &r->y, 1); -} - -static int secp256k1_gej_is_infinity(const secp256k1_gej *a) { - return a->infinity; -} - -static int secp256k1_gej_is_valid_var(const secp256k1_gej *a) { - secp256k1_fe y2, x3, z2, z6; - if (a->infinity) { - return 0; - } - /** y^2 = x^3 + 7 - * (Y/Z^3)^2 = (X/Z^2)^3 + 7 - * Y^2 / Z^6 = X^3 / Z^6 + 7 - * Y^2 = X^3 + 7*Z^6 - */ - secp256k1_fe_sqr(&y2, &a->y); - secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); - secp256k1_fe_sqr(&z2, &a->z); - secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2); - secp256k1_fe_mul_int(&z6, CURVE_B); - secp256k1_fe_add(&x3, &z6); - secp256k1_fe_normalize_weak(&x3); - return secp256k1_fe_equal_var(&y2, &x3); -} - -static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) { - secp256k1_fe y2, x3, c; - if (a->infinity) { - return 0; - } - /* y^2 = x^3 + 7 */ - secp256k1_fe_sqr(&y2, &a->y); - secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); - secp256k1_fe_set_int(&c, CURVE_B); - secp256k1_fe_add(&x3, &c); - secp256k1_fe_normalize_weak(&x3); - return secp256k1_fe_equal_var(&y2, &x3); -} - -static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) { - /* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate. - * - * Note that there is an implementation described at - * https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l - * which trades a multiply for a square, but in practice this is actually slower, - * mainly because it requires more normalizations. - */ - secp256k1_fe t1,t2,t3,t4; - /** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity, - * Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have - * y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p. - * - * Having said this, if this function receives a point on a sextic twist, e.g. by - * a fault attack, it is possible for y to be 0. This happens for y^2 = x^3 + 6, - * since -6 does have a cube root mod p. For this point, this function will not set - * the infinity flag even though the point doubles to infinity, and the result - * point will be gibberish (z = 0 but infinity = 0). - */ - r->infinity = a->infinity; - if (r->infinity) { - if (rzr != NULL) { - secp256k1_fe_set_int(rzr, 1); - } - return; - } - - if (rzr != NULL) { - *rzr = a->y; - secp256k1_fe_normalize_weak(rzr); - secp256k1_fe_mul_int(rzr, 2); - } - - secp256k1_fe_mul(&r->z, &a->z, &a->y); - secp256k1_fe_mul_int(&r->z, 2); /* Z' = 2*Y*Z (2) */ - secp256k1_fe_sqr(&t1, &a->x); - secp256k1_fe_mul_int(&t1, 3); /* T1 = 3*X^2 (3) */ - secp256k1_fe_sqr(&t2, &t1); /* T2 = 9*X^4 (1) */ - secp256k1_fe_sqr(&t3, &a->y); - secp256k1_fe_mul_int(&t3, 2); /* T3 = 2*Y^2 (2) */ - secp256k1_fe_sqr(&t4, &t3); - secp256k1_fe_mul_int(&t4, 2); /* T4 = 8*Y^4 (2) */ - secp256k1_fe_mul(&t3, &t3, &a->x); /* T3 = 2*X*Y^2 (1) */ - r->x = t3; - secp256k1_fe_mul_int(&r->x, 4); /* X' = 8*X*Y^2 (4) */ - secp256k1_fe_negate(&r->x, &r->x, 4); /* X' = -8*X*Y^2 (5) */ - secp256k1_fe_add(&r->x, &t2); /* X' = 9*X^4 - 8*X*Y^2 (6) */ - secp256k1_fe_negate(&t2, &t2, 1); /* T2 = -9*X^4 (2) */ - secp256k1_fe_mul_int(&t3, 6); /* T3 = 12*X*Y^2 (6) */ - secp256k1_fe_add(&t3, &t2); /* T3 = 12*X*Y^2 - 9*X^4 (8) */ - secp256k1_fe_mul(&r->y, &t1, &t3); /* Y' = 36*X^3*Y^2 - 27*X^6 (1) */ - secp256k1_fe_negate(&t2, &t4, 2); /* T2 = -8*Y^4 (3) */ - secp256k1_fe_add(&r->y, &t2); /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */ -} - -static SECP256K1_INLINE void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) { - VERIFY_CHECK(!secp256k1_gej_is_infinity(a)); - secp256k1_gej_double_var(r, a, rzr); -} - -static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr) { - /* Operations: 12 mul, 4 sqr, 2 normalize, 12 mul_int/add/negate */ - secp256k1_fe z22, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t; - - if (a->infinity) { - VERIFY_CHECK(rzr == NULL); - *r = *b; - return; - } - - if (b->infinity) { - if (rzr != NULL) { - secp256k1_fe_set_int(rzr, 1); - } - *r = *a; - return; - } - - r->infinity = 0; - secp256k1_fe_sqr(&z22, &b->z); - secp256k1_fe_sqr(&z12, &a->z); - secp256k1_fe_mul(&u1, &a->x, &z22); - secp256k1_fe_mul(&u2, &b->x, &z12); - secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z); - secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); - secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); - secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); - if (secp256k1_fe_normalizes_to_zero_var(&h)) { - if (secp256k1_fe_normalizes_to_zero_var(&i)) { - secp256k1_gej_double_var(r, a, rzr); - } else { - if (rzr != NULL) { - secp256k1_fe_set_int(rzr, 0); - } - r->infinity = 1; - } - return; - } - secp256k1_fe_sqr(&i2, &i); - secp256k1_fe_sqr(&h2, &h); - secp256k1_fe_mul(&h3, &h, &h2); - secp256k1_fe_mul(&h, &h, &b->z); - if (rzr != NULL) { - *rzr = h; - } - secp256k1_fe_mul(&r->z, &a->z, &h); - secp256k1_fe_mul(&t, &u1, &h2); - r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); - secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); - secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); - secp256k1_fe_add(&r->y, &h3); -} - -static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr) { - /* 8 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */ - secp256k1_fe z12, u1, u2, s1, s2, h, i, i2, h2, h3, t; - if (a->infinity) { - VERIFY_CHECK(rzr == NULL); - secp256k1_gej_set_ge(r, b); - return; - } - if (b->infinity) { - if (rzr != NULL) { - secp256k1_fe_set_int(rzr, 1); - } - *r = *a; - return; - } - r->infinity = 0; - - secp256k1_fe_sqr(&z12, &a->z); - u1 = a->x; secp256k1_fe_normalize_weak(&u1); - secp256k1_fe_mul(&u2, &b->x, &z12); - s1 = a->y; secp256k1_fe_normalize_weak(&s1); - secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); - secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); - secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); - if (secp256k1_fe_normalizes_to_zero_var(&h)) { - if (secp256k1_fe_normalizes_to_zero_var(&i)) { - secp256k1_gej_double_var(r, a, rzr); - } else { - if (rzr != NULL) { - secp256k1_fe_set_int(rzr, 0); - } - r->infinity = 1; - } - return; - } - secp256k1_fe_sqr(&i2, &i); - secp256k1_fe_sqr(&h2, &h); - secp256k1_fe_mul(&h3, &h, &h2); - if (rzr != NULL) { - *rzr = h; - } - secp256k1_fe_mul(&r->z, &a->z, &h); - secp256k1_fe_mul(&t, &u1, &h2); - r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); - secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); - secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); - secp256k1_fe_add(&r->y, &h3); -} - -static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) { - /* 9 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */ - secp256k1_fe az, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t; - - if (b->infinity) { - *r = *a; - return; - } - if (a->infinity) { - secp256k1_fe bzinv2, bzinv3; - r->infinity = b->infinity; - secp256k1_fe_sqr(&bzinv2, bzinv); - secp256k1_fe_mul(&bzinv3, &bzinv2, bzinv); - secp256k1_fe_mul(&r->x, &b->x, &bzinv2); - secp256k1_fe_mul(&r->y, &b->y, &bzinv3); - secp256k1_fe_set_int(&r->z, 1); - return; - } - r->infinity = 0; - - /** We need to calculate (rx,ry,rz) = (ax,ay,az) + (bx,by,1/bzinv). Due to - * secp256k1's isomorphism we can multiply the Z coordinates on both sides - * by bzinv, and get: (rx,ry,rz*bzinv) = (ax,ay,az*bzinv) + (bx,by,1). - * This means that (rx,ry,rz) can be calculated as - * (ax,ay,az*bzinv) + (bx,by,1), when not applying the bzinv factor to rz. - * The variable az below holds the modified Z coordinate for a, which is used - * for the computation of rx and ry, but not for rz. - */ - secp256k1_fe_mul(&az, &a->z, bzinv); - - secp256k1_fe_sqr(&z12, &az); - u1 = a->x; secp256k1_fe_normalize_weak(&u1); - secp256k1_fe_mul(&u2, &b->x, &z12); - s1 = a->y; secp256k1_fe_normalize_weak(&s1); - secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az); - secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); - secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); - if (secp256k1_fe_normalizes_to_zero_var(&h)) { - if (secp256k1_fe_normalizes_to_zero_var(&i)) { - secp256k1_gej_double_var(r, a, NULL); - } else { - r->infinity = 1; - } - return; - } - secp256k1_fe_sqr(&i2, &i); - secp256k1_fe_sqr(&h2, &h); - secp256k1_fe_mul(&h3, &h, &h2); - r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h); - secp256k1_fe_mul(&t, &u1, &h2); - r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); - secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); - secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); - secp256k1_fe_add(&r->y, &h3); -} - - -static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b) { - /* Operations: 7 mul, 5 sqr, 4 normalize, 21 mul_int/add/negate/cmov */ - static const secp256k1_fe fe_1 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1); - secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr; - secp256k1_fe m_alt, rr_alt; - int infinity, degenerate; - VERIFY_CHECK(!b->infinity); - VERIFY_CHECK(a->infinity == 0 || a->infinity == 1); - - /** In: - * Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks. - * In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002. - * we find as solution for a unified addition/doubling formula: - * lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation. - * x3 = lambda^2 - (x1 + x2) - * 2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2). - * - * Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives: - * U1 = X1*Z2^2, U2 = X2*Z1^2 - * S1 = Y1*Z2^3, S2 = Y2*Z1^3 - * Z = Z1*Z2 - * T = U1+U2 - * M = S1+S2 - * Q = T*M^2 - * R = T^2-U1*U2 - * X3 = 4*(R^2-Q) - * Y3 = 4*(R*(3*Q-2*R^2)-M^4) - * Z3 = 2*M*Z - * (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.) - * - * This formula has the benefit of being the same for both addition - * of distinct points and doubling. However, it breaks down in the - * case that either point is infinity, or that y1 = -y2. We handle - * these cases in the following ways: - * - * - If b is infinity we simply bail by means of a VERIFY_CHECK. - * - * - If a is infinity, we detect this, and at the end of the - * computation replace the result (which will be meaningless, - * but we compute to be constant-time) with b.x : b.y : 1. - * - * - If a = -b, we have y1 = -y2, which is a degenerate case. - * But here the answer is infinity, so we simply set the - * infinity flag of the result, overriding the computed values - * without even needing to cmov. - * - * - If y1 = -y2 but x1 != x2, which does occur thanks to certain - * properties of our curve (specifically, 1 has nontrivial cube - * roots in our field, and the curve equation has no x coefficient) - * then the answer is not infinity but also not given by the above - * equation. In this case, we cmov in place an alternate expression - * for lambda. Specifically (y1 - y2)/(x1 - x2). Where both these - * expressions for lambda are defined, they are equal, and can be - * obtained from each other by multiplication by (y1 + y2)/(y1 + y2) - * then substitution of x^3 + 7 for y^2 (using the curve equation). - * For all pairs of nonzero points (a, b) at least one is defined, - * so this covers everything. - */ - - secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */ - u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */ - secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */ - s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */ - secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z1^2 (1) */ - secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */ - t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */ - m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */ - secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */ - secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 */ - secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (2) */ - secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */ - /** If lambda = R/M = 0/0 we have a problem (except in the "trivial" - * case that Z = z1z2 = 0, and this is special-cased later on). */ - degenerate = secp256k1_fe_normalizes_to_zero(&m) & - secp256k1_fe_normalizes_to_zero(&rr); - /* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2. - * This means either x1 == beta*x2 or beta*x1 == x2, where beta is - * a nontrivial cube root of one. In either case, an alternate - * non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2), - * so we set R/M equal to this. */ - rr_alt = s1; - secp256k1_fe_mul_int(&rr_alt, 2); /* rr = Y1*Z2^3 - Y2*Z1^3 (2) */ - secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 */ - - secp256k1_fe_cmov(&rr_alt, &rr, !degenerate); - secp256k1_fe_cmov(&m_alt, &m, !degenerate); - /* Now Ralt / Malt = lambda and is guaranteed not to be 0/0. - * From here on out Ralt and Malt represent the numerator - * and denominator of lambda; R and M represent the explicit - * expressions x1^2 + x2^2 + x1x2 and y1 + y2. */ - secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */ - secp256k1_fe_mul(&q, &n, &t); /* q = Q = T*Malt^2 (1) */ - /* These two lines use the observation that either M == Malt or M == 0, - * so M^3 * Malt is either Malt^4 (which is computed by squaring), or - * zero (which is "computed" by cmov). So the cost is one squaring - * versus two multiplications. */ - secp256k1_fe_sqr(&n, &n); - secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */ - secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */ - secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Malt*Z (1) */ - infinity = secp256k1_fe_normalizes_to_zero(&r->z) * (1 - a->infinity); - secp256k1_fe_mul_int(&r->z, 2); /* r->z = Z3 = 2*Malt*Z (2) */ - secp256k1_fe_negate(&q, &q, 1); /* q = -Q (2) */ - secp256k1_fe_add(&t, &q); /* t = Ralt^2-Q (3) */ - secp256k1_fe_normalize_weak(&t); - r->x = t; /* r->x = Ralt^2-Q (1) */ - secp256k1_fe_mul_int(&t, 2); /* t = 2*x3 (2) */ - secp256k1_fe_add(&t, &q); /* t = 2*x3 - Q: (4) */ - secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*x3 - Q) (1) */ - secp256k1_fe_add(&t, &n); /* t = Ralt*(2*x3 - Q) + M^3*Malt (3) */ - secp256k1_fe_negate(&r->y, &t, 3); /* r->y = Ralt*(Q - 2x3) - M^3*Malt (4) */ - secp256k1_fe_normalize_weak(&r->y); - secp256k1_fe_mul_int(&r->x, 4); /* r->x = X3 = 4*(Ralt^2-Q) */ - secp256k1_fe_mul_int(&r->y, 4); /* r->y = Y3 = 4*Ralt*(Q - 2x3) - 4*M^3*Malt (4) */ - - /** In case a->infinity == 1, replace r with (b->x, b->y, 1). */ - secp256k1_fe_cmov(&r->x, &b->x, a->infinity); - secp256k1_fe_cmov(&r->y, &b->y, a->infinity); - secp256k1_fe_cmov(&r->z, &fe_1, a->infinity); - r->infinity = infinity; -} - -static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s) { - /* Operations: 4 mul, 1 sqr */ - secp256k1_fe zz; - VERIFY_CHECK(!secp256k1_fe_is_zero(s)); - secp256k1_fe_sqr(&zz, s); - secp256k1_fe_mul(&r->x, &r->x, &zz); /* r->x *= s^2 */ - secp256k1_fe_mul(&r->y, &r->y, &zz); - secp256k1_fe_mul(&r->y, &r->y, s); /* r->y *= s^3 */ - secp256k1_fe_mul(&r->z, &r->z, s); /* r->z *= s */ -} - -static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a) { - secp256k1_fe x, y; - VERIFY_CHECK(!a->infinity); - x = a->x; - secp256k1_fe_normalize(&x); - y = a->y; - secp256k1_fe_normalize(&y); - secp256k1_fe_to_storage(&r->x, &x); - secp256k1_fe_to_storage(&r->y, &y); -} - -static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a) { - secp256k1_fe_from_storage(&r->x, &a->x); - secp256k1_fe_from_storage(&r->y, &a->y); - r->infinity = 0; -} - -static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag) { - secp256k1_fe_storage_cmov(&r->x, &a->x, flag); - secp256k1_fe_storage_cmov(&r->y, &a->y, flag); -} - -#ifdef USE_ENDOMORPHISM -static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) { - static const secp256k1_fe beta = SECP256K1_FE_CONST( - 0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul, - 0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul - ); - *r = *a; - secp256k1_fe_mul(&r->x, &r->x, &beta); -} -#endif - -static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a) { - secp256k1_fe yz; - - if (a->infinity) { - return 0; - } - - /* We rely on the fact that the Jacobi symbol of 1 / a->z^3 is the same as - * that of a->z. Thus a->y / a->z^3 is a quadratic residue iff a->y * a->z - is */ - secp256k1_fe_mul(&yz, &a->y, &a->z); - return secp256k1_fe_is_quad_var(&yz); -} - -#endif /* SECP256K1_GROUP_IMPL_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/hash.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/hash.h deleted file mode 100644 index de26e4b..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/hash.h +++ /dev/null @@ -1,41 +0,0 @@ -/********************************************************************** - * Copyright (c) 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_HASH_H -#define SECP256K1_HASH_H - -#include -#include - -typedef struct { - uint32_t s[8]; - uint32_t buf[16]; /* In big endian */ - size_t bytes; -} secp256k1_sha256; - -static void secp256k1_sha256_initialize(secp256k1_sha256 *hash); -static void secp256k1_sha256_write(secp256k1_sha256 *hash, const unsigned char *data, size_t size); -static void secp256k1_sha256_finalize(secp256k1_sha256 *hash, unsigned char *out32); - -typedef struct { - secp256k1_sha256 inner, outer; -} secp256k1_hmac_sha256; - -static void secp256k1_hmac_sha256_initialize(secp256k1_hmac_sha256 *hash, const unsigned char *key, size_t size); -static void secp256k1_hmac_sha256_write(secp256k1_hmac_sha256 *hash, const unsigned char *data, size_t size); -static void secp256k1_hmac_sha256_finalize(secp256k1_hmac_sha256 *hash, unsigned char *out32); - -typedef struct { - unsigned char v[32]; - unsigned char k[32]; - int retry; -} secp256k1_rfc6979_hmac_sha256; - -static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256 *rng, const unsigned char *key, size_t keylen); -static void secp256k1_rfc6979_hmac_sha256_generate(secp256k1_rfc6979_hmac_sha256 *rng, unsigned char *out, size_t outlen); -static void secp256k1_rfc6979_hmac_sha256_finalize(secp256k1_rfc6979_hmac_sha256 *rng); - -#endif /* SECP256K1_HASH_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/hash_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/hash_impl.h deleted file mode 100644 index 009f26b..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/hash_impl.h +++ /dev/null @@ -1,282 +0,0 @@ -/********************************************************************** - * Copyright (c) 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_HASH_IMPL_H -#define SECP256K1_HASH_IMPL_H - -#include "hash.h" - -#include -#include -#include - -#define Ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z)))) -#define Maj(x,y,z) (((x) & (y)) | ((z) & ((x) | (y)))) -#define Sigma0(x) (((x) >> 2 | (x) << 30) ^ ((x) >> 13 | (x) << 19) ^ ((x) >> 22 | (x) << 10)) -#define Sigma1(x) (((x) >> 6 | (x) << 26) ^ ((x) >> 11 | (x) << 21) ^ ((x) >> 25 | (x) << 7)) -#define sigma0(x) (((x) >> 7 | (x) << 25) ^ ((x) >> 18 | (x) << 14) ^ ((x) >> 3)) -#define sigma1(x) (((x) >> 17 | (x) << 15) ^ ((x) >> 19 | (x) << 13) ^ ((x) >> 10)) - -#define Round(a,b,c,d,e,f,g,h,k,w) do { \ - uint32_t t1 = (h) + Sigma1(e) + Ch((e), (f), (g)) + (k) + (w); \ - uint32_t t2 = Sigma0(a) + Maj((a), (b), (c)); \ - (d) += t1; \ - (h) = t1 + t2; \ -} while(0) - -#ifdef WORDS_BIGENDIAN -#define BE32(x) (x) -#else -#define BE32(p) ((((p) & 0xFF) << 24) | (((p) & 0xFF00) << 8) | (((p) & 0xFF0000) >> 8) | (((p) & 0xFF000000) >> 24)) -#endif - -static void secp256k1_sha256_initialize(secp256k1_sha256 *hash) { - hash->s[0] = 0x6a09e667ul; - hash->s[1] = 0xbb67ae85ul; - hash->s[2] = 0x3c6ef372ul; - hash->s[3] = 0xa54ff53aul; - hash->s[4] = 0x510e527ful; - hash->s[5] = 0x9b05688cul; - hash->s[6] = 0x1f83d9abul; - hash->s[7] = 0x5be0cd19ul; - hash->bytes = 0; -} - -/** Perform one SHA-256 transformation, processing 16 big endian 32-bit words. */ -static void secp256k1_sha256_transform(uint32_t* s, const uint32_t* chunk) { - uint32_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4], f = s[5], g = s[6], h = s[7]; - uint32_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15; - - Round(a, b, c, d, e, f, g, h, 0x428a2f98, w0 = BE32(chunk[0])); - Round(h, a, b, c, d, e, f, g, 0x71374491, w1 = BE32(chunk[1])); - Round(g, h, a, b, c, d, e, f, 0xb5c0fbcf, w2 = BE32(chunk[2])); - Round(f, g, h, a, b, c, d, e, 0xe9b5dba5, w3 = BE32(chunk[3])); - Round(e, f, g, h, a, b, c, d, 0x3956c25b, w4 = BE32(chunk[4])); - Round(d, e, f, g, h, a, b, c, 0x59f111f1, w5 = BE32(chunk[5])); - Round(c, d, e, f, g, h, a, b, 0x923f82a4, w6 = BE32(chunk[6])); - Round(b, c, d, e, f, g, h, a, 0xab1c5ed5, w7 = BE32(chunk[7])); - Round(a, b, c, d, e, f, g, h, 0xd807aa98, w8 = BE32(chunk[8])); - Round(h, a, b, c, d, e, f, g, 0x12835b01, w9 = BE32(chunk[9])); - Round(g, h, a, b, c, d, e, f, 0x243185be, w10 = BE32(chunk[10])); - Round(f, g, h, a, b, c, d, e, 0x550c7dc3, w11 = BE32(chunk[11])); - Round(e, f, g, h, a, b, c, d, 0x72be5d74, w12 = BE32(chunk[12])); - Round(d, e, f, g, h, a, b, c, 0x80deb1fe, w13 = BE32(chunk[13])); - Round(c, d, e, f, g, h, a, b, 0x9bdc06a7, w14 = BE32(chunk[14])); - Round(b, c, d, e, f, g, h, a, 0xc19bf174, w15 = BE32(chunk[15])); - - Round(a, b, c, d, e, f, g, h, 0xe49b69c1, w0 += sigma1(w14) + w9 + sigma0(w1)); - Round(h, a, b, c, d, e, f, g, 0xefbe4786, w1 += sigma1(w15) + w10 + sigma0(w2)); - Round(g, h, a, b, c, d, e, f, 0x0fc19dc6, w2 += sigma1(w0) + w11 + sigma0(w3)); - Round(f, g, h, a, b, c, d, e, 0x240ca1cc, w3 += sigma1(w1) + w12 + sigma0(w4)); - Round(e, f, g, h, a, b, c, d, 0x2de92c6f, w4 += sigma1(w2) + w13 + sigma0(w5)); - Round(d, e, f, g, h, a, b, c, 0x4a7484aa, w5 += sigma1(w3) + w14 + sigma0(w6)); - Round(c, d, e, f, g, h, a, b, 0x5cb0a9dc, w6 += sigma1(w4) + w15 + sigma0(w7)); - Round(b, c, d, e, f, g, h, a, 0x76f988da, w7 += sigma1(w5) + w0 + sigma0(w8)); - Round(a, b, c, d, e, f, g, h, 0x983e5152, w8 += sigma1(w6) + w1 + sigma0(w9)); - Round(h, a, b, c, d, e, f, g, 0xa831c66d, w9 += sigma1(w7) + w2 + sigma0(w10)); - Round(g, h, a, b, c, d, e, f, 0xb00327c8, w10 += sigma1(w8) + w3 + sigma0(w11)); - Round(f, g, h, a, b, c, d, e, 0xbf597fc7, w11 += sigma1(w9) + w4 + sigma0(w12)); - Round(e, f, g, h, a, b, c, d, 0xc6e00bf3, w12 += sigma1(w10) + w5 + sigma0(w13)); - Round(d, e, f, g, h, a, b, c, 0xd5a79147, w13 += sigma1(w11) + w6 + sigma0(w14)); - Round(c, d, e, f, g, h, a, b, 0x06ca6351, w14 += sigma1(w12) + w7 + sigma0(w15)); - Round(b, c, d, e, f, g, h, a, 0x14292967, w15 += sigma1(w13) + w8 + sigma0(w0)); - - Round(a, b, c, d, e, f, g, h, 0x27b70a85, w0 += sigma1(w14) + w9 + sigma0(w1)); - Round(h, a, b, c, d, e, f, g, 0x2e1b2138, w1 += sigma1(w15) + w10 + sigma0(w2)); - Round(g, h, a, b, c, d, e, f, 0x4d2c6dfc, w2 += sigma1(w0) + w11 + sigma0(w3)); - Round(f, g, h, a, b, c, d, e, 0x53380d13, w3 += sigma1(w1) + w12 + sigma0(w4)); - Round(e, f, g, h, a, b, c, d, 0x650a7354, w4 += sigma1(w2) + w13 + sigma0(w5)); - Round(d, e, f, g, h, a, b, c, 0x766a0abb, w5 += sigma1(w3) + w14 + sigma0(w6)); - Round(c, d, e, f, g, h, a, b, 0x81c2c92e, w6 += sigma1(w4) + w15 + sigma0(w7)); - Round(b, c, d, e, f, g, h, a, 0x92722c85, w7 += sigma1(w5) + w0 + sigma0(w8)); - Round(a, b, c, d, e, f, g, h, 0xa2bfe8a1, w8 += sigma1(w6) + w1 + sigma0(w9)); - Round(h, a, b, c, d, e, f, g, 0xa81a664b, w9 += sigma1(w7) + w2 + sigma0(w10)); - Round(g, h, a, b, c, d, e, f, 0xc24b8b70, w10 += sigma1(w8) + w3 + sigma0(w11)); - Round(f, g, h, a, b, c, d, e, 0xc76c51a3, w11 += sigma1(w9) + w4 + sigma0(w12)); - Round(e, f, g, h, a, b, c, d, 0xd192e819, w12 += sigma1(w10) + w5 + sigma0(w13)); - Round(d, e, f, g, h, a, b, c, 0xd6990624, w13 += sigma1(w11) + w6 + sigma0(w14)); - Round(c, d, e, f, g, h, a, b, 0xf40e3585, w14 += sigma1(w12) + w7 + sigma0(w15)); - Round(b, c, d, e, f, g, h, a, 0x106aa070, w15 += sigma1(w13) + w8 + sigma0(w0)); - - Round(a, b, c, d, e, f, g, h, 0x19a4c116, w0 += sigma1(w14) + w9 + sigma0(w1)); - Round(h, a, b, c, d, e, f, g, 0x1e376c08, w1 += sigma1(w15) + w10 + sigma0(w2)); - Round(g, h, a, b, c, d, e, f, 0x2748774c, w2 += sigma1(w0) + w11 + sigma0(w3)); - Round(f, g, h, a, b, c, d, e, 0x34b0bcb5, w3 += sigma1(w1) + w12 + sigma0(w4)); - Round(e, f, g, h, a, b, c, d, 0x391c0cb3, w4 += sigma1(w2) + w13 + sigma0(w5)); - Round(d, e, f, g, h, a, b, c, 0x4ed8aa4a, w5 += sigma1(w3) + w14 + sigma0(w6)); - Round(c, d, e, f, g, h, a, b, 0x5b9cca4f, w6 += sigma1(w4) + w15 + sigma0(w7)); - Round(b, c, d, e, f, g, h, a, 0x682e6ff3, w7 += sigma1(w5) + w0 + sigma0(w8)); - Round(a, b, c, d, e, f, g, h, 0x748f82ee, w8 += sigma1(w6) + w1 + sigma0(w9)); - Round(h, a, b, c, d, e, f, g, 0x78a5636f, w9 += sigma1(w7) + w2 + sigma0(w10)); - Round(g, h, a, b, c, d, e, f, 0x84c87814, w10 += sigma1(w8) + w3 + sigma0(w11)); - Round(f, g, h, a, b, c, d, e, 0x8cc70208, w11 += sigma1(w9) + w4 + sigma0(w12)); - Round(e, f, g, h, a, b, c, d, 0x90befffa, w12 += sigma1(w10) + w5 + sigma0(w13)); - Round(d, e, f, g, h, a, b, c, 0xa4506ceb, w13 += sigma1(w11) + w6 + sigma0(w14)); - Round(c, d, e, f, g, h, a, b, 0xbef9a3f7, w14 + sigma1(w12) + w7 + sigma0(w15)); - Round(b, c, d, e, f, g, h, a, 0xc67178f2, w15 + sigma1(w13) + w8 + sigma0(w0)); - - s[0] += a; - s[1] += b; - s[2] += c; - s[3] += d; - s[4] += e; - s[5] += f; - s[6] += g; - s[7] += h; -} - -static void secp256k1_sha256_write(secp256k1_sha256 *hash, const unsigned char *data, size_t len) { - size_t bufsize = hash->bytes & 0x3F; - hash->bytes += len; - while (bufsize + len >= 64) { - /* Fill the buffer, and process it. */ - size_t chunk_len = 64 - bufsize; - memcpy(((unsigned char*)hash->buf) + bufsize, data, chunk_len); - data += chunk_len; - len -= chunk_len; - secp256k1_sha256_transform(hash->s, hash->buf); - bufsize = 0; - } - if (len) { - /* Fill the buffer with what remains. */ - memcpy(((unsigned char*)hash->buf) + bufsize, data, len); - } -} - -static void secp256k1_sha256_finalize(secp256k1_sha256 *hash, unsigned char *out32) { - static const unsigned char pad[64] = {0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; - uint32_t sizedesc[2]; - uint32_t out[8]; - int i = 0; - sizedesc[0] = BE32(hash->bytes >> 29); - sizedesc[1] = BE32(hash->bytes << 3); - secp256k1_sha256_write(hash, pad, 1 + ((119 - (hash->bytes % 64)) % 64)); - secp256k1_sha256_write(hash, (const unsigned char*)sizedesc, 8); - for (i = 0; i < 8; i++) { - out[i] = BE32(hash->s[i]); - hash->s[i] = 0; - } - memcpy(out32, (const unsigned char*)out, 32); -} - -static void secp256k1_hmac_sha256_initialize(secp256k1_hmac_sha256 *hash, const unsigned char *key, size_t keylen) { - size_t n; - unsigned char rkey[64]; - if (keylen <= sizeof(rkey)) { - memcpy(rkey, key, keylen); - memset(rkey + keylen, 0, sizeof(rkey) - keylen); - } else { - secp256k1_sha256 sha256; - secp256k1_sha256_initialize(&sha256); - secp256k1_sha256_write(&sha256, key, keylen); - secp256k1_sha256_finalize(&sha256, rkey); - memset(rkey + 32, 0, 32); - } - - secp256k1_sha256_initialize(&hash->outer); - for (n = 0; n < sizeof(rkey); n++) { - rkey[n] ^= 0x5c; - } - secp256k1_sha256_write(&hash->outer, rkey, sizeof(rkey)); - - secp256k1_sha256_initialize(&hash->inner); - for (n = 0; n < sizeof(rkey); n++) { - rkey[n] ^= 0x5c ^ 0x36; - } - secp256k1_sha256_write(&hash->inner, rkey, sizeof(rkey)); - memset(rkey, 0, sizeof(rkey)); -} - -static void secp256k1_hmac_sha256_write(secp256k1_hmac_sha256 *hash, const unsigned char *data, size_t size) { - secp256k1_sha256_write(&hash->inner, data, size); -} - -static void secp256k1_hmac_sha256_finalize(secp256k1_hmac_sha256 *hash, unsigned char *out32) { - unsigned char temp[32]; - secp256k1_sha256_finalize(&hash->inner, temp); - secp256k1_sha256_write(&hash->outer, temp, 32); - memset(temp, 0, 32); - secp256k1_sha256_finalize(&hash->outer, out32); -} - - -static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256 *rng, const unsigned char *key, size_t keylen) { - secp256k1_hmac_sha256 hmac; - static const unsigned char zero[1] = {0x00}; - static const unsigned char one[1] = {0x01}; - - memset(rng->v, 0x01, 32); /* RFC6979 3.2.b. */ - memset(rng->k, 0x00, 32); /* RFC6979 3.2.c. */ - - /* RFC6979 3.2.d. */ - secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32); - secp256k1_hmac_sha256_write(&hmac, rng->v, 32); - secp256k1_hmac_sha256_write(&hmac, zero, 1); - secp256k1_hmac_sha256_write(&hmac, key, keylen); - secp256k1_hmac_sha256_finalize(&hmac, rng->k); - secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32); - secp256k1_hmac_sha256_write(&hmac, rng->v, 32); - secp256k1_hmac_sha256_finalize(&hmac, rng->v); - - /* RFC6979 3.2.f. */ - secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32); - secp256k1_hmac_sha256_write(&hmac, rng->v, 32); - secp256k1_hmac_sha256_write(&hmac, one, 1); - secp256k1_hmac_sha256_write(&hmac, key, keylen); - secp256k1_hmac_sha256_finalize(&hmac, rng->k); - secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32); - secp256k1_hmac_sha256_write(&hmac, rng->v, 32); - secp256k1_hmac_sha256_finalize(&hmac, rng->v); - rng->retry = 0; -} - -static void secp256k1_rfc6979_hmac_sha256_generate(secp256k1_rfc6979_hmac_sha256 *rng, unsigned char *out, size_t outlen) { - /* RFC6979 3.2.h. */ - static const unsigned char zero[1] = {0x00}; - if (rng->retry) { - secp256k1_hmac_sha256 hmac; - secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32); - secp256k1_hmac_sha256_write(&hmac, rng->v, 32); - secp256k1_hmac_sha256_write(&hmac, zero, 1); - secp256k1_hmac_sha256_finalize(&hmac, rng->k); - secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32); - secp256k1_hmac_sha256_write(&hmac, rng->v, 32); - secp256k1_hmac_sha256_finalize(&hmac, rng->v); - } - - while (outlen > 0) { - secp256k1_hmac_sha256 hmac; - int now = outlen; - secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32); - secp256k1_hmac_sha256_write(&hmac, rng->v, 32); - secp256k1_hmac_sha256_finalize(&hmac, rng->v); - if (now > 32) { - now = 32; - } - memcpy(out, rng->v, now); - out += now; - outlen -= now; - } - - rng->retry = 1; -} - -static void secp256k1_rfc6979_hmac_sha256_finalize(secp256k1_rfc6979_hmac_sha256 *rng) { - memset(rng->k, 0, 32); - memset(rng->v, 0, 32); - rng->retry = 0; -} - -#undef BE32 -#undef Round -#undef sigma1 -#undef sigma0 -#undef Sigma1 -#undef Sigma0 -#undef Maj -#undef Ch - -#endif /* SECP256K1_HASH_IMPL_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1.java b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1.java deleted file mode 100644 index 1c67802..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1.java +++ /dev/null @@ -1,446 +0,0 @@ -/* - * Copyright 2013 Google Inc. - * Copyright 2014-2016 the libsecp256k1 contributors - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.bitcoin; - -import java.nio.ByteBuffer; -import java.nio.ByteOrder; - -import java.math.BigInteger; -import com.google.common.base.Preconditions; -import java.util.concurrent.locks.Lock; -import java.util.concurrent.locks.ReentrantReadWriteLock; -import static org.bitcoin.NativeSecp256k1Util.*; - -/** - *

This class holds native methods to handle ECDSA verification.

- * - *

You can find an example library that can be used for this at https://github.com/bitcoin/secp256k1

- * - *

To build secp256k1 for use with bitcoinj, run - * `./configure --enable-jni --enable-experimental --enable-module-ecdh` - * and `make` then copy `.libs/libsecp256k1.so` to your system library path - * or point the JVM to the folder containing it with -Djava.library.path - *

- */ -public class NativeSecp256k1 { - - private static final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock(); - private static final Lock r = rwl.readLock(); - private static final Lock w = rwl.writeLock(); - private static ThreadLocal nativeECDSABuffer = new ThreadLocal(); - /** - * Verifies the given secp256k1 signature in native code. - * Calling when enabled == false is undefined (probably library not loaded) - * - * @param data The data which was signed, must be exactly 32 bytes - * @param signature The signature - * @param pub The public key which did the signing - */ - public static boolean verify(byte[] data, byte[] signature, byte[] pub) throws AssertFailException{ - Preconditions.checkArgument(data.length == 32 && signature.length <= 520 && pub.length <= 520); - - ByteBuffer byteBuff = nativeECDSABuffer.get(); - if (byteBuff == null || byteBuff.capacity() < 520) { - byteBuff = ByteBuffer.allocateDirect(520); - byteBuff.order(ByteOrder.nativeOrder()); - nativeECDSABuffer.set(byteBuff); - } - byteBuff.rewind(); - byteBuff.put(data); - byteBuff.put(signature); - byteBuff.put(pub); - - byte[][] retByteArray; - - r.lock(); - try { - return secp256k1_ecdsa_verify(byteBuff, Secp256k1Context.getContext(), signature.length, pub.length) == 1; - } finally { - r.unlock(); - } - } - - /** - * libsecp256k1 Create an ECDSA signature. - * - * @param data Message hash, 32 bytes - * @param key Secret key, 32 bytes - * - * Return values - * @param sig byte array of signature - */ - public static byte[] sign(byte[] data, byte[] sec) throws AssertFailException{ - Preconditions.checkArgument(data.length == 32 && sec.length <= 32); - - ByteBuffer byteBuff = nativeECDSABuffer.get(); - if (byteBuff == null || byteBuff.capacity() < 32 + 32) { - byteBuff = ByteBuffer.allocateDirect(32 + 32); - byteBuff.order(ByteOrder.nativeOrder()); - nativeECDSABuffer.set(byteBuff); - } - byteBuff.rewind(); - byteBuff.put(data); - byteBuff.put(sec); - - byte[][] retByteArray; - - r.lock(); - try { - retByteArray = secp256k1_ecdsa_sign(byteBuff, Secp256k1Context.getContext()); - } finally { - r.unlock(); - } - - byte[] sigArr = retByteArray[0]; - int sigLen = new BigInteger(new byte[] { retByteArray[1][0] }).intValue(); - int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue(); - - assertEquals(sigArr.length, sigLen, "Got bad signature length."); - - return retVal == 0 ? new byte[0] : sigArr; - } - - /** - * libsecp256k1 Seckey Verify - returns 1 if valid, 0 if invalid - * - * @param seckey ECDSA Secret key, 32 bytes - */ - public static boolean secKeyVerify(byte[] seckey) { - Preconditions.checkArgument(seckey.length == 32); - - ByteBuffer byteBuff = nativeECDSABuffer.get(); - if (byteBuff == null || byteBuff.capacity() < seckey.length) { - byteBuff = ByteBuffer.allocateDirect(seckey.length); - byteBuff.order(ByteOrder.nativeOrder()); - nativeECDSABuffer.set(byteBuff); - } - byteBuff.rewind(); - byteBuff.put(seckey); - - r.lock(); - try { - return secp256k1_ec_seckey_verify(byteBuff,Secp256k1Context.getContext()) == 1; - } finally { - r.unlock(); - } - } - - - /** - * libsecp256k1 Compute Pubkey - computes public key from secret key - * - * @param seckey ECDSA Secret key, 32 bytes - * - * Return values - * @param pubkey ECDSA Public key, 33 or 65 bytes - */ - //TODO add a 'compressed' arg - public static byte[] computePubkey(byte[] seckey) throws AssertFailException{ - Preconditions.checkArgument(seckey.length == 32); - - ByteBuffer byteBuff = nativeECDSABuffer.get(); - if (byteBuff == null || byteBuff.capacity() < seckey.length) { - byteBuff = ByteBuffer.allocateDirect(seckey.length); - byteBuff.order(ByteOrder.nativeOrder()); - nativeECDSABuffer.set(byteBuff); - } - byteBuff.rewind(); - byteBuff.put(seckey); - - byte[][] retByteArray; - - r.lock(); - try { - retByteArray = secp256k1_ec_pubkey_create(byteBuff, Secp256k1Context.getContext()); - } finally { - r.unlock(); - } - - byte[] pubArr = retByteArray[0]; - int pubLen = new BigInteger(new byte[] { retByteArray[1][0] }).intValue(); - int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue(); - - assertEquals(pubArr.length, pubLen, "Got bad pubkey length."); - - return retVal == 0 ? new byte[0]: pubArr; - } - - /** - * libsecp256k1 Cleanup - This destroys the secp256k1 context object - * This should be called at the end of the program for proper cleanup of the context. - */ - public static synchronized void cleanup() { - w.lock(); - try { - secp256k1_destroy_context(Secp256k1Context.getContext()); - } finally { - w.unlock(); - } - } - - public static long cloneContext() { - r.lock(); - try { - return secp256k1_ctx_clone(Secp256k1Context.getContext()); - } finally { r.unlock(); } - } - - /** - * libsecp256k1 PrivKey Tweak-Mul - Tweak privkey by multiplying to it - * - * @param tweak some bytes to tweak with - * @param seckey 32-byte seckey - */ - public static byte[] privKeyTweakMul(byte[] privkey, byte[] tweak) throws AssertFailException{ - Preconditions.checkArgument(privkey.length == 32); - - ByteBuffer byteBuff = nativeECDSABuffer.get(); - if (byteBuff == null || byteBuff.capacity() < privkey.length + tweak.length) { - byteBuff = ByteBuffer.allocateDirect(privkey.length + tweak.length); - byteBuff.order(ByteOrder.nativeOrder()); - nativeECDSABuffer.set(byteBuff); - } - byteBuff.rewind(); - byteBuff.put(privkey); - byteBuff.put(tweak); - - byte[][] retByteArray; - r.lock(); - try { - retByteArray = secp256k1_privkey_tweak_mul(byteBuff,Secp256k1Context.getContext()); - } finally { - r.unlock(); - } - - byte[] privArr = retByteArray[0]; - - int privLen = (byte) new BigInteger(new byte[] { retByteArray[1][0] }).intValue() & 0xFF; - int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue(); - - assertEquals(privArr.length, privLen, "Got bad pubkey length."); - - assertEquals(retVal, 1, "Failed return value check."); - - return privArr; - } - - /** - * libsecp256k1 PrivKey Tweak-Add - Tweak privkey by adding to it - * - * @param tweak some bytes to tweak with - * @param seckey 32-byte seckey - */ - public static byte[] privKeyTweakAdd(byte[] privkey, byte[] tweak) throws AssertFailException{ - Preconditions.checkArgument(privkey.length == 32); - - ByteBuffer byteBuff = nativeECDSABuffer.get(); - if (byteBuff == null || byteBuff.capacity() < privkey.length + tweak.length) { - byteBuff = ByteBuffer.allocateDirect(privkey.length + tweak.length); - byteBuff.order(ByteOrder.nativeOrder()); - nativeECDSABuffer.set(byteBuff); - } - byteBuff.rewind(); - byteBuff.put(privkey); - byteBuff.put(tweak); - - byte[][] retByteArray; - r.lock(); - try { - retByteArray = secp256k1_privkey_tweak_add(byteBuff,Secp256k1Context.getContext()); - } finally { - r.unlock(); - } - - byte[] privArr = retByteArray[0]; - - int privLen = (byte) new BigInteger(new byte[] { retByteArray[1][0] }).intValue() & 0xFF; - int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue(); - - assertEquals(privArr.length, privLen, "Got bad pubkey length."); - - assertEquals(retVal, 1, "Failed return value check."); - - return privArr; - } - - /** - * libsecp256k1 PubKey Tweak-Add - Tweak pubkey by adding to it - * - * @param tweak some bytes to tweak with - * @param pubkey 32-byte seckey - */ - public static byte[] pubKeyTweakAdd(byte[] pubkey, byte[] tweak) throws AssertFailException{ - Preconditions.checkArgument(pubkey.length == 33 || pubkey.length == 65); - - ByteBuffer byteBuff = nativeECDSABuffer.get(); - if (byteBuff == null || byteBuff.capacity() < pubkey.length + tweak.length) { - byteBuff = ByteBuffer.allocateDirect(pubkey.length + tweak.length); - byteBuff.order(ByteOrder.nativeOrder()); - nativeECDSABuffer.set(byteBuff); - } - byteBuff.rewind(); - byteBuff.put(pubkey); - byteBuff.put(tweak); - - byte[][] retByteArray; - r.lock(); - try { - retByteArray = secp256k1_pubkey_tweak_add(byteBuff,Secp256k1Context.getContext(), pubkey.length); - } finally { - r.unlock(); - } - - byte[] pubArr = retByteArray[0]; - - int pubLen = (byte) new BigInteger(new byte[] { retByteArray[1][0] }).intValue() & 0xFF; - int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue(); - - assertEquals(pubArr.length, pubLen, "Got bad pubkey length."); - - assertEquals(retVal, 1, "Failed return value check."); - - return pubArr; - } - - /** - * libsecp256k1 PubKey Tweak-Mul - Tweak pubkey by multiplying to it - * - * @param tweak some bytes to tweak with - * @param pubkey 32-byte seckey - */ - public static byte[] pubKeyTweakMul(byte[] pubkey, byte[] tweak) throws AssertFailException{ - Preconditions.checkArgument(pubkey.length == 33 || pubkey.length == 65); - - ByteBuffer byteBuff = nativeECDSABuffer.get(); - if (byteBuff == null || byteBuff.capacity() < pubkey.length + tweak.length) { - byteBuff = ByteBuffer.allocateDirect(pubkey.length + tweak.length); - byteBuff.order(ByteOrder.nativeOrder()); - nativeECDSABuffer.set(byteBuff); - } - byteBuff.rewind(); - byteBuff.put(pubkey); - byteBuff.put(tweak); - - byte[][] retByteArray; - r.lock(); - try { - retByteArray = secp256k1_pubkey_tweak_mul(byteBuff,Secp256k1Context.getContext(), pubkey.length); - } finally { - r.unlock(); - } - - byte[] pubArr = retByteArray[0]; - - int pubLen = (byte) new BigInteger(new byte[] { retByteArray[1][0] }).intValue() & 0xFF; - int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue(); - - assertEquals(pubArr.length, pubLen, "Got bad pubkey length."); - - assertEquals(retVal, 1, "Failed return value check."); - - return pubArr; - } - - /** - * libsecp256k1 create ECDH secret - constant time ECDH calculation - * - * @param seckey byte array of secret key used in exponentiaion - * @param pubkey byte array of public key used in exponentiaion - */ - public static byte[] createECDHSecret(byte[] seckey, byte[] pubkey) throws AssertFailException{ - Preconditions.checkArgument(seckey.length <= 32 && pubkey.length <= 65); - - ByteBuffer byteBuff = nativeECDSABuffer.get(); - if (byteBuff == null || byteBuff.capacity() < 32 + pubkey.length) { - byteBuff = ByteBuffer.allocateDirect(32 + pubkey.length); - byteBuff.order(ByteOrder.nativeOrder()); - nativeECDSABuffer.set(byteBuff); - } - byteBuff.rewind(); - byteBuff.put(seckey); - byteBuff.put(pubkey); - - byte[][] retByteArray; - r.lock(); - try { - retByteArray = secp256k1_ecdh(byteBuff, Secp256k1Context.getContext(), pubkey.length); - } finally { - r.unlock(); - } - - byte[] resArr = retByteArray[0]; - int retVal = new BigInteger(new byte[] { retByteArray[1][0] }).intValue(); - - assertEquals(resArr.length, 32, "Got bad result length."); - assertEquals(retVal, 1, "Failed return value check."); - - return resArr; - } - - /** - * libsecp256k1 randomize - updates the context randomization - * - * @param seed 32-byte random seed - */ - public static synchronized boolean randomize(byte[] seed) throws AssertFailException{ - Preconditions.checkArgument(seed.length == 32 || seed == null); - - ByteBuffer byteBuff = nativeECDSABuffer.get(); - if (byteBuff == null || byteBuff.capacity() < seed.length) { - byteBuff = ByteBuffer.allocateDirect(seed.length); - byteBuff.order(ByteOrder.nativeOrder()); - nativeECDSABuffer.set(byteBuff); - } - byteBuff.rewind(); - byteBuff.put(seed); - - w.lock(); - try { - return secp256k1_context_randomize(byteBuff, Secp256k1Context.getContext()) == 1; - } finally { - w.unlock(); - } - } - - private static native long secp256k1_ctx_clone(long context); - - private static native int secp256k1_context_randomize(ByteBuffer byteBuff, long context); - - private static native byte[][] secp256k1_privkey_tweak_add(ByteBuffer byteBuff, long context); - - private static native byte[][] secp256k1_privkey_tweak_mul(ByteBuffer byteBuff, long context); - - private static native byte[][] secp256k1_pubkey_tweak_add(ByteBuffer byteBuff, long context, int pubLen); - - private static native byte[][] secp256k1_pubkey_tweak_mul(ByteBuffer byteBuff, long context, int pubLen); - - private static native void secp256k1_destroy_context(long context); - - private static native int secp256k1_ecdsa_verify(ByteBuffer byteBuff, long context, int sigLen, int pubLen); - - private static native byte[][] secp256k1_ecdsa_sign(ByteBuffer byteBuff, long context); - - private static native int secp256k1_ec_seckey_verify(ByteBuffer byteBuff, long context); - - private static native byte[][] secp256k1_ec_pubkey_create(ByteBuffer byteBuff, long context); - - private static native byte[][] secp256k1_ec_pubkey_parse(ByteBuffer byteBuff, long context, int inputLen); - - private static native byte[][] secp256k1_ecdh(ByteBuffer byteBuff, long context, int inputLen); - -} diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1Test.java b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1Test.java deleted file mode 100644 index d766a10..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1Test.java +++ /dev/null @@ -1,226 +0,0 @@ -package org.bitcoin; - -import com.google.common.io.BaseEncoding; -import java.util.Arrays; -import java.math.BigInteger; -import javax.xml.bind.DatatypeConverter; -import static org.bitcoin.NativeSecp256k1Util.*; - -/** - * This class holds test cases defined for testing this library. - */ -public class NativeSecp256k1Test { - - //TODO improve comments/add more tests - /** - * This tests verify() for a valid signature - */ - public static void testVerifyPos() throws AssertFailException{ - boolean result = false; - byte[] data = BaseEncoding.base16().lowerCase().decode("CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A90".toLowerCase()); //sha256hash of "testing" - byte[] sig = BaseEncoding.base16().lowerCase().decode("3044022079BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F817980220294F14E883B3F525B5367756C2A11EF6CF84B730B36C17CB0C56F0AAB2C98589".toLowerCase()); - byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase()); - - result = NativeSecp256k1.verify( data, sig, pub); - assertEquals( result, true , "testVerifyPos"); - } - - /** - * This tests verify() for a non-valid signature - */ - public static void testVerifyNeg() throws AssertFailException{ - boolean result = false; - byte[] data = BaseEncoding.base16().lowerCase().decode("CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A91".toLowerCase()); //sha256hash of "testing" - byte[] sig = BaseEncoding.base16().lowerCase().decode("3044022079BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F817980220294F14E883B3F525B5367756C2A11EF6CF84B730B36C17CB0C56F0AAB2C98589".toLowerCase()); - byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase()); - - result = NativeSecp256k1.verify( data, sig, pub); - //System.out.println(" TEST " + new BigInteger(1, resultbytes).toString(16)); - assertEquals( result, false , "testVerifyNeg"); - } - - /** - * This tests secret key verify() for a valid secretkey - */ - public static void testSecKeyVerifyPos() throws AssertFailException{ - boolean result = false; - byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase()); - - result = NativeSecp256k1.secKeyVerify( sec ); - //System.out.println(" TEST " + new BigInteger(1, resultbytes).toString(16)); - assertEquals( result, true , "testSecKeyVerifyPos"); - } - - /** - * This tests secret key verify() for an invalid secretkey - */ - public static void testSecKeyVerifyNeg() throws AssertFailException{ - boolean result = false; - byte[] sec = BaseEncoding.base16().lowerCase().decode("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF".toLowerCase()); - - result = NativeSecp256k1.secKeyVerify( sec ); - //System.out.println(" TEST " + new BigInteger(1, resultbytes).toString(16)); - assertEquals( result, false , "testSecKeyVerifyNeg"); - } - - /** - * This tests public key create() for a valid secretkey - */ - public static void testPubKeyCreatePos() throws AssertFailException{ - byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase()); - - byte[] resultArr = NativeSecp256k1.computePubkey( sec); - String pubkeyString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr); - assertEquals( pubkeyString , "04C591A8FF19AC9C4E4E5793673B83123437E975285E7B442F4EE2654DFFCA5E2D2103ED494718C697AC9AEBCFD19612E224DB46661011863ED2FC54E71861E2A6" , "testPubKeyCreatePos"); - } - - /** - * This tests public key create() for a invalid secretkey - */ - public static void testPubKeyCreateNeg() throws AssertFailException{ - byte[] sec = BaseEncoding.base16().lowerCase().decode("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF".toLowerCase()); - - byte[] resultArr = NativeSecp256k1.computePubkey( sec); - String pubkeyString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr); - assertEquals( pubkeyString, "" , "testPubKeyCreateNeg"); - } - - /** - * This tests sign() for a valid secretkey - */ - public static void testSignPos() throws AssertFailException{ - - byte[] data = BaseEncoding.base16().lowerCase().decode("CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A90".toLowerCase()); //sha256hash of "testing" - byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase()); - - byte[] resultArr = NativeSecp256k1.sign(data, sec); - String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr); - assertEquals( sigString, "30440220182A108E1448DC8F1FB467D06A0F3BB8EA0533584CB954EF8DA112F1D60E39A202201C66F36DA211C087F3AF88B50EDF4F9BDAA6CF5FD6817E74DCA34DB12390C6E9" , "testSignPos"); - } - - /** - * This tests sign() for a invalid secretkey - */ - public static void testSignNeg() throws AssertFailException{ - byte[] data = BaseEncoding.base16().lowerCase().decode("CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A90".toLowerCase()); //sha256hash of "testing" - byte[] sec = BaseEncoding.base16().lowerCase().decode("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF".toLowerCase()); - - byte[] resultArr = NativeSecp256k1.sign(data, sec); - String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr); - assertEquals( sigString, "" , "testSignNeg"); - } - - /** - * This tests private key tweak-add - */ - public static void testPrivKeyTweakAdd_1() throws AssertFailException { - byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase()); - byte[] data = BaseEncoding.base16().lowerCase().decode("3982F19BEF1615BCCFBB05E321C10E1D4CBA3DF0E841C2E41EEB6016347653C3".toLowerCase()); //sha256hash of "tweak" - - byte[] resultArr = NativeSecp256k1.privKeyTweakAdd( sec , data ); - String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr); - assertEquals( sigString , "A168571E189E6F9A7E2D657A4B53AE99B909F7E712D1C23CED28093CD57C88F3" , "testPrivKeyAdd_1"); - } - - /** - * This tests private key tweak-mul - */ - public static void testPrivKeyTweakMul_1() throws AssertFailException { - byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase()); - byte[] data = BaseEncoding.base16().lowerCase().decode("3982F19BEF1615BCCFBB05E321C10E1D4CBA3DF0E841C2E41EEB6016347653C3".toLowerCase()); //sha256hash of "tweak" - - byte[] resultArr = NativeSecp256k1.privKeyTweakMul( sec , data ); - String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr); - assertEquals( sigString , "97F8184235F101550F3C71C927507651BD3F1CDB4A5A33B8986ACF0DEE20FFFC" , "testPrivKeyMul_1"); - } - - /** - * This tests private key tweak-add uncompressed - */ - public static void testPrivKeyTweakAdd_2() throws AssertFailException { - byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase()); - byte[] data = BaseEncoding.base16().lowerCase().decode("3982F19BEF1615BCCFBB05E321C10E1D4CBA3DF0E841C2E41EEB6016347653C3".toLowerCase()); //sha256hash of "tweak" - - byte[] resultArr = NativeSecp256k1.pubKeyTweakAdd( pub , data ); - String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr); - assertEquals( sigString , "0411C6790F4B663CCE607BAAE08C43557EDC1A4D11D88DFCB3D841D0C6A941AF525A268E2A863C148555C48FB5FBA368E88718A46E205FABC3DBA2CCFFAB0796EF" , "testPrivKeyAdd_2"); - } - - /** - * This tests private key tweak-mul uncompressed - */ - public static void testPrivKeyTweakMul_2() throws AssertFailException { - byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase()); - byte[] data = BaseEncoding.base16().lowerCase().decode("3982F19BEF1615BCCFBB05E321C10E1D4CBA3DF0E841C2E41EEB6016347653C3".toLowerCase()); //sha256hash of "tweak" - - byte[] resultArr = NativeSecp256k1.pubKeyTweakMul( pub , data ); - String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr); - assertEquals( sigString , "04E0FE6FE55EBCA626B98A807F6CAF654139E14E5E3698F01A9A658E21DC1D2791EC060D4F412A794D5370F672BC94B722640B5F76914151CFCA6E712CA48CC589" , "testPrivKeyMul_2"); - } - - /** - * This tests seed randomization - */ - public static void testRandomize() throws AssertFailException { - byte[] seed = BaseEncoding.base16().lowerCase().decode("A441B15FE9A3CF56661190A0B93B9DEC7D04127288CC87250967CF3B52894D11".toLowerCase()); //sha256hash of "random" - boolean result = NativeSecp256k1.randomize(seed); - assertEquals( result, true, "testRandomize"); - } - - public static void testCreateECDHSecret() throws AssertFailException{ - - byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase()); - byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase()); - - byte[] resultArr = NativeSecp256k1.createECDHSecret(sec, pub); - String ecdhString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr); - assertEquals( ecdhString, "2A2A67007A926E6594AF3EB564FC74005B37A9C8AEF2033C4552051B5C87F043" , "testCreateECDHSecret"); - } - - public static void main(String[] args) throws AssertFailException{ - - - System.out.println("\n libsecp256k1 enabled: " + Secp256k1Context.isEnabled() + "\n"); - - assertEquals( Secp256k1Context.isEnabled(), true, "isEnabled" ); - - //Test verify() success/fail - testVerifyPos(); - testVerifyNeg(); - - //Test secKeyVerify() success/fail - testSecKeyVerifyPos(); - testSecKeyVerifyNeg(); - - //Test computePubkey() success/fail - testPubKeyCreatePos(); - testPubKeyCreateNeg(); - - //Test sign() success/fail - testSignPos(); - testSignNeg(); - - //Test privKeyTweakAdd() 1 - testPrivKeyTweakAdd_1(); - - //Test privKeyTweakMul() 2 - testPrivKeyTweakMul_1(); - - //Test privKeyTweakAdd() 3 - testPrivKeyTweakAdd_2(); - - //Test privKeyTweakMul() 4 - testPrivKeyTweakMul_2(); - - //Test randomize() - testRandomize(); - - //Test ECDH - testCreateECDHSecret(); - - NativeSecp256k1.cleanup(); - - System.out.println(" All tests passed." ); - - } -} diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1Util.java b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1Util.java deleted file mode 100644 index 04732ba..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1Util.java +++ /dev/null @@ -1,45 +0,0 @@ -/* - * Copyright 2014-2016 the libsecp256k1 contributors - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.bitcoin; - -public class NativeSecp256k1Util{ - - public static void assertEquals( int val, int val2, String message ) throws AssertFailException{ - if( val != val2 ) - throw new AssertFailException("FAIL: " + message); - } - - public static void assertEquals( boolean val, boolean val2, String message ) throws AssertFailException{ - if( val != val2 ) - throw new AssertFailException("FAIL: " + message); - else - System.out.println("PASS: " + message); - } - - public static void assertEquals( String val, String val2, String message ) throws AssertFailException{ - if( !val.equals(val2) ) - throw new AssertFailException("FAIL: " + message); - else - System.out.println("PASS: " + message); - } - - public static class AssertFailException extends Exception { - public AssertFailException(String message) { - super( message ); - } - } -} diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/Secp256k1Context.java b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/Secp256k1Context.java deleted file mode 100644 index 216c986..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/Secp256k1Context.java +++ /dev/null @@ -1,51 +0,0 @@ -/* - * Copyright 2014-2016 the libsecp256k1 contributors - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.bitcoin; - -/** - * This class holds the context reference used in native methods - * to handle ECDSA operations. - */ -public class Secp256k1Context { - private static final boolean enabled; //true if the library is loaded - private static final long context; //ref to pointer to context obj - - static { //static initializer - boolean isEnabled = true; - long contextRef = -1; - try { - System.loadLibrary("secp256k1"); - contextRef = secp256k1_init_context(); - } catch (UnsatisfiedLinkError e) { - System.out.println("UnsatisfiedLinkError: " + e.toString()); - isEnabled = false; - } - enabled = isEnabled; - context = contextRef; - } - - public static boolean isEnabled() { - return enabled; - } - - public static long getContext() { - if(!enabled) return -1; //sanity check - return context; - } - - private static native long secp256k1_init_context(); -} diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.c b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.c deleted file mode 100644 index bcef7b3..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.c +++ /dev/null @@ -1,377 +0,0 @@ -#include -#include -#include -#include "org_bitcoin_NativeSecp256k1.h" -#include "include/secp256k1.h" -#include "include/secp256k1_ecdh.h" -#include "include/secp256k1_recovery.h" - - -SECP256K1_API jlong JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ctx_1clone - (JNIEnv* env, jclass classObject, jlong ctx_l) -{ - const secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l; - - jlong ctx_clone_l = (uintptr_t) secp256k1_context_clone(ctx); - - (void)classObject;(void)env; - - return ctx_clone_l; - -} - -SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1context_1randomize - (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l) -{ - secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l; - - const unsigned char* seed = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject); - - (void)classObject; - - return secp256k1_context_randomize(ctx, seed); - -} - -SECP256K1_API void JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1destroy_1context - (JNIEnv* env, jclass classObject, jlong ctx_l) -{ - secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l; - - secp256k1_context_destroy(ctx); - - (void)classObject;(void)env; -} - -SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1verify - (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint siglen, jint publen) -{ - secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l; - - unsigned char* data = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject); - const unsigned char* sigdata = { (unsigned char*) (data + 32) }; - const unsigned char* pubdata = { (unsigned char*) (data + siglen + 32) }; - - secp256k1_ecdsa_signature sig; - secp256k1_pubkey pubkey; - - int ret = secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigdata, siglen); - - if( ret ) { - ret = secp256k1_ec_pubkey_parse(ctx, &pubkey, pubdata, publen); - - if( ret ) { - ret = secp256k1_ecdsa_verify(ctx, &sig, data, &pubkey); - } - } - - (void)classObject; - - return ret; -} - -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1sign - (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l) -{ - secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l; - unsigned char* data = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject); - unsigned char* secKey = (unsigned char*) (data + 32); - - jobjectArray retArray; - jbyteArray sigArray, intsByteArray; - unsigned char intsarray[2]; - - secp256k1_ecdsa_signature sig[72]; - - int ret = secp256k1_ecdsa_sign(ctx, sig, data, secKey, NULL, NULL ); - - unsigned char outputSer[72]; - size_t outputLen = 72; - - if( ret ) { - int ret2 = secp256k1_ecdsa_signature_serialize_der(ctx,outputSer, &outputLen, sig ); (void)ret2; - } - - intsarray[0] = outputLen; - intsarray[1] = ret; - - retArray = (*env)->NewObjectArray(env, 2, - (*env)->FindClass(env, "[B"), - (*env)->NewByteArray(env, 1)); - - sigArray = (*env)->NewByteArray(env, outputLen); - (*env)->SetByteArrayRegion(env, sigArray, 0, outputLen, (jbyte*)outputSer); - (*env)->SetObjectArrayElement(env, retArray, 0, sigArray); - - intsByteArray = (*env)->NewByteArray(env, 2); - (*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray); - (*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray); - - (void)classObject; - - return retArray; -} - -SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1seckey_1verify - (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l) -{ - secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l; - unsigned char* secKey = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject); - - (void)classObject; - - return secp256k1_ec_seckey_verify(ctx, secKey); -} - -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1pubkey_1create - (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l) -{ - secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l; - const unsigned char* secKey = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject); - - secp256k1_pubkey pubkey; - - jobjectArray retArray; - jbyteArray pubkeyArray, intsByteArray; - unsigned char intsarray[2]; - - int ret = secp256k1_ec_pubkey_create(ctx, &pubkey, secKey); - - unsigned char outputSer[65]; - size_t outputLen = 65; - - if( ret ) { - int ret2 = secp256k1_ec_pubkey_serialize(ctx,outputSer, &outputLen, &pubkey,SECP256K1_EC_UNCOMPRESSED );(void)ret2; - } - - intsarray[0] = outputLen; - intsarray[1] = ret; - - retArray = (*env)->NewObjectArray(env, 2, - (*env)->FindClass(env, "[B"), - (*env)->NewByteArray(env, 1)); - - pubkeyArray = (*env)->NewByteArray(env, outputLen); - (*env)->SetByteArrayRegion(env, pubkeyArray, 0, outputLen, (jbyte*)outputSer); - (*env)->SetObjectArrayElement(env, retArray, 0, pubkeyArray); - - intsByteArray = (*env)->NewByteArray(env, 2); - (*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray); - (*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray); - - (void)classObject; - - return retArray; - -} - -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1privkey_1tweak_1add - (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l) -{ - secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l; - unsigned char* privkey = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject); - const unsigned char* tweak = (unsigned char*) (privkey + 32); - - jobjectArray retArray; - jbyteArray privArray, intsByteArray; - unsigned char intsarray[2]; - - int privkeylen = 32; - - int ret = secp256k1_ec_privkey_tweak_add(ctx, privkey, tweak); - - intsarray[0] = privkeylen; - intsarray[1] = ret; - - retArray = (*env)->NewObjectArray(env, 2, - (*env)->FindClass(env, "[B"), - (*env)->NewByteArray(env, 1)); - - privArray = (*env)->NewByteArray(env, privkeylen); - (*env)->SetByteArrayRegion(env, privArray, 0, privkeylen, (jbyte*)privkey); - (*env)->SetObjectArrayElement(env, retArray, 0, privArray); - - intsByteArray = (*env)->NewByteArray(env, 2); - (*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray); - (*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray); - - (void)classObject; - - return retArray; -} - -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1privkey_1tweak_1mul - (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l) -{ - secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l; - unsigned char* privkey = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject); - const unsigned char* tweak = (unsigned char*) (privkey + 32); - - jobjectArray retArray; - jbyteArray privArray, intsByteArray; - unsigned char intsarray[2]; - - int privkeylen = 32; - - int ret = secp256k1_ec_privkey_tweak_mul(ctx, privkey, tweak); - - intsarray[0] = privkeylen; - intsarray[1] = ret; - - retArray = (*env)->NewObjectArray(env, 2, - (*env)->FindClass(env, "[B"), - (*env)->NewByteArray(env, 1)); - - privArray = (*env)->NewByteArray(env, privkeylen); - (*env)->SetByteArrayRegion(env, privArray, 0, privkeylen, (jbyte*)privkey); - (*env)->SetObjectArrayElement(env, retArray, 0, privArray); - - intsByteArray = (*env)->NewByteArray(env, 2); - (*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray); - (*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray); - - (void)classObject; - - return retArray; -} - -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1pubkey_1tweak_1add - (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint publen) -{ - secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l; -/* secp256k1_pubkey* pubkey = (secp256k1_pubkey*) (*env)->GetDirectBufferAddress(env, byteBufferObject);*/ - unsigned char* pkey = (*env)->GetDirectBufferAddress(env, byteBufferObject); - const unsigned char* tweak = (unsigned char*) (pkey + publen); - - jobjectArray retArray; - jbyteArray pubArray, intsByteArray; - unsigned char intsarray[2]; - unsigned char outputSer[65]; - size_t outputLen = 65; - - secp256k1_pubkey pubkey; - int ret = secp256k1_ec_pubkey_parse(ctx, &pubkey, pkey, publen); - - if( ret ) { - ret = secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, tweak); - } - - if( ret ) { - int ret2 = secp256k1_ec_pubkey_serialize(ctx,outputSer, &outputLen, &pubkey,SECP256K1_EC_UNCOMPRESSED );(void)ret2; - } - - intsarray[0] = outputLen; - intsarray[1] = ret; - - retArray = (*env)->NewObjectArray(env, 2, - (*env)->FindClass(env, "[B"), - (*env)->NewByteArray(env, 1)); - - pubArray = (*env)->NewByteArray(env, outputLen); - (*env)->SetByteArrayRegion(env, pubArray, 0, outputLen, (jbyte*)outputSer); - (*env)->SetObjectArrayElement(env, retArray, 0, pubArray); - - intsByteArray = (*env)->NewByteArray(env, 2); - (*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray); - (*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray); - - (void)classObject; - - return retArray; -} - -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1pubkey_1tweak_1mul - (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint publen) -{ - secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l; - unsigned char* pkey = (*env)->GetDirectBufferAddress(env, byteBufferObject); - const unsigned char* tweak = (unsigned char*) (pkey + publen); - - jobjectArray retArray; - jbyteArray pubArray, intsByteArray; - unsigned char intsarray[2]; - unsigned char outputSer[65]; - size_t outputLen = 65; - - secp256k1_pubkey pubkey; - int ret = secp256k1_ec_pubkey_parse(ctx, &pubkey, pkey, publen); - - if ( ret ) { - ret = secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, tweak); - } - - if( ret ) { - int ret2 = secp256k1_ec_pubkey_serialize(ctx,outputSer, &outputLen, &pubkey,SECP256K1_EC_UNCOMPRESSED );(void)ret2; - } - - intsarray[0] = outputLen; - intsarray[1] = ret; - - retArray = (*env)->NewObjectArray(env, 2, - (*env)->FindClass(env, "[B"), - (*env)->NewByteArray(env, 1)); - - pubArray = (*env)->NewByteArray(env, outputLen); - (*env)->SetByteArrayRegion(env, pubArray, 0, outputLen, (jbyte*)outputSer); - (*env)->SetObjectArrayElement(env, retArray, 0, pubArray); - - intsByteArray = (*env)->NewByteArray(env, 2); - (*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray); - (*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray); - - (void)classObject; - - return retArray; -} - -SECP256K1_API jlong JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1pubkey_1combine - (JNIEnv * env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint numkeys) -{ - (void)classObject;(void)env;(void)byteBufferObject;(void)ctx_l;(void)numkeys; - - return 0; -} - -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdh - (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint publen) -{ - secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l; - const unsigned char* secdata = (*env)->GetDirectBufferAddress(env, byteBufferObject); - const unsigned char* pubdata = (const unsigned char*) (secdata + 32); - - jobjectArray retArray; - jbyteArray outArray, intsByteArray; - unsigned char intsarray[1]; - secp256k1_pubkey pubkey; - unsigned char nonce_res[32]; - size_t outputLen = 32; - - int ret = secp256k1_ec_pubkey_parse(ctx, &pubkey, pubdata, publen); - - if (ret) { - ret = secp256k1_ecdh( - ctx, - nonce_res, - &pubkey, - secdata - ); - } - - intsarray[0] = ret; - - retArray = (*env)->NewObjectArray(env, 2, - (*env)->FindClass(env, "[B"), - (*env)->NewByteArray(env, 1)); - - outArray = (*env)->NewByteArray(env, outputLen); - (*env)->SetByteArrayRegion(env, outArray, 0, 32, (jbyte*)nonce_res); - (*env)->SetObjectArrayElement(env, retArray, 0, outArray); - - intsByteArray = (*env)->NewByteArray(env, 1); - (*env)->SetByteArrayRegion(env, intsByteArray, 0, 1, (jbyte*)intsarray); - (*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray); - - (void)classObject; - - return retArray; -} diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.h deleted file mode 100644 index fe613c9..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.h +++ /dev/null @@ -1,119 +0,0 @@ -/* DO NOT EDIT THIS FILE - it is machine generated */ -#include -#include "include/secp256k1.h" -/* Header for class org_bitcoin_NativeSecp256k1 */ - -#ifndef _Included_org_bitcoin_NativeSecp256k1 -#define _Included_org_bitcoin_NativeSecp256k1 -#ifdef __cplusplus -extern "C" { -#endif -/* - * Class: org_bitcoin_NativeSecp256k1 - * Method: secp256k1_ctx_clone - * Signature: (J)J - */ -SECP256K1_API jlong JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ctx_1clone - (JNIEnv *, jclass, jlong); - -/* - * Class: org_bitcoin_NativeSecp256k1 - * Method: secp256k1_context_randomize - * Signature: (Ljava/nio/ByteBuffer;J)I - */ -SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1context_1randomize - (JNIEnv *, jclass, jobject, jlong); - -/* - * Class: org_bitcoin_NativeSecp256k1 - * Method: secp256k1_privkey_tweak_add - * Signature: (Ljava/nio/ByteBuffer;J)[[B - */ -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1privkey_1tweak_1add - (JNIEnv *, jclass, jobject, jlong); - -/* - * Class: org_bitcoin_NativeSecp256k1 - * Method: secp256k1_privkey_tweak_mul - * Signature: (Ljava/nio/ByteBuffer;J)[[B - */ -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1privkey_1tweak_1mul - (JNIEnv *, jclass, jobject, jlong); - -/* - * Class: org_bitcoin_NativeSecp256k1 - * Method: secp256k1_pubkey_tweak_add - * Signature: (Ljava/nio/ByteBuffer;JI)[[B - */ -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1pubkey_1tweak_1add - (JNIEnv *, jclass, jobject, jlong, jint); - -/* - * Class: org_bitcoin_NativeSecp256k1 - * Method: secp256k1_pubkey_tweak_mul - * Signature: (Ljava/nio/ByteBuffer;JI)[[B - */ -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1pubkey_1tweak_1mul - (JNIEnv *, jclass, jobject, jlong, jint); - -/* - * Class: org_bitcoin_NativeSecp256k1 - * Method: secp256k1_destroy_context - * Signature: (J)V - */ -SECP256K1_API void JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1destroy_1context - (JNIEnv *, jclass, jlong); - -/* - * Class: org_bitcoin_NativeSecp256k1 - * Method: secp256k1_ecdsa_verify - * Signature: (Ljava/nio/ByteBuffer;JII)I - */ -SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1verify - (JNIEnv *, jclass, jobject, jlong, jint, jint); - -/* - * Class: org_bitcoin_NativeSecp256k1 - * Method: secp256k1_ecdsa_sign - * Signature: (Ljava/nio/ByteBuffer;J)[[B - */ -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1sign - (JNIEnv *, jclass, jobject, jlong); - -/* - * Class: org_bitcoin_NativeSecp256k1 - * Method: secp256k1_ec_seckey_verify - * Signature: (Ljava/nio/ByteBuffer;J)I - */ -SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1seckey_1verify - (JNIEnv *, jclass, jobject, jlong); - -/* - * Class: org_bitcoin_NativeSecp256k1 - * Method: secp256k1_ec_pubkey_create - * Signature: (Ljava/nio/ByteBuffer;J)[[B - */ -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1pubkey_1create - (JNIEnv *, jclass, jobject, jlong); - -/* - * Class: org_bitcoin_NativeSecp256k1 - * Method: secp256k1_ec_pubkey_parse - * Signature: (Ljava/nio/ByteBuffer;JI)[[B - */ -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1pubkey_1parse - (JNIEnv *, jclass, jobject, jlong, jint); - -/* - * Class: org_bitcoin_NativeSecp256k1 - * Method: secp256k1_ecdh - * Signature: (Ljava/nio/ByteBuffer;JI)[[B - */ -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdh - (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint publen); - - -#ifdef __cplusplus -} -#endif -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_Secp256k1Context.c b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_Secp256k1Context.c deleted file mode 100644 index a52939e..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_Secp256k1Context.c +++ /dev/null @@ -1,15 +0,0 @@ -#include -#include -#include "org_bitcoin_Secp256k1Context.h" -#include "include/secp256k1.h" - -SECP256K1_API jlong JNICALL Java_org_bitcoin_Secp256k1Context_secp256k1_1init_1context - (JNIEnv* env, jclass classObject) -{ - secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); - - (void)classObject;(void)env; - - return (uintptr_t)ctx; -} - diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_Secp256k1Context.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_Secp256k1Context.h deleted file mode 100644 index 0d2bc84..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_Secp256k1Context.h +++ /dev/null @@ -1,22 +0,0 @@ -/* DO NOT EDIT THIS FILE - it is machine generated */ -#include -#include "include/secp256k1.h" -/* Header for class org_bitcoin_Secp256k1Context */ - -#ifndef _Included_org_bitcoin_Secp256k1Context -#define _Included_org_bitcoin_Secp256k1Context -#ifdef __cplusplus -extern "C" { -#endif -/* - * Class: org_bitcoin_Secp256k1Context - * Method: secp256k1_init_context - * Signature: ()J - */ -SECP256K1_API jlong JNICALL Java_org_bitcoin_Secp256k1Context_secp256k1_1init_1context - (JNIEnv *, jclass); - -#ifdef __cplusplus -} -#endif -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/.inner_product_impl.h.swp b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/.inner_product_impl.h.swp deleted file mode 100644 index 484ada5fc740e5a8309442762be2dc17612b4707..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 16384 zcmeHOTZ|i58J-qenqE=L<%x2Vh>g8#uh-u6LeectHpynmX4l$Fs&08@#&iUs*-}!Inc(yiicJ>UrXMDoI>z#)2>mO{c-hO>xJbTzMc)eqXb)Q;x zed&J1IXf0{r_PIaAG$}%8yfYf?pV6t4=@pmOJ3 z7t6(Vw-kj=sqNQ0E{{sJ{sF@CcxYmDz2n5DXb0|iYv^{_*NlOTfdK|?F(xZz>6!=j z?_;;`T^VT2zGMt!3}g&s3}g&s3}g&s3}g&s4E%pH5C=CIk70_}>S>+7>a?U!}?-TM0HhT31(?RV+xzZ`1+r*2&w|&#z4kE#z4kE#z4kE z#z4kE#z4kE#z4kE#=w7t0lRJ(wCDdgZFKSbf3pAo-fe~v06E~LTMgqW;Pb$FUXfFk2;HYTylXvDJ@7wP6! z@97M)?{N%MK8=w)jIq|(FuBw2xUuQju3NL6ixwoV`R*F#rY0%8CPb6;E@r|>wBvWe zh!>7`7>jyQxw)ts`XQKC8iE;p{inSVQL4Wh~l0> z?x2ibF8twnU0SX-z?JY3@>DJCu8zz$@RovUb2hr@H+4$cg#1%IwxrqDL^KdQ!Gd?;Nnqgz7g|e%li+2g3)e4kH|BSg zXl<+GL8&B+dS@kfl(@Z)iNsx$OeD_nn3fe0M%q7Tb>0vjuT!`zGl9@3*a)kfzrd!Z zWTc^mE|yiO?g~VjgiXdbLH|#(K-ZR@DL0 zNqrmPix%@#Ze7I#_Q)e_4wvw@Xo@@*N5x$9+myjeL@cnQ2y=;Bq2Fn?q-9y^P8M6U zLt)okPNtizzqO8#PRXfdM=hBclHN2av~;96pM|hpukN?S!^kjDk}Yx0s-YkIj_nj_pDg z)ktFu5Zc;WtX_QRrA-HVDFf`WJHK*f zDP=dcLaPe9qA3ctYU7WZTMeIRZd%;En`pXJV4Jvp={^k5rWv6autNkXG*f^;GvbHN z*)WnOd6x{e6VkFh8JMFER+WMyalEV;Sfj{mUjzk7sR9lHU%(|S?GNf^%Hn3_YE$iz z1X(y6;&ntaNh~yyF?`gVsk@ z=S5H;S=I(>AC?eA9%NNklN^O42x{f@BEvYK!Va6Qnn#bBOVdZ^jxH|kIfQA*5|U~l zvXizC;Q{g>>N|J@Ij77JaPto8p11|eU$fl~+yX4d>=1byaX~kSkrBlXWJo8ZDro~b zGPLV5?R0&u4$I9I*kWF;VvMVL1{7e(8ACkpi%OJ1SkI8@9*7MQs}v}i$u3DQ>k$A_ z?T{8X@S{i|^o+Cn$@%?&!L~8TL8*v@h)X;mrsq5D8Z?HJBr@buM=ihO*3rLhBeJLj z%Q$9;j&`3I=~d&(yeRafG*2%-m|M^9$(bm31u93+bmE8IT&{!VYf|)geXp5Emwdjr zG}VRb^uo&g^3cG*4^ZNI@%Ez`!!(u`jxVq_ESuI4l|bN!v5dS}T;qW792ZYlv;EsX z5Z#Fd9)aF}rEbK8eq4Hgzf8s3pnxWlK|q&!Q(HPQUB$E6r_1JAl<#3jy?V&Itg4@Z zSH;RMe@9{TSLJ2U{{M^E-(G_~Fzx@7->;v=zW@7x0~`hR0>8(8|7GBZz>`1=p!0xp zKn{2n`~6pd7lF?LbHFj+X5cmK`~L>~75Eh}0=x^j6`*s0Z)5+z0KAHQ|5t%YU@!0& z?DJm$o(H}Qd=hvN_#kjIa6NDx@G{N-o(3KTE&(3`-VMBjbAV@nj{uJW9?%Bv2CfBO z#M!`CfKLOD1D^uutl(+jDc}jmnKawAf}>Ll$Qb5xP{MC8vE*htN^!*Erc(|3Er zq67`L2M1G4i(5>wi6cy~d(%7N>)2SHZ5kvV>Hehfuuri|HC2j5RKv-(bUvE-2{lg| z*FVE6vQGoB{mJc1NA<73;6G7?SVj7esx>YPgj{ll7q26qsg+I_XGECiDgKJ={1Ci)QWvPhsM2SJFUe$S%K#=T&8$s+hLpwlC z3Nzh6?#4`=R#I3|KjMgL-Uc?^v`^6ut z)5>3yJ8AJCx!T*%A66#x6nO*mY^$&uolv2c<3A!^ z8qZEacqoqytnZf0uNInSliRYYdOGl@Elo|1=sNbMjikWt>_ufnBgElOAP*%x-@}$| z4Pi?a5WA#UUEFMOpHUfxOczJ^IM`M70~xXWIVV{Y8kO=!-%=ab8Dz&oLh>09%4(|vr)aFi`UCs$3Nm}g?&KOCyLW1^dM0^&)!tIT9T;NKv2n5kb85z|h)u`? zw=xdQ@S|p8qjZvRfqw18S*|MtQmBig2mI=r9&aT{tKT~NY;H@DhsBitDBm+?+#Nyp Gi1BYrN9wHr diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/.main_impl.h.swp b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/.main_impl.h.swp deleted file mode 100644 index eb941987a84faf1abaeef34ef19b8818a301e46c..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 20480 zcmeHOeT-d26~D-*e2YrN#4v4PdHecy-|n`QVriw87HYpX&=R4cckkXe@9o{bcklDw z`?_5U7&Sx^K@qo~Nd@gjHW#^M~UyL?^C+IPgBpk)%SE)`Kju8v-*Crt6V)6Uxfw=4HOzEG*D=u z&_JPqLIZ^c3Jnw*C^S%LpwPfc(12HS9E$B9rhp&k|2qDE`U1yk10~?q^Bw1_z*m3< zupYPyxD2=uxB&Rwd5-g2;3)82;1j?E@Y1=Ca|f^jc;g($c>(w(@I3G}pbmTt*aU0@ zO28M+cAP2TYTzTlDZrcWb)3Hf$AQOz$ABHcTHsRP65t1CfhKS_&<19KEx;OJ0{Hux zj`I}oL*OuQE3gK*2snNQ(gtL5=mbdCgu$(yO$W4=1^l4vvMYduGI;Xpb_#K^JhGi^TTQE zsiDfq+ArNE4~N+ihomy>T32UWa}UQo#N(hoU+Pvio>S0-KD_3Yj<*7brYV# zCn8T>rvlTXk79*Rcn?YC$!UhV%{bRQ&J=krPCAoClR z*T<`A&p%jUrI4*=}U@n~^IJPE5Yo`5}9 zv(-#$bFp1kZ9{>qZL4pV>4im><*i&;*SfW8I8D1gGmK$gb(0^Y4QPIYW2gvPtEx zC>Mp?6()rlW#y_cIn>XTl(1=@&T$^HdMEVL0LzLZHnrIBOffI4nP!^wqV3eMPHkWb z93l8SK?u$<64-trekbNEjTp`KIWf3Fl0pbUzFKBeH%zgWUNhx!2-{d`B&mRJNvw|w zl2JD4C8~USp3%C&WAr1)8c9jPv^+`0Qg_$8!Bhpk;>+{}-)1VDV%&p29MwthEjBk3 z;K>8`O1WTWZU%}KRxF1n6H*U__8&1_gz&ILbvfD{Fl*pf^jfKOM`^6>+tRQgQ#FCe zUYxhyMjUn8^vYRP1kZ01g{n2W5Zf)uGwsnb(YX$G6$jIu6ywx^G_VFtpIzJcvLvdfb2N~u4LQcJ zNtAj%`Dk7^Ps7QWptB`v&&NSyCS@gmm`#k0uVxEOdHG5t~CN#Hv`6DR>MBbI*& zpcwxE@JZkwh~d8u+zHxW81NkMCS*Sbd=GdMcmg1O zJOUJ-LIZ^cPPPVCty;wq+}8Vr$h1HH2ze zZU^tloj_?6`nQyW1!`jQW`N)vhYWw|RZ1l27m$sqX` zBm}pTn9Vpv;m9A_{-#MpP(LP~q9=?2Snm}LrufHVn7Ey6E-hKNz0+TLJY58Y0)ZdLRf{+pox}Ehtjqw14LO7N@tQ`O?QH3 znxE#PMtWGwvjDAy>0r6&rD4x(9lev$+wW#( zM$W4~P4g!w*;&bwju*tvIw(=|4xKLKQ(0xTZ7bcB<@PO;L+1ENs7L3F%xi03S1s(b z7&`7jwzVwRZ<9#UTZ5)&4}?l==Z<+4YhwQBHeEs}H=z#`CvYHy z;>?m}^rH50o!u6unE4`Vg|JewNar4LXn|Rxe}|wOhbGd&QzNZhiwe@9nAP~A^Cp%X zZ+ViJO&sa5<^7%$^xw=fX0QHwNm*=HFs+3(=w>|&XvVQsgW`W2H#__2590sb%GLip zV*XzMj{>v65O6v0GsODe2Ob9=19kwH1Fzz&|5w1nz(c@2z%1|}asi(LJirAG0N+4t z|3!e}{k_08U@I^LoB{k1G5*uQ{lF360B|iZ1e^{00rCDrz~_Klf%AdWfd3%YKMMQ^ zV8HnR#s6ml-$vZO4OjtO06c=Y|4v{OxD0q5vHmN-%fNep7myQq4tNIm32-IO=RX9T z1Dp-~3Ho{-cmnt`kOD%7q(8DiGbnNzSUS%a3p*QFO1sCv!V}-o7CRTn7IEUSdm1Wt zbi>jPkmcN3WQmvSmg&fj!yvjmDa?+C&HAe*Yu93^mWRHJVScrjvpS=fo8EN)z;KjB zL}oRk{&!%I3}K@V`A+n;L#ixQ>TXDGRJHrsl}1pm&Xn}M^p_M2_jI7h5p{=@YsU9&#;aLRS-5J+VnwW)0ldnF+){w{uZM># zY+TflgqIZEV$oS3vb7>oBenTO+AtfKJ<(t%dOPapmQb-3uM(Xl84vkzb~m~Y?avuz za@BNvEbh8d$GOt%a9$aH-FQD;QNno@~b7nv!VH*fQXVaA|6Q8Vhf>xcTL;s2+9f~#{Pv>Wg8 zOopI&xia9cX_hD#mr8T4NS|!|P+ljwN0q3jwb1SWyI3~T((=_bpi8VM%qE3HEsYIi zK4y>eVmV1_#WO3qX}=V2B@>?90?AzOGAE+|4pv8CU6*E93XGtbOCGtaEAHvP!b5i&nDE#bOHlD>ZOQ>WzZ7o{(+N)oL* zid8pw%BGjdS6o(@#+*7W?w*}@};| z>DSZ(x19wX)+o;3EzMNQ?$q2hv6I|?--+AK3~7T?3#1lEEs$CuwLoft)B>pmQVZP9 z7GUNM=}{QqEy4&*ala#S|F^hsEZ|;#Ozr1;L!=)T=`V=8pZ+hA{)l+KT_pJFuZwg) zBKcS({klm1xG4X8B>kF5mqq%$qCvj=*F^eBk#0uPw~6P+#r;YoT|7>2sRdFCq!vgm zkXj(MKx%>10;vU33#1lEEs$E^|Iz|VU6LlD`EPijjNkwL`2V}_mLwBo!7J~Qq$j}_ zfC36&68!ycNxBNY4_*LY1J8iZfj&457QqC#6a4<2lJs-%9q<+K1h@zqU=5VPd%zvw z)w?9=GI$z%2K0amc7rN->K(X)Ij|GFyhD;MfhWMHfeqF`8C<_pl70vt2akacI0@#! zKi-Zsa0#q{{osx5lJqz5ZSXB%ffIt0Y|k z&x6l`b+80J3?2Y~#i7HGz-6!j%HYp9clZz;It7m!%b=qBxsjaL#2vx(;8J{@3=@$rX!?@lT{vc)xK7rz+ zH#Cs>WRQ4Ke#MG+oc5;0`cZfV&OQ-L>wYqghPWf*D}OpwrQY|6A}8amaPr*Tl!Ti=Ej2u9HOZt)g}(0KOy zW>6qwhvg<>0;PN*d|@6V$JchGuL8lLmoMdWjlN7(j39=UT4%J!NFF-FD`mG{AV=y7 zgUhrT-Y8Y!sIV&-ZZ*QSh2He!6=OTot|{tzs48!ZL(mmi*oQKjl)#CGpZNI#8zNN< z+sfhDT5*o);mnl7JH z+79&!iNQb8K5q^rrzeBhSQ28axv!i}fz{oDb;)t%LEOkYQkNB&CFAU{aQZ=dKgoByB-reUsK{gV@Y+ zRE8B-+J�PRWsdACZslUs_w;QJuw8O;_7^-F6PXK%vE$xu;a>cDqxCNp;(BER{|f zRuiw6tN4!B$q```#g{3wWlrU}oP!!VM5{Rr+i(YMvakh5mn^Lj+i0+^Vo@T>aK}R3 zR7J%!G!-44-o#St$~j<|eM@V$7|E(RQkgE#lYM&KqFu6LV2i~pCA>P1{hXIdx5Peq ziO2uj5O+2akMj86|NZ+Hi2JXCZ-P&PWv~rgMcn^0@Kf+5z|R9t0Dc~D4Ke-|a0%3a z0#1NQa1Am26>tgEfC38OpNQpu2VMcc1}}jx0s}k@?gGC=eE$siDlotT$bns80=$G6 z|2gm|SOv$y2f^!z@BaXP3%&u)fP2AD5aa(CJPo?wFnB+BANUL6`xn6vz*E2mhroNm z1K>L1`WM0D;4x4EufcZDfoH)6Fn|uYO&cJ+QVZPX7T87gy4H{+Z+mM|=2&`Y3)Q4& zWzEJx1y(tY^|KjxLrt%XJxk*tl^+799kQGVEb)B7ZfVpDdYMb&jr6~0I{6cx1&50(NGdHXC`9C3+exwn`a zA}fz0MZOGE9PFYqI8lrAq{xfNlH1YiO~fF{Io+7n&oN$@dk`UN3~rUAy2oedr#a)r zd-1X2RG=or^II=T_J5PN?8)UfUoQITAhon}G_j*FJ-jQM^}~c5@%s8yW$rZDyO+$) z^8>JP>9cP7TvfEf7d1BTZa41?PO8Sss(N)HsGpREg7}AV6+h@^E?1L;&AaK9Sznkp zjrbXtdlGVLrhIz58Z*;wN#0^tiy*ER&S%;ih&;6I(2m+Mvz|yC6H?2l%oYf*b*DI; z;QGg=LKA1JwVBGWV5Z|Fjv051bsTi5`$uV;EhTBpMDkiKBPpjlx{waB-rvx8Ie?8P z_Nqk1(U*q6m6DD_@R>k7KSs`aGr6AQ&)s8C_unUZ5*kKaCo^;do0-qR%x$!dE;)Zb zZX4WBn3(VL3h*^g8)=Kk=~ssF z&QF+j?#y~hS215Rging-vw2Yx{-SpaJ8!Us&Vx(#oBF@%yz1PWx9`vcgJBQE#>lN1 zyl?XM_j&ud=iGc8P zG7*n~vrJ17Thamvf0Ntp7LE(y*Np`E(`4uo#uiHS3Vg{5*UlFycT>wxipGlCWVHPU D6XI9X diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/.rangeproof_impl.h.swp b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/.rangeproof_impl.h.swp deleted file mode 100644 index 9c4b8404167fbaff74486697b1a3483630f4faca..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 16384 zcmeI3ZHya78ONstLPJ~Vi}-+wU~&=0_W90d-<@;KrIqq>gi|ibDR*f=Az9YzvAsEa zcW-w#XPYDyUyxdggd$#qP$i^NXvGIq-~*yalmH4yNI|OjPzi~uAdnC*5<)UnF&1pS z!FZF|%xxDnyK8Z?=rGMH&sNq-#g<+Te>k>QY@0Q=#hhZ*ZM7KpBsj%TnxeO@)?_oL zNBT3h!0l;)d&qRT{^s_n){u&5-swwLoft)B>pmQVXOONG*_BAhp14Y5{KT zAdjK%Z;}0P$mbog=fCA=MWzQabx`gNnSWU3zYwecFPZBr^sN-SR{r;pSEsRdFCq!vgmkXj(M zKx%>10;vU33#1lEE%1M70kuZRI5hu_2$b>n{~-SV?z;%FKo-36PC~v2z5rBE0OR2A z_YiUwd>_03z6PEFp95WR8Z3Y@a3}cv-GuxcdI#>lI@E&jnc=awqE`z7R zXFvyNU^l3Mr`~}lm<2n*%R30U1fB$+1`b#SC2;*tLVgII0FQ$an=4)Djf5%Mc=89WO<4|?D%SO&Ymz2N1y5^@DR4?YXlz#{lC zco6&*mkvJym%%zHfj{Hk;ZNXu;5=9b6W{@GKM>>eYH+EswHZfapZ*&ZileD5)mF3? zQ|)YqZgYYDaC&w=nG?L2Atg~EVhhC#*60l>r$N)p%#( z5rY=x7ezDMZR8BLQa5dy)lqtCp6YaOye!qn$8+=(gI!CQL9NxYj#i+8jMr>0HxFYJ z^R!1NXzxs!=8FS1NQgkkRL(ppQi8KCWI)8kR_Z(J7ze*;XMI2mNH7?yQEpP3O*o8G z-qanT(B>MUq@o)fquaI$w1n|RkNTfP2jo=fiiyxKg)gHDV!$1@9iKJv(iDwvE>FxH z2)aR`Zfw%XnW=}>G}U2rY7fRb&>n_6bmr7rwp*aR937`RKpUNR0PP3G6E-P29S9iw6@}4aImWmi9yy+(&i8SE9TXB_eWT>mcuF zL5rPOi{*h9SI%@swCQZz|p|4E1&txsQ?9g!x)3`!I! zHz8Fl(U`o1U-O)wqSrd`bG}a#jRc=WW25{D32KOEqL$Zj&tFJO2A)Waz>Pe^khSjb zA9^_SdYxwB-bFv?!*JRIzIk95=$C?fN8t(S*>m&*)Y~9JnFH1QO~RKSuUXu*=9ab{ zxfDb_wua=1)~5No(D7%t3rkdHa2CtAbwfF)wp`{{l9PX+ zfBqU6ov%9ByW)ySGmJ{_jwl~mtuojRZwK)!VIvOqS%+J>eS)3t8whOWEXzw z2BSyzeMC9Be{pqXM`Z@7x}ml3zBL_d*rsbuHpe1KL*I;cxsKPNZ&*w>3}!2Mo4SVf zSN6T*Gg? zPL2p;LjIVvn$~1q$T_HEK=i81aSV6SCmTm_49Vgub<8^7P;EwK9pPA*m#b=6hL&nz z&>PrlJvj$Vt843xCZ|~~N6S;CIl9lN*=&O@n>b=|TaE6{L%-)q@s`*pPelB`4RL1! z@u-OZgTH_O0&)LU@J;YZumrY&tBCu527U^@48(oF2_WtRt|7+10xp3nP{9c>4z3}l zzXC3SDo{ZI{1dVK@4zeI*We}aC18R_z+K>%i0_{PUj-(Z2RX0{jDeRB<39%;11sP- z_#k*4@%SqJc?LR*sE7zZ7;f&O0>V9|!Eg-1oylN%9A^^={&5I*AV;xT$uMhB9!?53 z6qKkac52&UhCK8p1yoz;NP*_P(;5`>p3vKXDqf!WKCFY-f>mzXiujLG*@0?(5u>&7 zd)r35A?x?MZ~5P3RUFC=G?}*Mt0Fe3x~ieo{>4&gBLAGF$SW?{E$@*~LlzZrq%4== zs*6)}1~+Q4k(6Z-SqeM)qlp+~bV)C!4N43b=3PX{7Q;t*RNKRgi`$&x;{Etob<0o_ z;>DvgO7?$Kw&cqdk3cTQ=^(T9b8O^5VR`tUY&HlJa?~H|Q{~yybnjj|Gbb*CGWzZCx)ZG;`>sZr0#J%S4@+$G}~t xt;!>5fkuBRE$;{?gow|L1O>~a?-7Pp8tE0pmKAMXY*OB#R@@W~6}8E1`wxm9RZai^ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/.tests_impl.h.swp b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/.tests_impl.h.swp deleted file mode 100644 index 9b7c17da8d43017c7fdc1badb7042680b9101d97..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 16384 zcmeHOTWlOx86HRrlwK)BNFYV0PBH7v+I#UOPE)(Iwwt(#?T|QagB6X&vuAfF-klj{ zX4i2-3Y3JGN(d+|ycQ4=2nq!ucmRn9c;q6r5{QdHKp#LVf+qwmlW`}O-(~7wR`t3nf1gq? z)brn}epc0A&eZ=a!~dt5`aP=Moci9Y91`+Z#raq6f!qVR2XYVO9>_hAdm#5f?t$C` zxd(C&Ip6`{MdSf~2>bwe2KWr{GJN$XfP8kG{1$!~K2t|$ zrj8Y&w-ofmn+baSnuCs46?(kjTTQ#feA6=mvsGeEZu=!B-eM@Rez(n0*)!T*USjj7 zj~_3w<+f$lbvN)ztO^QIr=wMgjg6?ht>ls)wx|u`@E}`^AF85JwOXx3jeKbfokk#lo}5NOoKeC_ zFA0PtDI!s#h?HR|7Ze2n83^T5_NT}q7eRaO>Y&xy1TWJ%O{jTOTm$wQDT(|y-4d3g3QgYy^zmD&g^im$Mr!`E=>1VpI4oh$Ey0&!u;aQql@~f*(3ApBW!)e!!svmA3Sq)QM9J*Ow?8!X*TYR zBPoA%4QUXJ+S*Ff0;NtLvG6*DiWV*i|k(R23W$ou*73{ zPo2%pE;8R~1gnO}nQDU|iE~kFm^g2{hP_6M6k~$Vl;f^>Rze? zU?&{jrhWnC=AWWg-WC58HH!a>h-oh%)}{D=PQ|jHM%-TqjskZBe?)x$0`NTW3E*+y z9^hTTKM~*m3iu`P72pcs02~+x?f{-e+`k5#2a3Smz<$6*>^~2D5wZR=z#7m1&HzV& zBftzW4KUzN;2pr<5cAtWG9U1J#QPruZU?@AnE$=Ndw`b^^Zy8V5@-O2fZKrIBKH3p z@MRzXd|(>b3%rPYz;}Twz-8bFa5M08_~~cBQ^1qJ?1ujU60~8gHd_f!ZV+Y@umk7~1W?vO*Px z?7*4=*bk2mNBVE24$Q5MABxB~HrKKd!BbkW-Zg^)oxY+5#9t1I4JD;plCKgSx{Vg( ztwf6kw#b5ogG}Wxj@tJ!Bq=GF8IbWh$_^Z$v&c3WV~8dAt{Yluz0+!ML7dij3u3r` z`)b6~L0Gt1HdpAcI*dBbY3K-lnn9~DE^@Ev^MS(**}6Jn6{0IK14*~=FVeXuOHBTC z4bKYJn9~r?l+z>kzBb__Qh052YvH>owkE_@$B-7>$mZR*vnm80LJF3VKyI5(olaRs zQMvf_xl!iNhih5(=%Z@L8Df3Irk*of++2y1vFk=8o#NL;4jV7*GSEu}5*rhSL6+D6 zHcQuHwW=K)8&~q7^qjH6nZW|brXh#Pp_1QGGFip^)?rNqC0^G~g%>*6=f`0QUiPH% z+VD6MkaR_%M2Ui4@wT~!qCabX-9Zffcobb|9{Ga<3N^|)s>*2I5)7W(0q!AWj* zy6r$0E>b*^vy_uHyhf4tEcUV$;POQ#+xtbjLJ))rbkrqtwzQ&z)N-h#uT*5ZWP1oO920c0`ihh?>D{rB zLVpkAg9ImtV<(akR4KMujh^UZHCREEPEIn>lWY>#ENZhQ0@b8e8%8{8$%Pg%>!9bf z+jK<+mD&Di7E_B@KloLRgL5)Pl&+TQvz|&ZWlsUoz)2kdlHAoIqSHTi!+N^5lvk6R zEKN-~N6YFVE<<;ou0qBRpNOGMN?Ov?bm~=%bIQ5G`+Xh5!(9aZWgqTZ0f&!lgy48= zIjh*ZRYEb%L5@hp;$r1eHs{vl*?gSLe{s4r8L=LMJ5)y(7;hk@SmF) zdj-4lY1$TfQ;IkVT`xp2CTm-Lz=RpVrI0YU7hd>h? z1Rq|{*c;$gFa!s{o#1wG8@Ls`ejQ^kg6Dt_o&bLYr@$Pz2iyX7f-Ax2*E04Ga1p!( z{tTW4XTWhV2fn$6vHycF!GFQO!AGDA_JJBO!A|hi)mRsJ2fPH10|H-Pg*Aguz{lW! z;Bim`SAZ|CWb6y@9(WCe;1O^LG{Hge&np=FJ9q`02X}$5E@$k0@B$cu6QB&fMeaTZ z?}ER97HEJPFoDkPecA`0Cs&Q$LWsG>|Pu$qDTx*;mzl=YDHZ zc|Relk|+B%)bb|1O5?eBuy3TF}>5RMcv?D7bw4RD=*E(xUqZBV- zSf-T~1V!_-jcJ^LVd_5eL(%cMOHS98l-+E0dMJr?@?x7)lHENlRCoi)p|gQ-$4YeU z-5@LKySCz1Qc1?vyH~RMasoe8V-7l;Dp;Vd>FEntPMOYU8zb2sTenDuTR!g?+5v2n z@I{*pL}G6UGHH2}N@Ucvc!r>RX}Mh1E~mVN*azpd=CQ9*n@^=5Y0*Y{v*0pzN_>x? z-Nxu9tS5Xzx;9S&N|%N$Y$-}6AmuHg&T_}&K2jQQuWm1M#oKqvOIGuz%2NRjo%Uqx^iC&EU<lNHU0bgnl>Eu zwj_wOxlOtlZ4!N<9Y|ejd#SdE1g(&dkNNqm=z6?|dNB~`0@W7sA{Z4=s`Ia04HLBx zPHxvYzFg$2K+-B0&%NBJZDO%ex&iV6$Y+O+?b*`mMV?WLkPeN#@uc1~S}=XgHkL4g ztwjFyv~l}HrYCV{QLQF^23_HCE&V>K#l<<(vGC7w8SPX~9wJJs%_=n<8W5EYi zsjkC9pUGB|Mle6G^NyXJB|WKzq(h{7*^n)j?6I{+n+Hx?s|VLs4;hBUHrGvIWiQ!f zx^RIEJ0FqdtWNScC0CL36AAQAiYMzQ#d#JBu%)0Tb=G;C-8<5xWpde`7fUwfpdzPx zcQThMdEZFINWbFb!B4ugY}Ym55kDoxWp6y?*_*1?cs*&OI0?SaMQg*)axp9Uq^-w_ z#qg`ukxrBD(VFq}m55+lf!sh@csJIK95vQaGX=I6XY!es&1!AaWpnM4#FI!Cq}Q8Y z(`V>9`6WHzlew4D=Zrp2%hkt*8I_A3&w72_!sbGgDkgqwg7CuUlt*{?=>C)IYu3Xj*Vorh9DDTW(F4}W6U}utC)z%Ye}pBY z$}e)5a71n0a#xQYJKa3;2f~A|t5kotX$}U1#h}mqFo>kX7X#VB>*Ws4@j5wvbE&2$ zi~VkYv7-I#7on1(6)6Z3VIdM4aXQ>QL1EBV16y)R=RiZQ735?)_)^)o{h{zXsL|NZ pYS14_(djBOoH8|P^<{d = c`. - * where `G_i` and `H_i` are standard NUMS generators. - * - * Verification of the proof comes down to a single multiexponentiation of the form - * - * P + (c - a_1*b_1 - a_2*b_2)*x*G - * - sum_{i=1}^n [s'_i*G_i + s_i*H_i] - * + sum_{i=1}^log2(n) [x_i^-2 L_i + x_i^2 R_i] - * - * which will equal infinity if the inner product proof is correct. Here - * - `G` is the standard secp generator - * - `x` is a hash of `commit` and is used to rerandomize `c`. See Protocol 2 vs Protocol 1 in the paper. - * - `x_i = H(x_{i-1} || L_i || R_i)`, where `x_{-1}` is passed through the `commit` variable and - * must be a commitment to `P` and `c`. - * - `s_i` and `s'_i` are computed as follows. - * - * Letting `i_j` be defined as 1 if `i & 2^j == 1`, and -1 otherwise, - * - For `i` from `1` to `n/2`, `s'_i = a_1 * prod_{j=1}^log2(n) x_j^i_j` - * - For `i` from `n/2 + 1` to `n`, `s'_i = a_2 * prod_{j=1}^log2(n) x_j^i_j` - * - For `i` from `1` to `n/2`, `s_i = b_1 * prod_{j=1}^log2(n) x_j^-i_j` - * - For `i` from `n/2 + 1` to `n`, `s_i = b_2 * prod_{j=1}^log2(n) x_j^-i_j` - * - * Observe that these can be computed iteratively by labelling the coefficients `s_i` for `i` - * from `0` to `2n-1` rather than 1-indexing and distinguishing between `s_i'`s and `s_i`s: - * - * Start with `s_0 = a_1 * prod_{j=1}^log2(n) x_j^-1`, then for later `s_i`s, - * - For `i` from `1` to `n/2 - 1`, multiply some earlier `s'_j` by some `x_k^2` - * - For `i = n/2`, multiply `s_{i-1} by `a_2/a_1`. - * - For `i` from `n/2 + 1` to `n - 1`, multiply some earlier `s'_j` by some `x_k^2` - * - For `i = n`, multiply `s'_{i-1}` by `b_1/a_2` to get `s_i`. - * - For `i` from `n + 1` to `3n/2 - 1`, multiply some earlier `s_j` by some `x_k^-2` - * - For `i = 3n/2`, multiply `s_{i-1}` by `b_2/b_1`. - * - For `i` from `3n/2 + 1` to `2n - 1`, multiply some earlier `s_j` by some `x_k^-2` - * where of course, the indices `j` and `k` must be chosen carefully. - * - * The bulk of `secp256k1_bulletproof_innerproduct_vfy_ecmult_callback` involves computing - * these indices, given `a_2/a_1`, `b_1/a_1`, `b_2/b_1`, and the `x_k^2`s as input. It - * computes `x_k^-2` as a side-effect of its other computation. - */ - -typedef int (secp256k1_bulletproof_vfy_callback)(secp256k1_scalar *sc, secp256k1_ge *pt, secp256k1_scalar *randomizer, size_t idx, void *data); - -/* used by callers to wrap a proof with surrounding context */ -typedef struct { - const unsigned char *proof; - secp256k1_scalar p_offs; - secp256k1_scalar yinv; - unsigned char commit[32]; - secp256k1_bulletproof_vfy_callback *rangeproof_cb; - void *rangeproof_cb_data; - size_t n_extra_rangeproof_points; -} secp256k1_bulletproof_innerproduct_context; - -/* used internally */ -typedef struct { - const secp256k1_bulletproof_innerproduct_context *proof; - secp256k1_scalar abinv[IP_AB_SCALARS]; - secp256k1_scalar xsq[SECP256K1_BULLETPROOF_MAX_DEPTH + 1]; - secp256k1_scalar xsqinv[SECP256K1_BULLETPROOF_MAX_DEPTH + 1]; - secp256k1_scalar xsqinvy[SECP256K1_BULLETPROOF_MAX_DEPTH + 1]; - secp256k1_scalar xcache[SECP256K1_BULLETPROOF_MAX_DEPTH + 1]; - secp256k1_scalar xsqinv_mask; - const unsigned char *serialized_lr; -} secp256k1_bulletproof_innerproduct_vfy_data; - -/* used by callers to modify the multiexp */ -typedef struct { - size_t n_proofs; - secp256k1_scalar p_offs; - const secp256k1_ge *g; - const secp256k1_ge *geng; - const secp256k1_ge *genh; - size_t vec_len; - size_t lg_vec_len; - int shared_g; - secp256k1_scalar *randomizer; - secp256k1_bulletproof_innerproduct_vfy_data *proof; -} secp256k1_bulletproof_innerproduct_vfy_ecmult_context; - -size_t secp256k1_bulletproof_innerproduct_proof_length(size_t n) { - if (n < IP_AB_SCALARS / 2) { - return 32 * (1 + 2 * n); - } else { - size_t bit_count = POPCOUNT(n); - size_t log = secp256k1_floor_lg(2 * n / IP_AB_SCALARS); - return 32 * (1 + 2 * (bit_count - 1 + log) + IP_AB_SCALARS) + (2*log + 7) / 8; - } -} - -/* Our ecmult_multi function takes `(c - a*b)*x` directly and multiplies this by `G`. For every other - * (scalar, point) pair it calls the following callback function, which takes an index and outputs a - * pair. The function therefore has three regimes: - * - * For the first `n` invocations, it returns `(s'_i, G_i)` for `i` from 1 to `n`. - * For the next `n` invocations, it returns `(s_i, H_i)` for `i` from 1 to `n`. - * For the next `2*log2(n)` invocations it returns `(x_i^-2, L_i)` and `(x_i^2, R_i)`, - * alternating between the two choices, for `i` from 1 to `log2(n)`. - * - * For the remaining invocations it passes through to another callback, `rangeproof_cb_data` which - * computes `P`. The reason for this is that in practice `P` is usually defined by another multiexp - * rather than being a known point, and it is more efficient to compute one exponentiation. - * - * Inline we refer to the first `2n` coefficients as `s_i` for `i` from 0 to `2n-1`, since that - * is the more convenient indexing. In particular we describe (a) how the indices `j` and `k`, - * from the big comment block above, are chosen; and (b) when/how each `x_k^-2` is computed. - */ -static int secp256k1_bulletproof_innerproduct_vfy_ecmult_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data) { - secp256k1_bulletproof_innerproduct_vfy_ecmult_context *ctx = (secp256k1_bulletproof_innerproduct_vfy_ecmult_context *) data; - - /* First 2N points use the standard Gi, Hi generators, and the scalars can be aggregated across proofs. - * Inside this if clause, `idx` corresponds to the index `i` in the big comment, and runs from 0 to `2n-1`. - * Also `ctx->vec_len` corresponds to `n`. */ - if (idx < 2 * ctx->vec_len) { - /* Number of `a` scalars in the proof (same as number of `b` scalars in the proof). Will - * be 2 except for very small proofs that have fewer than 2 scalars as input. */ - const size_t grouping = ctx->vec_len < IP_AB_SCALARS / 2 ? ctx->vec_len : IP_AB_SCALARS / 2; - const size_t lg_grouping = secp256k1_floor_lg(grouping); - size_t i; - VERIFY_CHECK(lg_grouping == 0 || lg_grouping == 1); /* TODO support higher IP_AB_SCALARS */ - - /* Determine whether we're multiplying by `G_i`s or `H_i`s. */ - if (idx < ctx->vec_len) { - *pt = ctx->geng[idx]; - } else { - *pt = ctx->genh[idx - ctx->vec_len]; - } - - secp256k1_scalar_clear(sc); - /* Loop over all the different inner product proofs we might be doing at once. Since they - * share generators `G_i` and `H_i`, we compute all of their scalars at once and add them. - * For each proof we start with the "seed value" `ctx->proof[i].xcache[0]` (see next comment - * for its meaning) from which every other scalar derived. We expect the caller to have - * randomized this to ensure that this wanton addition cannot enable cancellation attacks. - */ - for (i = 0; i < ctx->n_proofs; i++) { - /* To recall from the introductory comment: most `s_i` values are computed by taking an - * earlier `s_j` value and multiplying it by some `x_k^2`. - * - * We now explain the index `j`: it is the largest number with one fewer 1-bits than `i`. - * Alternately, the most recently returned `s_j` where `j` has one fewer 1-bits than `i`. - * - * To ensure that `s_j` is available when we need it, on each iteration we define the - * variable `cache_idx` which simply counts the 1-bits in `i`; before returning `s_i` - * we store it in `ctx->proof[i].xcache[cache_idx]`. Then later, when we want "most - * recently returned `s_j` with one fewer 1-bits than `i`, it'll be sitting right - * there in `ctx->proof[i].xcache[cache_idx - 1]`. - * - * Note that `ctx->proof[i].xcache[0]` will always equal `-a_1 * prod_{i=1}^{n-1} x_i^-2`, - * and we expect the caller to have set this. - */ - const size_t cache_idx = POPCOUNT(idx); - secp256k1_scalar term; - VERIFY_CHECK(cache_idx < SECP256K1_BULLETPROOF_MAX_DEPTH); - /* For the special case `cache_idx == 0` (which is true iff `idx == 0`) there is nothing to do. */ - if (cache_idx > 0) { - /* Otherwise, check if this is one of the special indices where we transition from `a_1` to `a_2`, - * from `a_2` to `b_1`, or from `b_1` to `b_2`. (For small proofs there is only one transition, - * from `a` to `b`.) */ - if (idx % (ctx->vec_len / grouping) == 0) { - const size_t abinv_idx = idx / (ctx->vec_len / grouping) - 1; - size_t prev_cache_idx; - /* Check if it's the even specialer index where we're transitioning from `a`s to `b`s, from - * `G`s to `H`s, and from `x_k^2`s to `x_k^-2`s. In rangeproof and circuit applications, - * the caller secretly has a variable `y` such that `H_i` is really `y^-i H_i` for `i` ranging - * from 0 to `n-1`. Rather than forcing the caller to tweak every `H_i` herself, which would - * be very slow and prevent precomputation, we instead multiply our cached `x_k^-2` values - * by `y^(-2^k)` respectively, which will ultimately result in every `s_i` we return having - * been multiplied by `y^-i`. - * - * This is an underhanded trick but the result is that all `n` powers of `y^-i` show up - * in the right place, and we only need log-many scalar squarings and multiplications. - */ - if (idx == ctx->vec_len) { - secp256k1_scalar yinvn = ctx->proof[i].proof->yinv; - size_t j; - prev_cache_idx = POPCOUNT(idx - 1); - for (j = 0; j < (size_t) CTZ(idx) - lg_grouping; j++) { - secp256k1_scalar_mul(&ctx->proof[i].xsqinvy[j], &ctx->proof[i].xsqinv[j], &yinvn); - secp256k1_scalar_sqr(&yinvn, &yinvn); - } - if (lg_grouping == 1) { - secp256k1_scalar_mul(&ctx->proof[i].abinv[2], &ctx->proof[i].abinv[2], &yinvn); - secp256k1_scalar_sqr(&yinvn, &yinvn); - } - } else { - prev_cache_idx = cache_idx - 1; - } - /* Regardless of specialness, we multiply by `a_2/a_1` or whatever the appropriate multiplier - * is. We expect the caller to have given these to us in the `ctx->proof[i].abinv` array. */ - secp256k1_scalar_mul( - &ctx->proof[i].xcache[cache_idx], - &ctx->proof[i].xcache[prev_cache_idx], - &ctx->proof[i].abinv[abinv_idx] - ); - /* If it's *not* a special index, just multiply by the appropriate `x_k^2`, or `x_k^-2` in case - * we're in the `H_i` half of the multiexp. At this point we can explain the index `k`, which - * is computed in the variable `xsq_idx` (`xsqinv_idx` respectively). In light of our discussion - * of `j`, we see that this should be "the least significant bit that's 1 in `i` but not `i-1`." - * In other words, it is the number of trailing 0 bits in the index `i`. */ - } else if (idx < ctx->vec_len) { - const size_t xsq_idx = CTZ(idx); - secp256k1_scalar_mul(&ctx->proof[i].xcache[cache_idx], &ctx->proof[i].xcache[cache_idx - 1], &ctx->proof[i].xsq[xsq_idx]); - } else { - const size_t xsqinv_idx = CTZ(idx); - secp256k1_scalar_mul(&ctx->proof[i].xcache[cache_idx], &ctx->proof[i].xcache[cache_idx - 1], &ctx->proof[i].xsqinvy[xsqinv_idx]); - } - } - term = ctx->proof[i].xcache[cache_idx]; - - /* One last trick: compute `x_k^-2` while computing the `G_i` scalars, so that they'll be - * available when we need them for the `H_i` scalars. We can do this for every `i` value - * that has exactly one 0-bit, i.e. which is a product of all `x_i`s and one `x_k^-1`. By - * multiplying that by the special value `prod_{i=1}^n x_i^-1` we obtain simply `x_k^-2`. - * We expect the caller to give us this special value in `ctx->proof[i].xsqinv_mask`. */ - if (idx < ctx->vec_len / grouping && POPCOUNT(idx) == ctx->lg_vec_len - 1) { - const size_t xsqinv_idx = CTZ(~idx); - secp256k1_scalar_mul(&ctx->proof[i].xsqinv[xsqinv_idx], &ctx->proof[i].xcache[cache_idx], &ctx->proof[i].xsqinv_mask); - } - - /* Finally, if the caller, in its computation of `P`, wants to multiply `G_i` or `H_i` by some scalar, - * we add that to our sum as well. Again, we trust the randomization in `xcache[0]` to prevent any - * cancellation attacks here. */ - if (ctx->proof[i].proof->rangeproof_cb != NULL) { - secp256k1_scalar rangeproof_offset; - if ((ctx->proof[i].proof->rangeproof_cb)(&rangeproof_offset, NULL, &ctx->randomizer[i], idx, ctx->proof[i].proof->rangeproof_cb_data) == 0) { - return 0; - } - secp256k1_scalar_add(&term, &term, &rangeproof_offset); - } - - secp256k1_scalar_add(sc, sc, &term); - } - /* Next 2lgN points are the L and R vectors */ - } else if (idx < 2 * (ctx->vec_len + ctx->lg_vec_len * ctx->n_proofs)) { - size_t real_idx = idx - 2 * ctx->vec_len; - const size_t proof_idx = real_idx / (2 * ctx->lg_vec_len); - real_idx = real_idx % (2 * ctx->lg_vec_len); - secp256k1_bulletproof_deserialize_point( - pt, - ctx->proof[proof_idx].serialized_lr, - real_idx, - 2 * ctx->lg_vec_len - ); - if (idx % 2 == 0) { - *sc = ctx->proof[proof_idx].xsq[real_idx / 2]; - } else { - *sc = ctx->proof[proof_idx].xsqinv[real_idx / 2]; - } - secp256k1_scalar_mul(sc, sc, &ctx->randomizer[proof_idx]); - /* After the G's, H's, L's and R's, do the blinding_gen */ - } else if (idx == 2 * (ctx->vec_len + ctx->lg_vec_len * ctx->n_proofs)) { - *sc = ctx->p_offs; - *pt = *ctx->g; - /* Remaining points are whatever the rangeproof wants */ - } else if (ctx->shared_g && idx == 2 * (ctx->vec_len + ctx->lg_vec_len * ctx->n_proofs) + 1) { - /* Special case: the first extra point is independent of the proof, for both rangeproof and circuit */ - size_t i; - secp256k1_scalar_clear(sc); - for (i = 0; i < ctx->n_proofs; i++) { - secp256k1_scalar term; - if ((ctx->proof[i].proof->rangeproof_cb)(&term, pt, &ctx->randomizer[i], 2 * (ctx->vec_len + ctx->lg_vec_len), ctx->proof[i].proof->rangeproof_cb_data) == 0) { - return 0; - } - secp256k1_scalar_add(sc, sc, &term); - } - } else { - size_t proof_idx = 0; - size_t real_idx = idx - 2 * (ctx->vec_len + ctx->lg_vec_len * ctx->n_proofs) - 1 - !!ctx->shared_g; - while (real_idx >= ctx->proof[proof_idx].proof->n_extra_rangeproof_points - !!ctx->shared_g) { - real_idx -= ctx->proof[proof_idx].proof->n_extra_rangeproof_points - !!ctx->shared_g; - proof_idx++; - VERIFY_CHECK(proof_idx < ctx->n_proofs); - } - if ((ctx->proof[proof_idx].proof->rangeproof_cb)(sc, pt, &ctx->randomizer[proof_idx], 2 * (ctx->vec_len + ctx->lg_vec_len), ctx->proof[proof_idx].proof->rangeproof_cb_data) == 0) { - return 0; - } - } - - return 1; -} - -/* nb For security it is essential that `commit_inp` already commit to all data - * needed to compute `P`. We do not hash it in during verification since `P` - * may be specified indirectly as a bunch of scalar offsets. - */ -static int secp256k1_bulletproof_inner_product_verify_impl(const secp256k1_ecmult_context *ecmult_ctx, secp256k1_scratch *scratch, const secp256k1_bulletproof_generators *gens, size_t vec_len, const secp256k1_bulletproof_innerproduct_context *proof, size_t n_proofs, size_t plen, int shared_g) { - secp256k1_sha256 sha256; - secp256k1_bulletproof_innerproduct_vfy_ecmult_context ecmult_data; - unsigned char commit[32]; - size_t total_n_points = 2 * vec_len + !!shared_g + 1; /* +1 for shared G (value_gen), +1 for H (blinding_gen) */ - secp256k1_gej r; - secp256k1_scalar zero; - size_t i; - - if (plen != secp256k1_bulletproof_innerproduct_proof_length(vec_len)) { - return 0; - } - - if (n_proofs == 0) { - return 1; - } - - if (!secp256k1_scratch_allocate_frame(scratch, n_proofs * (sizeof(*ecmult_data.randomizer) + sizeof(*ecmult_data.proof)), 2)) { - return 0; - } - - secp256k1_scalar_clear(&zero); - ecmult_data.n_proofs = n_proofs; - ecmult_data.g = gens->blinding_gen; - ecmult_data.geng = gens->gens; - ecmult_data.genh = gens->gens + gens->n / 2; - ecmult_data.vec_len = vec_len; - ecmult_data.lg_vec_len = secp256k1_floor_lg(2 * vec_len / IP_AB_SCALARS); - ecmult_data.shared_g = shared_g; - ecmult_data.randomizer = (secp256k1_scalar *)secp256k1_scratch_alloc(scratch, n_proofs * sizeof(*ecmult_data.randomizer)); - ecmult_data.proof = (secp256k1_bulletproof_innerproduct_vfy_data *)secp256k1_scratch_alloc(scratch, n_proofs * sizeof(*ecmult_data.proof)); - /* Seed RNG for per-proof randomizers */ - secp256k1_sha256_initialize(&sha256); - for (i = 0; i < n_proofs; i++) { - secp256k1_sha256_write(&sha256, proof[i].proof, plen); - secp256k1_sha256_write(&sha256, proof[i].commit, 32); - secp256k1_scalar_get_b32(commit, &proof[i].p_offs); - secp256k1_sha256_write(&sha256, commit, 32); - } - secp256k1_sha256_finalize(&sha256, commit); - - secp256k1_scalar_clear(&ecmult_data.p_offs); - for (i = 0; i < n_proofs; i++) { - const unsigned char *serproof = proof[i].proof; - unsigned char proof_commit[32]; - secp256k1_scalar dot; - secp256k1_scalar ab[IP_AB_SCALARS]; - secp256k1_scalar negprod; - secp256k1_scalar x; - int overflow; - size_t j; - const size_t n_ab = 2 * vec_len < IP_AB_SCALARS ? 2 * vec_len : IP_AB_SCALARS; - - total_n_points += 2 * ecmult_data.lg_vec_len + proof[i].n_extra_rangeproof_points - !!shared_g; /* -1 for shared G */ - - /* Extract dot product, will always be the first 32 bytes */ - secp256k1_scalar_set_b32(&dot, serproof, &overflow); - if (overflow) { - secp256k1_scratch_deallocate_frame(scratch); - return 0; - } - /* Commit to dot product */ - secp256k1_sha256_initialize(&sha256); - secp256k1_sha256_write(&sha256, proof[i].commit, 32); - secp256k1_sha256_write(&sha256, serproof, 32); - secp256k1_sha256_finalize(&sha256, proof_commit); - serproof += 32; - - /* Extract a, b */ - for (j = 0; j < n_ab; j++) { - secp256k1_scalar_set_b32(&ab[j], serproof, &overflow); - if (overflow) { - secp256k1_scratch_deallocate_frame(scratch); - return 0; - } - /* TODO our verifier currently bombs out with zeros because it uses - * scalar inverses gratuitously. Fix that. */ - if (secp256k1_scalar_is_zero(&ab[j])) { - secp256k1_scratch_deallocate_frame(scratch); - return 0; - } - serproof += 32; - } - secp256k1_scalar_dot_product(&negprod, &ab[0], &ab[n_ab / 2], n_ab / 2); - - ecmult_data.proof[i].proof = &proof[i]; - /* set per-proof randomizer */ - secp256k1_sha256_initialize(&sha256); - secp256k1_sha256_write(&sha256, commit, 32); - secp256k1_sha256_finalize(&sha256, commit); - secp256k1_scalar_set_b32(&ecmult_data.randomizer[i], commit, &overflow); - if (overflow || secp256k1_scalar_is_zero(&ecmult_data.randomizer[i])) { - /* cryptographically unreachable */ - secp256k1_scratch_deallocate_frame(scratch); - return 0; - } - - /* Compute x*(dot - a*b) for each proof; add it and p_offs to the p_offs accumulator */ - secp256k1_scalar_set_b32(&x, proof_commit, &overflow); - if (overflow || secp256k1_scalar_is_zero(&x)) { - secp256k1_scratch_deallocate_frame(scratch); - return 0; - } - secp256k1_scalar_negate(&negprod, &negprod); - secp256k1_scalar_add(&negprod, &negprod, &dot); - secp256k1_scalar_mul(&x, &x, &negprod); - secp256k1_scalar_add(&x, &x, &proof[i].p_offs); - - secp256k1_scalar_mul(&x, &x, &ecmult_data.randomizer[i]); - secp256k1_scalar_add(&ecmult_data.p_offs, &ecmult_data.p_offs, &x); - - /* Special-case: trivial proofs are valid iff the explicitly revealed scalars - * dot to the explicitly revealed dot product. */ - if (2 * vec_len <= IP_AB_SCALARS) { - if (!secp256k1_scalar_is_zero(&negprod)) { - secp256k1_scratch_deallocate_frame(scratch); - return 0; - } - /* remaining data does not (and cannot) be computed for proofs with no a's or b's. */ - if (vec_len == 0) { - continue; - } - } - - /* Compute the inverse product and the array of squares; the rest will be filled - * in by the callback during the multiexp. */ - ecmult_data.proof[i].serialized_lr = serproof; /* bookmark L/R location in proof */ - negprod = ab[n_ab - 1]; - ab[n_ab - 1] = ecmult_data.randomizer[i]; /* build r * x1 * x2 * ... * xn in last slot of `ab` array */ - for (j = 0; j < ecmult_data.lg_vec_len; j++) { - secp256k1_scalar xi; - const size_t lidx = 2 * j; - const size_t ridx = 2 * j + 1; - const size_t bitveclen = (2 * ecmult_data.lg_vec_len + 7) / 8; - const unsigned char lrparity = 2 * !!(serproof[lidx / 8] & (1 << (lidx % 8))) + !!(serproof[ridx / 8] & (1 << (ridx % 8))); - /* Map commit -> H(commit || LR parity || Lx || Rx), compute xi from it */ - secp256k1_sha256_initialize(&sha256); - secp256k1_sha256_write(&sha256, proof_commit, 32); - secp256k1_sha256_write(&sha256, &lrparity, 1); - secp256k1_sha256_write(&sha256, &serproof[32 * lidx + bitveclen], 32); - secp256k1_sha256_write(&sha256, &serproof[32 * ridx + bitveclen], 32); - secp256k1_sha256_finalize(&sha256, proof_commit); - - secp256k1_scalar_set_b32(&xi, proof_commit, &overflow); - if (overflow || secp256k1_scalar_is_zero(&xi)) { - secp256k1_scratch_deallocate_frame(scratch); - return 0; - } - secp256k1_scalar_mul(&ab[n_ab - 1], &ab[n_ab - 1], &xi); - secp256k1_scalar_sqr(&ecmult_data.proof[i].xsq[j], &xi); - } - /* Compute inverse of all a's and b's, except the last b whose inverse is not needed. - * Also compute the inverse of (-r * x1 * ... * xn) which will be needed */ - secp256k1_scalar_inverse_all_var(ecmult_data.proof[i].abinv, ab, n_ab); - ab[n_ab - 1] = negprod; - - /* Compute (-a0 * r * x1 * ... * xn)^-1 which will be used to mask out individual x_i^-2's */ - secp256k1_scalar_negate(&ecmult_data.proof[i].xsqinv_mask, &ecmult_data.proof[i].abinv[0]); - secp256k1_scalar_mul(&ecmult_data.proof[i].xsqinv_mask, &ecmult_data.proof[i].xsqinv_mask, &ecmult_data.proof[i].abinv[n_ab - 1]); - - /* Compute each scalar times the previous' inverse, which is used to switch between a's and b's */ - for (j = n_ab - 1; j > 0; j--) { - size_t prev_idx; - if (j == n_ab / 2) { - prev_idx = j - 1; /* we go from a_n to b_0 */ - } else { - prev_idx = j & (j - 1); /* but from a_i' to a_i, where i' is i with its lowest set bit unset */ - } - secp256k1_scalar_mul( - &ecmult_data.proof[i].abinv[j - 1], - &ecmult_data.proof[i].abinv[prev_idx], - &ab[j] - ); - } - - /* Extract -a0 * r * (x1 * ... * xn)^-1 which is our first coefficient. Use negprod as a dummy */ - secp256k1_scalar_mul(&negprod, &ecmult_data.randomizer[i], &ab[0]); /* r*a */ - secp256k1_scalar_sqr(&negprod, &negprod); /* (r*a)^2 */ - secp256k1_scalar_mul(&ecmult_data.proof[i].xcache[0], &ecmult_data.proof[i].xsqinv_mask, &negprod); /* -a * r * (x1 * x2 * ... * xn)^-1 */ - } - - /* Do the multiexp */ - if (secp256k1_ecmult_multi_var(ecmult_ctx, scratch, &r, NULL, secp256k1_bulletproof_innerproduct_vfy_ecmult_callback, (void *) &ecmult_data, total_n_points) != 1) { - secp256k1_scratch_deallocate_frame(scratch); - return 0; - } - secp256k1_scratch_deallocate_frame(scratch); - return secp256k1_gej_is_infinity(&r); -} - -typedef struct { - secp256k1_scalar x[SECP256K1_BULLETPROOF_MAX_DEPTH]; - secp256k1_scalar xinv[SECP256K1_BULLETPROOF_MAX_DEPTH]; - secp256k1_scalar yinv; - secp256k1_scalar yinvn; - const secp256k1_ge *geng; - const secp256k1_ge *genh; - const secp256k1_ge *g; - const secp256k1_scalar *a; - const secp256k1_scalar *b; - secp256k1_scalar g_sc; - size_t grouping; - size_t n; -} secp256k1_bulletproof_innerproduct_pf_ecmult_context; - -/* At each level i of recursion (i from 0 upto lg(vector size) - 1) - * L = a_even . G_odd + b_odd . H_even (18) - * which, by expanding the generators into the original G's and H's - * and setting n = (1 << i), can be computed as follows: - * - * For j from 1 to [vector size], - * 1. Use H[j] or G[j] as generator, starting with H and switching - * every n. - * 2. Start with b1 with H and a0 with G, and increment by 2 each switch. - * 3. For k = 1, 2, 4, ..., n/2, use the same algorithm to choose - * between a and b to choose between x and x^-1, except using - * k in place of n. With H's choose x then x^-1, with G's choose - * x^-1 then x. - * - * For R everything is the same except swap G/H and a/b and x/x^-1. - */ -static int secp256k1_bulletproof_innerproduct_pf_ecmult_callback_l(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data) { - secp256k1_bulletproof_innerproduct_pf_ecmult_context *ctx = (secp256k1_bulletproof_innerproduct_pf_ecmult_context *) data; - const size_t ab_idx = (idx / ctx->grouping) ^ 1; - size_t i; - - /* Special-case the primary generator */ - if (idx == ctx->n) { - *pt = *ctx->g; - *sc = ctx->g_sc; - return 1; - } - - /* steps 1/2 */ - if ((idx / ctx->grouping) % 2 == 0) { - *pt = ctx->genh[idx]; - *sc = ctx->b[ab_idx]; - /* Map h -> h' (eqn 59) */ - secp256k1_scalar_mul(sc, sc, &ctx->yinvn); - } else { - *pt = ctx->geng[idx]; - *sc = ctx->a[ab_idx]; - } - - /* step 3 */ - for (i = 0; (1u << i) < ctx->grouping; i++) { - size_t grouping = (1u << i); - if ((((idx / grouping) % 2) ^ ((idx / ctx->grouping) % 2)) == 0) { - secp256k1_scalar_mul(sc, sc, &ctx->x[i]); - } else { - secp256k1_scalar_mul(sc, sc, &ctx->xinv[i]); - } - } - - secp256k1_scalar_mul(&ctx->yinvn, &ctx->yinvn, &ctx->yinv); - return 1; -} - -/* Identical code except `== 0` changed to `== 1` twice, and the - * `+ 1` from Step 1/2 was moved to the other if branch. */ -static int secp256k1_bulletproof_innerproduct_pf_ecmult_callback_r(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data) { - secp256k1_bulletproof_innerproduct_pf_ecmult_context *ctx = (secp256k1_bulletproof_innerproduct_pf_ecmult_context *) data; - const size_t ab_idx = (idx / ctx->grouping) ^ 1; - size_t i; - - /* Special-case the primary generator */ - if (idx == ctx->n) { - *pt = *ctx->g; - *sc = ctx->g_sc; - return 1; - } - - /* steps 1/2 */ - if ((idx / ctx->grouping) % 2 == 1) { - *pt = ctx->genh[idx]; - *sc = ctx->b[ab_idx]; - /* Map h -> h' (eqn 59) */ - secp256k1_scalar_mul(sc, sc, &ctx->yinvn); - } else { - *pt = ctx->geng[idx]; - *sc = ctx->a[ab_idx]; - } - - /* step 3 */ - for (i = 0; (1u << i) < ctx->grouping; i++) { - size_t grouping = (1u << i); - if ((((idx / grouping) % 2) ^ ((idx / ctx->grouping) % 2)) == 1) { - secp256k1_scalar_mul(sc, sc, &ctx->x[i]); - } else { - secp256k1_scalar_mul(sc, sc, &ctx->xinv[i]); - } - } - - secp256k1_scalar_mul(&ctx->yinvn, &ctx->yinvn, &ctx->yinv); - return 1; -} - -static int secp256k1_bulletproof_innerproduct_pf_ecmult_callback_g(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data) { - secp256k1_bulletproof_innerproduct_pf_ecmult_context *ctx = (secp256k1_bulletproof_innerproduct_pf_ecmult_context *) data; - size_t i; - - *pt = ctx->geng[idx]; - secp256k1_scalar_set_int(sc, 1); - for (i = 0; (1u << i) <= ctx->grouping; i++) { - if (idx & (1u << i)) { - secp256k1_scalar_mul(sc, sc, &ctx->x[i]); - } else { - secp256k1_scalar_mul(sc, sc, &ctx->xinv[i]); - } - } - return 1; -} - -static int secp256k1_bulletproof_innerproduct_pf_ecmult_callback_h(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data) { - secp256k1_bulletproof_innerproduct_pf_ecmult_context *ctx = (secp256k1_bulletproof_innerproduct_pf_ecmult_context *) data; - size_t i; - - *pt = ctx->genh[idx]; - secp256k1_scalar_set_int(sc, 1); - for (i = 0; (1u << i) <= ctx->grouping; i++) { - if (idx & (1u << i)) { - secp256k1_scalar_mul(sc, sc, &ctx->xinv[i]); - } else { - secp256k1_scalar_mul(sc, sc, &ctx->x[i]); - } - } - secp256k1_scalar_mul(sc, sc, &ctx->yinvn); - secp256k1_scalar_mul(&ctx->yinvn, &ctx->yinvn, &ctx->yinv); - return 1; -} - -/* These proofs are not zero-knowledge. There is no need to worry about constant timeness. - * `commit_inp` must contain 256 bits of randomness, it is used immediately as a randomizer. - */ -static int secp256k1_bulletproof_inner_product_real_prove_impl(const secp256k1_ecmult_context *ecmult_ctx, secp256k1_scratch *scratch, secp256k1_ge *out_pt, size_t *pt_idx, const secp256k1_ge *g, secp256k1_ge *geng, secp256k1_ge *genh, secp256k1_scalar *a_arr, secp256k1_scalar *b_arr, const secp256k1_scalar *yinv, const secp256k1_scalar *ux, const size_t n, unsigned char *commit) { - size_t i; - size_t halfwidth; - - secp256k1_bulletproof_innerproduct_pf_ecmult_context pfdata; - pfdata.yinv = *yinv; - pfdata.g = g; - pfdata.geng = geng; - pfdata.genh = genh; - pfdata.a = a_arr; - pfdata.b = b_arr; - pfdata.n = n; - - /* Protocol 1: Iterate, halving vector size until it is 1 */ - for (halfwidth = n / 2, i = 0; halfwidth > IP_AB_SCALARS / 4; halfwidth /= 2, i++) { - secp256k1_gej tmplj, tmprj; - size_t j; - int overflow; - - pfdata.grouping = 1u << i; - - /* L */ - secp256k1_scalar_clear(&pfdata.g_sc); - for (j = 0; j < halfwidth; j++) { - secp256k1_scalar prod; - secp256k1_scalar_mul(&prod, &a_arr[2*j], &b_arr[2*j + 1]); - secp256k1_scalar_add(&pfdata.g_sc, &pfdata.g_sc, &prod); - } - secp256k1_scalar_mul(&pfdata.g_sc, &pfdata.g_sc, ux); - - secp256k1_scalar_set_int(&pfdata.yinvn, 1); - secp256k1_ecmult_multi_var(ecmult_ctx, scratch, &tmplj, NULL, &secp256k1_bulletproof_innerproduct_pf_ecmult_callback_l, (void *) &pfdata, n + 1); - secp256k1_ge_set_gej(&out_pt[(*pt_idx)++], &tmplj); - - /* R */ - secp256k1_scalar_clear(&pfdata.g_sc); - for (j = 0; j < halfwidth; j++) { - secp256k1_scalar prod; - secp256k1_scalar_mul(&prod, &a_arr[2*j + 1], &b_arr[2*j]); - secp256k1_scalar_add(&pfdata.g_sc, &pfdata.g_sc, &prod); - } - secp256k1_scalar_mul(&pfdata.g_sc, &pfdata.g_sc, ux); - - secp256k1_scalar_set_int(&pfdata.yinvn, 1); - secp256k1_ecmult_multi_var(ecmult_ctx, scratch, &tmprj, NULL, &secp256k1_bulletproof_innerproduct_pf_ecmult_callback_r, (void *) &pfdata, n + 1); - secp256k1_ge_set_gej(&out_pt[(*pt_idx)++], &tmprj); - - /* x, x^2, x^-1, x^-2 */ - secp256k1_bulletproof_update_commit(commit, &out_pt[*pt_idx - 2], &out_pt[*pt_idx] - 1); - secp256k1_scalar_set_b32(&pfdata.x[i], commit, &overflow); - if (overflow || secp256k1_scalar_is_zero(&pfdata.x[i])) { - return 0; - } - secp256k1_scalar_inverse_var(&pfdata.xinv[i], &pfdata.x[i]); - - /* update scalar array */ - for (j = 0; j < halfwidth; j++) { - secp256k1_scalar tmps; - secp256k1_scalar_mul(&a_arr[2*j], &a_arr[2*j], &pfdata.x[i]); - secp256k1_scalar_mul(&tmps, &a_arr[2*j + 1], &pfdata.xinv[i]); - secp256k1_scalar_add(&a_arr[j], &a_arr[2*j], &tmps); - - secp256k1_scalar_mul(&b_arr[2*j], &b_arr[2*j], &pfdata.xinv[i]); - secp256k1_scalar_mul(&tmps, &b_arr[2*j + 1], &pfdata.x[i]); - secp256k1_scalar_add(&b_arr[j], &b_arr[2*j], &tmps); - - } - - /* Combine G generators and recurse, if that would be more optimal */ - if ((n > 2048 && i == 3) || (n > 128 && i == 2) || (n > 32 && i == 1)) { - secp256k1_scalar yinv2; - - for (j = 0; j < halfwidth; j++) { - secp256k1_gej rj; - secp256k1_ecmult_multi_var(ecmult_ctx, scratch, &rj, NULL, &secp256k1_bulletproof_innerproduct_pf_ecmult_callback_g, (void *) &pfdata, 2u << i); - pfdata.geng += 2u << i; - secp256k1_ge_set_gej(&geng[j], &rj); - secp256k1_scalar_set_int(&pfdata.yinvn, 1); - secp256k1_ecmult_multi_var(ecmult_ctx, scratch, &rj, NULL, &secp256k1_bulletproof_innerproduct_pf_ecmult_callback_h, (void *) &pfdata, 2u << i); - pfdata.genh += 2u << i; - secp256k1_ge_set_gej(&genh[j], &rj); - } - - secp256k1_scalar_sqr(&yinv2, yinv); - for (j = 0; j < i; j++) { - secp256k1_scalar_sqr(&yinv2, &yinv2); - } - if (!secp256k1_bulletproof_inner_product_real_prove_impl(ecmult_ctx, scratch, out_pt, pt_idx, g, geng, genh, a_arr, b_arr, &yinv2, ux, halfwidth, commit)) { - return 0; - } - break; - } - } - return 1; -} - -static int secp256k1_bulletproof_inner_product_prove_impl(const secp256k1_ecmult_context *ecmult_ctx, secp256k1_scratch *scratch, unsigned char *proof, size_t *proof_len, const secp256k1_bulletproof_generators *gens, const secp256k1_scalar *yinv, const size_t n, secp256k1_ecmult_multi_callback *cb, void *cb_data, const unsigned char *commit_inp) { - secp256k1_sha256 sha256; - size_t i; - unsigned char commit[32]; - secp256k1_scalar *a_arr; - secp256k1_scalar *b_arr; - secp256k1_ge *out_pt; - secp256k1_ge *geng; - secp256k1_ge *genh; - secp256k1_scalar ux; - int overflow; - size_t pt_idx = 0; - secp256k1_scalar dot; - size_t half_n_ab = n < IP_AB_SCALARS / 2 ? n : IP_AB_SCALARS / 2; - - if (*proof_len < secp256k1_bulletproof_innerproduct_proof_length(n)) { - return 0; - } - *proof_len = secp256k1_bulletproof_innerproduct_proof_length(n); - - /* Special-case lengths 0 and 1 whose proofs are just expliict lists of scalars */ - if (n <= IP_AB_SCALARS / 2) { - secp256k1_scalar a[IP_AB_SCALARS / 2]; - secp256k1_scalar b[IP_AB_SCALARS / 2]; - - for (i = 0; i < n; i++) { - cb(&a[i], NULL, 2*i, cb_data); - cb(&b[i], NULL, 2*i+1, cb_data); - } - - secp256k1_scalar_dot_product(&dot, a, b, n); - secp256k1_scalar_get_b32(proof, &dot); - - for (i = 0; i < n; i++) { - secp256k1_scalar_get_b32(&proof[32 * (i + 1)], &a[i]); - secp256k1_scalar_get_b32(&proof[32 * (i + n + 1)], &b[i]); - } - VERIFY_CHECK(*proof_len == 32 * (2 * n + 1)); - return 1; - } - - /* setup for nontrivial proofs */ - if (!secp256k1_scratch_allocate_frame(scratch, 2 * n * (sizeof(secp256k1_scalar) + sizeof(secp256k1_ge)) + 2 * secp256k1_floor_lg(n) * sizeof(secp256k1_ge), 5)) { - return 0; - } - - a_arr = (secp256k1_scalar*)secp256k1_scratch_alloc(scratch, n * sizeof(secp256k1_scalar)); - b_arr = (secp256k1_scalar*)secp256k1_scratch_alloc(scratch, n * sizeof(secp256k1_scalar)); - geng = (secp256k1_ge*)secp256k1_scratch_alloc(scratch, n * sizeof(secp256k1_ge)); - genh = (secp256k1_ge*)secp256k1_scratch_alloc(scratch, n * sizeof(secp256k1_ge)); - out_pt = (secp256k1_ge*)secp256k1_scratch_alloc(scratch, 2 * secp256k1_floor_lg(n) * sizeof(secp256k1_ge)); - VERIFY_CHECK(a_arr != NULL); - VERIFY_CHECK(b_arr != NULL); - VERIFY_CHECK(gens != NULL); - - for (i = 0; i < n; i++) { - cb(&a_arr[i], NULL, 2*i, cb_data); - cb(&b_arr[i], NULL, 2*i+1, cb_data); - geng[i] = gens->gens[i]; - genh[i] = gens->gens[i + gens->n/2]; - } - - /* Record final dot product */ - secp256k1_scalar_dot_product(&dot, a_arr, b_arr, n); - secp256k1_scalar_get_b32(proof, &dot); - - /* Protocol 2: hash dot product to obtain G-randomizer */ - secp256k1_sha256_initialize(&sha256); - secp256k1_sha256_write(&sha256, commit_inp, 32); - secp256k1_sha256_write(&sha256, proof, 32); - secp256k1_sha256_finalize(&sha256, commit); - - proof += 32; - - secp256k1_scalar_set_b32(&ux, commit, &overflow); - if (overflow || secp256k1_scalar_is_zero(&ux)) { - /* cryptographically unreachable */ - secp256k1_scratch_deallocate_frame(scratch); - return 0; - } - - if (!secp256k1_bulletproof_inner_product_real_prove_impl(ecmult_ctx, scratch, out_pt, &pt_idx, gens->blinding_gen, geng, genh, a_arr, b_arr, yinv, &ux, n, commit)) { - secp256k1_scratch_deallocate_frame(scratch); - return 0; - } - - /* Final a/b values */ - for (i = 0; i < half_n_ab; i++) { - secp256k1_scalar_get_b32(&proof[32 * i], &a_arr[i]); - secp256k1_scalar_get_b32(&proof[32 * (i + half_n_ab)], &b_arr[i]); - } - proof += 64 * half_n_ab; - secp256k1_bulletproof_serialize_points(proof, out_pt, pt_idx); - - secp256k1_scratch_deallocate_frame(scratch); - return 1; -} - -#undef IP_AB_SCALARS - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/main_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/main_impl.h deleted file mode 100644 index f175ba0..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/main_impl.h +++ /dev/null @@ -1,240 +0,0 @@ -/********************************************************************** - * Copyright (c) 2018 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_MODULE_BULLETPROOF_MAIN_IMPL -#define SECP256K1_MODULE_BULLETPROOF_MAIN_IMPL - -#include "group.h" -#include "scalar.h" - -#include "modules/commitment/main_impl.h" - -struct secp256k1_bulletproof_generators { - size_t n; - /* `G_i`, `H_i` generators, `n` each of them which are generated when creating this struct */ - secp256k1_ge *gens; - /* `H` "alternate" generator, used in Pedersen commitments. Passed in by caller to - * `secp256k1_bulletproof_generators_create`; stored in this structure to allow consistent - * generators between functions using `secp256k1_bulletproof_generators` and functions - * using the Pedersen commitment module. */ - secp256k1_ge *blinding_gen; -}; - -#include "modules/bulletproofs/inner_product_impl.h" -#include "modules/bulletproofs/rangeproof_impl.h" -#include "modules/bulletproofs/util.h" - - -// This is out setup -secp256k1_bulletproof_generators *secp256k1_bulletproof_generators_create(const secp256k1_context *ctx, const secp256k1_generator *blinding_gen, size_t n) { - secp256k1_bulletproof_generators *ret; - secp256k1_rfc6979_hmac_sha256 rng; - unsigned char seed[64]; - secp256k1_gej precompj; - size_t i; - - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(blinding_gen != NULL); - - ret = (secp256k1_bulletproof_generators *)checked_malloc(&ctx->error_callback, sizeof(*ret)); - if (ret == NULL) { - return NULL; - } - ret->gens = (secp256k1_ge *)checked_malloc(&ctx->error_callback, (n + 1) * sizeof(*ret->gens)); - if (ret->gens == NULL) { - free(ret); - return NULL; - } - ret->blinding_gen = &ret->gens[n]; - ret->n = n; - - secp256k1_fe_get_b32(&seed[0], &secp256k1_ge_const_g.x); - secp256k1_fe_get_b32(&seed[32], &secp256k1_ge_const_g.y); - - secp256k1_rfc6979_hmac_sha256_initialize(&rng, seed, 64); - for (i = 0; i < n; i++) { - unsigned char tmp[32] = { 0 }; - secp256k1_generator gen; - secp256k1_rfc6979_hmac_sha256_generate(&rng, tmp, 32); - CHECK(secp256k1_generator_generate(ctx, &gen, tmp)); - secp256k1_generator_load(&ret->gens[i], &gen); - - secp256k1_gej_set_ge(&precompj, &ret->gens[i]); - } - - secp256k1_generator_load(&ret->blinding_gen[0], blinding_gen); - secp256k1_gej_set_ge(&precompj, &ret->blinding_gen[0]); - - return ret; -} - -void secp256k1_bulletproof_generators_destroy(const secp256k1_context* ctx, secp256k1_bulletproof_generators *gens) { - (void) ctx; - if (gens != NULL) { - free(gens->gens); - free(gens); - } -} - -int secp256k1_bulletproof_rangeproof_verify(const secp256k1_context* ctx, secp256k1_scratch_space *scratch, const secp256k1_bulletproof_generators *gens, const unsigned char *proof, size_t plen, - const uint64_t *min_value, const secp256k1_pedersen_commitment* commit, size_t n_commits, size_t nbits, const secp256k1_generator *value_gen, const unsigned char *extra_commit, size_t extra_commit_len) { - int ret; - size_t i; - secp256k1_ge *commitp; - secp256k1_ge value_genp; - const secp256k1_ge *commitp_ptr; - const uint64_t *minvalue_ptr; - - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(scratch != NULL); - ARG_CHECK(gens != NULL); - ARG_CHECK(gens->n >= 2 * nbits * n_commits); - ARG_CHECK(proof != NULL); - ARG_CHECK(commit != NULL); - ARG_CHECK(n_commits > 0); - ARG_CHECK(nbits > 0); - ARG_CHECK(nbits <= 64); - ARG_CHECK(value_gen != NULL); - ARG_CHECK(extra_commit != NULL || extra_commit_len == 0); - ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); - - if (!secp256k1_scratch_allocate_frame(scratch, 2 * n_commits * sizeof(secp256k1_ge), 1)) { - return 0; - } - - commitp = (secp256k1_ge *)secp256k1_scratch_alloc(scratch, n_commits * sizeof(secp256k1_ge)); - for (i = 0; i < n_commits; i++) { - secp256k1_pedersen_commitment_load(&commitp[i], &commit[i]); - } - secp256k1_generator_load(&value_genp, value_gen); - - commitp_ptr = commitp; - minvalue_ptr = min_value; - ret = secp256k1_bulletproof_rangeproof_verify_impl(&ctx->ecmult_ctx, scratch, &proof, 1, plen, nbits, &minvalue_ptr, &commitp_ptr, n_commits, &value_genp, gens, &extra_commit, &extra_commit_len); - secp256k1_scratch_deallocate_frame(scratch); - return ret; -} - -int secp256k1_bulletproof_rangeproof_verify_multi(const secp256k1_context* ctx, secp256k1_scratch_space *scratch, const secp256k1_bulletproof_generators *gens, const unsigned char* const* proof, size_t n_proofs, size_t plen, const uint64_t* const* min_value, const secp256k1_pedersen_commitment* const* commit, size_t n_commits, size_t nbits, const secp256k1_generator *value_gen, const unsigned char* const* extra_commit, size_t *extra_commit_len) { - int ret; - secp256k1_ge **commitp; - secp256k1_ge *value_genp; - size_t i; - - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(scratch != NULL); - ARG_CHECK(gens != NULL); - ARG_CHECK(gens->n >= 2 * nbits * n_commits); - ARG_CHECK(commit != NULL); - ARG_CHECK(proof != NULL); - ARG_CHECK(n_proofs > 0); - ARG_CHECK(n_commits > 0); - ARG_CHECK(nbits > 0); - ARG_CHECK(nbits <= 64); - ARG_CHECK(value_gen != NULL); - ARG_CHECK((extra_commit_len == NULL) == (extra_commit == NULL)); - if (extra_commit != NULL) { - for (i = 0; i < n_proofs; i++) { - ARG_CHECK(extra_commit[i] != NULL || extra_commit_len[i] == 0); - } - } - ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); - - if (!secp256k1_scratch_allocate_frame(scratch, n_proofs * (sizeof(*value_genp) + sizeof(*commitp) + n_commits * sizeof(**commitp)), 1 + n_proofs)) { - return 0; - } - - commitp = (secp256k1_ge **)secp256k1_scratch_alloc(scratch, n_proofs * sizeof(*commitp)); - value_genp = (secp256k1_ge *)secp256k1_scratch_alloc(scratch, n_proofs * sizeof(*value_genp)); - for (i = 0; i < n_proofs; i++) { - size_t j; - commitp[i] = (secp256k1_ge *)secp256k1_scratch_alloc(scratch, n_commits * sizeof(*commitp[i])); - for (j = 0; j < n_commits; j++) { - secp256k1_pedersen_commitment_load(&commitp[i][j], &commit[i][j]); - } - secp256k1_generator_load(&value_genp[i], &value_gen[i]); - } - - ret = secp256k1_bulletproof_rangeproof_verify_impl(&ctx->ecmult_ctx, scratch, proof, n_proofs, plen, nbits, min_value, (const secp256k1_ge **) commitp, n_commits, value_genp, gens, extra_commit, extra_commit_len); - secp256k1_scratch_deallocate_frame(scratch); - return ret; -} - -int secp256k1_bulletproof_rangeproof_rewind(const secp256k1_context* ctx, const secp256k1_bulletproof_generators *gens, uint64_t *value, unsigned char *blind, const unsigned char *proof, size_t plen, uint64_t min_value, const secp256k1_pedersen_commitment* commit, const secp256k1_generator *value_gen, const unsigned char *nonce, const unsigned char *extra_commit, size_t extra_commit_len) { - secp256k1_scalar blinds; - int ret; - - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(value != NULL); - ARG_CHECK(blind != NULL); - ARG_CHECK(gens != NULL); - ARG_CHECK(proof != NULL); - ARG_CHECK(commit != NULL); - ARG_CHECK(value_gen != NULL); - ARG_CHECK(nonce != NULL); - ARG_CHECK(extra_commit != NULL || extra_commit_len == 0); - - ret = secp256k1_bulletproof_rangeproof_rewind_impl(value, &blinds, proof, plen, min_value, commit, value_gen, gens->blinding_gen, nonce, extra_commit, extra_commit_len); - if (ret == 1) { - secp256k1_scalar_get_b32(blind, &blinds); - } - return ret; -} - -// Put everything inside a struct, so that we can receive as input this struct and the commitment to the value -int secp256k1_bulletproof_rangeproof_prove(const secp256k1_context* ctx, secp256k1_scratch_space *scratch, const secp256k1_bulletproof_generators *gens, unsigned char *proof, size_t *plen, const uint64_t *value, const uint64_t *min_value, const unsigned char* const* blind, size_t n_commits, const secp256k1_generator *value_gen, size_t nbits, const unsigned char *nonce, const unsigned char *extra_commit, size_t extra_commit_len) { - int ret; - secp256k1_ge *commitp; - secp256k1_scalar *blinds; - secp256k1_ge value_genp; - size_t i; - - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(scratch != NULL); - ARG_CHECK(gens != NULL); - ARG_CHECK(gens->n >= 2 * nbits * n_commits); - ARG_CHECK(proof != NULL); - ARG_CHECK(plen != NULL); - ARG_CHECK(value != NULL); - ARG_CHECK(blind != NULL); - ARG_CHECK(value_gen != NULL); - ARG_CHECK(nonce != NULL); - ARG_CHECK(n_commits > 0 && n_commits); - ARG_CHECK(nbits <= 64); - if (nbits < 64) { - for (i = 0; i < n_commits; i++) { - ARG_CHECK(value[i] < (1ull << nbits)); - ARG_CHECK(blind[i] != NULL); - } - } - ARG_CHECK(extra_commit != NULL || extra_commit_len == 0); - ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); - ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); - - if (!secp256k1_scratch_allocate_frame(scratch, n_commits * (sizeof(*commitp) + sizeof(*blinds)), 2)) { - return 0; - } - commitp = (secp256k1_ge *)secp256k1_scratch_alloc(scratch, n_commits * sizeof(*commitp)); - blinds = (secp256k1_scalar *)secp256k1_scratch_alloc(scratch, n_commits * sizeof(*blinds)); - - secp256k1_generator_load(&value_genp, value_gen); - for (i = 0; i < n_commits; i++) { - int overflow; - secp256k1_gej commitj; - secp256k1_scalar_set_b32(&blinds[i], blind[i], &overflow); - if (overflow || secp256k1_scalar_is_zero(&blinds[i])) { - return 0; - } - secp256k1_pedersen_ecmult(&commitj, &blinds[i], value[i], &value_genp, &gens->blinding_gen[0]); - secp256k1_ge_set_gej(&commitp[i], &commitj); - } - - ret = secp256k1_bulletproof_rangeproof_prove_impl(&ctx->ecmult_ctx, scratch, proof, plen, nbits, value, min_value, blinds, commitp, n_commits, &value_genp, gens, nonce, extra_commit, extra_commit_len); - secp256k1_scratch_deallocate_frame(scratch); - return ret; -} - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/rangeproof_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/rangeproof_impl.h deleted file mode 100644 index 6287edb..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/rangeproof_impl.h +++ /dev/null @@ -1,792 +0,0 @@ -/********************************************************************** - * Copyright (c) 2018 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_MODULE_BULLETPROOF_RANGEPROOF_IMPL -#define SECP256K1_MODULE_BULLETPROOF_RANGEPROOF_IMPL - -#include "modules/bulletproofs/inner_product_impl.h" -#include "modules/bulletproofs/util.h" -#include "group.h" - -#define MAX_NBITS 64 - -typedef struct { - secp256k1_scalar yinv; - secp256k1_scalar yinvn; - secp256k1_scalar z; - secp256k1_scalar z_randomized; - secp256k1_scalar zsq; - secp256k1_scalar g_exponent; - secp256k1_scalar negz; - secp256k1_scalar x; - secp256k1_ge a; - secp256k1_ge s; - size_t n; - /* eq (61) stuff */ - size_t count; - secp256k1_scalar randomizer61; - secp256k1_scalar y; - secp256k1_scalar t; - const secp256k1_ge *asset; - const secp256k1_ge *commit; - const uint64_t *min_value; - size_t n_commits; - secp256k1_ge t1; - secp256k1_ge t2; -} secp256k1_bulletproof_vfy_ecmult_context; - -static int secp256k1_bulletproof_rangeproof_vfy_callback(secp256k1_scalar *sc, secp256k1_ge *pt, secp256k1_scalar *randomizer, size_t idx, void *data) { - secp256k1_bulletproof_vfy_ecmult_context *ctx = (secp256k1_bulletproof_vfy_ecmult_context *) data; - - if (idx == 0) { - secp256k1_scalar_mul(&ctx->g_exponent, &ctx->negz, randomizer); - secp256k1_scalar_mul(&ctx->z_randomized, &ctx->z, randomizer); - } - - if (idx < ctx->n) { - *sc = ctx->g_exponent; - } else if (idx < 2 * ctx->n) { - const size_t nbits = ctx->n / ctx->n_commits; - const size_t commit_idx = (idx - ctx->n) / nbits; - const size_t bit_idx = (idx - ctx->n) % nbits; - - if (bit_idx == 0) { - size_t i; - secp256k1_scalar tmp; - secp256k1_scalar_mul(&tmp, &ctx->z, &ctx->yinvn); - secp256k1_scalar_sqr(&ctx->zsq, &ctx->z); - for (i = 0; i < commit_idx; i++) { - secp256k1_scalar_mul(&ctx->zsq, &ctx->zsq, &tmp); - } - secp256k1_scalar_mul(&ctx->zsq, &ctx->zsq, randomizer); - } - secp256k1_scalar_add(sc, &ctx->zsq, &ctx->z_randomized); - - secp256k1_scalar_mul(&ctx->zsq, &ctx->zsq, &ctx->yinv); - secp256k1_scalar_add(&ctx->zsq, &ctx->zsq, &ctx->zsq); - } else { - switch(ctx->count) { - /* S^x in eq (62) */ - case 2: - *sc = ctx->x; - *pt = ctx->s; - break; - /* A in eq (62) */ - case 1: - *pt = ctx->a; - secp256k1_scalar_set_int(sc, 1); - break; - /* G^[k(y, z) + sum_i y^i - t] from eq (61) */ - case 0: { - size_t i; - secp256k1_scalar yn; - secp256k1_scalar twosum; - secp256k1_scalar tmp; - - secp256k1_scalar_clear(&twosum); - secp256k1_scalar_clear(&yn); - secp256k1_scalar_set_int(&tmp, 1); - - secp256k1_scalar_sqr(&ctx->zsq, &ctx->z); /* need to re-set this */ - secp256k1_scalar_negate(sc, &ctx->zsq); /* -z^2 */ - secp256k1_scalar_add(sc, sc, &ctx->z); /* z - z^2 */ - - for (i = 0; i < ctx->n_commits; i++) { - const size_t nbits = ctx->n / ctx->n_commits; - secp256k1_scalar negzn; - secp256k1_scalar twon; - size_t j; - - secp256k1_scalar_clear(&twon); - for (j = 0; j < nbits; j++) { - secp256k1_scalar_mul(&yn, &yn, &ctx->y); - secp256k1_scalar_add(&twon, &twon, &twon); - - secp256k1_scalar_add(&yn, &yn, &tmp); - secp256k1_scalar_add(&twon, &twon, &tmp); - } - - secp256k1_scalar_mul(&negzn, &ctx->zsq, &ctx->negz); - for (j = 0; j < i; j++) { - secp256k1_scalar_mul(&negzn, &negzn, &ctx->z); - } - if (ctx->min_value != NULL) { - secp256k1_scalar mv; - secp256k1_scalar_set_int(&mv, ctx->min_value[i]); - secp256k1_scalar_mul(&mv, &mv, &ctx->negz); - secp256k1_scalar_mul(&mv, &mv, &ctx->z); - for (j = 0; j < i; j++) { - secp256k1_scalar_mul(&negzn, &negzn, &ctx->z); - } - secp256k1_scalar_add(&twosum, &twosum, &mv); - } - secp256k1_scalar_mul(&twon, &twon, &negzn); - secp256k1_scalar_add(&twosum, &twosum, &twon); - } /* yn = 1 + y + ... + y^(n-1); twosum = (z^3 + ... + z^{2 + n_commits})(1 + 2 + ... + 2^(n-1)) */ - - - secp256k1_scalar_mul(sc, sc, &yn); /* (z - z^2)(1 + ... + y^(n-1)) */ - secp256k1_scalar_add(sc, sc, &twosum); /* (z - z^2)(1 + ... + y^(n-1)) - z^3(1 + ... + 2^(n-1)) */ - secp256k1_scalar_negate(&tmp, &ctx->t); - secp256k1_scalar_add(sc, sc, &tmp); /* (z - z^2)(1 + ... + y^n) - z^3(1 + ... + 2^n) - t */ - secp256k1_scalar_mul(sc, sc, &ctx->randomizer61); - *pt = *ctx->asset; - break; - } - /* T1^x in eq (61) */ - case 3: - secp256k1_scalar_mul(sc, &ctx->x, &ctx->randomizer61); - *pt = ctx->t1; - break; - /* T2^x^2 in eq (61) */ - case 4: - secp256k1_scalar_sqr(sc, &ctx->x); - secp256k1_scalar_mul(sc, sc, &ctx->randomizer61); - *pt = ctx->t2; - break; - /* V^z^2 in eq (61) */ - default: - VERIFY_CHECK(ctx->count < 5 + ctx->n_commits); - - secp256k1_scalar_mul(sc, &ctx->zsq, &ctx->randomizer61); - secp256k1_scalar_mul(&ctx->zsq, &ctx->zsq, &ctx->z); - *pt = ctx->commit[ctx->count - 5]; - break; - } - secp256k1_scalar_mul(sc, sc, randomizer); - ctx->count++; - } - return 1; -} - -static int secp256k1_bulletproof_rangeproof_verify_impl(const secp256k1_ecmult_context *ecmult_ctx, secp256k1_scratch *scratch, const unsigned char* const* proof, const size_t n_proofs, const size_t plen, size_t nbits, const uint64_t* const* min_value, const secp256k1_ge* const* commitp, size_t n_commits, const secp256k1_ge *value_gen, const secp256k1_bulletproof_generators *gens, const unsigned char* const* extra_commit, size_t *extra_commit_len) { - secp256k1_bulletproof_vfy_ecmult_context *ecmult_data; - secp256k1_bulletproof_innerproduct_context *innp_ctx; - int ret; - size_t i; - int same_generators = 1; - - /* sanity-check input */ - if (POPCOUNT(nbits) != 1 || nbits > MAX_NBITS) { - return 0; - } - if (plen < 64 + 128 + 1) { /* inner product argument will do a more precise check */ - return 0; - } - if (plen > SECP256K1_BULLETPROOF_MAX_PROOF) { - return 0; - } - - if (!secp256k1_scratch_allocate_frame(scratch, n_proofs * (sizeof(*ecmult_data) + sizeof(*innp_ctx)), 2)) { - return 0; - } - ecmult_data = (secp256k1_bulletproof_vfy_ecmult_context *)secp256k1_scratch_alloc(scratch, n_proofs * sizeof(*ecmult_data)); - innp_ctx = (secp256k1_bulletproof_innerproduct_context *)secp256k1_scratch_alloc(scratch, n_proofs * sizeof(*innp_ctx)); - - /* In general you cannot memcmp secp256k1_ge's like this because their field - * elements may represent the same number differently. In this case it is ok - * because (a) a false positive here is no big deal, it will add one mult per - * proof to he giant ecmult_multi at the end but not change any semantics; - * and (b) typically this list of generators was deterministically decoded - * from a list of secp256k1_generators which have a compact encoding, so that - * equal group elements actually will compare equal. */ - for (i = 1; i < n_proofs; i++) { - if (memcmp(&value_gen[i], &value_gen[i - 1], sizeof(value_gen[i])) != 0) { - same_generators = 0; - } - } - - for (i = 0; i < n_proofs; i++) { - secp256k1_sha256 sha256; - unsigned char commit[32] = {0}; - unsigned char randomizer61[32] = {0}; /* randomizer for eq (61) so we can add it to eq (62) to save a separate multiexp */ - secp256k1_scalar taux, mu; - secp256k1_ge age, sge; - int overflow; - size_t j; - - /* Commit to all input data: min value, pedersen commit, asset generator, extra_commit */ - if (min_value != NULL && min_value[i] != NULL) { - secp256k1_sha256_initialize(&sha256); - secp256k1_sha256_write(&sha256, commit, 32); - for (j = 0; j < n_commits; j++) { - unsigned char vbuf[8]; - vbuf[0] = min_value[i][j]; - vbuf[1] = min_value[i][j] >> 8; - vbuf[2] = min_value[i][j] >> 16; - vbuf[3] = min_value[i][j] >> 24; - vbuf[4] = min_value[i][j] >> 32; - vbuf[5] = min_value[i][j] >> 40; - vbuf[6] = min_value[i][j] >> 48; - vbuf[7] = min_value[i][j] >> 56; - secp256k1_sha256_write(&sha256, vbuf, 8); - } - secp256k1_sha256_finalize(&sha256, commit); - } - for (j = 0; j < n_commits; j++) { - secp256k1_bulletproof_update_commit(commit, &commitp[i][j], &value_gen[i]); - } - if (extra_commit != NULL && extra_commit[i] != NULL) { - secp256k1_sha256_initialize(&sha256); - secp256k1_sha256_write(&sha256, commit, 32); - secp256k1_sha256_write(&sha256, extra_commit[i], extra_commit_len[i]); - secp256k1_sha256_finalize(&sha256, commit); - } - - /* Compute y, z, x */ - secp256k1_bulletproof_deserialize_point(&age, &proof[i][64], 0, 4); - secp256k1_bulletproof_deserialize_point(&sge, &proof[i][64], 1, 4); - - secp256k1_bulletproof_update_commit(commit, &age, &sge); - secp256k1_scalar_set_b32(&ecmult_data[i].y, commit, &overflow); - if (overflow || secp256k1_scalar_is_zero(&ecmult_data[i].y)) { - secp256k1_scratch_deallocate_frame(scratch); - return 0; - } - secp256k1_bulletproof_update_commit(commit, &age, &sge); - secp256k1_scalar_set_b32(&ecmult_data[i].z, commit, &overflow); - if (overflow || secp256k1_scalar_is_zero(&ecmult_data[i].z)) { - secp256k1_scratch_deallocate_frame(scratch); - return 0; - } - - secp256k1_bulletproof_deserialize_point(&ecmult_data[i].t1, &proof[i][64], 2, 4); - secp256k1_bulletproof_deserialize_point(&ecmult_data[i].t2, &proof[i][64], 3, 4); - - secp256k1_bulletproof_update_commit(commit, &ecmult_data[i].t1, &ecmult_data[i].t2); - secp256k1_scalar_set_b32(&ecmult_data[i].x, commit, &overflow); - if (overflow || secp256k1_scalar_is_zero(&ecmult_data[i].x)) { - secp256k1_scratch_deallocate_frame(scratch); - return 0; - } - - /* compute exponent offsets */ - secp256k1_scalar_inverse_var(&ecmult_data[i].yinv, &ecmult_data[i].y); /* TODO somehow batch this w the inner-product argument inverse */ - ecmult_data[i].yinvn = ecmult_data[i].yinv; - for (j = 0; j < secp256k1_floor_lg(nbits); j++) { - secp256k1_scalar_sqr(&ecmult_data[i].yinvn, &ecmult_data[i].yinvn); - } - secp256k1_scalar_sqr(&ecmult_data[i].zsq, &ecmult_data[i].z); - secp256k1_scalar_negate(&ecmult_data[i].negz, &ecmult_data[i].z); - - /* Update commit with remaining data for the inner product proof */ - secp256k1_sha256_initialize(&sha256); - secp256k1_sha256_write(&sha256, commit, 32); - secp256k1_sha256_write(&sha256, &proof[i][0], 64); - secp256k1_sha256_finalize(&sha256, commit); - - secp256k1_sha256_initialize(&sha256); - secp256k1_sha256_write(&sha256, commit, 32); - secp256k1_sha256_finalize(&sha256, randomizer61); - secp256k1_scalar_set_b32(&ecmult_data[i].randomizer61, randomizer61, &overflow); - if (overflow || secp256k1_scalar_is_zero(&ecmult_data[i].randomizer61)) { - secp256k1_scratch_deallocate_frame(scratch); - return 0; - } - - /* Deserialize everything else */ - secp256k1_scalar_set_b32(&taux, &proof[i][0], &overflow); - if (overflow || secp256k1_scalar_is_zero(&taux)) { - secp256k1_scratch_deallocate_frame(scratch); - return 0; - } - secp256k1_scalar_set_b32(&mu, &proof[i][32], &overflow); - if (overflow || secp256k1_scalar_is_zero(&mu)) { - secp256k1_scratch_deallocate_frame(scratch); - return 0; - } - /* A little sketchy, we read t (l(x) . r(x)) off the front of the inner product proof, - * which we otherwise treat as a black box */ - secp256k1_scalar_set_b32(&ecmult_data[i].t, &proof[i][64 + 128 + 1], &overflow); - if (overflow || secp256k1_scalar_is_zero(&ecmult_data[i].t)) { - secp256k1_scratch_deallocate_frame(scratch); - return 0; - } - - /* Verify inner product proof */ - ecmult_data[i].a = age; - ecmult_data[i].s = sge; - ecmult_data[i].n = nbits * n_commits; - ecmult_data[i].count = 0; - ecmult_data[i].asset = &value_gen[i]; - ecmult_data[i].min_value = min_value == NULL ? NULL : min_value[i]; - ecmult_data[i].commit = commitp[i]; - ecmult_data[i].n_commits = n_commits; - secp256k1_scalar_mul(&taux, &taux, &ecmult_data[i].randomizer61); - secp256k1_scalar_add(&mu, &mu, &taux); - - innp_ctx[i].proof = &proof[i][64 + 128 + 1]; - innp_ctx[i].p_offs = mu; - memcpy(innp_ctx[i].commit, commit, 32); - innp_ctx[i].yinv = ecmult_data[i].yinv; - innp_ctx[i].rangeproof_cb = secp256k1_bulletproof_rangeproof_vfy_callback; - innp_ctx[i].rangeproof_cb_data = (void *) &ecmult_data[i]; - innp_ctx[i].n_extra_rangeproof_points = 5 + n_commits; - } - - ret = secp256k1_bulletproof_inner_product_verify_impl(ecmult_ctx, scratch, gens, nbits * n_commits, innp_ctx, n_proofs, plen - (64 + 128 + 1), same_generators); - secp256k1_scratch_deallocate_frame(scratch); - return ret; -} - -typedef struct { - const unsigned char *nonce; - secp256k1_scalar y; - secp256k1_scalar z; - secp256k1_scalar yn; - secp256k1_scalar z22n; - const uint64_t *val; - const uint64_t *min_val; - size_t n_vals; - size_t nbits; - size_t count; -} secp256k1_bulletproof_lr_generator; - -static void secp256k1_lr_generator_init(secp256k1_bulletproof_lr_generator *generator, const unsigned char *nonce, const secp256k1_scalar *y, const secp256k1_scalar *z, size_t nbits, const uint64_t *val, const uint64_t *min_val, size_t n_vals) { - generator->nonce = nonce; - generator->y = *y; - generator->z = *z; - secp256k1_scalar_set_int(&generator->yn, 1); - generator->nbits = nbits; - generator->val = val; - generator->min_val = min_val; - generator->n_vals = n_vals; - generator->count = 0; -} - -static void secp256k1_lr_generate(secp256k1_bulletproof_lr_generator *generator, secp256k1_scalar *lout, secp256k1_scalar *rout, const secp256k1_scalar *x) { - const size_t commit_idx = generator->count / generator->nbits; - const size_t bit_idx = generator->count % generator->nbits; - const uint64_t mv = generator->min_val == NULL ? 0 : generator->min_val[commit_idx]; - const int bit = ((generator->val[commit_idx] - mv)>> bit_idx) & 1; - secp256k1_scalar sl, sr; - secp256k1_scalar negz; - - if (bit_idx == 0) { - size_t i; - secp256k1_scalar_sqr(&generator->z22n, &generator->z); - for (i = 0; i < commit_idx; i++) { - secp256k1_scalar_mul(&generator->z22n, &generator->z22n, &generator->z); - } - } - - secp256k1_scalar_chacha20(&sl, &sr, generator->nonce, generator->count + 2); - secp256k1_scalar_mul(&sl, &sl, x); - secp256k1_scalar_mul(&sr, &sr, x); - - secp256k1_scalar_set_int(lout, bit); - secp256k1_scalar_negate(&negz, &generator->z); - secp256k1_scalar_add(lout, lout, &negz); - secp256k1_scalar_add(lout, lout, &sl); - - secp256k1_scalar_set_int(rout, 1 - bit); - secp256k1_scalar_negate(rout, rout); - secp256k1_scalar_add(rout, rout, &generator->z); - secp256k1_scalar_add(rout, rout, &sr); - secp256k1_scalar_mul(rout, rout, &generator->yn); - secp256k1_scalar_add(rout, rout, &generator->z22n); - - generator->count++; - secp256k1_scalar_mul(&generator->yn, &generator->yn, &generator->y); - secp256k1_scalar_add(&generator->z22n, &generator->z22n, &generator->z22n); -} - -typedef struct { - secp256k1_scalar x; - secp256k1_scalar cache; - secp256k1_bulletproof_lr_generator lr_gen; -} secp256k1_bulletproof_abgh_data; - -static int secp256k1_bulletproof_abgh_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data) { - secp256k1_bulletproof_abgh_data *ctx = (secp256k1_bulletproof_abgh_data *) data; - const int is_g = idx % 2 == 0; - - (void) pt; - if (is_g) { - secp256k1_lr_generate(&ctx->lr_gen, sc, &ctx->cache, &ctx->x); - } else { - *sc = ctx->cache; - } - - return 1; -} - -/* Proof format: t, tau_x, mu, a, b, A, S, T_1, T_2, {L_i}, {R_i} - * 5 scalar + [4 + 2log(n)] ge - * - * The non-bold `h` in the Bulletproofs paper corresponds to our gens->blinding_gen - * while the non-bold `g` corresponds to the asset type `value_gen`. - */ -static int secp256k1_bulletproof_rangeproof_prove_impl(const secp256k1_ecmult_context *ecmult_ctx, secp256k1_scratch *scratch, unsigned char *proof, size_t *plen, const size_t nbits, const uint64_t *value, const uint64_t *min_value, const secp256k1_scalar *blind, const secp256k1_ge *commitp, size_t n_commits, const secp256k1_ge *value_gen, const secp256k1_bulletproof_generators *gens, const unsigned char *nonce, const unsigned char *extra_commit, size_t extra_commit_len) { - secp256k1_bulletproof_lr_generator lr_gen; - secp256k1_bulletproof_abgh_data abgh_data; - secp256k1_scalar zero; - secp256k1_sha256 sha256; - unsigned char commit[32] = {0}; - secp256k1_scalar alpha, rho; - secp256k1_scalar t0, t1, t2; - secp256k1_scalar tau1, tau2, taux, mu; - secp256k1_scalar y; - secp256k1_scalar z, zsq; - secp256k1_scalar x, xsq; - secp256k1_scalar tmps; - secp256k1_gej aj, sj; - secp256k1_gej tmpj; - size_t i, j; - int overflow; - /* inner product proof variables */ - secp256k1_ge out_pt[4]; - - if (POPCOUNT(nbits) != 1 || nbits > MAX_NBITS) { - return 0; - } - for (i = 0; i < n_commits; i++) { - uint64_t mv = min_value == NULL ? 0 : min_value[i]; - if (mv > value[i]) { - return 0; - } - if (nbits < 64 && (value[i] - mv) >= (1ull << nbits)) { - return 0; - } - } - if (*plen < 128 + 64 + 1) { /* inner product argument will check and assign plen */ - return 0; - } - - secp256k1_scalar_clear(&zero); - - /* Commit to all input data: min value, pedersen commit, asset generator, extra_commit */ - if (min_value != NULL) { - secp256k1_sha256_initialize(&sha256); - secp256k1_sha256_write(&sha256, commit, 32); - for (i = 0; i < n_commits; i++) { - unsigned char vbuf[8]; - vbuf[0] = min_value[i]; - vbuf[1] = min_value[i] >> 8; - vbuf[2] = min_value[i] >> 16; - vbuf[3] = min_value[i] >> 24; - vbuf[4] = min_value[i] >> 32; - vbuf[5] = min_value[i] >> 40; - vbuf[6] = min_value[i] >> 48; - vbuf[7] = min_value[i] >> 56; - secp256k1_sha256_write(&sha256, vbuf, 8); - } - secp256k1_sha256_finalize(&sha256, commit); - } - for (i = 0; i < n_commits; i++) { - secp256k1_bulletproof_update_commit(commit, &commitp[i], value_gen); /* TODO be less stupid about this */ - } - if (extra_commit != NULL) { - secp256k1_sha256_initialize(&sha256); - secp256k1_sha256_write(&sha256, commit, 32); - secp256k1_sha256_write(&sha256, extra_commit, extra_commit_len); - secp256k1_sha256_finalize(&sha256, commit); - } - - secp256k1_scalar_chacha20(&alpha, &rho, nonce, 0); - secp256k1_scalar_chacha20(&tau1, &tau2, nonce, 1); - /* Encrypt value into alpha, so it will be recoverable from -mu by someone who knows `nonce` */ - if (n_commits == 1) { - secp256k1_scalar vals; - secp256k1_scalar_set_u64(&vals, value[0]); - secp256k1_scalar_negate(&vals, &vals); /* Negate so it'll be positive in -mu */ - secp256k1_scalar_add(&alpha, &alpha, &vals); - } - - /* Compute A and S */ - secp256k1_ecmult_const(&aj, &gens->blinding_gen[0], &alpha, 256); - secp256k1_ecmult_const(&sj, &gens->blinding_gen[0], &rho, 256); - for (i = 0; i < n_commits; i++) { - for (j = 0; j < nbits; j++) { - secp256k1_scalar sl, sr; - uint64_t mv = min_value == NULL ? 0 : min_value[i]; - size_t al = !!((value[i] - mv) & (1ull << j)); - secp256k1_ge aterm = gens->gens[i * nbits + j + gens->n/2]; - secp256k1_ge sterm; - secp256k1_gej stermj; - - secp256k1_scalar_chacha20(&sl, &sr, nonce, i * nbits + j + 2); - - secp256k1_ge_neg(&aterm, &aterm); - secp256k1_fe_cmov(&aterm.x, &gens->gens[i * nbits + j].x, al); - secp256k1_fe_cmov(&aterm.y, &gens->gens[i * nbits + j].y, al); - - secp256k1_gej_add_ge(&aj, &aj, &aterm); - - secp256k1_ecmult_const(&stermj, &gens->gens[i * nbits + j], &sl, 256); - secp256k1_ge_set_gej(&sterm, &stermj); - secp256k1_gej_add_ge(&sj, &sj, &sterm); - secp256k1_ecmult_const(&stermj, &gens->gens[i * nbits + j + gens->n/2], &sr, 256); - secp256k1_ge_set_gej(&sterm, &stermj); - secp256k1_gej_add_ge(&sj, &sj, &sterm); - } - } - - /* get challenges y and z */ - secp256k1_ge_set_gej(&out_pt[0], &aj); - secp256k1_ge_set_gej(&out_pt[1], &sj); - - secp256k1_bulletproof_update_commit(commit, &out_pt[0], &out_pt[1]); - secp256k1_scalar_set_b32(&y, commit, &overflow); - if (overflow || secp256k1_scalar_is_zero(&y)) { - return 0; - } - secp256k1_bulletproof_update_commit(commit, &out_pt[0], &out_pt[1]); /* TODO rehashing A and S to get a second challenge is overkill */ - secp256k1_scalar_set_b32(&z, commit, &overflow); - if (overflow || secp256k1_scalar_is_zero(&z)) { - return 0; - } - secp256k1_scalar_sqr(&zsq, &z); - - /* Compute coefficients t0, t1, t2 of the polynomial */ - /* t0 = l(0) dot r(0) */ - secp256k1_lr_generator_init(&lr_gen, nonce, &y, &z, nbits, value, min_value, n_commits); - secp256k1_scalar_clear(&t0); - for (i = 0; i < nbits * n_commits; i++) { - secp256k1_scalar l, r; - secp256k1_lr_generate(&lr_gen, &l, &r, &zero); - secp256k1_scalar_mul(&l, &l, &r); - secp256k1_scalar_add(&t0, &t0, &l); - } - - /* A = t0 + t1 + t2 = l(1) dot r(1) */ - secp256k1_lr_generator_init(&lr_gen, nonce, &y, &z, nbits, value, min_value, n_commits); - secp256k1_scalar_clear(&t1); - for (i = 0; i < nbits * n_commits; i++) { - secp256k1_scalar one; - secp256k1_scalar l, r; - secp256k1_scalar_set_int(&one, 1); - secp256k1_lr_generate(&lr_gen, &l, &r, &one); - secp256k1_scalar_mul(&l, &l, &r); - secp256k1_scalar_add(&t1, &t1, &l); - } - - /* B = t0 - t1 + t2 = l(-1) dot r(-1) */ - secp256k1_lr_generator_init(&lr_gen, nonce, &y, &z, nbits, value, min_value, n_commits); - secp256k1_scalar_clear(&t2); - for (i = 0; i < nbits * n_commits; i++) { - secp256k1_scalar negone; - secp256k1_scalar l, r; - secp256k1_scalar_set_int(&negone, 1); - secp256k1_scalar_negate(&negone, &negone); - secp256k1_lr_generate(&lr_gen, &l, &r, &negone); - secp256k1_scalar_mul(&l, &l, &r); - secp256k1_scalar_add(&t2, &t2, &l); - } - - /* t1 = (A - B)/2 */ - secp256k1_scalar_set_int(&tmps, 2); - secp256k1_scalar_inverse_var(&tmps, &tmps); - secp256k1_scalar_negate(&t2, &t2); - secp256k1_scalar_add(&t1, &t1, &t2); - secp256k1_scalar_mul(&t1, &t1, &tmps); - - /* t2 = -(-B + t0) + t1 */ - secp256k1_scalar_add(&t2, &t2, &t0); - secp256k1_scalar_negate(&t2, &t2); - secp256k1_scalar_add(&t2, &t2, &t1); - - /* Compute Ti = t_i*A + tau_i*G for i = 1,2 */ - /* TODO surely we can improve this */ - secp256k1_ecmult_const(&tmpj, value_gen, &t1, 256); - secp256k1_ge_set_gej(&out_pt[2], &tmpj); - secp256k1_ecmult_const(&tmpj, &gens->blinding_gen[0], &tau1, 256); - secp256k1_gej_add_ge(&tmpj, &tmpj, &out_pt[2]); - secp256k1_ge_set_gej(&out_pt[2], &tmpj); - - secp256k1_ecmult_const(&tmpj, value_gen, &t2, 256); - secp256k1_ge_set_gej(&out_pt[3], &tmpj); - secp256k1_ecmult_const(&tmpj, &gens->blinding_gen[0], &tau2, 256); - secp256k1_gej_add_ge(&tmpj, &tmpj, &out_pt[3]); - secp256k1_ge_set_gej(&out_pt[3], &tmpj); - - /* get challenge x */ - secp256k1_bulletproof_update_commit(commit, &out_pt[2], &out_pt[3]); - secp256k1_scalar_set_b32(&x, commit, &overflow); - if (overflow || secp256k1_scalar_is_zero(&x)) { - return 0; - } - secp256k1_scalar_sqr(&xsq, &x); - - /* compute tau_x and mu */ - secp256k1_scalar_mul(&taux, &tau1, &x); - secp256k1_scalar_mul(&tmps, &tau2, &xsq); - secp256k1_scalar_add(&taux, &taux, &tmps); - for (i = 0; i < n_commits; i++) { - secp256k1_scalar_mul(&tmps, &zsq, &blind[i]); - secp256k1_scalar_add(&taux, &taux, &tmps); - secp256k1_scalar_mul(&zsq, &zsq, &z); - } - - secp256k1_scalar_mul(&mu, &rho, &x); - secp256k1_scalar_add(&mu, &mu, &alpha); - - /* Negate taux and mu so the verifier doesn't have to */ - secp256k1_scalar_negate(&taux, &taux); - secp256k1_scalar_negate(&mu, &mu); - - /* Encode rangeproof stuff */ - secp256k1_scalar_get_b32(&proof[0], &taux); - secp256k1_scalar_get_b32(&proof[32], &mu); - secp256k1_bulletproof_serialize_points(&proof[64], out_pt, 4); - - /* Mix this into the hash so the input to the inner product proof is fixed */ - /* TODO is this necessary? revisit */ - secp256k1_sha256_initialize(&sha256); - secp256k1_sha256_write(&sha256, commit, 32); - secp256k1_sha256_write(&sha256, proof, 64); - secp256k1_sha256_finalize(&sha256, commit); - - /* Compute l and r, do inner product proof */ - abgh_data.x = x; - secp256k1_lr_generator_init(&abgh_data.lr_gen, nonce, &y, &z, nbits, value, min_value, n_commits); - *plen -= 64 + 128 + 1; - secp256k1_scalar_inverse_var(&y, &y); - if (secp256k1_bulletproof_inner_product_prove_impl(ecmult_ctx, scratch, &proof[64 + 128 + 1], plen, gens, &y, nbits * n_commits, secp256k1_bulletproof_abgh_callback, (void *) &abgh_data, commit) == 0) { - return 0; - } - *plen += 64 + 128 + 1; - - return 1; -} - -static int secp256k1_bulletproof_rangeproof_rewind_impl(uint64_t *value, secp256k1_scalar *blind, const unsigned char *proof, const size_t plen, uint64_t min_value, const secp256k1_pedersen_commitment *pcommit, const secp256k1_generator *value_gen, const secp256k1_ge *blind_gen, const unsigned char *nonce, const unsigned char *extra_commit, size_t extra_commit_len) { - secp256k1_sha256 sha256; - static const unsigned char zero24[24] = { 0 }; - unsigned char commit[32] = { 0 }; - unsigned char lrparity; - secp256k1_scalar taux, mu; - secp256k1_scalar alpha, rho, tau1, tau2; - secp256k1_scalar x, z; - secp256k1_ge commitp, value_genp; - secp256k1_gej rewind_commitj; - int overflow; - - if (plen < 64 + 128 + 1 || plen > SECP256K1_BULLETPROOF_MAX_PROOF) { - return 0; - } - - /* Extract data from beginning of proof */ - secp256k1_scalar_set_b32(&taux, &proof[0], &overflow); - if (overflow || secp256k1_scalar_is_zero(&taux)) { - return 0; - } - secp256k1_scalar_set_b32(&mu, &proof[32], &overflow); - if (overflow || secp256k1_scalar_is_zero(&mu)) { - return 0; - } - - secp256k1_scalar_chacha20(&alpha, &rho, nonce, 0); - secp256k1_scalar_chacha20(&tau1, &tau2, nonce, 1); - - if (min_value > 0) { - unsigned char vbuf[8]; - vbuf[0] = min_value; - vbuf[1] = min_value >> 8; - vbuf[2] = min_value >> 16; - vbuf[3] = min_value >> 24; - vbuf[4] = min_value >> 32; - vbuf[5] = min_value >> 40; - vbuf[6] = min_value >> 48; - vbuf[7] = min_value >> 56; - secp256k1_sha256_initialize(&sha256); - secp256k1_sha256_write(&sha256, commit, 32); - secp256k1_sha256_write(&sha256, vbuf, 8); - secp256k1_sha256_finalize(&sha256, commit); - } - - /* This breaks the abstraction of both the Pedersen commitment and the generator - * type by directly reading the parity bit and x-coordinate from the data. But - * the alternative using the _load functions is to do two full point decompression, - * and in my benchmarks we save ~80% of the rewinding time by avoiding this. -asp */ - lrparity = 2 * !!(pcommit->data[0] & 1) + !!(value_gen->data[0] & 1); - secp256k1_sha256_initialize(&sha256); - secp256k1_sha256_write(&sha256, commit, 32); - secp256k1_sha256_write(&sha256, &lrparity, 1); - secp256k1_sha256_write(&sha256, &pcommit->data[1], 32); - secp256k1_sha256_write(&sha256, &value_gen->data[1], 32); - secp256k1_sha256_finalize(&sha256, commit); - - if (extra_commit != NULL) { - secp256k1_sha256_initialize(&sha256); - secp256k1_sha256_write(&sha256, commit, 32); - secp256k1_sha256_write(&sha256, extra_commit, extra_commit_len); - secp256k1_sha256_finalize(&sha256, commit); - } - - /* Extract A and S to compute y and z */ - lrparity = 2 * !!(proof[64] & 1) + !!(proof[64] & 2); - /* y */ - secp256k1_sha256_initialize(&sha256); - secp256k1_sha256_write(&sha256, commit, 32); - secp256k1_sha256_write(&sha256, &lrparity, 1); - secp256k1_sha256_write(&sha256, &proof[65], 64); - secp256k1_sha256_finalize(&sha256, commit); - - /* z */ - secp256k1_sha256_initialize(&sha256); - secp256k1_sha256_write(&sha256, commit, 32); - secp256k1_sha256_write(&sha256, &lrparity, 1); - secp256k1_sha256_write(&sha256, &proof[65], 64); - secp256k1_sha256_finalize(&sha256, commit); - - secp256k1_scalar_set_b32(&z, commit, &overflow); - if (overflow || secp256k1_scalar_is_zero(&z)) { - return 0; - } - - /* x */ - lrparity = 2 * !!(proof[64] & 4) + !!(proof[64] & 8); - secp256k1_sha256_initialize(&sha256); - secp256k1_sha256_write(&sha256, commit, 32); - secp256k1_sha256_write(&sha256, &lrparity, 1); - secp256k1_sha256_write(&sha256, &proof[129], 64); - secp256k1_sha256_finalize(&sha256, commit); - - secp256k1_scalar_set_b32(&x, commit, &overflow); - if (overflow || secp256k1_scalar_is_zero(&x)) { - return 0; - } - - /* Compute candidate mu and add to (negated) mu from proof to get value */ - secp256k1_scalar_mul(&rho, &rho, &x); - secp256k1_scalar_add(&mu, &mu, &rho); - secp256k1_scalar_add(&mu, &mu, &alpha); - - secp256k1_scalar_get_b32(commit, &mu); - if (memcmp(commit, zero24, 24) != 0) { - return 0; - } - *value = commit[31] + ((uint64_t) commit[30] << 8) + - ((uint64_t) commit[29] << 16) + ((uint64_t) commit[28] << 24) + - ((uint64_t) commit[27] << 32) + ((uint64_t) commit[26] << 40) + - ((uint64_t) commit[25] << 48) + ((uint64_t) commit[24] << 56); - - /* Derive blinding factor */ - secp256k1_scalar_mul(&tau1, &tau1, &x); - secp256k1_scalar_mul(&tau2, &tau2, &x); - secp256k1_scalar_mul(&tau2, &tau2, &x); - - secp256k1_scalar_add(&taux, &taux, &tau1); - secp256k1_scalar_add(&taux, &taux, &tau2); - - secp256k1_scalar_sqr(&z, &z); - secp256k1_scalar_inverse_var(&z, &z); - secp256k1_scalar_mul(blind, &taux, &z); - secp256k1_scalar_negate(blind, blind); - - /* Check blinding factor */ - secp256k1_pedersen_commitment_load(&commitp, pcommit); - secp256k1_generator_load(&value_genp, value_gen); - - secp256k1_pedersen_ecmult(&rewind_commitj, blind, *value, &value_genp, blind_gen); - secp256k1_gej_neg(&rewind_commitj, &rewind_commitj); - secp256k1_gej_add_ge_var(&rewind_commitj, &rewind_commitj, &commitp, NULL); - - return secp256k1_gej_is_infinity(&rewind_commitj); -} - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/tests_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/tests_impl.h deleted file mode 100644 index 8702e3d..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/tests_impl.h +++ /dev/null @@ -1,608 +0,0 @@ -/********************************************************************** - * Copyright (c) 2018 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_MODULE_BULLETPROOF_TESTS -#define SECP256K1_MODULE_BULLETPROOF_TESTS - -#include - -#include "group.h" -#include "scalar.h" -#include "testrand.h" -#include "util.h" - -#include "include/secp256k1_bulletproofs.h" - -static void test_bulletproof_api(void) { - secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE); - secp256k1_context *sign = secp256k1_context_create(SECP256K1_CONTEXT_SIGN); - secp256k1_context *vrfy = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY); - secp256k1_context *both = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); - secp256k1_scratch *scratch = secp256k1_scratch_space_create(ctx, 1024 * 1024); - secp256k1_generator value_gen; - secp256k1_bulletproof_generators *gens; - secp256k1_pedersen_commitment pcommit[4]; - const secp256k1_pedersen_commitment *pcommit_arr[1]; - unsigned char proof[2000]; - const unsigned char *proof_ptr = proof; - const unsigned char blind[32] = " i am not a blinding factor "; - const unsigned char *blind_ptr[4]; - size_t blindlen = sizeof(blind); - size_t plen = sizeof(proof); - uint64_t value[4] = { 1234, 4567, 8910, 1112 } ; - uint64_t min_value[4] = { 1000, 4567, 0, 5000 } ; - const uint64_t *mv_ptr = min_value; - unsigned char rewind_blind[32]; - size_t rewind_v; - - int32_t ecount = 0; - - blind_ptr[0] = blind; - blind_ptr[1] = blind; - blind_ptr[2] = blind; - blind_ptr[3] = blind; - pcommit_arr[0] = pcommit; - - secp256k1_context_set_error_callback(none, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_error_callback(sign, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_error_callback(vrfy, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_error_callback(both, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_illegal_callback(none, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_illegal_callback(sign, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_illegal_callback(vrfy, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_illegal_callback(both, counting_illegal_callback_fn, &ecount); - - CHECK(secp256k1_generator_generate(both, &value_gen, blind) != 0); - CHECK(secp256k1_pedersen_commit(both, &pcommit[0], blind, value[0], &value_gen, &secp256k1_generator_const_h) != 0); - CHECK(secp256k1_pedersen_commit(both, &pcommit[1], blind, value[1], &value_gen, &secp256k1_generator_const_h) != 0); - CHECK(secp256k1_pedersen_commit(both, &pcommit[2], blind, value[2], &value_gen, &secp256k1_generator_const_h) != 0); - CHECK(secp256k1_pedersen_commit(both, &pcommit[3], blind, value[3], &value_gen, &secp256k1_generator_const_h) != 0); - - /* generators */ - gens = secp256k1_bulletproof_generators_create(none, NULL, 256); - CHECK(gens == NULL && ecount == 1); - gens = secp256k1_bulletproof_generators_create(none, &secp256k1_generator_const_h, 256); - CHECK(gens != NULL && ecount == 1); - - /* rangeproof_prove */ - ecount = 0; - CHECK(secp256k1_bulletproof_rangeproof_prove(none, scratch, gens, proof, &plen, value, NULL, blind_ptr, 1, &value_gen, 64, blind, NULL, 0) == 0); - CHECK(ecount == 1); - CHECK(secp256k1_bulletproof_rangeproof_prove(sign, scratch, gens, proof, &plen, value, NULL, blind_ptr, 1, &value_gen, 64, blind, NULL, 0) == 0); - CHECK(ecount == 2); - CHECK(secp256k1_bulletproof_rangeproof_prove(vrfy, scratch, gens, proof, &plen, value, NULL, blind_ptr, 1, &value_gen, 64, blind, NULL, 0) == 0); - CHECK(ecount == 3); - CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, value, NULL, blind_ptr, 1, &value_gen, 64, blind, NULL, 0) == 1); - CHECK(ecount == 3); - plen = 2000; - CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, value, NULL, blind_ptr, 2, &value_gen, 64, blind, NULL, 0) == 1); - CHECK(ecount == 3); - plen = 2000; - CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, value, NULL, blind_ptr, 4, &value_gen, 64, blind, NULL, 0) == 0); /* too few gens */ - CHECK(ecount == 4); - - CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, value, min_value, blind_ptr, 2, &value_gen, 64, blind, NULL, 0) == 1); /* mv = v, ok */ - CHECK(ecount == 4); - CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, &value[1], &min_value[1], blind_ptr, 2, &value_gen, 64, blind, NULL, 0) == 1); /* mv = 0, ok */ - CHECK(ecount == 4); - CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, &value[2], &min_value[2], blind_ptr, 2, &value_gen, 64, blind, NULL, 0) == 0); /* mv > v, !ok */ - CHECK(ecount == 4); - - CHECK(secp256k1_bulletproof_rangeproof_prove(both, NULL, gens, proof, &plen, value, NULL, blind_ptr, 1, &value_gen, 64, blind, NULL, 0) == 0); - CHECK(ecount == 5); - CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, NULL, proof, &plen, value, NULL, blind_ptr, 1, &value_gen, 64, blind, NULL, 0) == 0); - CHECK(ecount == 6); - CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, NULL, &plen, value, NULL, blind_ptr, 1, &value_gen, 64, blind, NULL, 0) == 0); - CHECK(ecount == 7); - CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, NULL, value, NULL, blind_ptr, 1, &value_gen, 64, blind, NULL, 0) == 0); - CHECK(ecount == 8); - CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, NULL, NULL, blind_ptr, 1, &value_gen, 64, blind, NULL, 0) == 0); - CHECK(ecount == 9); - CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, value, NULL, NULL, 1, &value_gen, 64, blind, NULL, 0) == 0); - CHECK(ecount == 10); - CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, value, NULL, blind_ptr, 0, &value_gen, 64, blind, NULL, 0) == 0); - CHECK(ecount == 11); - CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, value, NULL, blind_ptr, 1, NULL, 64, blind, NULL, 0) == 0); - CHECK(ecount == 12); - CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, value, NULL, blind_ptr, 1, &value_gen, 0, blind, NULL, 0) == 0); - CHECK(ecount == 13); - CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, value, NULL, blind_ptr, 1, &value_gen, 65, blind, NULL, 0) == 0); - CHECK(ecount == 14); - CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, value, NULL, blind_ptr, 1, &value_gen, -1, blind, NULL, 0) == 0); - CHECK(ecount == 15); - CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, value, NULL, blind_ptr, 1, &value_gen, 64, NULL, NULL, 0) == 0); - CHECK(ecount == 16); - CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, value, NULL, blind_ptr, 1, &value_gen, 64, blind, blind, 0) == 1); - CHECK(ecount == 16); - CHECK(secp256k1_bulletproof_rangeproof_prove(both, scratch, gens, proof, &plen, value, min_value, blind_ptr, 1, &value_gen, 64, blind, blind, 32) == 1); - CHECK(ecount == 16); - - /* rangeproof_verify */ - ecount = 0; - CHECK(secp256k1_bulletproof_rangeproof_verify(none, scratch, gens, proof, plen, min_value, pcommit, 1, 64, &value_gen, blind, 32) == 0); - CHECK(ecount == 1); - CHECK(secp256k1_bulletproof_rangeproof_verify(sign, scratch, gens, proof, plen, min_value, pcommit, 1, 64, &value_gen, blind, 32) == 0); - CHECK(ecount == 2); - CHECK(secp256k1_bulletproof_rangeproof_verify(vrfy, scratch, gens, proof, plen, min_value, pcommit, 1, 64, &value_gen, blind, 32) == 1); - CHECK(ecount == 2); - CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, min_value, pcommit, 1, 64, &value_gen, blind, 32) == 1); - CHECK(ecount == 2); - - CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, min_value, pcommit, 1, 63, &value_gen, blind, 32) == 0); - CHECK(ecount == 2); - CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen - 1, min_value, pcommit, 1, 63, &value_gen, blind, 32) == 0); - CHECK(ecount == 2); - CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, 0, min_value, pcommit, 1, 63, &value_gen, blind, 32) == 0); - CHECK(ecount == 2); - CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, min_value, pcommit, 1, 64, &value_gen, blind, 31) == 0); - CHECK(ecount == 2); - CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, min_value, pcommit, 1, 64, &value_gen, NULL, 0) == 0); - CHECK(ecount == 2); - CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, min_value, pcommit, 2, 64, &value_gen, blind, 32) == 0); - CHECK(ecount == 2); - CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, min_value, pcommit, 4, 64, &value_gen, blind, 32) == 0); - CHECK(ecount == 3); - - CHECK(secp256k1_bulletproof_rangeproof_verify(both, NULL, gens, proof, plen, min_value, pcommit, 1, 64, &value_gen, blind, 32) == 0); - CHECK(ecount == 4); - CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, NULL, proof, plen, min_value, pcommit, 1, 64, &value_gen, blind, 32) == 0); - CHECK(ecount == 5); - CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, NULL, plen, min_value, pcommit, 1, 64, &value_gen, blind, 32) == 0); - CHECK(ecount == 6); - CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, NULL, pcommit, 1, 64, &value_gen, blind, 32) == 0); - CHECK(ecount == 6); - CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, min_value, NULL, 1, 64, &value_gen, blind, 32) == 0); - CHECK(ecount == 7); - CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, min_value, pcommit, 0, 64, &value_gen, blind, 32) == 0); - CHECK(ecount == 8); - CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, min_value, pcommit, 1, 65, &value_gen, blind, 32) == 0); - CHECK(ecount == 9); - CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, min_value, pcommit, 1, 0, &value_gen, blind, 32) == 0); - CHECK(ecount == 10); - CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, min_value, pcommit, 1, 64, NULL, blind, 32) == 0); - CHECK(ecount == 11); - CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, min_value, pcommit, 1, 64, &value_gen, NULL, 32) == 0); - CHECK(ecount == 12); - CHECK(secp256k1_bulletproof_rangeproof_verify(both, scratch, gens, proof, plen, min_value, pcommit, 1, 64, &value_gen, blind, 0) == 0); - CHECK(ecount == 12); - - /* verify_multi */ - ecount = 0; - CHECK(secp256k1_bulletproof_rangeproof_verify_multi(none, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 1, 64, &value_gen, blind_ptr, &blindlen) == 0); - CHECK(ecount == 1); - CHECK(secp256k1_bulletproof_rangeproof_verify_multi(sign, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 1, 64, &value_gen, blind_ptr, &blindlen) == 0); - CHECK(ecount == 2); - CHECK(secp256k1_bulletproof_rangeproof_verify_multi(vrfy, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 1, 64, &value_gen, blind_ptr, &blindlen) == 1); - CHECK(ecount == 2); - CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 1, 64, &value_gen, blind_ptr, &blindlen) == 1); - CHECK(ecount == 2); - - CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, NULL, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 1, 64, &value_gen, blind_ptr, &blindlen) == 0); - CHECK(ecount == 3); - CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, NULL, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 1, 64, &value_gen, blind_ptr, &blindlen) == 0); - CHECK(ecount == 4); - CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, NULL, 1, plen, &mv_ptr, pcommit_arr, 1, 64, &value_gen, blind_ptr, &blindlen) == 0); - CHECK(ecount == 5); - CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 0, plen, &mv_ptr, pcommit_arr, 1, 64, &value_gen, blind_ptr, &blindlen) == 0); - CHECK(ecount == 6); - CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 1, plen, NULL, pcommit_arr, 1, 64, &value_gen, blind_ptr, &blindlen) == 0); - CHECK(ecount == 6); - CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, NULL, 1, 64, &value_gen, blind_ptr, &blindlen) == 0); - CHECK(ecount == 7); - CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 1, 64, NULL, blind_ptr, &blindlen) == 0); - CHECK(ecount == 8); - CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 1, 64, &value_gen, NULL, &blindlen) == 0); - CHECK(ecount == 9); - CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 1, 64, &value_gen, blind_ptr, NULL) == 0); - CHECK(ecount == 10); - CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 1, 64, &value_gen, NULL, NULL) == 0); - CHECK(ecount == 10); - - CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 0, 64, &value_gen, blind_ptr, &blindlen) == 0); - CHECK(ecount == 11); - CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 1, 65, &value_gen, blind_ptr, &blindlen) == 0); - CHECK(ecount == 12); - CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 1, 63, &value_gen, blind_ptr, &blindlen) == 0); - CHECK(ecount == 12); - CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 1, 0, &value_gen, blind_ptr, &blindlen) == 0); - CHECK(ecount == 13); - CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 2, 64, &value_gen, blind_ptr, &blindlen) == 0); - CHECK(ecount == 13); - CHECK(secp256k1_bulletproof_rangeproof_verify_multi(both, scratch, gens, &proof_ptr, 1, plen, &mv_ptr, pcommit_arr, 4, 64, &value_gen, blind_ptr, &blindlen) == 0); - CHECK(ecount == 14); - - /* Rewind */ - ecount = 0; - CHECK(secp256k1_bulletproof_rangeproof_rewind(none, gens, &rewind_v, rewind_blind, proof, plen, min_value[0], pcommit, &value_gen, blind, blind, 32) == 1); - CHECK(ecount == 0); - CHECK(secp256k1_bulletproof_rangeproof_rewind(none, NULL, &rewind_v, rewind_blind, proof, plen, min_value[0], pcommit, &value_gen, blind, blind, 32) == 0); - CHECK(ecount == 1); - CHECK(secp256k1_bulletproof_rangeproof_rewind(none, gens, NULL, rewind_blind, proof, plen, min_value[0], pcommit, &value_gen, blind, blind, 32) == 0); - CHECK(ecount == 2); - CHECK(secp256k1_bulletproof_rangeproof_rewind(none, gens, &rewind_v, NULL, proof, plen, min_value[0], pcommit, &value_gen, blind, blind, 32) == 0); - CHECK(ecount == 3); - CHECK(secp256k1_bulletproof_rangeproof_rewind(none, gens, &rewind_v, rewind_blind, NULL, plen, min_value[0], pcommit, &value_gen, blind, blind, 32) == 0); - CHECK(ecount == 4); - CHECK(secp256k1_bulletproof_rangeproof_rewind(none, gens, &rewind_v, rewind_blind, proof, 0, min_value[0], pcommit, &value_gen, blind, blind, 32) == 0); - CHECK(ecount == 4); - CHECK(secp256k1_bulletproof_rangeproof_rewind(none, gens, &rewind_v, rewind_blind, proof, plen, 0, pcommit, &value_gen, blind, blind, 32) == 0); - CHECK(ecount == 4); - CHECK(secp256k1_bulletproof_rangeproof_rewind(none, gens, &rewind_v, rewind_blind, proof, plen, min_value[0], NULL, &value_gen, blind, blind, 32) == 0); - CHECK(ecount == 5); - CHECK(secp256k1_bulletproof_rangeproof_rewind(none, gens, &rewind_v, rewind_blind, proof, plen, min_value[0], pcommit, NULL, blind, blind, 32) == 0); - CHECK(ecount == 6); - CHECK(secp256k1_bulletproof_rangeproof_rewind(none, gens, &rewind_v, rewind_blind, proof, plen, min_value[0], pcommit, &value_gen, NULL, blind, 32) == 0); - CHECK(ecount == 7); - CHECK(secp256k1_bulletproof_rangeproof_rewind(none, gens, &rewind_v, rewind_blind, proof, plen, min_value[0], pcommit, &value_gen, blind, NULL, 32) == 0); - CHECK(ecount == 8); - CHECK(secp256k1_bulletproof_rangeproof_rewind(none, gens, &rewind_v, rewind_blind, proof, plen, min_value[0], pcommit, &value_gen, blind, blind, 0) == 0); - CHECK(ecount == 8); - CHECK(secp256k1_bulletproof_rangeproof_rewind(none, gens, &rewind_v, rewind_blind, proof, plen, min_value[0], pcommit, &value_gen, blind, NULL, 0) == 0); - CHECK(ecount == 8); - - secp256k1_bulletproof_generators_destroy(none, gens); - secp256k1_bulletproof_generators_destroy(none, NULL); - secp256k1_scratch_destroy(scratch); - secp256k1_context_destroy(none); - secp256k1_context_destroy(sign); - secp256k1_context_destroy(vrfy); - secp256k1_context_destroy(both); -} - -#define MAX_WIDTH (1ul << 20) -typedef struct { - const secp256k1_scalar *a; - const secp256k1_scalar *b; - const secp256k1_ge *g; - const secp256k1_ge *h; - size_t n; -} test_bulletproof_ecmult_context; - -static int test_bulletproof_ecmult_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data) { - test_bulletproof_ecmult_context *ecctx = (test_bulletproof_ecmult_context *) data; - if (idx < ecctx->n) { - *sc = ecctx->a[idx]; - *pt = ecctx->g[idx]; - } else { - VERIFY_CHECK(idx < 2*ecctx->n); - *sc = ecctx->b[idx - ecctx->n]; - *pt = ecctx->h[idx - ecctx->n]; - } - return 1; -} - -typedef struct { - secp256k1_scalar offs; - secp256k1_scalar ext_sc; - secp256k1_scalar skew_sc; - secp256k1_ge ext_pt; - secp256k1_ge p; - size_t n; - int parity; -} test_bulletproof_offset_context; - -static int test_bulletproof_offset_vfy_callback(secp256k1_scalar *sc, secp256k1_ge *pt, secp256k1_scalar *randomizer, size_t idx, void *data) { - test_bulletproof_offset_context *ecctx = (test_bulletproof_offset_context *) data; - secp256k1_scalar_set_int(&ecctx->offs, 1); - if (idx < 2 * ecctx->n) { - secp256k1_scalar idxsc; - secp256k1_scalar_set_int(&idxsc, idx); - secp256k1_scalar_mul(sc, &ecctx->skew_sc, &idxsc); - } else { - if (ecctx->parity) { - *sc = ecctx->ext_sc; - *pt = ecctx->ext_pt; - } else { - secp256k1_scalar_set_int(sc, 1); - *pt = ecctx->p; - } - } - secp256k1_scalar_mul(sc, sc, randomizer); - ecctx->parity = !ecctx->parity; - return 1; -} - -typedef struct { - const secp256k1_scalar *a_arr; - const secp256k1_scalar *b_arr; -} secp256k1_bulletproof_ip_test_abgh_data; - - -static int secp256k1_bulletproof_ip_test_abgh_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data) { - secp256k1_bulletproof_ip_test_abgh_data *cbctx = (secp256k1_bulletproof_ip_test_abgh_data *) data; - const int is_g = idx % 2 == 0; - - (void) pt; - if (is_g) { - *sc = cbctx->a_arr[idx / 2]; - } else { - *sc = cbctx->b_arr[idx / 2]; - } - return 1; -} - -void test_bulletproof_inner_product(size_t n, const secp256k1_bulletproof_generators *gens) { - const secp256k1_scalar zero = SECP256K1_SCALAR_CONST(0,0,0,0,0,0,0,0); - secp256k1_gej pj; - secp256k1_gej tmpj, tmpj2; - secp256k1_scalar *a_arr = (secp256k1_scalar *)checked_malloc(&ctx->error_callback, n * sizeof(*a_arr)); - secp256k1_scalar *b_arr = (secp256k1_scalar *)checked_malloc(&ctx->error_callback, n * sizeof(*b_arr)); - unsigned char commit[32] = "hash of P, c, etc. all that jazz"; - secp256k1_scalar one; - size_t j; - test_bulletproof_offset_context offs_ctx; - secp256k1_bulletproof_ip_test_abgh_data abgh_data; - secp256k1_bulletproof_innerproduct_context innp_ctx; - unsigned char proof[2000]; - size_t plen = sizeof(proof); - - secp256k1_scratch *scratch = secp256k1_scratch_space_create(ctx, 100000 + 256 * (2 * n + 2)); - - for (j = 0; j < n; j++) { - random_scalar_order(&a_arr[j]); - random_scalar_order(&b_arr[j]); - } - - abgh_data.a_arr = a_arr; - abgh_data.b_arr = b_arr; - - random_group_element_test(&offs_ctx.ext_pt); - random_scalar_order(&offs_ctx.ext_sc); - secp256k1_scalar_clear(&offs_ctx.skew_sc); - offs_ctx.n = n; - - secp256k1_scalar_set_int(&one, 1); - CHECK(secp256k1_bulletproof_inner_product_prove_impl(&ctx->ecmult_ctx, scratch, proof, &plen, gens, &one, n, secp256k1_bulletproof_ip_test_abgh_callback, (void *) &abgh_data, commit) == 1); - - innp_ctx.proof = proof; - memcpy(innp_ctx.commit, commit, 32); - secp256k1_scalar_set_int(&innp_ctx.yinv, 1); - innp_ctx.n_extra_rangeproof_points = 1; - innp_ctx.rangeproof_cb = test_bulletproof_offset_vfy_callback; - innp_ctx.rangeproof_cb_data = (void *) &offs_ctx; - - /* Manually do the multiexp to obtain the point P which commits to the inner product. - * The prover never computes this because it is implicit in the range/circuit proofs. */ - { - test_bulletproof_ecmult_context ecmult_data; - ecmult_data.n = n; - ecmult_data.a = a_arr; - ecmult_data.b = b_arr; - ecmult_data.g = gens->gens; - ecmult_data.h = gens->gens + gens->n/2; - CHECK(secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &pj, &zero, test_bulletproof_ecmult_callback, (void*) &ecmult_data, 2 * n)); - secp256k1_ge_set_gej(&offs_ctx.p, &pj); - } - - /* Check proof with no offsets or other baubles */ - offs_ctx.parity = 0; - secp256k1_scalar_clear(&innp_ctx.p_offs); - CHECK(secp256k1_bulletproof_inner_product_verify_impl(&ctx->ecmult_ctx, scratch, gens, n, &innp_ctx, 1, plen, 1) == 1); - - /* skew P by a random amount and instruct the verifier to offset it */ - random_scalar_order(&innp_ctx.p_offs); - secp256k1_gej_set_ge(&tmpj2, &gens->blinding_gen[0]); - secp256k1_ecmult(&ctx->ecmult_ctx, &tmpj, &tmpj2, &innp_ctx.p_offs, &zero); - secp256k1_gej_add_var(&pj, &pj, &tmpj, NULL); - secp256k1_ge_set_gej(&offs_ctx.p, &pj); - - /* wrong p_offs should fail */ - offs_ctx.parity = 0; - CHECK(secp256k1_bulletproof_inner_product_verify_impl(&ctx->ecmult_ctx, scratch, gens, n, &innp_ctx, 1, plen, 1) == 0); - - secp256k1_scalar_negate(&innp_ctx.p_offs, &innp_ctx.p_offs); - - offs_ctx.parity = 0; - CHECK(secp256k1_bulletproof_inner_product_verify_impl(&ctx->ecmult_ctx, scratch, gens, n, &innp_ctx, 1, plen, 1) == 1); - /* check that verification did not trash anything */ - offs_ctx.parity = 0; - CHECK(secp256k1_bulletproof_inner_product_verify_impl(&ctx->ecmult_ctx, scratch, gens, n, &innp_ctx, 1, plen, 1) == 1); - /* check that adding a no-op rangeproof skew function doesn't break anything */ - offs_ctx.parity = 0; - CHECK(secp256k1_bulletproof_inner_product_verify_impl(&ctx->ecmult_ctx, scratch, gens, n, &innp_ctx, 1, plen, 1) == 1); - - /* Offset P by some random point and then try to undo this in the verification */ - secp256k1_gej_set_ge(&tmpj2, &offs_ctx.ext_pt); - secp256k1_ecmult(&ctx->ecmult_ctx, &tmpj, &tmpj2, &offs_ctx.ext_sc, &zero); - secp256k1_gej_neg(&tmpj, &tmpj); - secp256k1_gej_add_ge_var(&tmpj, &tmpj, &offs_ctx.p, NULL); - secp256k1_ge_set_gej(&offs_ctx.p, &tmpj); - offs_ctx.parity = 0; - innp_ctx.n_extra_rangeproof_points = 2; - CHECK(secp256k1_bulletproof_inner_product_verify_impl(&ctx->ecmult_ctx, scratch, gens, n, &innp_ctx, 1, plen, 1) == 1); - - /* Offset each basis by some random point and try to undo this in the verification */ - secp256k1_gej_set_infinity(&tmpj2); - for (j = 0; j < n; j++) { - size_t k; - /* Offset by k-times the kth G basis and (k+n)-times the kth H basis */ - for (k = 0; k < j; k++) { - secp256k1_gej_add_ge_var(&tmpj2, &tmpj2, &gens->gens[j], NULL); - secp256k1_gej_add_ge_var(&tmpj2, &tmpj2, &gens->gens[j + gens->n/2], NULL); - } - for (k = 0; k < n; k++) { - secp256k1_gej_add_ge_var(&tmpj2, &tmpj2, &gens->gens[j + gens->n/2], NULL); - } - } - random_scalar_order(&offs_ctx.skew_sc); - secp256k1_ecmult(&ctx->ecmult_ctx, &tmpj, &tmpj2, &offs_ctx.skew_sc, &zero); - secp256k1_gej_add_ge_var(&tmpj, &tmpj, &offs_ctx.p, NULL); - secp256k1_ge_set_gej(&offs_ctx.p, &tmpj); - secp256k1_scalar_negate(&offs_ctx.skew_sc, &offs_ctx.skew_sc); - - offs_ctx.parity = 0; - CHECK(secp256k1_bulletproof_inner_product_verify_impl(&ctx->ecmult_ctx, scratch, gens, n, &innp_ctx, 1, plen, 1) == 1); - - /* Try to validate the same proof twice */ -{ - test_bulletproof_offset_context offs_ctxs[2]; - secp256k1_bulletproof_innerproduct_context innp_ctxs[2]; - offs_ctx.parity = 1; /* set parity to 1 so the common point will be returned first, as required by the multi-proof verifier */ - memcpy(&innp_ctxs[0], &innp_ctx, sizeof(innp_ctx)); - memcpy(&innp_ctxs[1], &innp_ctx, sizeof(innp_ctx)); - memcpy(&offs_ctxs[0], &offs_ctx, sizeof(offs_ctx)); - memcpy(&offs_ctxs[1], &offs_ctx, sizeof(offs_ctx)); - innp_ctxs[0].rangeproof_cb_data = (void *)&offs_ctxs[0]; - innp_ctxs[1].rangeproof_cb_data = (void *)&offs_ctxs[1]; - CHECK(secp256k1_bulletproof_inner_product_verify_impl(&ctx->ecmult_ctx, scratch, gens, n, innp_ctxs, 2, plen, 1) == 1); - CHECK(secp256k1_bulletproof_inner_product_verify_impl(&ctx->ecmult_ctx, scratch, gens, n, innp_ctxs, 2, plen, 0) == 1); -} - - free(a_arr); - free(b_arr); - secp256k1_scratch_destroy(scratch); -} - -void test_bulletproof_rangeproof(size_t nbits, size_t expected_size, const secp256k1_bulletproof_generators *gens) { - secp256k1_scalar blind; - secp256k1_scalar blind_recovered; - unsigned char proof[1024]; - unsigned char proof2[1024]; - unsigned char proof3[1024]; - const unsigned char *proof_ptr[3]; - size_t plen = sizeof(proof); - uint64_t v = 123456; - uint64_t v_recovered; - secp256k1_gej commitj; - secp256k1_ge commitp; - secp256k1_ge commitp2; - secp256k1_pedersen_commitment pcommit; - const secp256k1_ge *commitp_ptr[3]; - secp256k1_ge value_gen[3]; - unsigned char nonce[32] = "my kingdom for some randomness!!"; - - secp256k1_scratch *scratch = secp256k1_scratch_space_create(ctx, 10000000); - - if (v >> nbits > 0) { - v = 0; - } - - proof_ptr[0] = proof; - proof_ptr[1] = proof2; - proof_ptr[2] = proof3; - - secp256k1_generator_load(&value_gen[0], &secp256k1_generator_const_g); - secp256k1_generator_load(&value_gen[1], &secp256k1_generator_const_g); - secp256k1_generator_load(&value_gen[2], &secp256k1_generator_const_h); - random_scalar_order(&blind); - - secp256k1_pedersen_ecmult(&commitj, &blind, v, &value_gen[0], &gens->blinding_gen[0]); - secp256k1_ge_set_gej(&commitp, &commitj); - secp256k1_pedersen_ecmult(&commitj, &blind, v, &value_gen[2], &gens->blinding_gen[0]); - secp256k1_ge_set_gej(&commitp2, &commitj); - commitp_ptr[0] = commitp_ptr[1] = &commitp; - commitp_ptr[2] = &commitp2; - secp256k1_pedersen_commitment_save(&pcommit, &commitp); - - CHECK(secp256k1_bulletproof_rangeproof_prove_impl(&ctx->ecmult_ctx, scratch, proof, &plen, nbits, &v, NULL, &blind, &commitp, 1, &value_gen[0], gens, nonce, NULL, 0) == 1); - CHECK(plen == expected_size); - nonce[0] ^= 1; - CHECK(secp256k1_bulletproof_rangeproof_prove_impl(&ctx->ecmult_ctx, scratch, proof2, &plen, nbits, &v, NULL, &blind, &commitp, 1, &value_gen[1], gens, nonce, NULL, 0) == 1); - CHECK(plen == expected_size); - nonce[0] ^= 2; - CHECK(secp256k1_bulletproof_rangeproof_prove_impl(&ctx->ecmult_ctx, scratch, proof3, &plen, nbits, &v, NULL, &blind, &commitp2, 1, &value_gen[2], gens, nonce, NULL, 0) == 1); - CHECK(plen == expected_size); - nonce[0] ^= 3; - /* Verify once */ - CHECK(secp256k1_bulletproof_rangeproof_verify_impl(&ctx->ecmult_ctx, scratch, proof_ptr, 1, plen, nbits, NULL, commitp_ptr, 1, value_gen, gens, NULL, 0) == 1); - /* Verify twice at once to test batch validation */ - CHECK(secp256k1_bulletproof_rangeproof_verify_impl(&ctx->ecmult_ctx, scratch, proof_ptr, 2, plen, nbits, NULL, commitp_ptr, 1, value_gen, gens, NULL, 0) == 1); - /* Verify thrice at once where one has a different asset type */ - CHECK(secp256k1_bulletproof_rangeproof_verify_impl(&ctx->ecmult_ctx, scratch, proof_ptr, 3, plen, nbits, NULL, commitp_ptr, 1, value_gen, gens, NULL, 0) == 1); - - /* Rewind */ - CHECK(secp256k1_bulletproof_rangeproof_rewind_impl(&v_recovered, &blind_recovered, proof, plen, 0, &pcommit, &secp256k1_generator_const_g, gens->blinding_gen, nonce, NULL, 0) == 1); - CHECK(v_recovered == v); - CHECK(secp256k1_scalar_eq(&blind_recovered, &blind) == 1); - - nonce[0] ^= 111; - CHECK(secp256k1_bulletproof_rangeproof_rewind_impl(&v_recovered, &blind_recovered, proof, plen, 0, &pcommit, &secp256k1_generator_const_g, gens->blinding_gen, nonce, NULL, 0) == 0); - - secp256k1_scratch_destroy(scratch); -} - -void test_bulletproof_rangeproof_aggregate(size_t nbits, size_t n_commits, size_t expected_size, const secp256k1_bulletproof_generators *gens) { - unsigned char proof[1024]; - const unsigned char *proof_ptr = proof; - size_t plen = sizeof(proof); - secp256k1_scalar *blind = (secp256k1_scalar *)checked_malloc(&ctx->error_callback, n_commits * sizeof(*blind)); - uint64_t *v = (uint64_t *)checked_malloc(&ctx->error_callback, n_commits * sizeof(*v)); - secp256k1_ge *commitp = (secp256k1_ge *)checked_malloc(&ctx->error_callback, n_commits * sizeof(*commitp)); - const secp256k1_ge *constptr = commitp; - secp256k1_ge value_gen; - unsigned char commit[32] = {0}; - unsigned char nonce[32] = "mary, mary quite contrary how do"; - size_t i; - - secp256k1_scratch *scratch = secp256k1_scratch_space_create(ctx, 10000000); - - secp256k1_generator_load(&value_gen, &secp256k1_generator_const_g); - for (i = 0; i < n_commits; i++) { - secp256k1_scalar vs; - secp256k1_gej commitj; - - v[i] = 223 * i; /* dice-roll random # */ - if (v[i] >> nbits > 0) { - v[i] = 0; - } - secp256k1_scalar_set_u64(&vs, v[i]); - random_scalar_order(&blind[i]); - secp256k1_pedersen_ecmult(&commitj, &blind[i], v[i], &value_gen, &gens->blinding_gen[0]); - secp256k1_ge_set_gej(&commitp[i], &commitj); - - secp256k1_bulletproof_update_commit(commit, &commitp[i], &value_gen); - } - - CHECK(secp256k1_bulletproof_rangeproof_prove_impl(&ctx->ecmult_ctx, scratch, proof, &plen, nbits, v, NULL, blind, commitp, n_commits, &value_gen, gens, nonce, NULL, 0) == 1); - CHECK(plen == expected_size); - CHECK(secp256k1_bulletproof_rangeproof_verify_impl(&ctx->ecmult_ctx, scratch, &proof_ptr, 1, plen, nbits, NULL, &constptr, n_commits, &value_gen, gens, NULL, 0) == 1); - - secp256k1_scratch_destroy(scratch); - free(commitp); - free(v); - free(blind); -} - -void run_bulletproofs_tests(void) { - size_t i; - - /* Make a ton of generators */ - secp256k1_bulletproof_generators *gens = secp256k1_bulletproof_generators_create(ctx, &secp256k1_generator_const_h, 32768); - test_bulletproof_api(); - - /* sanity checks */ - CHECK(secp256k1_bulletproof_innerproduct_proof_length(0) == 32); /* encoding of 1 */ - CHECK(secp256k1_bulletproof_innerproduct_proof_length(1) == 96); /* encoding a*b, a, b */ - CHECK(secp256k1_bulletproof_innerproduct_proof_length(2) == 160); /* dot prod, a, b, L, R, parity of L, R */ - CHECK(secp256k1_bulletproof_innerproduct_proof_length(4) == 225); /* dot prod, a, b, a, b, L, R, parity of L, R */ - CHECK(secp256k1_bulletproof_innerproduct_proof_length(8) == 289); /* dot prod, a, b, a, b, L, R, L, R, parity of L, R */ - - test_bulletproof_inner_product(0, gens); - test_bulletproof_inner_product(1, gens); - test_bulletproof_inner_product(2, gens); - test_bulletproof_inner_product(4, gens); - test_bulletproof_inner_product(8, gens); - for (i = 0; i < (size_t) count; i++) { - test_bulletproof_inner_product(32, gens); - test_bulletproof_inner_product(64, gens); - } - test_bulletproof_inner_product(1024, gens); - - test_bulletproof_rangeproof(1, 289, gens); - test_bulletproof_rangeproof(2, 353, gens); - test_bulletproof_rangeproof(16, 546, gens); - test_bulletproof_rangeproof(32, 610, gens); - test_bulletproof_rangeproof(64, 675, gens); - - test_bulletproof_rangeproof_aggregate(64, 1, 675, gens); - test_bulletproof_rangeproof_aggregate(8, 2, 546, gens); - test_bulletproof_rangeproof_aggregate(8, 4, 610, gens); - - secp256k1_bulletproof_generators_destroy(ctx, gens); -} -#undef MAX_WIDTH - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/util.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/util.h deleted file mode 100644 index b1b4d11..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/bulletproofs/util.h +++ /dev/null @@ -1,116 +0,0 @@ -/********************************************************************** - * Copyright (c) 2018 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_MODULE_BULLETPROOF_UTIL -#define SECP256K1_MODULE_BULLETPROOF_UTIL - -/* floor(log2(n)) which returns 0 for 0, since this is used to estimate proof sizes */ -SECP256K1_INLINE static size_t secp256k1_floor_lg(size_t n) { - switch (n) { - case 0: return 0; - case 1: return 0; - case 2: return 1; - case 3: return 1; - case 4: return 2; - case 5: return 2; - case 6: return 2; - case 7: return 2; - case 8: return 3; - default: { - size_t i = 0; - while (n > 1) { - n /= 2; - i++; - } - return i; - } - } -} - -static void secp256k1_scalar_dot_product(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, size_t n) { - secp256k1_scalar_clear(r); - while(n--) { - secp256k1_scalar term; - secp256k1_scalar_mul(&term, &a[n], &b[n]); - secp256k1_scalar_add(r, r, &term); - } -} - -static void secp256k1_scalar_inverse_all_var(secp256k1_scalar *r, const secp256k1_scalar *a, size_t len) { - secp256k1_scalar u; - size_t i; - if (len < 1) { - return; - } - - VERIFY_CHECK((r + len <= a) || (a + len <= r)); - - r[0] = a[0]; - - i = 0; - while (++i < len) { - secp256k1_scalar_mul(&r[i], &r[i - 1], &a[i]); - } - - secp256k1_scalar_inverse_var(&u, &r[--i]); - - while (i > 0) { - size_t j = i--; - secp256k1_scalar_mul(&r[j], &r[i], &u); - secp256k1_scalar_mul(&u, &u, &a[j]); - } - - r[0] = u; -} - -SECP256K1_INLINE static void secp256k1_bulletproof_serialize_points(unsigned char *out, secp256k1_ge *pt, size_t n) { - const size_t bitveclen = (n + 7) / 8; - size_t i; - - memset(out, 0, bitveclen); - for (i = 0; i < n; i++) { - secp256k1_fe pointx; - pointx = pt[i].x; - secp256k1_fe_normalize(&pointx); - secp256k1_fe_get_b32(&out[bitveclen + i*32], &pointx); - if (!secp256k1_fe_is_quad_var(&pt[i].y)) { - out[i/8] |= (1ull << (i % 8)); - } - } -} - -SECP256K1_INLINE static void secp256k1_bulletproof_deserialize_point(secp256k1_ge *pt, const unsigned char *data, size_t i, size_t n) { - const size_t bitveclen = (n + 7) / 8; - const size_t offset = bitveclen + i*32; - secp256k1_fe fe; - - secp256k1_fe_set_b32(&fe, &data[offset]); - secp256k1_ge_set_xquad(pt, &fe); - if (data[i / 8] & (1 << (i % 8))) { - secp256k1_ge_neg(pt, pt); - } -} - -static void secp256k1_bulletproof_update_commit(unsigned char *commit, const secp256k1_ge *lpt, const secp256k1_ge *rpt) { - secp256k1_fe pointx; - secp256k1_sha256 sha256; - unsigned char lrparity; - lrparity = (!secp256k1_fe_is_quad_var(&lpt->y) << 1) + !secp256k1_fe_is_quad_var(&rpt->y); - secp256k1_sha256_initialize(&sha256); - secp256k1_sha256_write(&sha256, commit, 32); - secp256k1_sha256_write(&sha256, &lrparity, 1); - pointx = lpt->x; - secp256k1_fe_normalize(&pointx); - secp256k1_fe_get_b32(commit, &pointx); - secp256k1_sha256_write(&sha256, commit, 32); - pointx = rpt->x; - secp256k1_fe_normalize(&pointx); - secp256k1_fe_get_b32(commit, &pointx); - secp256k1_sha256_write(&sha256, commit, 32); - secp256k1_sha256_finalize(&sha256, commit); -} - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/commitment/.main_impl.h.swp b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/commitment/.main_impl.h.swp deleted file mode 100644 index 047e28ca33add74fd1d5e44756f7c56f18e52b85..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 16384 zcmeHOYm6L65gwbw1nh)_#}9;r+O~4pTkq}eogHI*K7(_2F(y9S@*^m+oMCRKXLruK zGn;wb-Z`-YfB1=z!b2h^h=3FULP+_OAVGLUf`9-)_!VA4fTbV^fARwz|9|!^hS3E|!0&D|jL!g{20Fk3Fb~v$8n6X0 zfKS|N7!Ly<1nva30e{?K7{3L64g3mt2v`E%3H)X|o&moEP6Bn{4&c={8^#}i?*d;3 zz6=C_4J-o|@bfnr#?!!KKm;5Dsz3$U1AOlm!?^ZF!*~JsD)1@bqd*fl2P^=00^5L> zw;9IwfiD3bZ~)i}yaL5M0ru{CUf-a`6^qU7WY*=k8Fhd@h%X?=^6KfT= z+;%-XJnvqpunB*a2Tt4XP0otGjvug+%jQ^pmbvT@^YF80&m?pZkB?vopbEOx#P!&H=BMO z`(nwWT4rUX!g_?U;kuil{kc zkcg{b}=vCVIJ%H&;sU7bbDvm@_NK`ydWxuW{w-655x(nW3S~l zTFeSCQotdO&3bOs0ykw7q!~zPi>?8_^D&Ie!tMed#ev80GknF&Mw?qfX#(q_j7IjO z&7jw+$rHLjQRUlLQi7EXh2}-{5CYp{S_(oB=+c9v2BE(%GDB;X!z}1~BkZ{B;Qf6e zAZ^noUnxxlM46Ssby#Vq9tT9G8=9`?xSkuWqr=K%vQ7KBrV{Z+CvIb}1}oqVP8GTA zxDm^balI~Xq)F0^(t#K`*+9t{T9Ukj5u61RFiX4T7Y_V+U`2jl(q~3Eh!iPR?@!7pIpiH9fr%QH@Ek}A=b>j@Rop*TWm z+IOonB-v~5rX|t+eEkBOVD+_o7bi(&2NDN2I*1Y7a_ZIEmlEch|1IrzEkqa_XkKrP zG0IJLNN$X@`M$KJ~x%p7qJr<3QQ*s{%4I(3_T>hSu2s|Hmwi8=c?PE*)P zeb$Ec@%*48O)aGfBLp)IMnPppiXroq2kj;yVH9%wfvMBMwjTq1yW+%{+PCr>?a?8H$9x891P z?!j8E*XvdNF84w|4jR1b2Tgol-oQORCnq1SZmQi@w_2t^d;t-2;4a4$>c*HyAR=2# zkcGYz^(Ycnec<^y1>l^L48PO0ymdNO7!!Qv{qB0;Hd_(wZIaE@r}s_apS#)7fH(bM zoh?~wJ>G6p+&AhfQz-v>Tn6R;&mrHu7r83s|H=FPmy!3s2)qD%1-J}^z#{NI;CA4z z$oYQ?dC%*a8^9 zH<15d1p;6Zco%Rpa2@&ov%oVz7dQh<0)Iyh;6>n@z|+7AKy`uVk@tTV_$2Tca1giy zxCXs`5qJ{#2=E|q3OE5Q0i^dupt$~*HL#m|w(AU!b+jv1xmA+h#+`vfpr0b@P|{|Q z6BuBUoW@DaYRZ`Pyk|y!gkr!H6DPA|F_Z&J1EmSH<7|@uqTDe`AW?$gNXg?4$TcBi z@6*DQd47+93u{>@Bf#&qEmR7U(<2{PSJ|0(ISLSD3tF&aPT+T#8&w&_*(C0;Q@dX~ zkRMuC5|5r?Dl!C5x)3!)r-Ap(v5*F(M|2G+8i|cf!2&8AD2$0QE3%k|bR7X}I5{hs zQMw@MY=&6EjqVZ!8W~@X8$m2Y!Z{s+76q(HOvG%f0rHjLuB@b5LnL>9Kuk~Q8k~(P zt)xpW=|)o~Dl-y7`W?kqh@4VVK$TPs*c_@XNhmdxMH(#$W6Ya%zPgzXG9U`7B6^)h zYcsPT|JRC4b8A`C94HfyRwOM*ynmlorpVsGAT@ZHW!50`OF_j)>`)n9)0$^XBCu(d zybTnor3c$&sakArDpiY#=%rNqL1pP=iiu~0CDuiHKq8IK3ls9g4F8)@ZFDh)P7V_i z;>aF(Bz1Gj7w59Z(fx93wCR3gL2}e%a#JDw2E}r0zI-i7dR=msBMV7lw^G$c6#?Zv zdTfyAs-jU+9xC_Mhx+nbN?A~LpwzB!kX#8qCCm8_U0|2SmAO}IJ5Z_6);v(0MNpsA za<#$r)5G+k51CODIUPRg$F?ik7b0YZx^Hr1W{N4QqzaA|Dz1wSD3)??2^%y7&U$S3I{d1f6(@8g{wO`Nu8iGGu}QEKvfQ-Tg-3p)DE z(T&+wVgX0If@&fIw3P?ci;Tsf#1JLj5yd*Z#dDo?6LDO7eN$UV^B!VANL|(D!Nf9_ zFYe?P++=?!Fw-A*cR?x6pWO;Hd^J#j}yhVms67E(QyfuL-I z7>Kq+gHVBsimrH#g^+Sxgll+3#n&1<3}vJ!ZMWao>$&vDi-QHK{&uX0GKv8XeZe-p zvXt9-%mz}dvG`)kNqYR72th`pH=Zz|+}nXP=EQ5pzHW4ux$H3BxMBgt>(^{t)z5S= KD$E9D)bC#suh+o< diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/commitment/Makefile.am.include b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/commitment/Makefile.am.include deleted file mode 100644 index 132d6fe..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/commitment/Makefile.am.include +++ /dev/null @@ -1,4 +0,0 @@ -include_HEADERS += include/secp256k1_commitment.h -noinst_HEADERS += src/modules/commitment/main_impl.h -noinst_HEADERS += src/modules/commitment/pedersen_impl.h -noinst_HEADERS += src/modules/commitment/tests_impl.h diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/commitment/main_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/commitment/main_impl.h deleted file mode 100644 index ffaec06..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/commitment/main_impl.h +++ /dev/null @@ -1,186 +0,0 @@ -/********************************************************************** - * Copyright (c) 2014-2015 Gregory Maxwell * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_MODULE_COMMITMENT_MAIN -#define SECP256K1_MODULE_COMMITMENT_MAIN - -#include "group.h" - -#include "modules/commitment/pedersen_impl.h" - -static void secp256k1_pedersen_commitment_load(secp256k1_ge* ge, const secp256k1_pedersen_commitment* commit) { - secp256k1_fe fe; - secp256k1_fe_set_b32(&fe, &commit->data[1]); - secp256k1_ge_set_xquad(ge, &fe); - if (commit->data[0] & 1) { - secp256k1_ge_neg(ge, ge); - } -} - -static void secp256k1_pedersen_commitment_save(secp256k1_pedersen_commitment* commit, secp256k1_ge* ge) { - secp256k1_fe_normalize(&ge->x); - secp256k1_fe_get_b32(&commit->data[1], &ge->x); - commit->data[0] = 9 ^ secp256k1_fe_is_quad_var(&ge->y); -} - -int secp256k1_pedersen_commitment_parse(const secp256k1_context* ctx, secp256k1_pedersen_commitment* commit, const unsigned char *input) { - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(commit != NULL); - ARG_CHECK(input != NULL); - (void) ctx; - if ((input[0] & 0xFE) != 8) { - return 0; - } - memcpy(commit->data, input, sizeof(commit->data)); - return 1; -} - -int secp256k1_pedersen_commitment_serialize(const secp256k1_context* ctx, unsigned char *output, const secp256k1_pedersen_commitment* commit) { - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(output != NULL); - ARG_CHECK(commit != NULL); - memcpy(output, commit->data, sizeof(commit->data)); - return 1; -} - -/* Generates a pedersen commitment: *commit = blind * G + value * G2. The blinding factor is 32 bytes.*/ -int secp256k1_pedersen_commit(const secp256k1_context* ctx, secp256k1_pedersen_commitment *commit, const unsigned char *blind, uint64_t value, const secp256k1_generator* value_gen, const secp256k1_generator* blind_gen) { - secp256k1_ge value_genp; - secp256k1_ge blind_genp; - secp256k1_gej rj; - secp256k1_ge r; - secp256k1_scalar sec; - int overflow; - int ret = 0; - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(commit != NULL); - ARG_CHECK(blind != NULL); - ARG_CHECK(value_gen != NULL); - ARG_CHECK(blind_gen != NULL); - secp256k1_generator_load(&value_genp, value_gen); - secp256k1_generator_load(&blind_genp, blind_gen); - secp256k1_scalar_set_b32(&sec, blind, &overflow); - if (!overflow) { - secp256k1_pedersen_ecmult(&rj, &sec, value, &value_genp, &blind_genp); - if (!secp256k1_gej_is_infinity(&rj)) { - secp256k1_ge_set_gej(&r, &rj); - secp256k1_pedersen_commitment_save(commit, &r); - ret = 1; - } - secp256k1_gej_clear(&rj); - secp256k1_ge_clear(&r); - } - secp256k1_scalar_clear(&sec); - return ret; -} - -/** Takes a list of n pointers to 32 byte blinding values, the first negs of which are treated with positive sign and the rest - * negative, then calculates an additional blinding value that adds to zero. - */ -int secp256k1_pedersen_blind_sum(const secp256k1_context* ctx, unsigned char *blind_out, const unsigned char * const *blinds, size_t n, size_t npositive) { - secp256k1_scalar acc; - secp256k1_scalar x; - size_t i; - int overflow; - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(blind_out != NULL); - ARG_CHECK(blinds != NULL); - ARG_CHECK(npositive <= n); - (void) ctx; - secp256k1_scalar_set_int(&acc, 0); - for (i = 0; i < n; i++) { - secp256k1_scalar_set_b32(&x, blinds[i], &overflow); - if (overflow) { - return 0; - } - if (i >= npositive) { - secp256k1_scalar_negate(&x, &x); - } - secp256k1_scalar_add(&acc, &acc, &x); - } - secp256k1_scalar_get_b32(blind_out, &acc); - secp256k1_scalar_clear(&acc); - secp256k1_scalar_clear(&x); - return 1; -} - -/* Takes two lists of commitments and sums the first set and subtracts the second and verifies that they sum to excess. */ -int secp256k1_pedersen_verify_tally(const secp256k1_context* ctx, const secp256k1_pedersen_commitment * const* pos, size_t n_pos, const secp256k1_pedersen_commitment * const* neg, size_t n_neg) { - secp256k1_gej accj; - secp256k1_ge add; - size_t i; - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(!n_pos || (pos != NULL)); - ARG_CHECK(!n_neg || (neg != NULL)); - (void) ctx; - secp256k1_gej_set_infinity(&accj); - for (i = 0; i < n_pos; i++) { - secp256k1_pedersen_commitment_load(&add, neg[i]); - secp256k1_gej_add_ge_var(&accj, &accj, &add, NULL); - } - secp256k1_gej_neg(&accj, &accj); - for (i = 0; i < n_neg; i++) { - secp256k1_pedersen_commitment_load(&add, pos[i]); - secp256k1_gej_add_ge_var(&accj, &accj, &add, NULL); - } - return secp256k1_gej_is_infinity(&accj); -} - -int secp256k1_pedersen_blind_generator_blind_sum(const secp256k1_context* ctx, const uint64_t *value, const unsigned char* const* generator_blind, unsigned char* const* blinding_factor, size_t n_total, size_t n_inputs) { - secp256k1_scalar sum; - secp256k1_scalar tmp; - size_t i; - - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(n_total == 0 || value != NULL); - ARG_CHECK(n_total == 0 || generator_blind != NULL); - ARG_CHECK(n_total == 0 || blinding_factor != NULL); - ARG_CHECK(n_total > n_inputs); - (void) ctx; - - if (n_total == 0) { - return 1; - } - - secp256k1_scalar_set_int(&sum, 0); - for (i = 0; i < n_total; i++) { - int overflow = 0; - secp256k1_scalar addend; - secp256k1_scalar_set_u64(&addend, value[i]); /* s = v */ - - secp256k1_scalar_set_b32(&tmp, generator_blind[i], &overflow); - if (overflow == 1) { - secp256k1_scalar_clear(&tmp); - secp256k1_scalar_clear(&addend); - secp256k1_scalar_clear(&sum); - return 0; - } - secp256k1_scalar_mul(&addend, &addend, &tmp); /* s = vr */ - - secp256k1_scalar_set_b32(&tmp, blinding_factor[i], &overflow); - if (overflow == 1) { - secp256k1_scalar_clear(&tmp); - secp256k1_scalar_clear(&addend); - secp256k1_scalar_clear(&sum); - return 0; - } - secp256k1_scalar_add(&addend, &addend, &tmp); /* s = vr + r' */ - secp256k1_scalar_cond_negate(&addend, i < n_inputs); /* s is negated if it's an input */ - secp256k1_scalar_add(&sum, &sum, &addend); /* sum += s */ - secp256k1_scalar_clear(&addend); - } - - /* Right now tmp has the last pedersen blinding factor. Subtract the sum from it. */ - secp256k1_scalar_negate(&sum, &sum); - secp256k1_scalar_add(&tmp, &tmp, &sum); - secp256k1_scalar_get_b32(blinding_factor[n_total - 1], &tmp); - - secp256k1_scalar_clear(&tmp); - secp256k1_scalar_clear(&sum); - return 1; -} - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/commitment/pedersen_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/commitment/pedersen_impl.h deleted file mode 100644 index a6d9dfb..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/commitment/pedersen_impl.h +++ /dev/null @@ -1,38 +0,0 @@ -/*********************************************************************** - * Copyright (c) 2015 Gregory Maxwell * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php. * - ***********************************************************************/ - -#ifndef SECP256K1_MODULE_COMMITMENT_PEDERSEN -#define SECP256K1_MODULE_COMMITMENT_PEDERSEN - -#include - -#include "ecmult_const.h" -#include "group.h" -#include "scalar.h" - -/* sec * G + value * G2. */ -SECP256K1_INLINE static void secp256k1_pedersen_ecmult(secp256k1_gej *rj, const secp256k1_scalar *sec, uint64_t value, const secp256k1_ge* value_gen, const secp256k1_ge* blind_gen) { - secp256k1_scalar vs; - secp256k1_gej bj; - secp256k1_ge bp; - - secp256k1_scalar_set_u64(&vs, value); - secp256k1_ecmult_const(rj, value_gen, &vs, 64); - secp256k1_ecmult_const(&bj, blind_gen, sec, 256); - - /* zero blinding factor indicates that we are not trying to be zero-knowledge, - * so not being constant-time in this case is OK. */ - if (!secp256k1_gej_is_infinity(&bj)) { - secp256k1_ge_set_gej(&bp, &bj); - secp256k1_gej_add_ge(rj, rj, &bp); - } - - secp256k1_gej_clear(&bj); - secp256k1_ge_clear(&bp); - secp256k1_scalar_clear(&vs); -} - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/commitment/tests_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/commitment/tests_impl.h deleted file mode 100644 index fe4f925..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/commitment/tests_impl.h +++ /dev/null @@ -1,230 +0,0 @@ -/********************************************************************** - * Copyright (c) 2015 Gregory Maxwell * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_MODULE_COMMITMENT_TESTS -#define SECP256K1_MODULE_COMMITMENT_TESTS - -#include - -#include "group.h" -#include "scalar.h" -#include "testrand.h" -#include "util.h" - -#include "include/secp256k1_commitment.h" - -static void test_commitment_api(void) { - secp256k1_pedersen_commitment commit; - const secp256k1_pedersen_commitment *commit_ptr = &commit; - unsigned char blind[32]; - unsigned char blind_out[32]; - const unsigned char *blind_ptr = blind; - unsigned char *blind_out_ptr = blind_out; - uint64_t val = secp256k1_rand32(); - - secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE); - secp256k1_context *sign = secp256k1_context_create(SECP256K1_CONTEXT_SIGN); - secp256k1_context *vrfy = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY); - secp256k1_context *both = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); - int32_t ecount; - - secp256k1_context_set_error_callback(none, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_error_callback(sign, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_error_callback(vrfy, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_error_callback(both, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_illegal_callback(none, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_illegal_callback(sign, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_illegal_callback(vrfy, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_illegal_callback(both, counting_illegal_callback_fn, &ecount); - - secp256k1_rand256(blind); - CHECK(secp256k1_pedersen_commit(none, &commit, blind, val, &secp256k1_generator_const_h, &secp256k1_generator_const_g) == 0); - CHECK(ecount == 1); - CHECK(secp256k1_pedersen_commit(vrfy, &commit, blind, val, &secp256k1_generator_const_h, &secp256k1_generator_const_g) == 0); - CHECK(ecount == 2); - CHECK(secp256k1_pedersen_commit(sign, &commit, blind, val, &secp256k1_generator_const_h, &secp256k1_generator_const_g) != 0); - CHECK(ecount == 2); - - CHECK(secp256k1_pedersen_commit(sign, NULL, blind, val, &secp256k1_generator_const_h, &secp256k1_generator_const_g) == 0); - CHECK(ecount == 3); - CHECK(secp256k1_pedersen_commit(sign, &commit, NULL, val, &secp256k1_generator_const_h, &secp256k1_generator_const_g) == 0); - CHECK(ecount == 4); - CHECK(secp256k1_pedersen_commit(sign, &commit, blind, val, NULL, &secp256k1_generator_const_g) == 0); - CHECK(ecount == 5); - CHECK(secp256k1_pedersen_commit(sign, &commit, blind, val, &secp256k1_generator_const_h, NULL) == 0); - CHECK(ecount == 6); - - CHECK(secp256k1_pedersen_blind_sum(none, blind_out, &blind_ptr, 1, 1) != 0); - CHECK(ecount == 6); - CHECK(secp256k1_pedersen_blind_sum(none, NULL, &blind_ptr, 1, 1) == 0); - CHECK(ecount == 7); - CHECK(secp256k1_pedersen_blind_sum(none, blind_out, NULL, 1, 1) == 0); - CHECK(ecount == 8); - CHECK(secp256k1_pedersen_blind_sum(none, blind_out, &blind_ptr, 0, 1) == 0); - CHECK(ecount == 9); - CHECK(secp256k1_pedersen_blind_sum(none, blind_out, &blind_ptr, 0, 0) != 0); - CHECK(ecount == 9); - - CHECK(secp256k1_pedersen_commit(sign, &commit, blind, val, &secp256k1_generator_const_h, &secp256k1_generator_const_g) != 0); - CHECK(secp256k1_pedersen_verify_tally(none, &commit_ptr, 1, &commit_ptr, 1) != 0); - CHECK(secp256k1_pedersen_verify_tally(none, NULL, 0, &commit_ptr, 1) == 0); - CHECK(secp256k1_pedersen_verify_tally(none, &commit_ptr, 1, NULL, 0) == 0); - CHECK(secp256k1_pedersen_verify_tally(none, NULL, 0, NULL, 0) != 0); - CHECK(ecount == 9); - CHECK(secp256k1_pedersen_verify_tally(none, NULL, 1, &commit_ptr, 1) == 0); - CHECK(ecount == 10); - CHECK(secp256k1_pedersen_verify_tally(none, &commit_ptr, 1, NULL, 1) == 0); - CHECK(ecount == 11); - - CHECK(secp256k1_pedersen_blind_generator_blind_sum(none, &val, &blind_ptr, &blind_out_ptr, 1, 0) != 0); - CHECK(ecount == 11); - CHECK(secp256k1_pedersen_blind_generator_blind_sum(none, &val, &blind_ptr, &blind_out_ptr, 1, 1) == 0); - CHECK(ecount == 12); - CHECK(secp256k1_pedersen_blind_generator_blind_sum(none, &val, &blind_ptr, &blind_out_ptr, 0, 0) == 0); - CHECK(ecount == 13); - CHECK(secp256k1_pedersen_blind_generator_blind_sum(none, NULL, &blind_ptr, &blind_out_ptr, 1, 0) == 0); - CHECK(ecount == 14); - CHECK(secp256k1_pedersen_blind_generator_blind_sum(none, &val, NULL, &blind_out_ptr, 1, 0) == 0); - CHECK(ecount == 15); - CHECK(secp256k1_pedersen_blind_generator_blind_sum(none, &val, &blind_ptr, NULL, 1, 0) == 0); - CHECK(ecount == 16); - - secp256k1_context_destroy(none); - secp256k1_context_destroy(sign); - secp256k1_context_destroy(vrfy); - secp256k1_context_destroy(both); -} - -static void test_pedersen(void) { - secp256k1_pedersen_commitment commits[19]; - const secp256k1_pedersen_commitment *cptr[19]; - unsigned char blinds[32*19]; - const unsigned char *bptr[19]; - secp256k1_scalar s; - uint64_t values[19]; - int64_t totalv; - int i; - int inputs; - int outputs; - int total; - inputs = (secp256k1_rand32() & 7) + 1; - outputs = (secp256k1_rand32() & 7) + 2; - total = inputs + outputs; - for (i = 0; i < 19; i++) { - cptr[i] = &commits[i]; - bptr[i] = &blinds[i * 32]; - } - totalv = 0; - for (i = 0; i < inputs; i++) { - values[i] = secp256k1_rands64(0, INT64_MAX - totalv); - totalv += values[i]; - } - for (i = 0; i < outputs - 1; i++) { - values[i + inputs] = secp256k1_rands64(0, totalv); - totalv -= values[i + inputs]; - } - values[total - 1] = totalv; - - for (i = 0; i < total - 1; i++) { - random_scalar_order(&s); - secp256k1_scalar_get_b32(&blinds[i * 32], &s); - } - CHECK(secp256k1_pedersen_blind_sum(ctx, &blinds[(total - 1) * 32], bptr, total - 1, inputs)); - for (i = 0; i < total; i++) { - CHECK(secp256k1_pedersen_commit(ctx, &commits[i], &blinds[i * 32], values[i], &secp256k1_generator_const_h, &secp256k1_generator_const_g)); - } - CHECK(secp256k1_pedersen_verify_tally(ctx, cptr, inputs, &cptr[inputs], outputs)); - CHECK(secp256k1_pedersen_verify_tally(ctx, &cptr[inputs], outputs, cptr, inputs)); - if (inputs > 0 && values[0] > 0) { - CHECK(!secp256k1_pedersen_verify_tally(ctx, cptr, inputs - 1, &cptr[inputs], outputs)); - } - random_scalar_order(&s); - for (i = 0; i < 4; i++) { - secp256k1_scalar_get_b32(&blinds[i * 32], &s); - } - values[0] = INT64_MAX; - values[1] = 0; - values[2] = 1; - for (i = 0; i < 3; i++) { - CHECK(secp256k1_pedersen_commit(ctx, &commits[i], &blinds[i * 32], values[i], &secp256k1_generator_const_h, &secp256k1_generator_const_g)); - } - CHECK(secp256k1_pedersen_verify_tally(ctx, &cptr[0], 1, &cptr[0], 1)); - CHECK(secp256k1_pedersen_verify_tally(ctx, &cptr[1], 1, &cptr[1], 1)); -} - -#define MAX_N_GENS 30 -void test_multiple_generators(void) { - const size_t n_inputs = (secp256k1_rand32() % (MAX_N_GENS / 2)) + 1; - const size_t n_outputs = (secp256k1_rand32() % (MAX_N_GENS / 2)) + 1; - const size_t n_generators = n_inputs + n_outputs; - unsigned char *generator_blind[MAX_N_GENS]; - unsigned char *pedersen_blind[MAX_N_GENS]; - secp256k1_generator generator[MAX_N_GENS]; - secp256k1_pedersen_commitment commit[MAX_N_GENS]; - const secp256k1_pedersen_commitment *commit_ptr[MAX_N_GENS]; - size_t i; - int64_t total_value; - uint64_t value[MAX_N_GENS]; - - secp256k1_scalar s; - - unsigned char generator_seed[32]; - random_scalar_order(&s); - secp256k1_scalar_get_b32(generator_seed, &s); - /* Create all the needed generators */ - for (i = 0; i < n_generators; i++) { - generator_blind[i] = (unsigned char*) malloc(32); - pedersen_blind[i] = (unsigned char*) malloc(32); - - random_scalar_order(&s); - secp256k1_scalar_get_b32(generator_blind[i], &s); - random_scalar_order(&s); - secp256k1_scalar_get_b32(pedersen_blind[i], &s); - - CHECK(secp256k1_generator_generate_blinded(ctx, &generator[i], generator_seed, generator_blind[i])); - - commit_ptr[i] = &commit[i]; - } - - /* Compute all the values -- can be positive or negative */ - total_value = 0; - for (i = 0; i < n_outputs; i++) { - value[n_inputs + i] = secp256k1_rands64(0, INT64_MAX - total_value); - total_value += value[n_inputs + i]; - } - for (i = 0; i < n_inputs - 1; i++) { - value[i] = secp256k1_rands64(0, total_value); - total_value -= value[i]; - } - value[i] = total_value; - - /* Correct for blinding factors and do the commitments */ - CHECK(secp256k1_pedersen_blind_generator_blind_sum(ctx, value, (const unsigned char * const *) generator_blind, pedersen_blind, n_generators, n_inputs)); - for (i = 0; i < n_generators; i++) { - CHECK(secp256k1_pedersen_commit(ctx, &commit[i], pedersen_blind[i], value[i], &generator[i], &secp256k1_generator_const_h)); - } - - /* Verify */ - CHECK(secp256k1_pedersen_verify_tally(ctx, &commit_ptr[0], n_inputs, &commit_ptr[n_inputs], n_outputs)); - - /* Cleanup */ - for (i = 0; i < n_generators; i++) { - free(generator_blind[i]); - free(pedersen_blind[i]); - } -} -#undef MAX_N_GENS - -void run_commitment_tests(void) { - int i; - test_commitment_api(); - for (i = 0; i < 10*count; i++) { - test_pedersen(); - } - test_multiple_generators(); -} - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/ecdh/Makefile.am.include b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/ecdh/Makefile.am.include deleted file mode 100644 index e3088b4..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/ecdh/Makefile.am.include +++ /dev/null @@ -1,8 +0,0 @@ -include_HEADERS += include/secp256k1_ecdh.h -noinst_HEADERS += src/modules/ecdh/main_impl.h -noinst_HEADERS += src/modules/ecdh/tests_impl.h -if USE_BENCHMARK -noinst_PROGRAMS += bench_ecdh -bench_ecdh_SOURCES = src/bench_ecdh.c -bench_ecdh_LDADD = libsecp256k1.la $(SECP_LIBS) $(COMMON_LIB) -endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/ecdh/main_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/ecdh/main_impl.h deleted file mode 100644 index df3ec5c..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/ecdh/main_impl.h +++ /dev/null @@ -1,54 +0,0 @@ -/********************************************************************** - * Copyright (c) 2015 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_MODULE_ECDH_MAIN_H -#define SECP256K1_MODULE_ECDH_MAIN_H - -#include "include/secp256k1_ecdh.h" -#include "ecmult_const_impl.h" - -int secp256k1_ecdh(const secp256k1_context* ctx, unsigned char *result, const secp256k1_pubkey *point, const unsigned char *scalar) { - int ret = 0; - int overflow = 0; - secp256k1_gej res; - secp256k1_ge pt; - secp256k1_scalar s; - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(result != NULL); - ARG_CHECK(point != NULL); - ARG_CHECK(scalar != NULL); - - secp256k1_pubkey_load(ctx, &pt, point); - secp256k1_scalar_set_b32(&s, scalar, &overflow); - if (overflow || secp256k1_scalar_is_zero(&s)) { - ret = 0; - } else { - unsigned char x[32]; - unsigned char y[1]; - secp256k1_sha256 sha; - - secp256k1_ecmult_const(&res, &pt, &s, 256); - secp256k1_ge_set_gej(&pt, &res); - /* Compute a hash of the point in compressed form - * Note we cannot use secp256k1_eckey_pubkey_serialize here since it does not - * expect its output to be secret and has a timing sidechannel. */ - secp256k1_fe_normalize(&pt.x); - secp256k1_fe_normalize(&pt.y); - secp256k1_fe_get_b32(x, &pt.x); - y[0] = 0x02 | secp256k1_fe_is_odd(&pt.y); - - secp256k1_sha256_initialize(&sha); - secp256k1_sha256_write(&sha, y, sizeof(y)); - secp256k1_sha256_write(&sha, x, sizeof(x)); - secp256k1_sha256_finalize(&sha, result); - ret = 1; - } - - secp256k1_scalar_clear(&s); - return ret; -} - -#endif /* SECP256K1_MODULE_ECDH_MAIN_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/ecdh/tests_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/ecdh/tests_impl.h deleted file mode 100644 index 0c53f8e..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/ecdh/tests_impl.h +++ /dev/null @@ -1,105 +0,0 @@ -/********************************************************************** - * Copyright (c) 2015 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_MODULE_ECDH_TESTS_H -#define SECP256K1_MODULE_ECDH_TESTS_H - -void test_ecdh_api(void) { - /* Setup context that just counts errors */ - secp256k1_context *tctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN); - secp256k1_pubkey point; - unsigned char res[32]; - unsigned char s_one[32] = { 0 }; - int32_t ecount = 0; - s_one[31] = 1; - - secp256k1_context_set_error_callback(tctx, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_illegal_callback(tctx, counting_illegal_callback_fn, &ecount); - CHECK(secp256k1_ec_pubkey_create(tctx, &point, s_one) == 1); - - /* Check all NULLs are detected */ - CHECK(secp256k1_ecdh(tctx, res, &point, s_one) == 1); - CHECK(ecount == 0); - CHECK(secp256k1_ecdh(tctx, NULL, &point, s_one) == 0); - CHECK(ecount == 1); - CHECK(secp256k1_ecdh(tctx, res, NULL, s_one) == 0); - CHECK(ecount == 2); - CHECK(secp256k1_ecdh(tctx, res, &point, NULL) == 0); - CHECK(ecount == 3); - CHECK(secp256k1_ecdh(tctx, res, &point, s_one) == 1); - CHECK(ecount == 3); - - /* Cleanup */ - secp256k1_context_destroy(tctx); -} - -void test_ecdh_generator_basepoint(void) { - unsigned char s_one[32] = { 0 }; - secp256k1_pubkey point[2]; - int i; - - s_one[31] = 1; - /* Check against pubkey creation when the basepoint is the generator */ - for (i = 0; i < 100; ++i) { - secp256k1_sha256 sha; - unsigned char s_b32[32]; - unsigned char output_ecdh[32]; - unsigned char output_ser[32]; - unsigned char point_ser[33]; - size_t point_ser_len = sizeof(point_ser); - secp256k1_scalar s; - - random_scalar_order(&s); - secp256k1_scalar_get_b32(s_b32, &s); - - /* compute using ECDH function */ - CHECK(secp256k1_ec_pubkey_create(ctx, &point[0], s_one) == 1); - CHECK(secp256k1_ecdh(ctx, output_ecdh, &point[0], s_b32) == 1); - /* compute "explicitly" */ - CHECK(secp256k1_ec_pubkey_create(ctx, &point[1], s_b32) == 1); - CHECK(secp256k1_ec_pubkey_serialize(ctx, point_ser, &point_ser_len, &point[1], SECP256K1_EC_COMPRESSED) == 1); - CHECK(point_ser_len == sizeof(point_ser)); - secp256k1_sha256_initialize(&sha); - secp256k1_sha256_write(&sha, point_ser, point_ser_len); - secp256k1_sha256_finalize(&sha, output_ser); - /* compare */ - CHECK(memcmp(output_ecdh, output_ser, sizeof(output_ser)) == 0); - } -} - -void test_bad_scalar(void) { - unsigned char s_zero[32] = { 0 }; - unsigned char s_overflow[32] = { - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, - 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b, - 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x41 - }; - unsigned char s_rand[32] = { 0 }; - unsigned char output[32]; - secp256k1_scalar rand; - secp256k1_pubkey point; - - /* Create random point */ - random_scalar_order(&rand); - secp256k1_scalar_get_b32(s_rand, &rand); - CHECK(secp256k1_ec_pubkey_create(ctx, &point, s_rand) == 1); - - /* Try to multiply it by bad values */ - CHECK(secp256k1_ecdh(ctx, output, &point, s_zero) == 0); - CHECK(secp256k1_ecdh(ctx, output, &point, s_overflow) == 0); - /* ...and a good one */ - s_overflow[31] -= 1; - CHECK(secp256k1_ecdh(ctx, output, &point, s_overflow) == 1); -} - -void run_ecdh_tests(void) { - test_ecdh_api(); - test_ecdh_generator_basepoint(); - test_bad_scalar(); -} - -#endif /* SECP256K1_MODULE_ECDH_TESTS_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/generator/.main_impl.h.swp b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/generator/.main_impl.h.swp deleted file mode 100644 index 85d9619c0145c3a42f8b1f4a11c9611b9fef6125..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 16384 zcmeHN>#y8K6*n!EN1K2e5PSeMNuphyT%A|yVcN(g~?{bp?M`fhHL61DIl zw)ERw&zy7S%x})vGiS%r&aNCI?TV)0dY7Vn^V~D%7aw?9dFVZg!sy5hX&`EDdnIz^ zqb7Ixh_Z64-j?>}w4P1`s|SOz?*%4}s+>iWM7P8TxYKNOc z9#kV{4{MF)1-Rf$tn}6jDmH@O5AvSOE&a9zcv80p6I4;3`%X@r6q# zRWhkja)3-0#HU_eCq*)*imXlQ^;wO*Rzp2stEB>``;4pyuFnZ&elT!-acYCC!_=5U zaw=aUrccqY_=+1-ZDFf0Gd5Z9r6L-6M5;cLZ7TM2=G&wuq|53=_aQ!}g{gJva7GXU z2M8^~qcY*ev7ZW}09}T13&?b8EaatgspRQ^m>Yph3C^;R8lmon8@YiWm53b-h9k~o zg=qyFjJQ7WM}y@2N|qHT2nUa5I7k}TtK$p>HI#}z!6QA>Ba|lIr!I|CA2Ecg5Vzt^ z6bLy#c6lH72S{sm+Mehu7%#(Ybvk@D3Zsi5SIY~9Sh89qA2B1>CZ^X5LfDzQoJLKN z;1Y*}e0iXU)HFS@Cu>f+EDTwB$-~JVawr&G95FHW^)PPPW#k{}L1zJ`a%l(o$K zi6cEFLYvfECB(Vqh))Lpv`Gh#6K!J4-)&9&UWiLHIRgj^G^x~<#SQtXNdvXEG-FFM zP4P(^rKy$`YgwYaEL|s*B&YEU6AZZ0pc$_L#4;$7d zj-eJReKw(P5081ZP|}+Pyi1{-)WXJot={Tbtl4Zar$cSaGVMmg)S9(U!)EQ4W@#<0 z*0CI$S~Y63TAOwn9jDgT8kc$Drt4bUY&%qM zS@n9`Y_=PXy58y7^%m9Ij$`Q>ty}H=70T>@GIc+E-5)!+4A;7z=MM4ak}o@=o7K9xaZ&t@Mdqi+rQL4ovS@JjwvC3n!5fg8Mc)5euh_HYce>Z(G zFL}ehS;4z=KFS+1KpYuFZ5cQX8A`egQb&fZF2l3ap2n+|i8)8cG?hvD5K1AeMX+>E}z7ldR#Y-oj7>rXxBL0J>EUFbo#_8NOhgKoq_*TUMJV(~*+C}+yCmD3~&96mNfMiL$I{z?}3wwNcTzbTfdgh)Hf!Eh5x z(>}-Qx*!(AO|sHirD|}#NPQ8K;fJJ{)GMh z&w%d%-vyorTEP2&e~7(5@Oj{~z-NHJVBdcYcnSCl@CiTzuEXCy0KZRs|F!Txzj6k0 z266^+266^+266`OX$JN(ktUtXLC$g-(=Aw`LCZ#te>3VTWugBI^Q7@!ydo+NYOdVt`t{V^l=@1kmspwY2 zxB9mrG0qbQ;xs-SPww%H?884Q)BIpI)rfxwkaE1q^*C>3V8flHUE_k=3Xk!}3_6fX zCZTw1<8$)J^f>MW4+7-H<|$9yaeWv6#>oE-l4c+&xlHqvB-2gsE>o&oSe*{jQv~~9 hmSpS2-gm~2P`vYSh}>^xN=Xy5IE4W^kv8M|MQLK zoAG#FSt=f#nxVCPk>I+MkoTT><@o-sXUT2%62i@p`KBu^>t2c9*fbNi2u(gVFSTHNPhr(pOio^T5RH$1IUJy|NW z?WOKb;2VXGYldwe6q?-OJ`=7VF$TKb@!I)TCVzFS6u7<>*h$J-DS9>c3_U>axqI>Y zmP3_ZDWDWk3Md7X0!jg;fKosyaGfb2yshLM%6wx|?jyTl(e{8G@ZIf%yaBupbbtfEBv1f$1G|82z%M%q z`4+egdfUt%NKBf9xRSU0@pcc{?Fr0~dh{ zzzV>CAz%k^X&WJ*03QPea0vMQ7DB!U-T=-4CEz~b(pLBa9GC&7f$hLgHxu#^@FuVb z>;oPFe!Yp1Pl5A*0Xz-t1b)F{#LvK2!27_m%WZ)parPmD)AOT5BZ%v02~idE4fAI>K#%wSgJ zZ&=27rCO9>t!h;Gcy&pJty)nlBkzc(u8mhK6(+-_s#P!YT1|$FwF);Y8XF!ZvWS7e zArylet`i7)<*bO_o^M5ziRbcP9|#RIx*ix$NJ6zYb; z3k7wp=q_lnc01(yDdy-V*Oy%!T(O^Xcs`Jv^H7oE{7Tbj9Xe7Vr(D~l@@$K~R=S*Y z8AkTxh4{JCGcGzFUGUQaxdg&@S8}I(Yi0Q1K2Cw%box3uuEXIJQB6M8m^_r@h8sG9 z?%PL8r6hT5Sgl-gvPSoqAMl(c8Krx1;AWK0E>2Gm%hbi5#H(0)4gFXp-zaL$2m89b z^`89t(Z&zEinf1Q;cT@y7N0h;lYC_Z?X23j0PAKF%M@k5u1=M|n@yZSRF?j^j1Qj6 z>X&kZxs(UbMfOBJ_0qpA+Tgj!u5685)_mzUp3Q*$*M=WI;k{DP>$ao*y<*y2dma}x z+uQeaJ3btsH1S!_#Wj-sTBKG zq&S1|&Cbm>628!pkHbxBw3wfaRF0R+Ct^K%tjD{sO$!MV*|YD%>UB8Lra@xd&i~W>^$!scz(HUa za0&J=fX{)?fVY7&00W)?9s~9Rl4k-?mr_6}pcGIFC&jw8x-7wS$*M`lESEP{Th`nogHyCT;)hPkiA6cd7IfD~;{CJuubel> z8(1CQF*;rjTOR?IDAPSZn~u@a2~5wiv*TL1?kZJxe{i^Ga4FCWD diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/generator/Makefile.am.include b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/generator/Makefile.am.include deleted file mode 100644 index 69933e9..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/generator/Makefile.am.include +++ /dev/null @@ -1,9 +0,0 @@ -include_HEADERS += include/secp256k1_generator.h -noinst_HEADERS += src/modules/generator/main_impl.h -noinst_HEADERS += src/modules/generator/tests_impl.h -if USE_BENCHMARK -noinst_PROGRAMS += bench_generator -bench_generator_SOURCES = src/bench_generator.c -bench_generator_LDADD = libsecp256k1.la $(SECP_LIBS) -bench_generator_LDFLAGS = -static -endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/generator/main_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/generator/main_impl.h deleted file mode 100644 index 2c226da..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/generator/main_impl.h +++ /dev/null @@ -1,232 +0,0 @@ -/********************************************************************** - * Copyright (c) 2016 Andrew Poelstra & Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_MODULE_GENERATOR_MAIN -#define SECP256K1_MODULE_GENERATOR_MAIN - -#include - -#include "field.h" -#include "group.h" -#include "hash.h" -#include "scalar.h" - -/** Standard secp256k1 generator */ -const secp256k1_generator secp256k1_generator_const_g = { - { 0x0a, - 0x79, 0xbe, 0x66, 0x7e, 0xf9, 0xdc, 0xbb, 0xac, - 0x55, 0xa0, 0x62, 0x95, 0xce, 0x87, 0x0b, 0x07, - 0x02, 0x9b, 0xfc, 0xdb, 0x2d, 0xce, 0x28, 0xd9, - 0x59, 0xf2, 0x81, 0x5b, 0x16, 0xf8, 0x17, 0x98 - } -}; - -/** Alternate secp256k1 generator, used in Elements Alpha. - * Computed as the hash of the above G, DER-encoded with 0x04 (uncompressed pubkey) as its flag byte. - * import hashlib - * C = EllipticCurve ([F (0), F (7)]) - * G_bytes = '0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8'.decode('hex') - * H = C.lift_x(int(hashlib.sha256(G_bytes).hexdigest(),16)) - */ -const secp256k1_generator secp256k1_generator_const_h = { - { 0x0b, - 0x50, 0x92, 0x9b, 0x74, 0xc1, 0xa0, 0x49, 0x54, - 0xb7, 0x8b, 0x4b, 0x60, 0x35, 0xe9, 0x7a, 0x5e, - 0x07, 0x8a, 0x5a, 0x0f, 0x28, 0xec, 0x96, 0xd5, - 0x47, 0xbf, 0xee, 0x9a, 0xce, 0x80, 0x3a, 0xc0 - } -}; - -static void secp256k1_generator_load(secp256k1_ge* ge, const secp256k1_generator* gen) { - secp256k1_fe fe; - secp256k1_fe_set_b32(&fe, &gen->data[1]); - secp256k1_ge_set_xquad(ge, &fe); - if (gen->data[0] & 1) { - secp256k1_ge_neg(ge, ge); - } -} - -static void secp256k1_generator_save(secp256k1_generator* commit, secp256k1_ge* ge) { - secp256k1_fe_normalize(&ge->x); - secp256k1_fe_get_b32(&commit->data[1], &ge->x); - commit->data[0] = 11 ^ secp256k1_fe_is_quad_var(&ge->y); -} - -int secp256k1_generator_parse(const secp256k1_context* ctx, secp256k1_generator* gen, const unsigned char *input) { - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(gen != NULL); - ARG_CHECK(input != NULL); - if ((input[0] & 0xFE) != 10) { - return 0; - } - memcpy(gen->data, input, sizeof(gen->data)); - return 1; -} - -int secp256k1_generator_serialize(const secp256k1_context* ctx, unsigned char *output, const secp256k1_generator* gen) { - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(output != NULL); - ARG_CHECK(gen != NULL); - memcpy(output, gen->data, sizeof(gen->data)); - return 1; -} - -static void shallue_van_de_woestijne(secp256k1_ge* ge, const secp256k1_fe* t) { - /* Implements the algorithm from: - * Indifferentiable Hashing to Barreto-Naehrig Curves - * Pierre-Alain Fouque and Mehdi Tibouchi - * Latincrypt 2012 - */ - - /* Basic algorithm: - - c = sqrt(-3) - d = (c - 1)/2 - - w = c * t / (1 + b + t^2) [with b = 7] - x1 = d - t*w - x2 = -(x1 + 1) - x3 = 1 + 1/w^2 - - To avoid the 2 divisions, compute the above in numerator/denominator form: - wn = c * t - wd = 1 + 7 + t^2 - x1n = d*wd - t*wn - x1d = wd - x2n = -(x1n + wd) - x2d = wd - x3n = wd^2 + c^2 + t^2 - x3d = (c * t)^2 - - The joint denominator j = wd * c^2 * t^2, and - 1 / x1d = 1/j * c^2 * t^2 - 1 / x2d = x3d = 1/j * wd - */ - - static const secp256k1_fe c = SECP256K1_FE_CONST(0x0a2d2ba9, 0x3507f1df, 0x233770c2, 0xa797962c, 0xc61f6d15, 0xda14ecd4, 0x7d8d27ae, 0x1cd5f852); - static const secp256k1_fe d = SECP256K1_FE_CONST(0x851695d4, 0x9a83f8ef, 0x919bb861, 0x53cbcb16, 0x630fb68a, 0xed0a766a, 0x3ec693d6, 0x8e6afa40); - static const secp256k1_fe b = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 7); - static const secp256k1_fe b_plus_one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 8); - - secp256k1_fe wn, wd, x1n, x2n, x3n, x3d, jinv, tmp, x1, x2, x3, alphain, betain, gammain, y1, y2, y3; - int alphaquad, betaquad; - - secp256k1_fe_mul(&wn, &c, t); /* mag 1 */ - secp256k1_fe_sqr(&wd, t); /* mag 1 */ - secp256k1_fe_add(&wd, &b_plus_one); /* mag 2 */ - secp256k1_fe_mul(&tmp, t, &wn); /* mag 1 */ - secp256k1_fe_negate(&tmp, &tmp, 1); /* mag 2 */ - secp256k1_fe_mul(&x1n, &d, &wd); /* mag 1 */ - secp256k1_fe_add(&x1n, &tmp); /* mag 3 */ - x2n = x1n; /* mag 3 */ - secp256k1_fe_add(&x2n, &wd); /* mag 5 */ - secp256k1_fe_negate(&x2n, &x2n, 5); /* mag 6 */ - secp256k1_fe_mul(&x3d, &c, t); /* mag 1 */ - secp256k1_fe_sqr(&x3d, &x3d); /* mag 1 */ - secp256k1_fe_sqr(&x3n, &wd); /* mag 1 */ - secp256k1_fe_add(&x3n, &x3d); /* mag 2 */ - secp256k1_fe_mul(&jinv, &x3d, &wd); /* mag 1 */ - secp256k1_fe_inv(&jinv, &jinv); /* mag 1 */ - secp256k1_fe_mul(&x1, &x1n, &x3d); /* mag 1 */ - secp256k1_fe_mul(&x1, &x1, &jinv); /* mag 1 */ - secp256k1_fe_mul(&x2, &x2n, &x3d); /* mag 1 */ - secp256k1_fe_mul(&x2, &x2, &jinv); /* mag 1 */ - secp256k1_fe_mul(&x3, &x3n, &wd); /* mag 1 */ - secp256k1_fe_mul(&x3, &x3, &jinv); /* mag 1 */ - - secp256k1_fe_sqr(&alphain, &x1); /* mag 1 */ - secp256k1_fe_mul(&alphain, &alphain, &x1); /* mag 1 */ - secp256k1_fe_add(&alphain, &b); /* mag 2 */ - secp256k1_fe_sqr(&betain, &x2); /* mag 1 */ - secp256k1_fe_mul(&betain, &betain, &x2); /* mag 1 */ - secp256k1_fe_add(&betain, &b); /* mag 2 */ - secp256k1_fe_sqr(&gammain, &x3); /* mag 1 */ - secp256k1_fe_mul(&gammain, &gammain, &x3); /* mag 1 */ - secp256k1_fe_add(&gammain, &b); /* mag 2 */ - - alphaquad = secp256k1_fe_sqrt(&y1, &alphain); - betaquad = secp256k1_fe_sqrt(&y2, &betain); - secp256k1_fe_sqrt(&y3, &gammain); - - secp256k1_fe_cmov(&x1, &x2, (!alphaquad) & betaquad); - secp256k1_fe_cmov(&y1, &y2, (!alphaquad) & betaquad); - secp256k1_fe_cmov(&x1, &x3, (!alphaquad) & !betaquad); - secp256k1_fe_cmov(&y1, &y3, (!alphaquad) & !betaquad); - - secp256k1_ge_set_xy(ge, &x1, &y1); - - /* The linked algorithm from the paper uses the Jacobi symbol of t to - * determine the Jacobi symbol of the produced y coordinate. Since the - * rest of the algorithm only uses t^2, we can safely use another criterion - * as long as negation of t results in negation of the y coordinate. Here - * we choose to use t's oddness, as it is faster to determine. */ - secp256k1_fe_negate(&tmp, &ge->y, 1); - secp256k1_fe_cmov(&ge->y, &tmp, secp256k1_fe_is_odd(t)); -} - -static int secp256k1_generator_generate_internal(const secp256k1_context* ctx, secp256k1_generator* gen, const unsigned char *key32, const unsigned char *blind32) { - static const unsigned char prefix1[17] = "1st generation: "; - static const unsigned char prefix2[17] = "2nd generation: "; - secp256k1_fe t = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 4); - secp256k1_ge add; - secp256k1_gej accum; - int overflow; - secp256k1_sha256 sha256; - unsigned char b32[32]; - int ret = 1; - - if (blind32) { - secp256k1_scalar blind; - secp256k1_scalar_set_b32(&blind, blind32, &overflow); - ret = !overflow; - CHECK(ret); - secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &accum, &blind); - } - - secp256k1_sha256_initialize(&sha256); - secp256k1_sha256_write(&sha256, prefix1, 16); - secp256k1_sha256_write(&sha256, key32, 32); - secp256k1_sha256_finalize(&sha256, b32); - ret &= secp256k1_fe_set_b32(&t, b32); - CHECK(ret); - shallue_van_de_woestijne(&add, &t); - if (blind32) { - secp256k1_gej_add_ge(&accum, &accum, &add); - } else { - secp256k1_gej_set_ge(&accum, &add); - } - - secp256k1_sha256_initialize(&sha256); - secp256k1_sha256_write(&sha256, prefix2, 16); - secp256k1_sha256_write(&sha256, key32, 32); - secp256k1_sha256_finalize(&sha256, b32); - ret &= secp256k1_fe_set_b32(&t, b32); - CHECK(ret); - shallue_van_de_woestijne(&add, &t); - secp256k1_gej_add_ge(&accum, &accum, &add); - - secp256k1_ge_set_gej(&add, &accum); - secp256k1_generator_save(gen, &add); - return ret; -} - -int secp256k1_generator_generate(const secp256k1_context* ctx, secp256k1_generator* gen, const unsigned char *key32) { - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(gen != NULL); - ARG_CHECK(key32 != NULL); - return secp256k1_generator_generate_internal(ctx, gen, key32, NULL); -} - -int secp256k1_generator_generate_blinded(const secp256k1_context* ctx, secp256k1_generator* gen, const unsigned char *key32, const unsigned char *blind32) { - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(gen != NULL); - ARG_CHECK(key32 != NULL); - ARG_CHECK(blind32 != NULL); - ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); - return secp256k1_generator_generate_internal(ctx, gen, key32, blind32); -} - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/generator/tests_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/generator/tests_impl.h deleted file mode 100644 index 8b1a5ac..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/generator/tests_impl.h +++ /dev/null @@ -1,199 +0,0 @@ -/********************************************************************** - * Copyright (c) 2016 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_MODULE_GENERATOR_TESTS -#define SECP256K1_MODULE_GENERATOR_TESTS - -#include -#include - -#include "group.h" -#include "scalar.h" -#include "testrand.h" -#include "util.h" - -#include "include/secp256k1_generator.h" - -void test_generator_api(void) { - unsigned char key[32]; - unsigned char blind[32]; - unsigned char sergen[33]; - secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE); - secp256k1_context *sign = secp256k1_context_create(SECP256K1_CONTEXT_SIGN); - secp256k1_context *vrfy = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY); - secp256k1_generator gen; - int32_t ecount = 0; - - secp256k1_context_set_error_callback(none, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_error_callback(sign, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_error_callback(vrfy, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_illegal_callback(none, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_illegal_callback(sign, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_illegal_callback(vrfy, counting_illegal_callback_fn, &ecount); - secp256k1_rand256(key); - secp256k1_rand256(blind); - - CHECK(secp256k1_generator_generate(none, &gen, key) == 1); - CHECK(ecount == 0); - CHECK(secp256k1_generator_generate(none, NULL, key) == 0); - CHECK(ecount == 1); - CHECK(secp256k1_generator_generate(none, &gen, NULL) == 0); - CHECK(ecount == 2); - - CHECK(secp256k1_generator_generate_blinded(sign, &gen, key, blind) == 1); - CHECK(ecount == 2); - CHECK(secp256k1_generator_generate_blinded(vrfy, &gen, key, blind) == 0); - CHECK(ecount == 3); - CHECK(secp256k1_generator_generate_blinded(none, &gen, key, blind) == 0); - CHECK(ecount == 4); - CHECK(secp256k1_generator_generate_blinded(vrfy, NULL, key, blind) == 0); - CHECK(ecount == 5); - CHECK(secp256k1_generator_generate_blinded(vrfy, &gen, NULL, blind) == 0); - CHECK(ecount == 6); - CHECK(secp256k1_generator_generate_blinded(vrfy, &gen, key, NULL) == 0); - CHECK(ecount == 7); - - CHECK(secp256k1_generator_serialize(none, sergen, &gen) == 1); - CHECK(ecount == 7); - CHECK(secp256k1_generator_serialize(none, NULL, &gen) == 0); - CHECK(ecount == 8); - CHECK(secp256k1_generator_serialize(none, sergen, NULL) == 0); - CHECK(ecount == 9); - - CHECK(secp256k1_generator_serialize(none, sergen, &gen) == 1); - CHECK(secp256k1_generator_parse(none, &gen, sergen) == 1); - CHECK(ecount == 9); - CHECK(secp256k1_generator_parse(none, NULL, sergen) == 0); - CHECK(ecount == 10); - CHECK(secp256k1_generator_parse(none, &gen, NULL) == 0); - CHECK(ecount == 11); - - secp256k1_context_destroy(none); - secp256k1_context_destroy(sign); - secp256k1_context_destroy(vrfy); -} - -void test_shallue_van_de_woestijne(void) { - /* Matches with the output of the shallue_van_de_woestijne.sage SAGE program */ - static const secp256k1_ge_storage results[32] = { - SECP256K1_GE_STORAGE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c, 0x0225f529, 0xee75acaf, 0xccfc4560, 0x26c5e46b, 0xf80237a3, 0x3924655a, 0x16f90e88, 0x085ed52a), - SECP256K1_GE_STORAGE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c, 0xfdda0ad6, 0x118a5350, 0x3303ba9f, 0xd93a1b94, 0x07fdc85c, 0xc6db9aa5, 0xe906f176, 0xf7a12705), - SECP256K1_GE_STORAGE_CONST(0x2c5cdc9c, 0x338152fa, 0x85de92cb, 0x1bee9907, 0x765a922e, 0x4f037cce, 0x14ecdbf2, 0x2f78fe15, 0x56716069, 0x6818286b, 0x72f01a3e, 0x5e8caca7, 0x36249160, 0xc7ded69d, 0xd51913c3, 0x03a2fa97), - SECP256K1_GE_STORAGE_CONST(0x2c5cdc9c, 0x338152fa, 0x85de92cb, 0x1bee9907, 0x765a922e, 0x4f037cce, 0x14ecdbf2, 0x2f78fe15, 0xa98e9f96, 0x97e7d794, 0x8d0fe5c1, 0xa1735358, 0xc9db6e9f, 0x38212962, 0x2ae6ec3b, 0xfc5d0198), - SECP256K1_GE_STORAGE_CONST(0x531f7239, 0xaebc780e, 0x179fbf8d, 0x412a1b01, 0x511f0abc, 0xe0c46151, 0x8b38db84, 0xcc2467f3, 0x82387d45, 0xec7bd5cc, 0x61fcb9df, 0x41cddd7b, 0x217d8114, 0x3577dc8f, 0x23de356a, 0x7e97704e), - SECP256K1_GE_STORAGE_CONST(0x531f7239, 0xaebc780e, 0x179fbf8d, 0x412a1b01, 0x511f0abc, 0xe0c46151, 0x8b38db84, 0xcc2467f3, 0x7dc782ba, 0x13842a33, 0x9e034620, 0xbe322284, 0xde827eeb, 0xca882370, 0xdc21ca94, 0x81688be1), - SECP256K1_GE_STORAGE_CONST(0x2c5cdc9c, 0x338152fa, 0x85de92cb, 0x1bee9907, 0x765a922e, 0x4f037cce, 0x14ecdbf2, 0x2f78fe15, 0x56716069, 0x6818286b, 0x72f01a3e, 0x5e8caca7, 0x36249160, 0xc7ded69d, 0xd51913c3, 0x03a2fa97), - SECP256K1_GE_STORAGE_CONST(0x2c5cdc9c, 0x338152fa, 0x85de92cb, 0x1bee9907, 0x765a922e, 0x4f037cce, 0x14ecdbf2, 0x2f78fe15, 0xa98e9f96, 0x97e7d794, 0x8d0fe5c1, 0xa1735358, 0xc9db6e9f, 0x38212962, 0x2ae6ec3b, 0xfc5d0198), - SECP256K1_GE_STORAGE_CONST(0x5e5936b1, 0x81db0b65, 0x8e33a8c6, 0x1aa687dd, 0x31d11e15, 0x85e35664, 0x6b4c2071, 0xcde7e942, 0x88bb5332, 0xa8e05654, 0x78d4f60c, 0x0cd979ec, 0x938558f2, 0xcac11216, 0x7c387a56, 0xe3a6d5f3), - SECP256K1_GE_STORAGE_CONST(0x5e5936b1, 0x81db0b65, 0x8e33a8c6, 0x1aa687dd, 0x31d11e15, 0x85e35664, 0x6b4c2071, 0xcde7e942, 0x7744accd, 0x571fa9ab, 0x872b09f3, 0xf3268613, 0x6c7aa70d, 0x353eede9, 0x83c785a8, 0x1c59263c), - SECP256K1_GE_STORAGE_CONST(0x657d438f, 0xfac34a50, 0x463fd07c, 0x3f09f320, 0x4c98e8ed, 0x6927e330, 0xc0c7735f, 0x76d32f6d, 0x577c2b11, 0xcaca2f6f, 0xd60bcaf0, 0x3e7cebe9, 0x5da6e1f4, 0xbb557f12, 0x2a397331, 0x81df897f), - SECP256K1_GE_STORAGE_CONST(0x657d438f, 0xfac34a50, 0x463fd07c, 0x3f09f320, 0x4c98e8ed, 0x6927e330, 0xc0c7735f, 0x76d32f6d, 0xa883d4ee, 0x3535d090, 0x29f4350f, 0xc1831416, 0xa2591e0b, 0x44aa80ed, 0xd5c68ccd, 0x7e2072b0), - SECP256K1_GE_STORAGE_CONST(0xbe0bc11b, 0x2bc639cb, 0xc28f72a8, 0xd07c21cc, 0xbc06cfa7, 0x4c2ff25e, 0x630c9740, 0x23128eab, 0x6f062fc8, 0x75148197, 0xd10375c3, 0xcc3fadb6, 0x20277e9c, 0x00579c55, 0xeddd7f95, 0xe95604db), - SECP256K1_GE_STORAGE_CONST(0xbe0bc11b, 0x2bc639cb, 0xc28f72a8, 0xd07c21cc, 0xbc06cfa7, 0x4c2ff25e, 0x630c9740, 0x23128eab, 0x90f9d037, 0x8aeb7e68, 0x2efc8a3c, 0x33c05249, 0xdfd88163, 0xffa863aa, 0x12228069, 0x16a9f754), - SECP256K1_GE_STORAGE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c, 0xfdda0ad6, 0x118a5350, 0x3303ba9f, 0xd93a1b94, 0x07fdc85c, 0xc6db9aa5, 0xe906f176, 0xf7a12705), - SECP256K1_GE_STORAGE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c, 0x0225f529, 0xee75acaf, 0xccfc4560, 0x26c5e46b, 0xf80237a3, 0x3924655a, 0x16f90e88, 0x085ed52a), - SECP256K1_GE_STORAGE_CONST(0xaee172d4, 0xce7c5010, 0xdb20a88f, 0x469598c1, 0xd7f7926f, 0xabb85cb5, 0x339f1403, 0x87e6b494, 0x38065980, 0x4de81b35, 0x098c7190, 0xe3380f9d, 0x95b2ed6c, 0x6c869e85, 0xc772bc5a, 0x7bc3d9d5), - SECP256K1_GE_STORAGE_CONST(0xaee172d4, 0xce7c5010, 0xdb20a88f, 0x469598c1, 0xd7f7926f, 0xabb85cb5, 0x339f1403, 0x87e6b494, 0xc7f9a67f, 0xb217e4ca, 0xf6738e6f, 0x1cc7f062, 0x6a4d1293, 0x9379617a, 0x388d43a4, 0x843c225a), - SECP256K1_GE_STORAGE_CONST(0xc28f5c28, 0xf5c28f5c, 0x28f5c28f, 0x5c28f5c2, 0x8f5c28f5, 0xc28f5c28, 0xf5c28f5b, 0x6666635a, 0x0c4da840, 0x1b2cf5be, 0x4604e6ec, 0xf92b2780, 0x063a5351, 0xe294bf65, 0xbb2f8b61, 0x00902db7), - SECP256K1_GE_STORAGE_CONST(0xc28f5c28, 0xf5c28f5c, 0x28f5c28f, 0x5c28f5c2, 0x8f5c28f5, 0xc28f5c28, 0xf5c28f5b, 0x6666635a, 0xf3b257bf, 0xe4d30a41, 0xb9fb1913, 0x06d4d87f, 0xf9c5acae, 0x1d6b409a, 0x44d0749d, 0xff6fce78), - SECP256K1_GE_STORAGE_CONST(0xecf56be6, 0x9c8fde26, 0x152832c6, 0xe043b3d5, 0xaf9a723f, 0x789854a0, 0xcb1b810d, 0xe2614ece, 0x66127ae4, 0xe4c17a75, 0x60a727e6, 0xffd2ea7f, 0xaed99088, 0xbec465c6, 0xbde56791, 0x37ed5572), - SECP256K1_GE_STORAGE_CONST(0xecf56be6, 0x9c8fde26, 0x152832c6, 0xe043b3d5, 0xaf9a723f, 0x789854a0, 0xcb1b810d, 0xe2614ece, 0x99ed851b, 0x1b3e858a, 0x9f58d819, 0x002d1580, 0x51266f77, 0x413b9a39, 0x421a986d, 0xc812a6bd), - SECP256K1_GE_STORAGE_CONST(0xba72860f, 0x10fcd142, 0x23f71e3c, 0x228deb9a, 0xc46c5ff5, 0x90b884e5, 0xcc60d51e, 0x0629d16e, 0x67999f31, 0x5a74ada3, 0x526832cf, 0x76b9fec3, 0xa348cc97, 0x33c3aa67, 0x02bd2516, 0x7814f635), - SECP256K1_GE_STORAGE_CONST(0xba72860f, 0x10fcd142, 0x23f71e3c, 0x228deb9a, 0xc46c5ff5, 0x90b884e5, 0xcc60d51e, 0x0629d16e, 0x986660ce, 0xa58b525c, 0xad97cd30, 0x8946013c, 0x5cb73368, 0xcc3c5598, 0xfd42dae8, 0x87eb05fa), - SECP256K1_GE_STORAGE_CONST(0x92ef5657, 0xdba51cc7, 0xf3e1b442, 0xa6a0916b, 0x8ce03079, 0x2ef5657d, 0xba51cc7e, 0xab2beb65, 0x782c65d2, 0x3f1e0eb2, 0x9179a994, 0xe5e8ff80, 0x5a0d50d9, 0xdeeaed90, 0xcec96ca5, 0x973e2ad3), - SECP256K1_GE_STORAGE_CONST(0x92ef5657, 0xdba51cc7, 0xf3e1b442, 0xa6a0916b, 0x8ce03079, 0x2ef5657d, 0xba51cc7e, 0xab2beb65, 0x87d39a2d, 0xc0e1f14d, 0x6e86566b, 0x1a17007f, 0xa5f2af26, 0x2115126f, 0x31369359, 0x68c1d15c), - SECP256K1_GE_STORAGE_CONST(0x9468ad22, 0xf921fc78, 0x8de3f1b0, 0x586c58eb, 0x5e6f0270, 0xe950b602, 0x7ada90d9, 0xd71ae323, 0x922a0c6a, 0x9ccc31d9, 0xc3bf87fd, 0x88381739, 0x35fe393f, 0xa64dfdec, 0x29f2846d, 0x12918d86), - SECP256K1_GE_STORAGE_CONST(0x9468ad22, 0xf921fc78, 0x8de3f1b0, 0x586c58eb, 0x5e6f0270, 0xe950b602, 0x7ada90d9, 0xd71ae323, 0x6dd5f395, 0x6333ce26, 0x3c407802, 0x77c7e8c6, 0xca01c6c0, 0x59b20213, 0xd60d7b91, 0xed6e6ea9), - SECP256K1_GE_STORAGE_CONST(0x76ddc7f5, 0xe029e59e, 0x22b0e54f, 0xa811db94, 0x5a209c4f, 0x5e912ca2, 0x8b4da6a7, 0x4c1e00a2, 0x1e8f516c, 0x91c20437, 0x50f6e24e, 0x8c2cf202, 0xacf68291, 0xbf8b66eb, 0xf7335b62, 0xec2c88fe), - SECP256K1_GE_STORAGE_CONST(0x76ddc7f5, 0xe029e59e, 0x22b0e54f, 0xa811db94, 0x5a209c4f, 0x5e912ca2, 0x8b4da6a7, 0x4c1e00a2, 0xe170ae93, 0x6e3dfbc8, 0xaf091db1, 0x73d30dfd, 0x53097d6e, 0x40749914, 0x08cca49c, 0x13d37331), - SECP256K1_GE_STORAGE_CONST(0xf75763bc, 0x2907e79b, 0x125e33c3, 0x9a027f48, 0x0f8c6409, 0x2153432f, 0x967bc2b1, 0x1d1f5cf0, 0xb4a8edc6, 0x36391b39, 0x9bc219c0, 0x3d033128, 0xdbcd463e, 0xd2506394, 0x061b87a5, 0x9e510235), - SECP256K1_GE_STORAGE_CONST(0xf75763bc, 0x2907e79b, 0x125e33c3, 0x9a027f48, 0x0f8c6409, 0x2153432f, 0x967bc2b1, 0x1d1f5cf0, 0x4b571239, 0xc9c6e4c6, 0x643de63f, 0xc2fcced7, 0x2432b9c1, 0x2daf9c6b, 0xf9e47859, 0x61aef9fa), - }; - - secp256k1_ge ge; - secp256k1_fe fe; - secp256k1_ge_storage ges; - int i, s; - for (i = 1; i <= 16; i++) { - secp256k1_fe_set_int(&fe, i); - - for (s = 0; s < 2; s++) { - if (s) { - secp256k1_fe_negate(&fe, &fe, 1); - secp256k1_fe_normalize(&fe); - } - shallue_van_de_woestijne(&ge, &fe); - secp256k1_ge_to_storage(&ges, &ge); - - CHECK(memcmp(&ges, &results[i * 2 + s - 2], sizeof(secp256k1_ge_storage)) == 0); - } - } -} - -void test_generator_generate(void) { - static const secp256k1_ge_storage results[32] = { - SECP256K1_GE_STORAGE_CONST(0x806cd8ed, 0xd6c153e3, 0x4aa9b9a0, 0x8755c4be, 0x4718b1ef, 0xb26cb93f, 0xfdd99e1b, 0x21f2af8e, 0xc7062208, 0xcc649a03, 0x1bdc1a33, 0x9d01f115, 0x4bcd0dca, 0xfe0b875d, 0x62f35f73, 0x28673006), - SECP256K1_GE_STORAGE_CONST(0xd91b15ec, 0x47a811f4, 0xaa189561, 0xd13f5c4d, 0x4e81f10d, 0xc7dc551f, 0x4fea9b84, 0x610314c4, 0x9b0ada1e, 0xb38efd67, 0x8bff0b6c, 0x7d7315f7, 0xb49b8cc5, 0xa679fad4, 0xc94f9dc6, 0x9da66382), - SECP256K1_GE_STORAGE_CONST(0x11c00de6, 0xf885035e, 0x76051430, 0xa3c38b2a, 0x5f86ab8c, 0xf66dae58, 0x04ea7307, 0x348b19bf, 0xe0858ae7, 0x61dcb1ba, 0xff247e37, 0xd38fcd88, 0xf3bd7911, 0xaa4ed6e0, 0x28d792dd, 0x3ee1ac09), - SECP256K1_GE_STORAGE_CONST(0x986b99eb, 0x3130e7f0, 0xe779f674, 0xb85cb514, 0x46a676bf, 0xb1dfb603, 0x4c4bb639, 0x7c406210, 0xdf900609, 0x8b3ef1e0, 0x30e32fb0, 0xd97a4329, 0xff98aed0, 0xcd278c3f, 0xe6078467, 0xfbd12f35), - SECP256K1_GE_STORAGE_CONST(0xae528146, 0x03fdf91e, 0xc592977e, 0x12461dc7, 0xb9e038f8, 0x048dcb62, 0xea264756, 0xd459ae42, 0x80ef658d, 0x92becb84, 0xdba8e4f9, 0x560d7a72, 0xbaf4c393, 0xfbcf6007, 0x11039f1c, 0x224faaad), - SECP256K1_GE_STORAGE_CONST(0x00df3d91, 0x35975eee, 0x91fab903, 0xe3128e4a, 0xca071dde, 0x270814e5, 0xcbda69ec, 0xcad58f46, 0x11b590aa, 0x92d89969, 0x2dbd932f, 0x08013b8b, 0x45afabc6, 0x43677db2, 0x143e0c0f, 0x5865fb03), - SECP256K1_GE_STORAGE_CONST(0x1168155b, 0x987e9bc8, 0x84c5f3f4, 0x92ebf784, 0xcc8c6735, 0x39d8e5e8, 0xa967115a, 0x2949da9b, 0x0858a470, 0xf403ca97, 0xb1827f6f, 0x544c2c67, 0x08f6cb83, 0xc510c317, 0x96c981ed, 0xb9f61780), - SECP256K1_GE_STORAGE_CONST(0xe8d7c0cf, 0x2bb4194c, 0x97bf2a36, 0xbd115ba0, 0x81a9afe8, 0x7663fa3c, 0x9c3cd253, 0x79fe2571, 0x2028ad04, 0xefa00119, 0x5a25d598, 0x67e79502, 0x49de7c61, 0x4751cd9d, 0x4fb317f6, 0xf76f1110), - SECP256K1_GE_STORAGE_CONST(0x9532c491, 0xa64851dd, 0xcd0d3e5a, 0x93e17267, 0xa10aca95, 0xa23781aa, 0x5087f340, 0xc45fecc3, 0xb691ddc2, 0x3143a7b6, 0x09969302, 0x258affb8, 0x5bbf8666, 0xe1192319, 0xeb174d88, 0x308bd57a), - SECP256K1_GE_STORAGE_CONST(0x6b20b6e2, 0x1ba6cc44, 0x3f2c3a0c, 0x5283ba44, 0xbee43a0a, 0x2799a6cf, 0xbecc0f8a, 0xf8c583ac, 0xf7021e76, 0xd51291a6, 0xf9396215, 0x686f25aa, 0xbec36282, 0x5e11eeea, 0x6e51a6e6, 0xd7d7c006), - SECP256K1_GE_STORAGE_CONST(0xde27e6ff, 0x219b3ab1, 0x2b0a9e4e, 0x51fc6092, 0x96e55af6, 0xc6f717d6, 0x12cd6cce, 0x65d6c8f2, 0x48166884, 0x4dc13fd2, 0xed7a7d81, 0x66a0839a, 0x8a960863, 0xfe0001c1, 0x35d206fd, 0x63b87c09), - SECP256K1_GE_STORAGE_CONST(0x79a96fb8, 0xd88a08d3, 0x055d38d1, 0x3346b0d4, 0x47d838ca, 0xfcc8fa40, 0x6d3a7157, 0xef84e7e3, 0x6bab9c45, 0x2871b51d, 0xb0df2369, 0xe7860e01, 0x2e37ffea, 0x6689fd1a, 0x9c6fe9cf, 0xb940acea), - SECP256K1_GE_STORAGE_CONST(0x06c4d4cb, 0xd32c0ddb, 0x67e988c6, 0x2bdbe6ad, 0xa39b80cc, 0x61afb347, 0x234abe27, 0xa689618c, 0x5b355949, 0xf904fe08, 0x569b2313, 0xe8f19f8d, 0xc5b79e27, 0x70da0832, 0x5fb7a229, 0x238ca6b6), - SECP256K1_GE_STORAGE_CONST(0x7027e566, 0x3e727c28, 0x42aa14e5, 0x52c2d2ec, 0x1d8beaa9, 0x8a22ceab, 0x15ccafc3, 0xb4f06249, 0x9b3dffbc, 0xdbd5e045, 0x6931fd03, 0x8b1c6a9b, 0x4c168c6d, 0xa6553897, 0xfe11ce49, 0xac728139), - SECP256K1_GE_STORAGE_CONST(0xee3520c3, 0x9f2b954d, 0xf8e15547, 0xdaeb6cc8, 0x04c8f3b0, 0x9301f53e, 0xe0c11ea1, 0xeace539d, 0x244ff873, 0x7e060c98, 0xe843c353, 0xcd35d2e4, 0x3cd8b082, 0xcffbc9ae, 0x81eafa70, 0x332f9748), - SECP256K1_GE_STORAGE_CONST(0xdaecd756, 0xf5b706a4, 0xc14e1095, 0x3e2f70df, 0xa81276e7, 0x71806b89, 0x4d8a5502, 0xa0ef4998, 0xbac906c0, 0x948b1d48, 0xe023f439, 0xfd3770b8, 0x837f60cc, 0x40552a51, 0x433d0b79, 0x6610da27), - SECP256K1_GE_STORAGE_CONST(0x55e1ca28, 0x750fe2d0, 0x57f7449b, 0x3f49d999, 0x3b9616dd, 0x5387bc2e, 0x6e6698f8, 0xc4ea49f4, 0xe339e0e9, 0xa4c7fa99, 0xd063e062, 0x6582bce2, 0x33c6b1ee, 0x17a5b47f, 0x6d43ecf8, 0x98b40120), - SECP256K1_GE_STORAGE_CONST(0xdd82cac2, 0x9e0e0135, 0x4964d3bc, 0x27469233, 0xf13bbd5e, 0xd7aff24b, 0x4902fca8, 0x17294b12, 0x561ab1d6, 0xcd9bcb6e, 0x805585cf, 0x3df8714c, 0x1bfa6304, 0x5efbf122, 0x1a3d8fd9, 0x3827764a), - SECP256K1_GE_STORAGE_CONST(0xda5cbfb7, 0x3522e9c7, 0xcb594436, 0x83677038, 0x0eaa64a9, 0x2eca3888, 0x0fe4c9d6, 0xdeb22dbf, 0x4f46de68, 0x0447c780, 0xc54a314b, 0x5389a926, 0xbba8910b, 0x869fc6cd, 0x42ee82e8, 0x5895e42a), - SECP256K1_GE_STORAGE_CONST(0x4e09830e, 0xc8894c58, 0x4e6278de, 0x167a96b0, 0x20d60463, 0xee48f788, 0x4974d66e, 0x871e35e9, 0x21259c4d, 0x332ca932, 0x2e187df9, 0xe7afbc23, 0x9d171ebc, 0x7d9e2560, 0x503f50b1, 0x9fe45834), - SECP256K1_GE_STORAGE_CONST(0xabfff6ca, 0x41dcfd17, 0x03cae629, 0x9d127971, 0xf19ee000, 0x2db332e6, 0x5cc209a3, 0xc21b8f54, 0x65991d60, 0xee54f5cc, 0xddf7a732, 0xa76b0303, 0xb9f519a6, 0x22ea0390, 0x8af23ffa, 0x35ae6632), - SECP256K1_GE_STORAGE_CONST(0xc6c9b92c, 0x91e045a5, 0xa1913277, 0x44d6fce2, 0x11b12c7c, 0x9b3112d6, 0xc61e14a6, 0xd6b1ae12, 0x04ab0396, 0xebdc4c6a, 0xc213cc3e, 0x077a2e80, 0xb4ba7b2b, 0x33907d56, 0x2c98ccf7, 0xb82a2e9f), - SECP256K1_GE_STORAGE_CONST(0x66f6e6d9, 0xc4bb9a5f, 0x99085781, 0x83cb9362, 0x2ea437d8, 0xccd31969, 0xffadca3a, 0xff1d3935, 0x50a5b06e, 0x39e039d7, 0x1dfb2723, 0x18db74e5, 0x5af64da1, 0xdfc34586, 0x6aac3bd0, 0x5792a890), - SECP256K1_GE_STORAGE_CONST(0x58ded03c, 0x98e1a890, 0x63fc7793, 0xe3ecd896, 0x235e75c9, 0x82e7008f, 0xddbf3ca8, 0x5b7e9ecb, 0x34594776, 0x58ab6821, 0xaf43a453, 0xa946fda9, 0x13d24999, 0xccf22df8, 0xd291ef59, 0xb08975c0), - SECP256K1_GE_STORAGE_CONST(0x74557864, 0x4f2b0486, 0xd5beea7c, 0x2d258ccb, 0x78a870e1, 0x848982d8, 0xed3f91a4, 0x9db83a36, 0xd84e940e, 0x1d33c28a, 0x62398ec8, 0xc493aee7, 0x7c2ba722, 0x42dee7ae, 0x3c35c256, 0xad00cf42), - SECP256K1_GE_STORAGE_CONST(0x7fc7963a, 0x16abc8fb, 0x5d61eb61, 0x0fc50a68, 0x754470d2, 0xf43df3be, 0x52228f66, 0x522fe61b, 0x499f9e7f, 0x462c6545, 0x29687af4, 0x9f7c732d, 0x48801ce5, 0x21acd546, 0xc6fb903c, 0x7c265032), - SECP256K1_GE_STORAGE_CONST(0xb2f6257c, 0xc58df82f, 0xb9ba4f36, 0x7ededf03, 0xf8ea10f3, 0x104d7ae6, 0x233b7ac4, 0x725e11de, 0x9c7a32df, 0x4842f33d, 0xaad84f0b, 0x62e88b40, 0x46ddcbde, 0xbbeec6f8, 0x93bfde27, 0x0561dc73), - SECP256K1_GE_STORAGE_CONST(0xe2cdfd27, 0x8a8e22be, 0xabf08b79, 0x1bc6ae38, 0x41d22a9a, 0x9472e266, 0x1a7c6e83, 0xa2f74725, 0x0e26c103, 0xe0dd93b2, 0x3724f3b7, 0x8bb7366e, 0x2c245768, 0xd64f3283, 0xd8316e8a, 0x1383b977), - SECP256K1_GE_STORAGE_CONST(0x757c13e7, 0xe866017e, 0xe6af61d7, 0x161d208a, 0xc438f712, 0x242fcd23, 0x63a10e59, 0xd67e41fb, 0xb550c6a9, 0x4ddb15f3, 0xfeea4bfe, 0xd2faa19f, 0x2aa2fbd3, 0x0c6ae785, 0xe357f365, 0xb30d12e0), - SECP256K1_GE_STORAGE_CONST(0x528d525e, 0xac30095b, 0x5e5f83ca, 0x4d3dea63, 0xeb608f2d, 0x18dd25a7, 0x2529c8e5, 0x1ae5f9f1, 0xfde2860b, 0x492a4106, 0x9f356c05, 0x3ebc045e, 0x4ad08b79, 0x3e264935, 0xf25785a9, 0x8690b5ee), - SECP256K1_GE_STORAGE_CONST(0x150df593, 0x5b6956a0, 0x0cfed843, 0xb9d6ffce, 0x4f790022, 0xea18730f, 0xc495111d, 0x91568e55, 0x6700a2ca, 0x9ff4ed32, 0xc1697312, 0x4eb51ce3, 0x5656344b, 0x65a1e3d5, 0xd6c1f7ce, 0x29233f82), - SECP256K1_GE_STORAGE_CONST(0x38e02eaf, 0x2c8774fd, 0x58b8b373, 0x732457f1, 0x16dbe53b, 0xea5683d9, 0xada20dd7, 0x14ce20a6, 0x6ac5362e, 0xbb425416, 0x8250f43f, 0xa4ee2b63, 0x0406324f, 0x1c876d60, 0xebe5be2c, 0x6eb1515b), - }; - secp256k1_generator gen; - secp256k1_ge ge; - secp256k1_ge_storage ges; - int i; - unsigned char v[32]; - static const unsigned char s[32] = {0}; - secp256k1_scalar sc; - secp256k1_scalar_set_b32(&sc, s, NULL); - for (i = 1; i <= 32; i++) { - memset(v, 0, 31); - v[31] = i; - CHECK(secp256k1_generator_generate_blinded(ctx, &gen, v, s)); - secp256k1_generator_load(&ge, &gen); - secp256k1_ge_to_storage(&ges, &ge); - CHECK(memcmp(&ges, &results[i - 1], sizeof(secp256k1_ge_storage)) == 0); - CHECK(secp256k1_generator_generate(ctx, &gen, v)); - secp256k1_generator_load(&ge, &gen); - secp256k1_ge_to_storage(&ges, &ge); - CHECK(memcmp(&ges, &results[i - 1], sizeof(secp256k1_ge_storage)) == 0); - } -} - -void run_generator_tests(void) { - test_shallue_van_de_woestijne(); - test_generator_api(); - test_generator_generate(); -} - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/.borromean.h.swp b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/.borromean.h.swp deleted file mode 100644 index dbc37bfb928bd637fe00d98b7bc52654c5627752..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 12288 zcmeI2&2G~`5XZM1;6MuqgoMOpX)djm*hy)jf>UX$QbF3Pv_*)6<=AUysl98~>!#_U z+z{O00=xmQ!0T}53r4z@$n2B}gnD6`T(&d$uvdVcmEqD-s4v)ZKdW}U#eLdfT* zub(fSKP2PV31MF9C{Jdde~vt^_Sn%}ryi@_ot^LH8(4Li2U<(ABSPtTiKSVht%F_V zh=9dPO5X}(jp;U1ER8Hzbz?29gt_s|+@0Nq74lYpk|@`Tq?d*)vHnWXl1j;lIl^oY z?2l6|ns2_OL^fCP{L5Aip0(~DRIBlKaDpu{5cX~V_ zbE||4D6Mprt-5x0$5VObrJK1?8fqKNn(b?Y7IO`i4~Y$!DB`J+$M5t<++&LS-BXp>XH^hpdrp}4--r{Q2ypPGm*$txy+O*fc|n9=Fm?bab3$NX55ZV zBg?bI6RmhF)o`{_xPL{VQJpqdw`d}L-EkD7`I_uNv7Xm)T^YrW=)wu5l=kv0%DAg| n(AIRyou)JO#%wkFoTDp>1yXfs)7kH^FogIa!ywj~;4#Q=sLrvC diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/.borromean_impl.h.swp b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/.borromean_impl.h.swp deleted file mode 100644 index d2d14563d334a396db89ff03603b3cfb405bcd16..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 16384 zcmeHNO^h5z6)p%QKw<&`BrZnJYh=xgXJ=-29b){4yg&AiynkA6Y$D6)^!C)u)ND_8 zySry+*O|mYND(4{Kq7<#H^je!gv22nP&kki5`tSmics!w=SL!Z)m1$`J+r%jh{VCw z(zm@;^{VQ{!IT2A_W7%-N*9v0Be-!Rn&l_gvp@MAeu_arN#_XnQRlgudUbw)|-xw|U5W-KrDr z2eDs`xD(7i{+XSbsw=j$L=-yJuHWdnJgSZ~uh8qS91BL;^fMLKeU>GnA7zXY~2IAlWb`OTXR~!F~e!pkz z{f>Ta>U?{w`~jWDwL$W{rr&8hI%!^p0mFb{z%XDKFbo(53GHFkl!k4E!G$ zup5j$hJJr459)~jKcjVc?NP?=07c;K4>R^{;1%Foz#U)(xCT4{d>Z&D@Xj&D{tUbc z{0jIH@I&C6zze`VpbcyRYrvb2F!p=kcffhzQ^3Q(Umr#p@Dt$6fB?<{4*_p{h_NpM zo4^LJ4pe|YeUPyq178C^3!DJ{_5sG;0)7E}2e=1#z%sB1yzvlY^FRssIPmue8T%vf zI`A{#yTCVq7XS}f21>v&;4klI>^H!xz}JB<09(Ke@XzM)4*?WIr4Mh`@l=U z0&pC76nGsMFE0Ui00(#*;~>Z4)dMe1Xyh4w2w}Cj74aCajk_`tpip?N=sf-v5%v9^+n}z!!wL1fJ=AO3Xf>=*shZQ^xm-%>7V@|kdQ{76Dw_&qPajTHAH{7o~) z*qYRp@7ivUr{Z*xP(QD?w5VFDH(}NtNP^fhMfNUFD0A8%kK;?1h?;&#$@eZ0>1dC>g!WL%)#Of3z5kE#@WUjLVJ72)nuA zk>(aUAgp$tI&^_Bqwa!7aU03gr$;TE&{EFq?YY^48mqV)V8BwdMg}aamwo@!wxf0- zsnIP{7tEK5*UB_ETP9Ja+DPpiOPlp8Pgx7gOAFTu^|dW)_44Ownv!`!mojyAmBbvO z%n>lh(~Ci5wq*K5Z5tmiVe*Pt*e>h_;VO%#DyV)WJIRF3Y15?>7isOul@;B0u26Lh z4bzr#rHbXF>dWyus{F`8UOTF4w)n=RgcnmffXZGu8LXJ(E0>YblFRAjQbMJAUL;x` zTo~3@NEq*1b91+~VEW~lr6{K%^AqLCn#dM(HhwMmx>l;#usuwDnJpD^d@q9b!y>i3 zs07zCULGLeFu zC6`Z_Weh+)a$?_7{TBF$Gzw9Mw$R96AO?d@t}sL)b_c6NSLw8Dr$ievnYDfe{)gMx zmcacE->1&GtZb~`Obs;m>d{^ z*cP7dJ|d`Nr@AbhB=rP&FF`IOwYInyPNsP4Rf>Iln>ZHP|B@E!y zeENmu)L8urV`_IAnMKOgVdEb2eQ?H7MeWrlD)d7Uk9bN*7jny>R6NB4AM5DM|ImUo z^S^3A?<4@%WZ=wX=lL? z_CwKX$5e2NG+UcFQh}v`QbjT+IxMDbJn3xNqXXU<6-jre;jA=uLAP?pT_Th zjdTBtfD1egYyqDH{(y77yaTX+I`BE*Byb$~2ikZG_$BZ?;1%FyK%W0)`(FXfV;C?D z7zPXjh5^HXVZbn87%&VN1`GpWK;K>HOEewUnNc@0UEW0~M1?bC5MyrQ5=us69GB|| zU>f_&E@BWS%!(&!t8;uRA!9wN-z?muq7G<>Ps}ukipB zE^j-xb8(|gd0oYBG=}l2L_7=MrO6$Hm9*|smx(4k-m;UcMHL22tLdno(m|PiV0A@?|3O-F!2%BY-lcZ@ZmIx(DV{A5Qqp6fW9L}DdJ$vZ6aW37Y zt<|SK_)-z9e}Fd>5kV~e1tLC5iwKtXNzg|xNZ3x4W}5^Ucif zo9{c{TpHsi7wh!U*f_!SG$Eh7e(ChlofpZj=LliVNb{R+oHOtd9Dgo2I$%E5p zCKStTNGHWmHf@qVxk!Xr8uPrUr`hMmWsI9Gwx^!5mv_?g9yqTgJY8ZE}DXx@Z zQ16Xk9^mm=82L{5sLwLrY;7dhS1Q98AEKW}Ru|OSm*;1XRdN|=Z@3;*Gf*3mX@xy~9qEyQe$st23EMq+ zMZVHP^umQ69_h>s9q*}~X(z4PTO!qc-x7&3`{r_5y0TBsuPz=vB^ZKwy0UZ5;0I#u zcdMhsJ>+#tbhU*^Zl3*oR+idsk?hP`ihuqqH$u<%H(fr7w=&+;5mXC?mRV~xQ)-Q* z=9)Mi)s4a$cOLww@S!|`%*5)24=PB`<^8`Vyve9BEfT}NA51#w%RsXhz3nyaeA?cR z?je~AUB;Qaw!-vD%fz0CPo&u2#6Gvzp`2mTor|4bo%H`zY!`!S4@4~pb)``ug7YL*hG}zwpsy$ zPfUU>TXRAaL1m2&2fAh<4lDP8h2TX@-O5?lY>wbPCf-wVZ8}3Ic#=1Q^f*uF1~mB1 znYrD&FqCvmeMMm8U3r;?6B5LTc#O?Qg1@pdTTP|%XuS7*J2L2$MIyb@3f_o+7(HGDVn z#@g|JP1Z6UMqizuJ&t?Y$0pSJ%G}!0yt;a1d13ze>dMMdwSHuA8U1QGD7$q*LaX=W zQ6Px6Ow8ojmE)%tmlvq(({>noFDgo>(;0I;<^*o!>uk*R4O}nRk;Zj$EZRmzV$5rM zW7SyBoEe0^*@!}{-y)2|r!YiXUwn-QZY%6)KBJ-zJO*P)uBL-YPjfa*$3W4MJ;*WaLZZN0-R3&s0BRifMzeySv1|Jzu9UkBp#e|oQ1QO_ZjfUCr{LgrH?e$tL>&02cyKC9r09r+(-szf|-tFmb zx_fqZf=Hww1up!YoCrk%4kRZIfkOxfkhsAOxNra|64#(eLCS^Suexfcy2rZ{Z@d^I zcgx@QbiL}T_r6zE{a$r@yZrd-8qF8W49ABUd+AHhZmphtiaq>s#<*f)7$u09{NH*wcfs$%JqJ8*2*FoROagRu1Eu5UOU?)k3UE_K`j54+sw{a&f% z553SW1-#`|&o*`|CEME87lGd@^<1-W^Pm)KKr|UNt)6EWyAukemnj4HH3N^ZTD1~Q z&C@fd=%XLmysz0vjZYa!8AusO8AusO8AusO8Autp-xvtJ2iemw`rXR#^XmMriSxhJ zF|W!OCglH8@`5T4CglHA@@uO6hZFLDDEWpee{(|qcO_p^Iy#F8N|3CjAV;+zN zUi$!J&jB|98~6gS1QdWg@JZkV@WvyI{TcWZ@KfMhz&C;4Kg`(AfSZ5~Tmn7;y!C#@ zehq8_Rp6HoG4>tc+kgxF?R|{B2`mDi1>E;C_BimP2hle0hm(x`0(ccT0la>Ku{q!~ zfc+lEt^+^7#=x_{AF;vlE8qn1I&3`;2%AaRJ?$VI%a5)sKbFn$mfLqiT3n=avkOcM z#-AiK^=Amp!0I^JZ8z-ZDf+M>PZ^s#dD`n)_?v0Dy`B~3Y1_6OGf(oeXd0oBr*iaf z&#?2fzIo+Jo_f)pd_QcCZqvV;ku0Ni=x~SoM(Fye>;z%6J1aCUCp30%Uv<$>^m_4i@HPGw0NlwfT0f+4I}OJ9^9Ev(G}YVm zjd*h2`_@!$(;CNh@VL7dMw;?XY~tvry~j=N2i#EsMz$61-x{Pu5y`Yj1GnfVC*zRL ztYS=8L5yMI!_I89szVy77FbX6W=P2hhZaecyX~wlSItFH4)q-|Y`96SuHnaS-kPgE zftzQR9Fq*&rrwY`zQxI)!LG#vf|?XK zs9&6sai7vr#ARADHHoIErD|+7<|Ccfh7@wcNBce}+uG%kCSUDaJS0;q_63DGcB z2J|f_Y}DZixE)4{M;D!;r1NUk>@BrLJ$P&M&8~=vOcQ|w+uCnj%O7*^L;mak$mKUQh3ZCu*CveLY^ zw0?Qz>a~rHFE($iT)%N0>a-nHzKxoUa>sIDr01w@*_@U)u6|{8{W4)9bi>d)Un&g- zgQDwkCvf|Iix*wLgU`!bxW?z?NX-iBqUd$KVotPk$r4s?_d~1;eHbF96sNV-8x*+h za3Cjf)Ic7?UruJD1($e+GXz^i6t%PLdPCppbVJIvW~o}PoTbY?@3{Vu){OlD$25Ms zBgaa|!cUHg{Qm{y&fh~mE%N`-`}0?j_x~8MfzJaC;A4Q;19%2F2h0Eu0SplN{!JhR zc7Wd?zyAsFJn#l```-dD0xtkh1M5H?_!Pi^E#&)IUe@0dmM?(Q00?I4fc>D_KbaT zlEG?qoE%3R*>ZykTdh+v$?hnV6lSRWC6R6fjd~VM)XHLz3x)uIfK~Hhn(8>km0Pq72XNilR zk`eAvorp1kPU_`zqy2Ir)a=Kq$`>hHJJ?CkJBUI)=}NIlk#MGNp;t*S8~zL)={_P_`Zi%R+iJ;w!#4K@J27@u*e*F!Ag2_ z)F`H2Vf0%YYPBglD#ffUkJfJC!g2W`)_NzLO_*%TC9qMSEld;Yo|0O@UZD_9x`xn2 zluxK3s~*}(WqyhV5bE~jdMLc9%cP^VWfOZwhip?$e|SuljyEXwO=xxf26ouimcBeonG9u<{fRxZOl3Cia@9du6SN06C2v#x SZI0Wfix&@Ux=|C0^nU=G1gcg5 diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/Makefile.am.include b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/Makefile.am.include deleted file mode 100644 index 5272f22..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/Makefile.am.include +++ /dev/null @@ -1,13 +0,0 @@ -include_HEADERS += include/secp256k1_rangeproof.h -noinst_HEADERS += src/modules/rangeproof/main_impl.h -noinst_HEADERS += src/modules/rangeproof/borromean.h -noinst_HEADERS += src/modules/rangeproof/borromean_impl.h -noinst_HEADERS += src/modules/rangeproof/rangeproof.h -noinst_HEADERS += src/modules/rangeproof/rangeproof_impl.h -noinst_HEADERS += src/modules/rangeproof/tests_impl.h -if USE_BENCHMARK -noinst_PROGRAMS += bench_rangeproof -bench_rangeproof_SOURCES = src/bench_rangeproof.c -bench_rangeproof_LDADD = libsecp256k1.la $(SECP_LIBS) -bench_rangeproof_LDFLAGS = -static -endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/borromean.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/borromean.h deleted file mode 100644 index 8f8cfed..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/borromean.h +++ /dev/null @@ -1,24 +0,0 @@ -/********************************************************************** - * Copyright (c) 2014, 2015 Gregory Maxwell * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - - -#ifndef _SECP256K1_BORROMEAN_H_ -#define _SECP256K1_BORROMEAN_H_ - -#include "scalar.h" -#include "field.h" -#include "group.h" -#include "ecmult.h" -#include "ecmult_gen.h" - -int secp256k1_borromean_verify(const secp256k1_ecmult_context* ecmult_ctx, secp256k1_scalar *evalues, const unsigned char *e0, const secp256k1_scalar *s, - const secp256k1_gej *pubs, const size_t *rsizes, size_t nrings, const unsigned char *m, size_t mlen); - -int secp256k1_borromean_sign(const secp256k1_ecmult_context* ecmult_ctx, const secp256k1_ecmult_gen_context *ecmult_gen_ctx, - unsigned char *e0, secp256k1_scalar *s, const secp256k1_gej *pubs, const secp256k1_scalar *k, const secp256k1_scalar *sec, - const size_t *rsizes, const size_t *secidx, size_t nrings, const unsigned char *m, size_t mlen); - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/borromean_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/borromean_impl.h deleted file mode 100644 index 3a82f09..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/borromean_impl.h +++ /dev/null @@ -1,204 +0,0 @@ -/********************************************************************** - * Copyright (c) 2014, 2015 Gregory Maxwell * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - - -#ifndef _SECP256K1_BORROMEAN_IMPL_H_ -#define _SECP256K1_BORROMEAN_IMPL_H_ - -#include "scalar.h" -#include "field.h" -#include "group.h" -#include "hash.h" -#include "eckey.h" -#include "ecmult.h" -#include "ecmult_gen.h" -#include "borromean.h" - -#include -#include - -#ifdef WORDS_BIGENDIAN -#define BE32(x) (x) -#else -#define BE32(p) ((((p) & 0xFF) << 24) | (((p) & 0xFF00) << 8) | (((p) & 0xFF0000) >> 8) | (((p) & 0xFF000000) >> 24)) -#endif - -SECP256K1_INLINE static void secp256k1_borromean_hash(unsigned char *hash, const unsigned char *m, size_t mlen, const unsigned char *e, size_t elen, - size_t ridx, size_t eidx) { - uint32_t ring; - uint32_t epos; - secp256k1_sha256 sha256_en; - secp256k1_sha256_initialize(&sha256_en); - ring = BE32((uint32_t)ridx); - epos = BE32((uint32_t)eidx); - secp256k1_sha256_write(&sha256_en, e, elen); - secp256k1_sha256_write(&sha256_en, m, mlen); - secp256k1_sha256_write(&sha256_en, (unsigned char*)&ring, 4); - secp256k1_sha256_write(&sha256_en, (unsigned char*)&epos, 4); - secp256k1_sha256_finalize(&sha256_en, hash); -} - -/** "Borromean" ring signature. - * Verifies nrings concurrent ring signatures all sharing a challenge value. - * Signature is one s value per pubkey and a hash. - * Verification equation: - * | m = H(P_{0..}||message) (Message must contain pubkeys or a pubkey commitment) - * | For each ring i: - * | | en = to_scalar(H(e0||m||i||0)) - * | | For each pubkey j: - * | | | r = s_i_j G + en * P_i_j - * | | | e = H(r||m||i||j) - * | | | en = to_scalar(e) - * | | r_i = r - * | return e_0 ==== H(r_{0..i}||m) - */ -int secp256k1_borromean_verify(const secp256k1_ecmult_context* ecmult_ctx, secp256k1_scalar *evalues, const unsigned char *e0, - const secp256k1_scalar *s, const secp256k1_gej *pubs, const size_t *rsizes, size_t nrings, const unsigned char *m, size_t mlen) { - secp256k1_gej rgej; - secp256k1_ge rge; - secp256k1_scalar ens; - secp256k1_sha256 sha256_e0; - unsigned char tmp[33]; - size_t i; - size_t j; - size_t count; - size_t size; - int overflow; - VERIFY_CHECK(ecmult_ctx != NULL); - VERIFY_CHECK(e0 != NULL); - VERIFY_CHECK(s != NULL); - VERIFY_CHECK(pubs != NULL); - VERIFY_CHECK(rsizes != NULL); - VERIFY_CHECK(nrings > 0); - VERIFY_CHECK(m != NULL); - count = 0; - secp256k1_sha256_initialize(&sha256_e0); - for (i = 0; i < nrings; i++) { - VERIFY_CHECK(INT_MAX - count > rsizes[i]); - secp256k1_borromean_hash(tmp, m, mlen, e0, 32, i, 0); - secp256k1_scalar_set_b32(&ens, tmp, &overflow); - for (j = 0; j < rsizes[i]; j++) { - if (overflow || secp256k1_scalar_is_zero(&s[count]) || secp256k1_scalar_is_zero(&ens) || secp256k1_gej_is_infinity(&pubs[count])) { - return 0; - } - if (evalues) { - /*If requested, save the challenges for proof rewind.*/ - evalues[count] = ens; - } - secp256k1_ecmult(ecmult_ctx, &rgej, &pubs[count], &ens, &s[count]); - if (secp256k1_gej_is_infinity(&rgej)) { - return 0; - } - /* OPT: loop can be hoisted and split to use batch inversion across all the rings; this would make it much faster. */ - secp256k1_ge_set_gej_var(&rge, &rgej); - secp256k1_eckey_pubkey_serialize(&rge, tmp, &size, 1); - if (j != rsizes[i] - 1) { - secp256k1_borromean_hash(tmp, m, mlen, tmp, 33, i, j + 1); - secp256k1_scalar_set_b32(&ens, tmp, &overflow); - } else { - secp256k1_sha256_write(&sha256_e0, tmp, size); - } - count++; - } - } - secp256k1_sha256_write(&sha256_e0, m, mlen); - secp256k1_sha256_finalize(&sha256_e0, tmp); - return memcmp(e0, tmp, 32) == 0; -} - -int secp256k1_borromean_sign(const secp256k1_ecmult_context* ecmult_ctx, const secp256k1_ecmult_gen_context *ecmult_gen_ctx, - unsigned char *e0, secp256k1_scalar *s, const secp256k1_gej *pubs, const secp256k1_scalar *k, const secp256k1_scalar *sec, - const size_t *rsizes, const size_t *secidx, size_t nrings, const unsigned char *m, size_t mlen) { - secp256k1_gej rgej; - secp256k1_ge rge; - secp256k1_scalar ens; - secp256k1_sha256 sha256_e0; - unsigned char tmp[33]; - size_t i; - size_t j; - size_t count; - size_t size; - int overflow; - VERIFY_CHECK(ecmult_ctx != NULL); - VERIFY_CHECK(ecmult_gen_ctx != NULL); - VERIFY_CHECK(e0 != NULL); - VERIFY_CHECK(s != NULL); - VERIFY_CHECK(pubs != NULL); - VERIFY_CHECK(k != NULL); - VERIFY_CHECK(sec != NULL); - VERIFY_CHECK(rsizes != NULL); - VERIFY_CHECK(secidx != NULL); - VERIFY_CHECK(nrings > 0); - VERIFY_CHECK(m != NULL); - secp256k1_sha256_initialize(&sha256_e0); - count = 0; - for (i = 0; i < nrings; i++) { - VERIFY_CHECK(INT_MAX - count > rsizes[i]); - secp256k1_ecmult_gen(ecmult_gen_ctx, &rgej, &k[i]); - secp256k1_ge_set_gej(&rge, &rgej); - if (secp256k1_gej_is_infinity(&rgej)) { - return 0; - } - secp256k1_eckey_pubkey_serialize(&rge, tmp, &size, 1); - for (j = secidx[i] + 1; j < rsizes[i]; j++) { - secp256k1_borromean_hash(tmp, m, mlen, tmp, 33, i, j); - secp256k1_scalar_set_b32(&ens, tmp, &overflow); - if (overflow || secp256k1_scalar_is_zero(&ens)) { - return 0; - } - /** The signing algorithm as a whole is not memory uniform so there is likely a cache sidechannel that - * leaks which members are non-forgeries. That the forgeries themselves are variable time may leave - * an additional privacy impacting timing side-channel, but not a key loss one. - */ - secp256k1_ecmult(ecmult_ctx, &rgej, &pubs[count + j], &ens, &s[count + j]); - if (secp256k1_gej_is_infinity(&rgej)) { - return 0; - } - secp256k1_ge_set_gej_var(&rge, &rgej); - secp256k1_eckey_pubkey_serialize(&rge, tmp, &size, 1); - } - secp256k1_sha256_write(&sha256_e0, tmp, size); - count += rsizes[i]; - } - secp256k1_sha256_write(&sha256_e0, m, mlen); - secp256k1_sha256_finalize(&sha256_e0, e0); - count = 0; - for (i = 0; i < nrings; i++) { - VERIFY_CHECK(INT_MAX - count > rsizes[i]); - secp256k1_borromean_hash(tmp, m, mlen, e0, 32, i, 0); - secp256k1_scalar_set_b32(&ens, tmp, &overflow); - if (overflow || secp256k1_scalar_is_zero(&ens)) { - return 0; - } - for (j = 0; j < secidx[i]; j++) { - secp256k1_ecmult(ecmult_ctx, &rgej, &pubs[count + j], &ens, &s[count + j]); - if (secp256k1_gej_is_infinity(&rgej)) { - return 0; - } - secp256k1_ge_set_gej_var(&rge, &rgej); - secp256k1_eckey_pubkey_serialize(&rge, tmp, &size, 1); - secp256k1_borromean_hash(tmp, m, mlen, tmp, 33, i, j + 1); - secp256k1_scalar_set_b32(&ens, tmp, &overflow); - if (overflow || secp256k1_scalar_is_zero(&ens)) { - return 0; - } - } - secp256k1_scalar_mul(&s[count + j], &ens, &sec[i]); - secp256k1_scalar_negate(&s[count + j], &s[count + j]); - secp256k1_scalar_add(&s[count + j], &s[count + j], &k[i]); - if (secp256k1_scalar_is_zero(&s[count + j])) { - return 0; - } - count += rsizes[i]; - } - secp256k1_scalar_clear(&ens); - secp256k1_ge_clear(&rge); - secp256k1_gej_clear(&rgej); - memset(tmp, 0, 33); - return 1; -} - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/main_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/main_impl.h deleted file mode 100644 index 9eebe38..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/main_impl.h +++ /dev/null @@ -1,95 +0,0 @@ -/********************************************************************** - * Copyright (c) 2014-2015 Gregory Maxwell * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_MODULE_RANGEPROOF_MAIN -#define SECP256K1_MODULE_RANGEPROOF_MAIN - -#include "group.h" - -#include "modules/commitment/main_impl.h" - -#include "modules/rangeproof/borromean_impl.h" -#include "modules/rangeproof/rangeproof_impl.h" - -int secp256k1_rangeproof_info(const secp256k1_context* ctx, int *exp, int *mantissa, - uint64_t *min_value, uint64_t *max_value, const unsigned char *proof, size_t plen) { - size_t offset; - uint64_t scale; - ARG_CHECK(exp != NULL); - ARG_CHECK(mantissa != NULL); - ARG_CHECK(min_value != NULL); - ARG_CHECK(max_value != NULL); - ARG_CHECK(proof != NULL); - offset = 0; - scale = 1; - (void)ctx; - return secp256k1_rangeproof_getheader_impl(&offset, exp, mantissa, &scale, min_value, max_value, proof, plen); -} - -int secp256k1_rangeproof_rewind(const secp256k1_context* ctx, - unsigned char *blind_out, uint64_t *value_out, unsigned char *message_out, size_t *outlen, const unsigned char *nonce, - uint64_t *min_value, uint64_t *max_value, - const secp256k1_pedersen_commitment *commit, const unsigned char *proof, size_t plen, const unsigned char *extra_commit, size_t extra_commit_len, const secp256k1_generator* gen) { - secp256k1_ge commitp; - secp256k1_ge genp; - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(commit != NULL); - ARG_CHECK(proof != NULL); - ARG_CHECK(min_value != NULL); - ARG_CHECK(max_value != NULL); - ARG_CHECK(message_out != NULL || outlen == NULL); - ARG_CHECK(nonce != NULL); - ARG_CHECK(extra_commit != NULL || extra_commit_len == 0); - ARG_CHECK(gen != NULL); - ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); - ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); - secp256k1_pedersen_commitment_load(&commitp, commit); - secp256k1_generator_load(&genp, gen); - return secp256k1_rangeproof_verify_impl(&ctx->ecmult_ctx, &ctx->ecmult_gen_ctx, - blind_out, value_out, message_out, outlen, nonce, min_value, max_value, &commitp, proof, plen, extra_commit, extra_commit_len, &genp); -} - -int secp256k1_rangeproof_verify(const secp256k1_context* ctx, uint64_t *min_value, uint64_t *max_value, - const secp256k1_pedersen_commitment *commit, const unsigned char *proof, size_t plen, const unsigned char *extra_commit, size_t extra_commit_len, const secp256k1_generator* gen) { - secp256k1_ge commitp; - secp256k1_ge genp; - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(commit != NULL); - ARG_CHECK(proof != NULL); - ARG_CHECK(min_value != NULL); - ARG_CHECK(max_value != NULL); - ARG_CHECK(extra_commit != NULL || extra_commit_len == 0); - ARG_CHECK(gen != NULL); - ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); - secp256k1_pedersen_commitment_load(&commitp, commit); - secp256k1_generator_load(&genp, gen); - return secp256k1_rangeproof_verify_impl(&ctx->ecmult_ctx, NULL, - NULL, NULL, NULL, NULL, NULL, min_value, max_value, &commitp, proof, plen, extra_commit, extra_commit_len, &genp); -} - -int secp256k1_rangeproof_sign(const secp256k1_context* ctx, unsigned char *proof, size_t *plen, uint64_t min_value, - const secp256k1_pedersen_commitment *commit, const unsigned char *blind, const unsigned char *nonce, int exp, int min_bits, uint64_t value, - const unsigned char *message, size_t msg_len, const unsigned char *extra_commit, size_t extra_commit_len, const secp256k1_generator* gen){ - secp256k1_ge commitp; - secp256k1_ge genp; - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(proof != NULL); - ARG_CHECK(plen != NULL); - ARG_CHECK(commit != NULL); - ARG_CHECK(blind != NULL); - ARG_CHECK(nonce != NULL); - ARG_CHECK(message != NULL || msg_len == 0); - ARG_CHECK(extra_commit != NULL || extra_commit_len == 0); - ARG_CHECK(gen != NULL); - ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); - ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); - secp256k1_pedersen_commitment_load(&commitp, commit); - secp256k1_generator_load(&genp, gen); - return secp256k1_rangeproof_sign_impl(&ctx->ecmult_ctx, &ctx->ecmult_gen_ctx, - proof, plen, min_value, &commitp, blind, nonce, exp, min_bits, value, message, msg_len, extra_commit, extra_commit_len, &genp); -} - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/rangeproof.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/rangeproof.h deleted file mode 100644 index 840a09a..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/rangeproof.h +++ /dev/null @@ -1,21 +0,0 @@ -/********************************************************************** - * Copyright (c) 2015 Gregory Maxwell * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef _SECP256K1_RANGEPROOF_H_ -#define _SECP256K1_RANGEPROOF_H_ - -#include "scalar.h" -#include "group.h" -#include "ecmult.h" -#include "ecmult_gen.h" - -static int secp256k1_rangeproof_verify_impl(const secp256k1_ecmult_context* ecmult_ctx, - const secp256k1_ecmult_gen_context* ecmult_gen_ctx, - unsigned char *blindout, uint64_t *value_out, unsigned char *message_out, size_t *outlen, const unsigned char *nonce, - uint64_t *min_value, uint64_t *max_value, const secp256k1_ge *commit, const unsigned char *proof, size_t plen, - const unsigned char *extra_commit, size_t extra_commit_len, const secp256k1_ge* genp); - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/rangeproof_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/rangeproof_impl.h deleted file mode 100644 index 8b78c95..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/rangeproof_impl.h +++ /dev/null @@ -1,685 +0,0 @@ -/********************************************************************** - * Copyright (c) 2015 Gregory Maxwell * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef _SECP256K1_RANGEPROOF_IMPL_H_ -#define _SECP256K1_RANGEPROOF_IMPL_H_ - -#include "eckey.h" -#include "scalar.h" -#include "group.h" -#include "rangeproof.h" -#include "hash_impl.h" -#include "util.h" - -#include "modules/commitment/pedersen_impl.h" -#include "modules/rangeproof/borromean.h" - -SECP256K1_INLINE static void secp256k1_rangeproof_pub_expand(secp256k1_gej *pubs, - int exp, size_t *rsizes, size_t rings, const secp256k1_ge* genp) { - secp256k1_gej base; - size_t i; - size_t j; - size_t npub; - VERIFY_CHECK(exp < 19); - if (exp < 0) { - exp = 0; - } - secp256k1_gej_set_ge(&base, genp); - secp256k1_gej_neg(&base, &base); - while (exp--) { - /* Multiplication by 10 */ - secp256k1_gej tmp; - secp256k1_gej_double_var(&tmp, &base, NULL); - secp256k1_gej_double_var(&base, &tmp, NULL); - secp256k1_gej_double_var(&base, &base, NULL); - secp256k1_gej_add_var(&base, &base, &tmp, NULL); - } - npub = 0; - for (i = 0; i < rings; i++) { - for (j = 1; j < rsizes[i]; j++) { - secp256k1_gej_add_var(&pubs[npub + j], &pubs[npub + j - 1], &base, NULL); - } - if (i < rings - 1) { - secp256k1_gej_double_var(&base, &base, NULL); - secp256k1_gej_double_var(&base, &base, NULL); - } - npub += rsizes[i]; - } -} - -SECP256K1_INLINE static void secp256k1_rangeproof_serialize_point(unsigned char* data, const secp256k1_ge *point) { - secp256k1_fe pointx; - pointx = point->x; - secp256k1_fe_normalize(&pointx); - data[0] = !secp256k1_fe_is_quad_var(&point->y); - secp256k1_fe_get_b32(data + 1, &pointx); -} - -SECP256K1_INLINE static int secp256k1_rangeproof_genrand(secp256k1_scalar *sec, secp256k1_scalar *s, unsigned char *message, - size_t *rsizes, size_t rings, const unsigned char *nonce, const secp256k1_ge *commit, const unsigned char *proof, size_t len, const secp256k1_ge* genp) { - unsigned char tmp[32]; - unsigned char rngseed[32 + 33 + 33 + 10]; - secp256k1_rfc6979_hmac_sha256 rng; - secp256k1_scalar acc; - int overflow; - int ret; - size_t i; - size_t j; - int b; - size_t npub; - VERIFY_CHECK(len <= 10); - memcpy(rngseed, nonce, 32); - secp256k1_rangeproof_serialize_point(rngseed + 32, commit); - secp256k1_rangeproof_serialize_point(rngseed + 32 + 33, genp); - memcpy(rngseed + 33 + 33 + 32, proof, len); - secp256k1_rfc6979_hmac_sha256_initialize(&rng, rngseed, 32 + 33 + 33 + len); - secp256k1_scalar_clear(&acc); - npub = 0; - ret = 1; - for (i = 0; i < rings; i++) { - if (i < rings - 1) { - secp256k1_rfc6979_hmac_sha256_generate(&rng, tmp, 32); - do { - secp256k1_rfc6979_hmac_sha256_generate(&rng, tmp, 32); - secp256k1_scalar_set_b32(&sec[i], tmp, &overflow); - } while (overflow || secp256k1_scalar_is_zero(&sec[i])); - secp256k1_scalar_add(&acc, &acc, &sec[i]); - } else { - secp256k1_scalar_negate(&acc, &acc); - sec[i] = acc; - } - for (j = 0; j < rsizes[i]; j++) { - secp256k1_rfc6979_hmac_sha256_generate(&rng, tmp, 32); - if (message) { - for (b = 0; b < 32; b++) { - tmp[b] ^= message[(i * 4 + j) * 32 + b]; - message[(i * 4 + j) * 32 + b] = tmp[b]; - } - } - secp256k1_scalar_set_b32(&s[npub], tmp, &overflow); - ret &= !(overflow || secp256k1_scalar_is_zero(&s[npub])); - npub++; - } - } - secp256k1_rfc6979_hmac_sha256_finalize(&rng); - secp256k1_scalar_clear(&acc); - memset(tmp, 0, 32); - return ret; -} - -SECP256K1_INLINE static int secp256k1_range_proveparams(uint64_t *v, size_t *rings, size_t *rsizes, size_t *npub, size_t *secidx, uint64_t *min_value, - int *mantissa, uint64_t *scale, int *exp, int *min_bits, uint64_t value) { - size_t i; - *rings = 1; - rsizes[0] = 1; - secidx[0] = 0; - *scale = 1; - *mantissa = 0; - *npub = 0; - if (*min_value == UINT64_MAX) { - /* If the minimum value is the maximal representable value, then we cannot code a range. */ - *exp = -1; - } - if (*exp >= 0) { - int max_bits; - uint64_t v2; - if ((*min_value && value > INT64_MAX) || (value && *min_value >= INT64_MAX)) { - /* If either value or min_value is >= 2^63-1 then the other must by zero to avoid overflowing the proven range. */ - return 0; - } - max_bits = *min_value ? secp256k1_clz64_var(*min_value) : 64; - if (*min_bits > max_bits) { - *min_bits = max_bits; - } - if (*min_bits > 61 || value > INT64_MAX) { - /** Ten is not a power of two, so dividing by ten and then representing in base-2 times ten - * expands the representable range. The verifier requires the proven range is within 0..2**64. - * For very large numbers (all over 2**63) we must change our exponent to compensate. - * Rather than handling it precisely, this just disables use of the exponent for big values. - */ - *exp = 0; - } - /* Mask off the least significant digits, as requested. */ - *v = value - *min_value; - /* If the user has asked for more bits of proof then there is room for in the exponent, reduce the exponent. */ - v2 = *min_bits ? (UINT64_MAX>>(64-*min_bits)) : 0; - for (i = 0; (int) i < *exp && (v2 <= UINT64_MAX / 10); i++) { - *v /= 10; - v2 *= 10; - } - *exp = i; - v2 = *v; - for (i = 0; (int) i < *exp; i++) { - v2 *= 10; - *scale *= 10; - } - /* If the masked number isn't precise, compute the public offset. */ - *min_value = value - v2; - /* How many bits do we need to represent our value? */ - *mantissa = *v ? 64 - secp256k1_clz64_var(*v) : 1; - if (*min_bits > *mantissa) { - /* If the user asked for more precision, give it to them. */ - *mantissa = *min_bits; - } - /* Digits in radix-4, except for the last digit if our mantissa length is odd. */ - *rings = (*mantissa + 1) >> 1; - for (i = 0; i < *rings; i++) { - rsizes[i] = ((i < *rings - 1) | (!(*mantissa&1))) ? 4 : 2; - *npub += rsizes[i]; - secidx[i] = (*v >> (i*2)) & 3; - } - VERIFY_CHECK(*mantissa>0); - VERIFY_CHECK((*v & ~(UINT64_MAX>>(64-*mantissa))) == 0); /* Did this get all the bits? */ - } else { - /* A proof for an exact value. */ - *exp = 0; - *min_value = value; - *v = 0; - *npub = 2; - } - VERIFY_CHECK(*v * *scale + *min_value == value); - VERIFY_CHECK(*rings > 0); - VERIFY_CHECK(*rings <= 32); - VERIFY_CHECK(*npub <= 128); - return 1; -} - -/* strawman interface, writes proof in proof, a buffer of plen, proves with respect to min_value the range for commit which has the provided blinding factor and value. */ -SECP256K1_INLINE static int secp256k1_rangeproof_sign_impl(const secp256k1_ecmult_context* ecmult_ctx, - const secp256k1_ecmult_gen_context* ecmult_gen_ctx, - unsigned char *proof, size_t *plen, uint64_t min_value, - const secp256k1_ge *commit, const unsigned char *blind, const unsigned char *nonce, int exp, int min_bits, uint64_t value, - const unsigned char *message, size_t msg_len, const unsigned char *extra_commit, size_t extra_commit_len, const secp256k1_ge* genp){ - secp256k1_gej pubs[128]; /* Candidate digits for our proof, most inferred. */ - secp256k1_scalar s[128]; /* Signatures in our proof, most forged. */ - secp256k1_scalar sec[32]; /* Blinding factors for the correct digits. */ - secp256k1_scalar k[32]; /* Nonces for our non-forged signatures. */ - secp256k1_scalar stmp; - secp256k1_sha256 sha256_m; - unsigned char prep[4096]; - unsigned char tmp[33]; - unsigned char *signs; /* Location of sign flags in the proof. */ - uint64_t v; - uint64_t scale; /* scale = 10^exp. */ - int mantissa; /* Number of bits proven in the blinded value. */ - size_t rings; /* How many digits will our proof cover. */ - size_t rsizes[32]; /* How many possible values there are for each place. */ - size_t secidx[32]; /* Which digit is the correct one. */ - size_t len; /* Number of bytes used so far. */ - size_t i; - int overflow; - size_t npub; - len = 0; - if (*plen < 65 || min_value > value || min_bits > 64 || min_bits < 0 || exp < -1 || exp > 18) { - return 0; - } - if (!secp256k1_range_proveparams(&v, &rings, rsizes, &npub, secidx, &min_value, &mantissa, &scale, &exp, &min_bits, value)) { - return 0; - } - proof[len] = (rsizes[0] > 1 ? (64 | exp) : 0) | (min_value ? 32 : 0); - len++; - if (rsizes[0] > 1) { - VERIFY_CHECK(mantissa > 0 && mantissa <= 64); - proof[len] = mantissa - 1; - len++; - } - if (min_value) { - for (i = 0; i < 8; i++) { - proof[len + i] = (min_value >> ((7-i) * 8)) & 255; - } - len += 8; - } - /* Do we have enough room in the proof for the message? Each ring gives us 128 bytes, but the - * final ring is used to encode the blinding factor and the value, so we can't use that. (Well, - * technically there are 64 bytes available if we avoided the other data, but this is difficult - * because it's not always in the same place. */ - if (msg_len > 0 && msg_len > 128 * (rings - 1)) { - return 0; - } - /* Do we have enough room for the proof? */ - if (*plen - len < 32 * (npub + rings - 1) + 32 + ((rings+6) >> 3)) { - return 0; - } - secp256k1_sha256_initialize(&sha256_m); - secp256k1_rangeproof_serialize_point(tmp, commit); - secp256k1_sha256_write(&sha256_m, tmp, 33); - secp256k1_rangeproof_serialize_point(tmp, genp); - secp256k1_sha256_write(&sha256_m, tmp, 33); - secp256k1_sha256_write(&sha256_m, proof, len); - - memset(prep, 0, 4096); - if (message != NULL) { - memcpy(prep, message, msg_len); - } - /* Note, the data corresponding to the blinding factors must be zero. */ - if (rsizes[rings - 1] > 1) { - size_t idx; - /* Value encoding sidechannel. */ - idx = rsizes[rings - 1] - 1; - idx -= secidx[rings - 1] == idx; - idx = ((rings - 1) * 4 + idx) * 32; - for (i = 0; i < 8; i++) { - prep[8 + i + idx] = prep[16 + i + idx] = prep[24 + i + idx] = (v >> (56 - i * 8)) & 255; - prep[i + idx] = 0; - } - prep[idx] = 128; - } - if (!secp256k1_rangeproof_genrand(sec, s, prep, rsizes, rings, nonce, commit, proof, len, genp)) { - return 0; - } - memset(prep, 0, 4096); - for (i = 0; i < rings; i++) { - /* Sign will overwrite the non-forged signature, move that random value into the nonce. */ - k[i] = s[i * 4 + secidx[i]]; - secp256k1_scalar_clear(&s[i * 4 + secidx[i]]); - } - /** Genrand returns the last blinding factor as -sum(rest), - * adding in the blinding factor for our commitment, results in the blinding factor for - * the commitment to the last digit that the verifier can compute for itself by subtracting - * all the digits in the proof from the commitment. This lets the prover skip sending the - * blinded value for one digit. - */ - secp256k1_scalar_set_b32(&stmp, blind, &overflow); - secp256k1_scalar_add(&sec[rings - 1], &sec[rings - 1], &stmp); - if (overflow || secp256k1_scalar_is_zero(&sec[rings - 1])) { - return 0; - } - signs = &proof[len]; - /* We need one sign bit for each blinded value we send. */ - for (i = 0; i < (rings + 6) >> 3; i++) { - signs[i] = 0; - len++; - } - npub = 0; - for (i = 0; i < rings; i++) { - /*OPT: Use the precomputed gen2 basis?*/ - secp256k1_pedersen_ecmult(&pubs[npub], &sec[i], ((uint64_t)secidx[i] * scale) << (i*2), genp, &secp256k1_ge_const_g); - if (secp256k1_gej_is_infinity(&pubs[npub])) { - return 0; - } - if (i < rings - 1) { - unsigned char tmpc[33]; - secp256k1_ge c; - unsigned char quadness; - /*OPT: split loop and batch invert.*/ - /*OPT: do not compute full pubs[npub] in ge form; we only need x */ - secp256k1_ge_set_gej_var(&c, &pubs[npub]); - secp256k1_rangeproof_serialize_point(tmpc, &c); - quadness = tmpc[0]; - secp256k1_sha256_write(&sha256_m, tmpc, 33); - signs[i>>3] |= quadness << (i&7); - memcpy(&proof[len], tmpc + 1, 32); - len += 32; - } - npub += rsizes[i]; - } - secp256k1_rangeproof_pub_expand(pubs, exp, rsizes, rings, genp); - if (extra_commit != NULL) { - secp256k1_sha256_write(&sha256_m, extra_commit, extra_commit_len); - } - secp256k1_sha256_finalize(&sha256_m, tmp); - if (!secp256k1_borromean_sign(ecmult_ctx, ecmult_gen_ctx, &proof[len], s, pubs, k, sec, rsizes, secidx, rings, tmp, 32)) { - return 0; - } - len += 32; - for (i = 0; i < npub; i++) { - secp256k1_scalar_get_b32(&proof[len],&s[i]); - len += 32; - } - VERIFY_CHECK(len <= *plen); - *plen = len; - memset(prep, 0, 4096); - return 1; -} - -/* Computes blinding factor x given k, s, and the challenge e. */ -SECP256K1_INLINE static void secp256k1_rangeproof_recover_x(secp256k1_scalar *x, const secp256k1_scalar *k, const secp256k1_scalar *e, - const secp256k1_scalar *s) { - secp256k1_scalar stmp; - secp256k1_scalar_negate(x, s); - secp256k1_scalar_add(x, x, k); - secp256k1_scalar_inverse(&stmp, e); - secp256k1_scalar_mul(x, x, &stmp); -} - -/* Computes ring's nonce given the blinding factor x, the challenge e, and the signature s. */ -SECP256K1_INLINE static void secp256k1_rangeproof_recover_k(secp256k1_scalar *k, const secp256k1_scalar *x, const secp256k1_scalar *e, - const secp256k1_scalar *s) { - secp256k1_scalar stmp; - secp256k1_scalar_mul(&stmp, x, e); - secp256k1_scalar_add(k, s, &stmp); -} - -SECP256K1_INLINE static void secp256k1_rangeproof_ch32xor(unsigned char *x, const unsigned char *y) { - int i; - for (i = 0; i < 32; i++) { - x[i] ^= y[i]; - } -} - -SECP256K1_INLINE static int secp256k1_rangeproof_rewind_inner(secp256k1_scalar *blind, uint64_t *v, - unsigned char *m, size_t *mlen, secp256k1_scalar *ev, secp256k1_scalar *s, - size_t *rsizes, size_t rings, const unsigned char *nonce, const secp256k1_ge *commit, const unsigned char *proof, size_t len, const secp256k1_ge *genp) { - secp256k1_scalar s_orig[128]; - secp256k1_scalar sec[32]; - secp256k1_scalar stmp; - unsigned char prep[4096]; - unsigned char tmp[32]; - uint64_t value; - size_t offset; - size_t i; - size_t j; - int b; - size_t skip1; - size_t skip2; - size_t npub; - npub = ((rings - 1) << 2) + rsizes[rings-1]; - VERIFY_CHECK(npub <= 128); - VERIFY_CHECK(npub >= 1); - memset(prep, 0, 4096); - /* Reconstruct the provers random values. */ - secp256k1_rangeproof_genrand(sec, s_orig, prep, rsizes, rings, nonce, commit, proof, len, genp); - *v = UINT64_MAX; - secp256k1_scalar_clear(blind); - if (rings == 1 && rsizes[0] == 1) { - /* With only a single proof, we can only recover the blinding factor. */ - secp256k1_rangeproof_recover_x(blind, &s_orig[0], &ev[0], &s[0]); - if (v) { - *v = 0; - } - if (mlen) { - *mlen = 0; - } - return 1; - } - npub = (rings - 1) << 2; - for (j = 0; j < 2; j++) { - size_t idx; - /* Look for a value encoding in the last ring. */ - idx = npub + rsizes[rings - 1] - 1 - j; - secp256k1_scalar_get_b32(tmp, &s[idx]); - secp256k1_rangeproof_ch32xor(tmp, &prep[idx * 32]); - if ((tmp[0] & 128) && (memcmp(&tmp[16], &tmp[24], 8) == 0) && (memcmp(&tmp[8], &tmp[16], 8) == 0)) { - value = 0; - for (i = 0; i < 8; i++) { - value = (value << 8) + tmp[24 + i]; - } - if (v) { - *v = value; - } - memcpy(&prep[idx * 32], tmp, 32); - break; - } - } - if (j > 1) { - /* Couldn't extract a value. */ - if (mlen) { - *mlen = 0; - } - return 0; - } - skip1 = rsizes[rings - 1] - 1 - j; - skip2 = ((value >> ((rings - 1) << 1)) & 3); - if (skip1 == skip2) { - /*Value is in wrong position.*/ - if (mlen) { - *mlen = 0; - } - return 0; - } - skip1 += (rings - 1) << 2; - skip2 += (rings - 1) << 2; - /* Like in the rsize[] == 1 case, Having figured out which s is the one which was not forged, we can recover the blinding factor. */ - secp256k1_rangeproof_recover_x(&stmp, &s_orig[skip2], &ev[skip2], &s[skip2]); - secp256k1_scalar_negate(&sec[rings - 1], &sec[rings - 1]); - secp256k1_scalar_add(blind, &stmp, &sec[rings - 1]); - if (!m || !mlen || *mlen == 0) { - if (mlen) { - *mlen = 0; - } - /* FIXME: cleanup in early out/failure cases. */ - return 1; - } - offset = 0; - npub = 0; - for (i = 0; i < rings; i++) { - size_t idx; - idx = (value >> (i << 1)) & 3; - for (j = 0; j < rsizes[i]; j++) { - if (npub == skip1 || npub == skip2) { - npub++; - continue; - } - if (idx == j) { - /** For the non-forged signatures the signature is calculated instead of random, instead we recover the prover's nonces. - * this could just as well recover the blinding factors and messages could be put there as is done for recovering the - * blinding factor in the last ring, but it takes an inversion to recover x so it's faster to put the message data in k. - */ - secp256k1_rangeproof_recover_k(&stmp, &sec[i], &ev[npub], &s[npub]); - } else { - stmp = s[npub]; - } - secp256k1_scalar_get_b32(tmp, &stmp); - secp256k1_rangeproof_ch32xor(tmp, &prep[npub * 32]); - for (b = 0; b < 32 && offset < *mlen; b++) { - m[offset] = tmp[b]; - offset++; - } - npub++; - } - } - *mlen = offset; - memset(prep, 0, 4096); - for (i = 0; i < 128; i++) { - secp256k1_scalar_clear(&s_orig[i]); - } - for (i = 0; i < 32; i++) { - secp256k1_scalar_clear(&sec[i]); - } - secp256k1_scalar_clear(&stmp); - return 1; -} - -SECP256K1_INLINE static int secp256k1_rangeproof_getheader_impl(size_t *offset, int *exp, int *mantissa, uint64_t *scale, - uint64_t *min_value, uint64_t *max_value, const unsigned char *proof, size_t plen) { - int i; - int has_nz_range; - int has_min; - if (plen < 65 || ((proof[*offset] & 128) != 0)) { - return 0; - } - has_nz_range = proof[*offset] & 64; - has_min = proof[*offset] & 32; - *exp = -1; - *mantissa = 0; - if (has_nz_range) { - *exp = proof[*offset] & 31; - *offset += 1; - if (*exp > 18) { - return 0; - } - *mantissa = proof[*offset] + 1; - if (*mantissa > 64) { - return 0; - } - *max_value = UINT64_MAX>>(64-*mantissa); - } else { - *max_value = 0; - } - *offset += 1; - *scale = 1; - for (i = 0; i < *exp; i++) { - if (*max_value > UINT64_MAX / 10) { - return 0; - } - *max_value *= 10; - *scale *= 10; - } - *min_value = 0; - if (has_min) { - if(plen - *offset < 8) { - return 0; - } - /*FIXME: Compact minvalue encoding?*/ - for (i = 0; i < 8; i++) { - *min_value = (*min_value << 8) | proof[*offset + i]; - } - *offset += 8; - } - if (*max_value > UINT64_MAX - *min_value) { - return 0; - } - *max_value += *min_value; - return 1; -} - -/* Verifies range proof (len plen) for commit, the min/max values proven are put in the min/max arguments; returns 0 on failure 1 on success.*/ -SECP256K1_INLINE static int secp256k1_rangeproof_verify_impl(const secp256k1_ecmult_context* ecmult_ctx, - const secp256k1_ecmult_gen_context* ecmult_gen_ctx, - unsigned char *blindout, uint64_t *value_out, unsigned char *message_out, size_t *outlen, const unsigned char *nonce, - uint64_t *min_value, uint64_t *max_value, const secp256k1_ge *commit, const unsigned char *proof, size_t plen, const unsigned char *extra_commit, size_t extra_commit_len, const secp256k1_ge* genp) { - secp256k1_gej accj; - secp256k1_gej pubs[128]; - secp256k1_ge c; - secp256k1_scalar s[128]; - secp256k1_scalar evalues[128]; /* Challenges, only used during proof rewind. */ - secp256k1_sha256 sha256_m; - size_t rsizes[32]; - int ret; - size_t i; - int exp; - int mantissa; - size_t offset; - size_t rings; - int overflow; - size_t npub; - int offset_post_header; - uint64_t scale; - unsigned char signs[31]; - unsigned char m[33]; - const unsigned char *e0; - offset = 0; - if (!secp256k1_rangeproof_getheader_impl(&offset, &exp, &mantissa, &scale, min_value, max_value, proof, plen)) { - return 0; - } - offset_post_header = offset; - rings = 1; - rsizes[0] = 1; - npub = 1; - if (mantissa != 0) { - rings = (mantissa >> 1); - for (i = 0; i < rings; i++) { - rsizes[i] = 4; - } - npub = (mantissa >> 1) << 2; - if (mantissa & 1) { - rsizes[rings] = 2; - npub += rsizes[rings]; - rings++; - } - } - VERIFY_CHECK(rings <= 32); - if (plen - offset < 32 * (npub + rings - 1) + 32 + ((rings+6) >> 3)) { - return 0; - } - secp256k1_sha256_initialize(&sha256_m); - secp256k1_rangeproof_serialize_point(m, commit); - secp256k1_sha256_write(&sha256_m, m, 33); - secp256k1_rangeproof_serialize_point(m, genp); - secp256k1_sha256_write(&sha256_m, m, 33); - secp256k1_sha256_write(&sha256_m, proof, offset); - for(i = 0; i < rings - 1; i++) { - signs[i] = (proof[offset + ( i>> 3)] & (1 << (i & 7))) != 0; - } - offset += (rings + 6) >> 3; - if ((rings - 1) & 7) { - /* Number of coded blinded points is not a multiple of 8, force extra sign bits to 0 to reject mutation. */ - if ((proof[offset - 1] >> ((rings - 1) & 7)) != 0) { - return 0; - } - } - npub = 0; - secp256k1_gej_set_infinity(&accj); - if (*min_value) { - secp256k1_scalar mvs; - secp256k1_scalar_set_u64(&mvs, *min_value); - secp256k1_ecmult_const(&accj, genp, &mvs, 64); - secp256k1_scalar_clear(&mvs); - } - for(i = 0; i < rings - 1; i++) { - secp256k1_fe fe; - secp256k1_fe_set_b32(&fe, &proof[offset]); - secp256k1_ge_set_xquad(&c, &fe); - if (signs[i]) { - secp256k1_ge_neg(&c, &c); - } - /* Not using secp256k1_rangeproof_serialize_point as we almost have it - * serialized form already. */ - secp256k1_sha256_write(&sha256_m, &signs[i], 1); - secp256k1_sha256_write(&sha256_m, &proof[offset], 32); - secp256k1_gej_set_ge(&pubs[npub], &c); - secp256k1_gej_add_ge_var(&accj, &accj, &c, NULL); - offset += 32; - npub += rsizes[i]; - } - secp256k1_gej_neg(&accj, &accj); - secp256k1_gej_add_ge_var(&pubs[npub], &accj, commit, NULL); - if (secp256k1_gej_is_infinity(&pubs[npub])) { - return 0; - } - secp256k1_rangeproof_pub_expand(pubs, exp, rsizes, rings, genp); - npub += rsizes[rings - 1]; - e0 = &proof[offset]; - offset += 32; - for (i = 0; i < npub; i++) { - secp256k1_scalar_set_b32(&s[i], &proof[offset], &overflow); - if (overflow) { - return 0; - } - offset += 32; - } - if (offset != plen) { - /*Extra data found, reject.*/ - return 0; - } - if (extra_commit != NULL) { - secp256k1_sha256_write(&sha256_m, extra_commit, extra_commit_len); - } - secp256k1_sha256_finalize(&sha256_m, m); - ret = secp256k1_borromean_verify(ecmult_ctx, nonce ? evalues : NULL, e0, s, pubs, rsizes, rings, m, 32); - if (ret && nonce) { - /* Given the nonce, try rewinding the witness to recover its initial state. */ - secp256k1_scalar blind; - uint64_t vv; - if (!ecmult_gen_ctx) { - return 0; - } - if (!secp256k1_rangeproof_rewind_inner(&blind, &vv, message_out, outlen, evalues, s, rsizes, rings, nonce, commit, proof, offset_post_header, genp)) { - return 0; - } - /* Unwind apparently successful, see if the commitment can be reconstructed. */ - /* FIXME: should check vv is in the mantissa's range. */ - vv = (vv * scale) + *min_value; - secp256k1_pedersen_ecmult(&accj, &blind, vv, genp, &secp256k1_ge_const_g); - if (secp256k1_gej_is_infinity(&accj)) { - return 0; - } - secp256k1_gej_neg(&accj, &accj); - secp256k1_gej_add_ge_var(&accj, &accj, commit, NULL); - if (!secp256k1_gej_is_infinity(&accj)) { - return 0; - } - if (blindout) { - secp256k1_scalar_get_b32(blindout, &blind); - } - if (value_out) { - *value_out = vv; - } - } - return ret; -} - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/tests_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/tests_impl.h deleted file mode 100644 index 921498d..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/rangeproof/tests_impl.h +++ /dev/null @@ -1,439 +0,0 @@ -/********************************************************************** - * Copyright (c) 2015 Gregory Maxwell * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_MODULE_RANGEPROOF_TESTS -#define SECP256K1_MODULE_RANGEPROOF_TESTS - -#include - -#include "group.h" -#include "scalar.h" -#include "testrand.h" -#include "util.h" - -#include "include/secp256k1_commitment.h" -#include "include/secp256k1_rangeproof.h" - -static void test_rangeproof_api(const secp256k1_context *none, const secp256k1_context *sign, const secp256k1_context *vrfy, const secp256k1_context *both, const int32_t *ecount) { - unsigned char proof[5134]; - unsigned char blind[32]; - secp256k1_pedersen_commitment commit; - uint64_t vmin = secp256k1_rand32(); - uint64_t val = vmin + secp256k1_rand32(); - size_t len = sizeof(proof); - /* we'll switch to dylan thomas for this one */ - const unsigned char message[68] = "My tears are like the quiet drift / Of petals from some magic rose;"; - size_t mlen = sizeof(message); - const unsigned char ext_commit[72] = "And all my grief flows from the rift / Of unremembered skies and snows."; - size_t ext_commit_len = sizeof(ext_commit); - - secp256k1_rand256(blind); - CHECK(secp256k1_pedersen_commit(ctx, &commit, blind, val, &secp256k1_generator_const_h, &secp256k1_generator_const_g)); - - CHECK(secp256k1_rangeproof_sign(none, proof, &len, vmin, &commit, blind, commit.data, 0, 0, val, message, mlen, ext_commit, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 1); - CHECK(secp256k1_rangeproof_sign(sign, proof, &len, vmin, &commit, blind, commit.data, 0, 0, val, message, mlen, ext_commit, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 2); - CHECK(secp256k1_rangeproof_sign(vrfy, proof, &len, vmin, &commit, blind, commit.data, 0, 0, val, message, mlen, ext_commit, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 3); - CHECK(secp256k1_rangeproof_sign(both, proof, &len, vmin, &commit, blind, commit.data, 0, 0, val, message, mlen, ext_commit, ext_commit_len, &secp256k1_generator_const_h) != 0); - CHECK(*ecount == 3); - - CHECK(secp256k1_rangeproof_sign(both, NULL, &len, vmin, &commit, blind, commit.data, 0, 0, val, message, mlen, ext_commit, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 4); - CHECK(secp256k1_rangeproof_sign(both, proof, NULL, vmin, &commit, blind, commit.data, 0, 0, val, message, mlen, ext_commit, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 5); - CHECK(secp256k1_rangeproof_sign(both, proof, &len, vmin, NULL, blind, commit.data, 0, 0, val, message, mlen, ext_commit, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 6); - CHECK(secp256k1_rangeproof_sign(both, proof, &len, vmin, &commit, NULL, commit.data, 0, 0, val, message, mlen, ext_commit, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 7); - CHECK(secp256k1_rangeproof_sign(both, proof, &len, vmin, &commit, blind, NULL, 0, 0, val, message, mlen, ext_commit, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 8); - CHECK(secp256k1_rangeproof_sign(both, proof, &len, vmin, &commit, blind, commit.data, 0, 0, vmin - 1, message, mlen, ext_commit, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 8); - CHECK(secp256k1_rangeproof_sign(both, proof, &len, vmin, &commit, blind, commit.data, 0, 0, val, NULL, mlen, ext_commit, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 9); - CHECK(secp256k1_rangeproof_sign(both, proof, &len, vmin, &commit, blind, commit.data, 0, 0, val, NULL, 0, ext_commit, ext_commit_len, &secp256k1_generator_const_h) != 0); - CHECK(*ecount == 9); - CHECK(secp256k1_rangeproof_sign(both, proof, &len, vmin, &commit, blind, commit.data, 0, 0, val, NULL, 0, NULL, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 10); - CHECK(secp256k1_rangeproof_sign(both, proof, &len, vmin, &commit, blind, commit.data, 0, 0, val, NULL, 0, NULL, 0, &secp256k1_generator_const_h) != 0); - CHECK(*ecount == 10); - CHECK(secp256k1_rangeproof_sign(both, proof, &len, vmin, &commit, blind, commit.data, 0, 0, val, NULL, 0, NULL, 0, NULL) == 0); - CHECK(*ecount == 11); - - CHECK(secp256k1_rangeproof_sign(both, proof, &len, vmin, &commit, blind, commit.data, 0, 0, val, message, mlen, ext_commit, ext_commit_len, &secp256k1_generator_const_h) != 0); - { - int exp; - int mantissa; - uint64_t min_value; - uint64_t max_value; - CHECK(secp256k1_rangeproof_info(none, &exp, &mantissa, &min_value, &max_value, proof, len) != 0); - CHECK(exp == 0); - CHECK(((uint64_t) 1 << mantissa) > val - vmin); - CHECK(((uint64_t) 1 << (mantissa - 1)) <= val - vmin); - CHECK(min_value == vmin); - CHECK(max_value >= val); - - CHECK(secp256k1_rangeproof_info(none, NULL, &mantissa, &min_value, &max_value, proof, len) == 0); - CHECK(*ecount == 12); - CHECK(secp256k1_rangeproof_info(none, &exp, NULL, &min_value, &max_value, proof, len) == 0); - CHECK(*ecount == 13); - CHECK(secp256k1_rangeproof_info(none, &exp, &mantissa, NULL, &max_value, proof, len) == 0); - CHECK(*ecount == 14); - CHECK(secp256k1_rangeproof_info(none, &exp, &mantissa, &min_value, NULL, proof, len) == 0); - CHECK(*ecount == 15); - CHECK(secp256k1_rangeproof_info(none, &exp, &mantissa, &min_value, &max_value, NULL, len) == 0); - CHECK(*ecount == 16); - CHECK(secp256k1_rangeproof_info(none, &exp, &mantissa, &min_value, &max_value, proof, 0) == 0); - CHECK(*ecount == 16); - } - { - uint64_t min_value; - uint64_t max_value; - CHECK(secp256k1_rangeproof_verify(none, &min_value, &max_value, &commit, proof, len, ext_commit, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 17); - CHECK(secp256k1_rangeproof_verify(sign, &min_value, &max_value, &commit, proof, len, ext_commit, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 18); - CHECK(secp256k1_rangeproof_verify(vrfy, &min_value, &max_value, &commit, proof, len, ext_commit, ext_commit_len, &secp256k1_generator_const_h) != 0); - CHECK(*ecount == 18); - - CHECK(secp256k1_rangeproof_verify(vrfy, NULL, &max_value, &commit, proof, len, ext_commit, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 19); - CHECK(secp256k1_rangeproof_verify(vrfy, &min_value, NULL, &commit, proof, len, ext_commit, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 20); - CHECK(secp256k1_rangeproof_verify(vrfy, &min_value, &max_value, NULL, proof, len, ext_commit, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 21); - CHECK(secp256k1_rangeproof_verify(vrfy, &min_value, &max_value, &commit, NULL, len, ext_commit, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 22); - CHECK(secp256k1_rangeproof_verify(vrfy, &min_value, &max_value, &commit, proof, 0, ext_commit, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 22); - CHECK(secp256k1_rangeproof_verify(vrfy, &min_value, &max_value, &commit, proof, len, NULL, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 23); - CHECK(secp256k1_rangeproof_verify(vrfy, &min_value, &max_value, &commit, proof, len, NULL, 0, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 23); - CHECK(secp256k1_rangeproof_verify(vrfy, &min_value, &max_value, &commit, proof, len, NULL, 0, NULL) == 0); - CHECK(*ecount == 24); - } - { - unsigned char blind_out[32]; - unsigned char message_out[68]; - uint64_t value_out; - uint64_t min_value; - uint64_t max_value; - size_t message_len = sizeof(message_out); - - CHECK(secp256k1_rangeproof_rewind(none, blind_out, &value_out, message_out, &message_len, commit.data, &min_value, &max_value, &commit, proof, len, ext_commit, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 25); - CHECK(secp256k1_rangeproof_rewind(sign, blind_out, &value_out, message_out, &message_len, commit.data, &min_value, &max_value, &commit, proof, len, ext_commit, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 26); - CHECK(secp256k1_rangeproof_rewind(vrfy, blind_out, &value_out, message_out, &message_len, commit.data, &min_value, &max_value, &commit, proof, len, ext_commit, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 27); - CHECK(secp256k1_rangeproof_rewind(both, blind_out, &value_out, message_out, &message_len, commit.data, &min_value, &max_value, &commit, proof, len, ext_commit, ext_commit_len, &secp256k1_generator_const_h) != 0); - CHECK(*ecount == 27); - - CHECK(min_value == vmin); - CHECK(max_value >= val); - CHECK(value_out == val); - CHECK(message_len == sizeof(message_out)); - CHECK(memcmp(message, message_out, sizeof(message_out)) == 0); - - CHECK(secp256k1_rangeproof_rewind(both, NULL, &value_out, message_out, &message_len, commit.data, &min_value, &max_value, &commit, proof, len, ext_commit, ext_commit_len, &secp256k1_generator_const_h) != 0); - CHECK(*ecount == 27); /* blindout may be NULL */ - CHECK(secp256k1_rangeproof_rewind(both, blind_out, NULL, message_out, &message_len, commit.data, &min_value, &max_value, &commit, proof, len, ext_commit, ext_commit_len, &secp256k1_generator_const_h) != 0); - CHECK(*ecount == 27); /* valueout may be NULL */ - CHECK(secp256k1_rangeproof_rewind(both, blind_out, &value_out, NULL, &message_len, commit.data, &min_value, &max_value, &commit, proof, len, ext_commit, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 28); - CHECK(secp256k1_rangeproof_rewind(both, blind_out, &value_out, NULL, 0, commit.data, &min_value, &max_value, &commit, proof, len, ext_commit, ext_commit_len, &secp256k1_generator_const_h) != 0); - CHECK(*ecount == 28); - CHECK(secp256k1_rangeproof_rewind(both, blind_out, &value_out, NULL, 0, NULL, &min_value, &max_value, &commit, proof, len, ext_commit, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 29); - CHECK(secp256k1_rangeproof_rewind(both, blind_out, &value_out, NULL, 0, commit.data, NULL, &max_value, &commit, proof, len, ext_commit, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 30); - CHECK(secp256k1_rangeproof_rewind(both, blind_out, &value_out, NULL, 0, commit.data, &min_value, NULL, &commit, proof, len, ext_commit, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 31); - CHECK(secp256k1_rangeproof_rewind(both, blind_out, &value_out, NULL, 0, commit.data, &min_value, &max_value, NULL, proof, len, ext_commit, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 32); - CHECK(secp256k1_rangeproof_rewind(both, blind_out, &value_out, NULL, 0, commit.data, &min_value, &max_value, &commit, NULL, len, ext_commit, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 33); - CHECK(secp256k1_rangeproof_rewind(both, blind_out, &value_out, NULL, 0, commit.data, &min_value, &max_value, &commit, proof, 0, ext_commit, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 33); - CHECK(secp256k1_rangeproof_rewind(both, blind_out, &value_out, NULL, 0, commit.data, &min_value, &max_value, &commit, proof, len, NULL, ext_commit_len, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 34); - CHECK(secp256k1_rangeproof_rewind(both, blind_out, &value_out, NULL, 0, commit.data, &min_value, &max_value, &commit, proof, len, NULL, 0, &secp256k1_generator_const_h) == 0); - CHECK(*ecount == 34); - CHECK(secp256k1_rangeproof_rewind(both, blind_out, &value_out, NULL, 0, commit.data, &min_value, &max_value, &commit, proof, len, NULL, 0, NULL) == 0); - CHECK(*ecount == 35); - } -} - -static void test_api(void) { - secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE); - secp256k1_context *sign = secp256k1_context_create(SECP256K1_CONTEXT_SIGN); - secp256k1_context *vrfy = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY); - secp256k1_context *both = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); - int32_t ecount; - int i; - - secp256k1_context_set_error_callback(none, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_error_callback(sign, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_error_callback(vrfy, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_error_callback(both, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_illegal_callback(none, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_illegal_callback(sign, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_illegal_callback(vrfy, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_illegal_callback(both, counting_illegal_callback_fn, &ecount); - - for (i = 0; i < count; i++) { - ecount = 0; - test_rangeproof_api(none, sign, vrfy, both, &ecount); - } - - secp256k1_context_destroy(none); - secp256k1_context_destroy(sign); - secp256k1_context_destroy(vrfy); - secp256k1_context_destroy(both); -} - -static void test_borromean(void) { - unsigned char e0[32]; - secp256k1_scalar s[64]; - secp256k1_gej pubs[64]; - secp256k1_scalar k[8]; - secp256k1_scalar sec[8]; - secp256k1_ge ge; - secp256k1_scalar one; - unsigned char m[32]; - size_t rsizes[8]; - size_t secidx[8]; - size_t nrings; - size_t i; - size_t j; - int c; - secp256k1_rand256_test(m); - nrings = 1 + (secp256k1_rand32()&7); - c = 0; - secp256k1_scalar_set_int(&one, 1); - if (secp256k1_rand32()&1) { - secp256k1_scalar_negate(&one, &one); - } - for (i = 0; i < nrings; i++) { - rsizes[i] = 1 + (secp256k1_rand32()&7); - secidx[i] = secp256k1_rand32() % rsizes[i]; - random_scalar_order(&sec[i]); - random_scalar_order(&k[i]); - if(secp256k1_rand32()&7) { - sec[i] = one; - } - if(secp256k1_rand32()&7) { - k[i] = one; - } - for (j = 0; j < rsizes[i]; j++) { - random_scalar_order(&s[c + j]); - if(secp256k1_rand32()&7) { - s[i] = one; - } - if (j == secidx[i]) { - secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pubs[c + j], &sec[i]); - } else { - random_group_element_test(&ge); - random_group_element_jacobian_test(&pubs[c + j],&ge); - } - } - c += rsizes[i]; - } - CHECK(secp256k1_borromean_sign(&ctx->ecmult_ctx, &ctx->ecmult_gen_ctx, e0, s, pubs, k, sec, rsizes, secidx, nrings, m, 32)); - CHECK(secp256k1_borromean_verify(&ctx->ecmult_ctx, NULL, e0, s, pubs, rsizes, nrings, m, 32)); - i = secp256k1_rand32() % c; - secp256k1_scalar_negate(&s[i],&s[i]); - CHECK(!secp256k1_borromean_verify(&ctx->ecmult_ctx, NULL, e0, s, pubs, rsizes, nrings, m, 32)); - secp256k1_scalar_negate(&s[i],&s[i]); - secp256k1_scalar_set_int(&one, 1); - for(j = 0; j < 4; j++) { - i = secp256k1_rand32() % c; - if (secp256k1_rand32() & 1) { - secp256k1_gej_double_var(&pubs[i],&pubs[i], NULL); - } else { - secp256k1_scalar_add(&s[i],&s[i],&one); - } - CHECK(!secp256k1_borromean_verify(&ctx->ecmult_ctx, NULL, e0, s, pubs, rsizes, nrings, m, 32)); - } -} - -static void test_rangeproof(void) { - const uint64_t testvs[11] = {0, 1, 5, 11, 65535, 65537, INT32_MAX, UINT32_MAX, INT64_MAX - 1, INT64_MAX, UINT64_MAX}; - secp256k1_pedersen_commitment commit; - secp256k1_pedersen_commitment commit2; - unsigned char proof[5134 + 1]; /* One additional byte to test if trailing bytes are rejected */ - unsigned char blind[32]; - unsigned char blindout[32]; - unsigned char message[4096]; - size_t mlen; - uint64_t v; - uint64_t vout; - uint64_t vmin; - uint64_t minv; - uint64_t maxv; - size_t len; - size_t i; - size_t j; - size_t k; - /* Short message is a Simone de Beauvoir quote */ - const unsigned char message_short[120] = "When I see my own likeness in the depths of someone else's consciousness, I always experience a moment of panic."; - /* Long message is 0xA5 with a bunch of this quote in the middle */ - unsigned char message_long[3968]; - memset(message_long, 0xa5, sizeof(message_long)); - for (i = 1200; i < 3600; i += 120) { - memcpy(&message_long[i], message_short, sizeof(message_short)); - } - - secp256k1_rand256(blind); - for (i = 0; i < 11; i++) { - v = testvs[i]; - CHECK(secp256k1_pedersen_commit(ctx, &commit, blind, v, &secp256k1_generator_const_h, &secp256k1_generator_const_g)); - for (vmin = 0; vmin < (i<9 && i > 0 ? 2 : 1); vmin++) { - const unsigned char *input_message = NULL; - size_t input_message_len = 0; - /* vmin is always either 0 or 1; if it is 1, then we have no room for a message. - * If it's 0, we use "minimum encoding" and only have room for a small message when - * `testvs[i]` is >= 4; for a large message when it's >= 2^32. */ - if (vmin == 0 && i > 2) { - input_message = message_short; - input_message_len = sizeof(message_short); - } - if (vmin == 0 && i > 7) { - input_message = message_long; - input_message_len = sizeof(message_long); - } - len = 5134; - CHECK(secp256k1_rangeproof_sign(ctx, proof, &len, vmin, &commit, blind, commit.data, 0, 0, v, input_message, input_message_len, NULL, 0, &secp256k1_generator_const_h)); - CHECK(len <= 5134); - mlen = 4096; - CHECK(secp256k1_rangeproof_rewind(ctx, blindout, &vout, message, &mlen, commit.data, &minv, &maxv, &commit, proof, len, NULL, 0, &secp256k1_generator_const_h)); - if (input_message != NULL) { - CHECK(memcmp(message, input_message, input_message_len) == 0); - } - for (j = input_message_len; j < mlen; j++) { - CHECK(message[j] == 0); - } - CHECK(mlen <= 4096); - CHECK(memcmp(blindout, blind, 32) == 0); - CHECK(vout == v); - CHECK(minv <= v); - CHECK(maxv >= v); - len = 5134; - CHECK(secp256k1_rangeproof_sign(ctx, proof, &len, v, &commit, blind, commit.data, -1, 64, v, NULL, 0, NULL, 0, &secp256k1_generator_const_h)); - CHECK(len <= 73); - CHECK(secp256k1_rangeproof_rewind(ctx, blindout, &vout, NULL, NULL, commit.data, &minv, &maxv, &commit, proof, len, NULL, 0, &secp256k1_generator_const_h)); - CHECK(memcmp(blindout, blind, 32) == 0); - CHECK(vout == v); - CHECK(minv == v); - CHECK(maxv == v); - - /* Check with a committed message */ - len = 5134; - CHECK(secp256k1_rangeproof_sign(ctx, proof, &len, v, &commit, blind, commit.data, -1, 64, v, NULL, 0, message_short, sizeof(message_short), &secp256k1_generator_const_h)); - CHECK(len <= 73); - CHECK(!secp256k1_rangeproof_rewind(ctx, blindout, &vout, NULL, NULL, commit.data, &minv, &maxv, &commit, proof, len, NULL, 0, &secp256k1_generator_const_h)); - CHECK(!secp256k1_rangeproof_rewind(ctx, blindout, &vout, NULL, NULL, commit.data, &minv, &maxv, &commit, proof, len, message_long, sizeof(message_long), &secp256k1_generator_const_h)); - CHECK(secp256k1_rangeproof_rewind(ctx, blindout, &vout, NULL, NULL, commit.data, &minv, &maxv, &commit, proof, len, message_short, sizeof(message_short), &secp256k1_generator_const_h)); - CHECK(memcmp(blindout, blind, 32) == 0); - CHECK(vout == v); - CHECK(minv == v); - CHECK(maxv == v); - } - } - secp256k1_rand256(blind); - v = INT64_MAX - 1; - CHECK(secp256k1_pedersen_commit(ctx, &commit, blind, v, &secp256k1_generator_const_h, &secp256k1_generator_const_g)); - for (i = 0; i < 19; i++) { - len = 5134; - CHECK(secp256k1_rangeproof_sign(ctx, proof, &len, 0, &commit, blind, commit.data, i, 0, v, NULL, 0, NULL, 0, &secp256k1_generator_const_h)); - CHECK(secp256k1_rangeproof_verify(ctx, &minv, &maxv, &commit, proof, len, NULL, 0, &secp256k1_generator_const_h)); - CHECK(len <= 5134); - CHECK(minv <= v); - CHECK(maxv >= v); - /* Make sure it fails when validating with a committed message */ - CHECK(!secp256k1_rangeproof_verify(ctx, &minv, &maxv, &commit, proof, len, message_short, sizeof(message_short), &secp256k1_generator_const_h)); - } - secp256k1_rand256(blind); - { - /*Malleability test.*/ - v = secp256k1_rands64(0, 255); - CHECK(secp256k1_pedersen_commit(ctx, &commit, blind, v, &secp256k1_generator_const_h, &secp256k1_generator_const_g)); - len = 5134; - CHECK(secp256k1_rangeproof_sign(ctx, proof, &len, 0, &commit, blind, commit.data, 0, 3, v, NULL, 0, NULL, 0, &secp256k1_generator_const_h)); - CHECK(len <= 5134); - /* Test if trailing bytes are rejected. */ - proof[len] = v; - CHECK(!secp256k1_rangeproof_verify(ctx, &minv, &maxv, &commit, proof, len + 1, NULL, 0, &secp256k1_generator_const_h)); - for (i = 0; i < len*8; i++) { - proof[i >> 3] ^= 1 << (i & 7); - CHECK(!secp256k1_rangeproof_verify(ctx, &minv, &maxv, &commit, proof, len, NULL, 0, &secp256k1_generator_const_h)); - proof[i >> 3] ^= 1 << (i & 7); - } - CHECK(secp256k1_rangeproof_verify(ctx, &minv, &maxv, &commit, proof, len, NULL, 0, &secp256k1_generator_const_h)); - CHECK(minv <= v); - CHECK(maxv >= v); - } - memcpy(&commit2, &commit, sizeof(commit)); - for (i = 0; i < 10 * (size_t) count; i++) { - int exp; - int min_bits; - v = secp256k1_rands64(0, UINT64_MAX >> (secp256k1_rand32()&63)); - vmin = 0; - if ((v < INT64_MAX) && (secp256k1_rand32()&1)) { - vmin = secp256k1_rands64(0, v); - } - secp256k1_rand256(blind); - CHECK(secp256k1_pedersen_commit(ctx, &commit, blind, v, &secp256k1_generator_const_h, &secp256k1_generator_const_g)); - len = 5134; - exp = (int)secp256k1_rands64(0,18)-(int)secp256k1_rands64(0,18); - if (exp < 0) { - exp = -exp; - } - min_bits = (int)secp256k1_rands64(0,64)-(int)secp256k1_rands64(0,64); - if (min_bits < 0) { - min_bits = -min_bits; - } - CHECK(secp256k1_rangeproof_sign(ctx, proof, &len, vmin, &commit, blind, commit.data, exp, min_bits, v, NULL, 0, NULL, 0, &secp256k1_generator_const_h)); - CHECK(len <= 5134); - mlen = 4096; - CHECK(secp256k1_rangeproof_rewind(ctx, blindout, &vout, message, &mlen, commit.data, &minv, &maxv, &commit, proof, len, NULL, 0, &secp256k1_generator_const_h)); - for (j = 0; j < mlen; j++) { - CHECK(message[j] == 0); - } - CHECK(mlen <= 4096); - CHECK(memcmp(blindout, blind, 32) == 0); - CHECK(vout == v); - CHECK(minv <= v); - CHECK(maxv >= v); - CHECK(secp256k1_rangeproof_rewind(ctx, blindout, &vout, NULL, NULL, commit.data, &minv, &maxv, &commit, proof, len, NULL, 0, &secp256k1_generator_const_h)); - memcpy(&commit2, &commit, sizeof(commit)); - } - for (j = 0; j < 10; j++) { - for (i = 0; i < 96; i++) { - secp256k1_rand256(&proof[i * 32]); - } - for (k = 0; k < 128; k++) { - len = k; - CHECK(!secp256k1_rangeproof_verify(ctx, &minv, &maxv, &commit2, proof, len, NULL, 0, &secp256k1_generator_const_h)); - } - len = secp256k1_rands64(0, 3072); - CHECK(!secp256k1_rangeproof_verify(ctx, &minv, &maxv, &commit2, proof, len, NULL, 0, &secp256k1_generator_const_h)); - } -} - -void run_rangeproof_tests(void) { - int i; - test_api(); - for (i = 0; i < 10*count; i++) { - test_borromean(); - } - test_rangeproof(); -} - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/recovery/Makefile.am.include b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/recovery/Makefile.am.include deleted file mode 100644 index bf23c26..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/recovery/Makefile.am.include +++ /dev/null @@ -1,8 +0,0 @@ -include_HEADERS += include/secp256k1_recovery.h -noinst_HEADERS += src/modules/recovery/main_impl.h -noinst_HEADERS += src/modules/recovery/tests_impl.h -if USE_BENCHMARK -noinst_PROGRAMS += bench_recover -bench_recover_SOURCES = src/bench_recover.c -bench_recover_LDADD = libsecp256k1.la $(SECP_LIBS) $(COMMON_LIB) -endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/recovery/main_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/recovery/main_impl.h deleted file mode 100755 index 2f6691c..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/recovery/main_impl.h +++ /dev/null @@ -1,193 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013-2015 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_MODULE_RECOVERY_MAIN_H -#define SECP256K1_MODULE_RECOVERY_MAIN_H - -#include "include/secp256k1_recovery.h" - -static void secp256k1_ecdsa_recoverable_signature_load(const secp256k1_context* ctx, secp256k1_scalar* r, secp256k1_scalar* s, int* recid, const secp256k1_ecdsa_recoverable_signature* sig) { - (void)ctx; - if (sizeof(secp256k1_scalar) == 32) { - /* When the secp256k1_scalar type is exactly 32 byte, use its - * representation inside secp256k1_ecdsa_signature, as conversion is very fast. - * Note that secp256k1_ecdsa_signature_save must use the same representation. */ - memcpy(r, &sig->data[0], 32); - memcpy(s, &sig->data[32], 32); - } else { - secp256k1_scalar_set_b32(r, &sig->data[0], NULL); - secp256k1_scalar_set_b32(s, &sig->data[32], NULL); - } - *recid = sig->data[64]; -} - -static void secp256k1_ecdsa_recoverable_signature_save(secp256k1_ecdsa_recoverable_signature* sig, const secp256k1_scalar* r, const secp256k1_scalar* s, int recid) { - if (sizeof(secp256k1_scalar) == 32) { - memcpy(&sig->data[0], r, 32); - memcpy(&sig->data[32], s, 32); - } else { - secp256k1_scalar_get_b32(&sig->data[0], r); - secp256k1_scalar_get_b32(&sig->data[32], s); - } - sig->data[64] = recid; -} - -int secp256k1_ecdsa_recoverable_signature_parse_compact(const secp256k1_context* ctx, secp256k1_ecdsa_recoverable_signature* sig, const unsigned char *input64, int recid) { - secp256k1_scalar r, s; - int ret = 1; - int overflow = 0; - - (void)ctx; - ARG_CHECK(sig != NULL); - ARG_CHECK(input64 != NULL); - ARG_CHECK(recid >= 0 && recid <= 3); - - secp256k1_scalar_set_b32(&r, &input64[0], &overflow); - ret &= !overflow; - secp256k1_scalar_set_b32(&s, &input64[32], &overflow); - ret &= !overflow; - if (ret) { - secp256k1_ecdsa_recoverable_signature_save(sig, &r, &s, recid); - } else { - memset(sig, 0, sizeof(*sig)); - } - return ret; -} - -int secp256k1_ecdsa_recoverable_signature_serialize_compact(const secp256k1_context* ctx, unsigned char *output64, int *recid, const secp256k1_ecdsa_recoverable_signature* sig) { - secp256k1_scalar r, s; - - (void)ctx; - ARG_CHECK(output64 != NULL); - ARG_CHECK(sig != NULL); - ARG_CHECK(recid != NULL); - - secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, recid, sig); - secp256k1_scalar_get_b32(&output64[0], &r); - secp256k1_scalar_get_b32(&output64[32], &s); - return 1; -} - -int secp256k1_ecdsa_recoverable_signature_convert(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const secp256k1_ecdsa_recoverable_signature* sigin) { - secp256k1_scalar r, s; - int recid; - - (void)ctx; - ARG_CHECK(sig != NULL); - ARG_CHECK(sigin != NULL); - - secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, &recid, sigin); - secp256k1_ecdsa_signature_save(sig, &r, &s); - return 1; -} - -static int secp256k1_ecdsa_sig_recover(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar* sigs, secp256k1_ge *pubkey, const secp256k1_scalar *message, int recid) { - unsigned char brx[32]; - secp256k1_fe fx; - secp256k1_ge x; - secp256k1_gej xj; - secp256k1_scalar rn, u1, u2; - secp256k1_gej qj; - int r; - - if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) { - return 0; - } - - secp256k1_scalar_get_b32(brx, sigr); - r = secp256k1_fe_set_b32(&fx, brx); - (void)r; - VERIFY_CHECK(r); /* brx comes from a scalar, so is less than the order; certainly less than p */ - if (recid & 2) { - if (secp256k1_fe_cmp_var(&fx, &secp256k1_ecdsa_const_p_minus_order) >= 0) { - return 0; - } - secp256k1_fe_add(&fx, &secp256k1_ecdsa_const_order_as_fe); - } - if (!secp256k1_ge_set_xo_var(&x, &fx, recid & 1)) { - return 0; - } - secp256k1_gej_set_ge(&xj, &x); - secp256k1_scalar_inverse_var(&rn, sigr); - secp256k1_scalar_mul(&u1, &rn, message); - secp256k1_scalar_negate(&u1, &u1); - secp256k1_scalar_mul(&u2, &rn, sigs); - secp256k1_ecmult(ctx, &qj, &xj, &u2, &u1); - secp256k1_ge_set_gej_var(pubkey, &qj); - return !secp256k1_gej_is_infinity(&qj); -} - -int secp256k1_ecdsa_sign_recoverable(const secp256k1_context* ctx, secp256k1_ecdsa_recoverable_signature *signature, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) { - secp256k1_scalar r, s; - secp256k1_scalar sec, non, msg; - int recid; - int ret = 0; - int overflow = 0; - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); - ARG_CHECK(msg32 != NULL); - ARG_CHECK(signature != NULL); - ARG_CHECK(seckey != NULL); - if (noncefp == NULL) { - noncefp = secp256k1_nonce_function_default; - } - - secp256k1_scalar_set_b32(&sec, seckey, &overflow); - /* Fail if the secret key is invalid. */ - if (!overflow && !secp256k1_scalar_is_zero(&sec)) { - unsigned char nonce32[32]; - unsigned int count = 0; - secp256k1_scalar_set_b32(&msg, msg32, NULL); - while (1) { - ret = noncefp(nonce32, msg32, seckey, NULL, (void*)noncedata, count); - if (!ret) { - break; - } - secp256k1_scalar_set_b32(&non, nonce32, &overflow); - if (!secp256k1_scalar_is_zero(&non) && !overflow) { - if (secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, &r, &s, &sec, &msg, &non, &recid)) { - break; - } - } - count++; - } - memset(nonce32, 0, 32); - secp256k1_scalar_clear(&msg); - secp256k1_scalar_clear(&non); - secp256k1_scalar_clear(&sec); - } - if (ret) { - secp256k1_ecdsa_recoverable_signature_save(signature, &r, &s, recid); - } else { - memset(signature, 0, sizeof(*signature)); - } - return ret; -} - -int secp256k1_ecdsa_recover(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const secp256k1_ecdsa_recoverable_signature *signature, const unsigned char *msg32) { - secp256k1_ge q; - secp256k1_scalar r, s; - secp256k1_scalar m; - int recid; - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); - ARG_CHECK(msg32 != NULL); - ARG_CHECK(signature != NULL); - ARG_CHECK(pubkey != NULL); - - secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, &recid, signature); - VERIFY_CHECK(recid >= 0 && recid < 4); /* should have been caught in parse_compact */ - secp256k1_scalar_set_b32(&m, msg32, NULL); - if (secp256k1_ecdsa_sig_recover(&ctx->ecmult_ctx, &r, &s, &q, &m, recid)) { - secp256k1_pubkey_save(pubkey, &q); - return 1; - } else { - memset(pubkey, 0, sizeof(*pubkey)); - return 0; - } -} - -#endif /* SECP256K1_MODULE_RECOVERY_MAIN_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/recovery/tests_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/recovery/tests_impl.h deleted file mode 100644 index 5c9bbe8..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/recovery/tests_impl.h +++ /dev/null @@ -1,393 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013-2015 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_MODULE_RECOVERY_TESTS_H -#define SECP256K1_MODULE_RECOVERY_TESTS_H - -static int recovery_test_nonce_function(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) { - (void) msg32; - (void) key32; - (void) algo16; - (void) data; - - /* On the first run, return 0 to force a second run */ - if (counter == 0) { - memset(nonce32, 0, 32); - return 1; - } - /* On the second run, return an overflow to force a third run */ - if (counter == 1) { - memset(nonce32, 0xff, 32); - return 1; - } - /* On the next run, return a valid nonce, but flip a coin as to whether or not to fail signing. */ - memset(nonce32, 1, 32); - return secp256k1_rand_bits(1); -} - -void test_ecdsa_recovery_api(void) { - /* Setup contexts that just count errors */ - secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE); - secp256k1_context *sign = secp256k1_context_create(SECP256K1_CONTEXT_SIGN); - secp256k1_context *vrfy = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY); - secp256k1_context *both = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); - secp256k1_pubkey pubkey; - secp256k1_pubkey recpubkey; - secp256k1_ecdsa_signature normal_sig; - secp256k1_ecdsa_recoverable_signature recsig; - unsigned char privkey[32] = { 1 }; - unsigned char message[32] = { 2 }; - int32_t ecount = 0; - int recid = 0; - unsigned char sig[74]; - unsigned char zero_privkey[32] = { 0 }; - unsigned char over_privkey[32] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; - - secp256k1_context_set_error_callback(none, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_error_callback(sign, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_error_callback(vrfy, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_error_callback(both, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_illegal_callback(none, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_illegal_callback(sign, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_illegal_callback(vrfy, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_illegal_callback(both, counting_illegal_callback_fn, &ecount); - - /* Construct and verify corresponding public key. */ - CHECK(secp256k1_ec_seckey_verify(ctx, privkey) == 1); - CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, privkey) == 1); - - /* Check bad contexts and NULLs for signing */ - ecount = 0; - CHECK(secp256k1_ecdsa_sign_recoverable(none, &recsig, message, privkey, NULL, NULL) == 0); - CHECK(ecount == 1); - CHECK(secp256k1_ecdsa_sign_recoverable(sign, &recsig, message, privkey, NULL, NULL) == 1); - CHECK(ecount == 1); - CHECK(secp256k1_ecdsa_sign_recoverable(vrfy, &recsig, message, privkey, NULL, NULL) == 0); - CHECK(ecount == 2); - CHECK(secp256k1_ecdsa_sign_recoverable(both, &recsig, message, privkey, NULL, NULL) == 1); - CHECK(ecount == 2); - CHECK(secp256k1_ecdsa_sign_recoverable(both, NULL, message, privkey, NULL, NULL) == 0); - CHECK(ecount == 3); - CHECK(secp256k1_ecdsa_sign_recoverable(both, &recsig, NULL, privkey, NULL, NULL) == 0); - CHECK(ecount == 4); - CHECK(secp256k1_ecdsa_sign_recoverable(both, &recsig, message, NULL, NULL, NULL) == 0); - CHECK(ecount == 5); - /* This will fail or succeed randomly, and in either case will not ARG_CHECK failure */ - secp256k1_ecdsa_sign_recoverable(both, &recsig, message, privkey, recovery_test_nonce_function, NULL); - CHECK(ecount == 5); - /* These will all fail, but not in ARG_CHECK way */ - CHECK(secp256k1_ecdsa_sign_recoverable(both, &recsig, message, zero_privkey, NULL, NULL) == 0); - CHECK(secp256k1_ecdsa_sign_recoverable(both, &recsig, message, over_privkey, NULL, NULL) == 0); - /* This one will succeed. */ - CHECK(secp256k1_ecdsa_sign_recoverable(both, &recsig, message, privkey, NULL, NULL) == 1); - CHECK(ecount == 5); - - /* Check signing with a goofy nonce function */ - - /* Check bad contexts and NULLs for recovery */ - ecount = 0; - CHECK(secp256k1_ecdsa_recover(none, &recpubkey, &recsig, message) == 0); - CHECK(ecount == 1); - CHECK(secp256k1_ecdsa_recover(sign, &recpubkey, &recsig, message) == 0); - CHECK(ecount == 2); - CHECK(secp256k1_ecdsa_recover(vrfy, &recpubkey, &recsig, message) == 1); - CHECK(ecount == 2); - CHECK(secp256k1_ecdsa_recover(both, &recpubkey, &recsig, message) == 1); - CHECK(ecount == 2); - CHECK(secp256k1_ecdsa_recover(both, NULL, &recsig, message) == 0); - CHECK(ecount == 3); - CHECK(secp256k1_ecdsa_recover(both, &recpubkey, NULL, message) == 0); - CHECK(ecount == 4); - CHECK(secp256k1_ecdsa_recover(both, &recpubkey, &recsig, NULL) == 0); - CHECK(ecount == 5); - - /* Check NULLs for conversion */ - CHECK(secp256k1_ecdsa_sign(both, &normal_sig, message, privkey, NULL, NULL) == 1); - ecount = 0; - CHECK(secp256k1_ecdsa_recoverable_signature_convert(both, NULL, &recsig) == 0); - CHECK(ecount == 1); - CHECK(secp256k1_ecdsa_recoverable_signature_convert(both, &normal_sig, NULL) == 0); - CHECK(ecount == 2); - CHECK(secp256k1_ecdsa_recoverable_signature_convert(both, &normal_sig, &recsig) == 1); - - /* Check NULLs for de/serialization */ - CHECK(secp256k1_ecdsa_sign_recoverable(both, &recsig, message, privkey, NULL, NULL) == 1); - ecount = 0; - CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(both, NULL, &recid, &recsig) == 0); - CHECK(ecount == 1); - CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(both, sig, NULL, &recsig) == 0); - CHECK(ecount == 2); - CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(both, sig, &recid, NULL) == 0); - CHECK(ecount == 3); - CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(both, sig, &recid, &recsig) == 1); - - CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(both, NULL, sig, recid) == 0); - CHECK(ecount == 4); - CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(both, &recsig, NULL, recid) == 0); - CHECK(ecount == 5); - CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(both, &recsig, sig, -1) == 0); - CHECK(ecount == 6); - CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(both, &recsig, sig, 5) == 0); - CHECK(ecount == 7); - /* overflow in signature will fail but not affect ecount */ - memcpy(sig, over_privkey, 32); - CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(both, &recsig, sig, recid) == 0); - CHECK(ecount == 7); - - /* cleanup */ - secp256k1_context_destroy(none); - secp256k1_context_destroy(sign); - secp256k1_context_destroy(vrfy); - secp256k1_context_destroy(both); -} - -void test_ecdsa_recovery_end_to_end(void) { - unsigned char extra[32] = {0x00}; - unsigned char privkey[32]; - unsigned char message[32]; - secp256k1_ecdsa_signature signature[5]; - secp256k1_ecdsa_recoverable_signature rsignature[5]; - unsigned char sig[74]; - secp256k1_pubkey pubkey; - secp256k1_pubkey recpubkey; - int recid = 0; - - /* Generate a random key and message. */ - { - secp256k1_scalar msg, key; - random_scalar_order_test(&msg); - random_scalar_order_test(&key); - secp256k1_scalar_get_b32(privkey, &key); - secp256k1_scalar_get_b32(message, &msg); - } - - /* Construct and verify corresponding public key. */ - CHECK(secp256k1_ec_seckey_verify(ctx, privkey) == 1); - CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, privkey) == 1); - - /* Serialize/parse compact and verify/recover. */ - extra[0] = 0; - CHECK(secp256k1_ecdsa_sign_recoverable(ctx, &rsignature[0], message, privkey, NULL, NULL) == 1); - CHECK(secp256k1_ecdsa_sign(ctx, &signature[0], message, privkey, NULL, NULL) == 1); - CHECK(secp256k1_ecdsa_sign_recoverable(ctx, &rsignature[4], message, privkey, NULL, NULL) == 1); - CHECK(secp256k1_ecdsa_sign_recoverable(ctx, &rsignature[1], message, privkey, NULL, extra) == 1); - extra[31] = 1; - CHECK(secp256k1_ecdsa_sign_recoverable(ctx, &rsignature[2], message, privkey, NULL, extra) == 1); - extra[31] = 0; - extra[0] = 1; - CHECK(secp256k1_ecdsa_sign_recoverable(ctx, &rsignature[3], message, privkey, NULL, extra) == 1); - CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(ctx, sig, &recid, &rsignature[4]) == 1); - CHECK(secp256k1_ecdsa_recoverable_signature_convert(ctx, &signature[4], &rsignature[4]) == 1); - CHECK(memcmp(&signature[4], &signature[0], 64) == 0); - CHECK(secp256k1_ecdsa_verify(ctx, &signature[4], message, &pubkey) == 1); - memset(&rsignature[4], 0, sizeof(rsignature[4])); - CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsignature[4], sig, recid) == 1); - CHECK(secp256k1_ecdsa_recoverable_signature_convert(ctx, &signature[4], &rsignature[4]) == 1); - CHECK(secp256k1_ecdsa_verify(ctx, &signature[4], message, &pubkey) == 1); - /* Parse compact (with recovery id) and recover. */ - CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsignature[4], sig, recid) == 1); - CHECK(secp256k1_ecdsa_recover(ctx, &recpubkey, &rsignature[4], message) == 1); - CHECK(memcmp(&pubkey, &recpubkey, sizeof(pubkey)) == 0); - /* Serialize/destroy/parse signature and verify again. */ - CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(ctx, sig, &recid, &rsignature[4]) == 1); - sig[secp256k1_rand_bits(6)] += 1 + secp256k1_rand_int(255); - CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsignature[4], sig, recid) == 1); - CHECK(secp256k1_ecdsa_recoverable_signature_convert(ctx, &signature[4], &rsignature[4]) == 1); - CHECK(secp256k1_ecdsa_verify(ctx, &signature[4], message, &pubkey) == 0); - /* Recover again */ - CHECK(secp256k1_ecdsa_recover(ctx, &recpubkey, &rsignature[4], message) == 0 || - memcmp(&pubkey, &recpubkey, sizeof(pubkey)) != 0); -} - -/* Tests several edge cases. */ -void test_ecdsa_recovery_edge_cases(void) { - const unsigned char msg32[32] = { - 'T', 'h', 'i', 's', ' ', 'i', 's', ' ', - 'a', ' ', 'v', 'e', 'r', 'y', ' ', 's', - 'e', 'c', 'r', 'e', 't', ' ', 'm', 'e', - 's', 's', 'a', 'g', 'e', '.', '.', '.' - }; - const unsigned char sig64[64] = { - /* Generated by signing the above message with nonce 'This is the nonce we will use...' - * and secret key 0 (which is not valid), resulting in recid 0. */ - 0x67, 0xCB, 0x28, 0x5F, 0x9C, 0xD1, 0x94, 0xE8, - 0x40, 0xD6, 0x29, 0x39, 0x7A, 0xF5, 0x56, 0x96, - 0x62, 0xFD, 0xE4, 0x46, 0x49, 0x99, 0x59, 0x63, - 0x17, 0x9A, 0x7D, 0xD1, 0x7B, 0xD2, 0x35, 0x32, - 0x4B, 0x1B, 0x7D, 0xF3, 0x4C, 0xE1, 0xF6, 0x8E, - 0x69, 0x4F, 0xF6, 0xF1, 0x1A, 0xC7, 0x51, 0xDD, - 0x7D, 0xD7, 0x3E, 0x38, 0x7E, 0xE4, 0xFC, 0x86, - 0x6E, 0x1B, 0xE8, 0xEC, 0xC7, 0xDD, 0x95, 0x57 - }; - secp256k1_pubkey pubkey; - /* signature (r,s) = (4,4), which can be recovered with all 4 recids. */ - const unsigned char sigb64[64] = { - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, - }; - secp256k1_pubkey pubkeyb; - secp256k1_ecdsa_recoverable_signature rsig; - secp256k1_ecdsa_signature sig; - int recid; - - CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sig64, 0)); - CHECK(!secp256k1_ecdsa_recover(ctx, &pubkey, &rsig, msg32)); - CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sig64, 1)); - CHECK(secp256k1_ecdsa_recover(ctx, &pubkey, &rsig, msg32)); - CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sig64, 2)); - CHECK(!secp256k1_ecdsa_recover(ctx, &pubkey, &rsig, msg32)); - CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sig64, 3)); - CHECK(!secp256k1_ecdsa_recover(ctx, &pubkey, &rsig, msg32)); - - for (recid = 0; recid < 4; recid++) { - int i; - int recid2; - /* (4,4) encoded in DER. */ - unsigned char sigbder[8] = {0x30, 0x06, 0x02, 0x01, 0x04, 0x02, 0x01, 0x04}; - unsigned char sigcder_zr[7] = {0x30, 0x05, 0x02, 0x00, 0x02, 0x01, 0x01}; - unsigned char sigcder_zs[7] = {0x30, 0x05, 0x02, 0x01, 0x01, 0x02, 0x00}; - unsigned char sigbderalt1[39] = { - 0x30, 0x25, 0x02, 0x20, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x04, 0x02, 0x01, 0x04, - }; - unsigned char sigbderalt2[39] = { - 0x30, 0x25, 0x02, 0x01, 0x04, 0x02, 0x20, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, - }; - unsigned char sigbderalt3[40] = { - 0x30, 0x26, 0x02, 0x21, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x04, 0x02, 0x01, 0x04, - }; - unsigned char sigbderalt4[40] = { - 0x30, 0x26, 0x02, 0x01, 0x04, 0x02, 0x21, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, - }; - /* (order + r,4) encoded in DER. */ - unsigned char sigbderlong[40] = { - 0x30, 0x26, 0x02, 0x21, 0x00, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xBA, 0xAE, 0xDC, - 0xE6, 0xAF, 0x48, 0xA0, 0x3B, 0xBF, 0xD2, 0x5E, - 0x8C, 0xD0, 0x36, 0x41, 0x45, 0x02, 0x01, 0x04 - }; - CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sigb64, recid) == 1); - CHECK(secp256k1_ecdsa_recover(ctx, &pubkeyb, &rsig, msg32) == 1); - CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbder, sizeof(sigbder)) == 1); - CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 1); - for (recid2 = 0; recid2 < 4; recid2++) { - secp256k1_pubkey pubkey2b; - CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sigb64, recid2) == 1); - CHECK(secp256k1_ecdsa_recover(ctx, &pubkey2b, &rsig, msg32) == 1); - /* Verifying with (order + r,4) should always fail. */ - CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderlong, sizeof(sigbderlong)) == 1); - CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 0); - } - /* DER parsing tests. */ - /* Zero length r/s. */ - CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder_zr, sizeof(sigcder_zr)) == 0); - CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder_zs, sizeof(sigcder_zs)) == 0); - /* Leading zeros. */ - CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt1, sizeof(sigbderalt1)) == 0); - CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt2, sizeof(sigbderalt2)) == 0); - CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt3, sizeof(sigbderalt3)) == 0); - CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt4, sizeof(sigbderalt4)) == 0); - sigbderalt3[4] = 1; - CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt3, sizeof(sigbderalt3)) == 1); - CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 0); - sigbderalt4[7] = 1; - CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt4, sizeof(sigbderalt4)) == 1); - CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 0); - /* Damage signature. */ - sigbder[7]++; - CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbder, sizeof(sigbder)) == 1); - CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 0); - sigbder[7]--; - CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbder, 6) == 0); - CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbder, sizeof(sigbder) - 1) == 0); - for(i = 0; i < 8; i++) { - int c; - unsigned char orig = sigbder[i]; - /*Try every single-byte change.*/ - for (c = 0; c < 256; c++) { - if (c == orig ) { - continue; - } - sigbder[i] = c; - CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbder, sizeof(sigbder)) == 0 || secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 0); - } - sigbder[i] = orig; - } - } - - /* Test r/s equal to zero */ - { - /* (1,1) encoded in DER. */ - unsigned char sigcder[8] = {0x30, 0x06, 0x02, 0x01, 0x01, 0x02, 0x01, 0x01}; - unsigned char sigc64[64] = { - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, - }; - secp256k1_pubkey pubkeyc; - CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sigc64, 0) == 1); - CHECK(secp256k1_ecdsa_recover(ctx, &pubkeyc, &rsig, msg32) == 1); - CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder, sizeof(sigcder)) == 1); - CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyc) == 1); - sigcder[4] = 0; - sigc64[31] = 0; - CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sigc64, 0) == 1); - CHECK(secp256k1_ecdsa_recover(ctx, &pubkeyb, &rsig, msg32) == 0); - CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder, sizeof(sigcder)) == 1); - CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyc) == 0); - sigcder[4] = 1; - sigcder[7] = 0; - sigc64[31] = 1; - sigc64[63] = 0; - CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sigc64, 0) == 1); - CHECK(secp256k1_ecdsa_recover(ctx, &pubkeyb, &rsig, msg32) == 0); - CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder, sizeof(sigcder)) == 1); - CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyc) == 0); - } -} - -void run_recovery_tests(void) { - int i; - for (i = 0; i < count; i++) { - test_ecdsa_recovery_api(); - } - for (i = 0; i < 64*count; i++) { - test_ecdsa_recovery_end_to_end(); - } - test_ecdsa_recovery_edge_cases(); -} - -#endif /* SECP256K1_MODULE_RECOVERY_TESTS_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/surjection/Makefile.am.include b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/surjection/Makefile.am.include deleted file mode 100644 index 51ece21..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/surjection/Makefile.am.include +++ /dev/null @@ -1,6 +0,0 @@ -include_HEADERS += include/secp256k1_surjectionproof.h -noinst_HEADERS += src/modules/surjection/main_impl.h -noinst_HEADERS += src/modules/surjection/surjection.h -noinst_HEADERS += src/modules/surjection/surjection_impl.h -noinst_HEADERS += src/modules/surjection/tests_impl.h - diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/surjection/main_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/surjection/main_impl.h deleted file mode 100644 index c67d4c0..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/surjection/main_impl.h +++ /dev/null @@ -1,338 +0,0 @@ -/********************************************************************** - * Copyright (c) 2016 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ -#ifndef SECP256K1_MODULE_SURJECTION_MAIN -#define SECP256K1_MODULE_SURJECTION_MAIN - -#include -#include - -#include "modules/rangeproof/borromean.h" -#include "modules/surjection/surjection_impl.h" -#include "hash.h" -#include "include/secp256k1_rangeproof.h" -#include "include/secp256k1_surjectionproof.h" - -static size_t secp256k1_count_bits_set(const unsigned char* data, size_t count) { - size_t ret = 0; - size_t i; - for (i = 0; i < count; i++) { -#ifdef HAVE_BUILTIN_POPCOUNT - ret += __builtin_popcount(data[i]); -#else - ret += !!(data[i] & 0x1); - ret += !!(data[i] & 0x2); - ret += !!(data[i] & 0x4); - ret += !!(data[i] & 0x8); - ret += !!(data[i] & 0x10); - ret += !!(data[i] & 0x20); - ret += !!(data[i] & 0x40); - ret += !!(data[i] & 0x80); -#endif - } - return ret; -} - -int secp256k1_surjectionproof_parse(const secp256k1_context* ctx, secp256k1_surjectionproof *proof, const unsigned char *input, size_t inputlen) { - size_t n_inputs; - size_t signature_len; - - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(proof != NULL); - ARG_CHECK(input != NULL); - (void) ctx; - - if (inputlen < 2) { - return 0; - } - n_inputs = ((size_t) (input[1] << 8)) + input[0]; - if (n_inputs > SECP256K1_SURJECTIONPROOF_MAX_N_INPUTS) { - return 0; - } - if (inputlen < 2 + (n_inputs + 7) / 8) { - return 0; - } - - signature_len = 32 * (1 + secp256k1_count_bits_set(&input[2], (n_inputs + 7) / 8)); - if (inputlen != 2 + (n_inputs + 7) / 8 + signature_len) { - return 0; - } - proof->n_inputs = n_inputs; - memcpy(proof->used_inputs, &input[2], (n_inputs + 7) / 8); - memcpy(proof->data, &input[2 + (n_inputs + 7) / 8], signature_len); - - return 1; -} - -int secp256k1_surjectionproof_serialize(const secp256k1_context* ctx, unsigned char *output, size_t *outputlen, const secp256k1_surjectionproof *proof) { - size_t signature_len; - size_t serialized_len; - - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(output != NULL); - ARG_CHECK(outputlen != NULL); - ARG_CHECK(proof != NULL); - (void) ctx; - - signature_len = 32 * (1 + secp256k1_count_bits_set(proof->used_inputs, (proof->n_inputs + 7) / 8)); - serialized_len = 2 + (proof->n_inputs + 7) / 8 + signature_len; - if (*outputlen < serialized_len) { - return 0; - } - - output[0] = proof->n_inputs % 0x100; - output[1] = proof->n_inputs / 0x100; - memcpy(&output[2], proof->used_inputs, (proof->n_inputs + 7) / 8); - memcpy(&output[2 + (proof->n_inputs + 7) / 8], proof->data, signature_len); - *outputlen = serialized_len; - - return 1; -} - -size_t secp256k1_surjectionproof_n_total_inputs(const secp256k1_context* ctx, const secp256k1_surjectionproof* proof) { - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(proof != NULL); - (void) ctx; - return proof->n_inputs; -} - -size_t secp256k1_surjectionproof_n_used_inputs(const secp256k1_context* ctx, const secp256k1_surjectionproof* proof) { - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(proof != NULL); - (void) ctx; - return secp256k1_count_bits_set(proof->used_inputs, (proof->n_inputs + 7) / 8); -} - -size_t secp256k1_surjectionproof_serialized_size(const secp256k1_context* ctx, const secp256k1_surjectionproof* proof) { - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(proof != NULL); - return 2 + (proof->n_inputs + 7) / 8 + 32 * (1 + secp256k1_surjectionproof_n_used_inputs(ctx, proof)); -} - -typedef struct { - unsigned char state[32]; - size_t state_i; -} secp256k1_surjectionproof_csprng; - -static void secp256k1_surjectionproof_csprng_init(secp256k1_surjectionproof_csprng *csprng, const unsigned char* state) { - memcpy(csprng->state, state, 32); - csprng->state_i = 0; -} - -static size_t secp256k1_surjectionproof_csprng_next(secp256k1_surjectionproof_csprng *csprng, size_t rand_max) { - /* The number of random bytes to read for each random sample */ - const size_t increment = rand_max > 256 ? 2 : 1; - /* The maximum value expressable by the number of random bytes we read */ - const size_t selection_range = rand_max > 256 ? 0xffff : 0xff; - /* The largest multiple of rand_max that fits within selection_range */ - const size_t limit = ((selection_range + 1) / rand_max) * rand_max; - - while (1) { - size_t val; - if (csprng->state_i + increment >= 32) { - secp256k1_sha256 sha; - secp256k1_sha256_initialize(&sha); - secp256k1_sha256_write(&sha, csprng->state, 32); - secp256k1_sha256_finalize(&sha, csprng->state); - csprng->state_i = 0; - } - val = csprng->state[csprng->state_i]; - if (increment > 1) { - val = (val << 8) + csprng->state[csprng->state_i + 1]; - } - csprng->state_i += increment; - /* Accept only values below our limit. Values equal to or above the limit are - * biased because they comprise only a subset of the range (0, rand_max - 1) */ - if (val < limit) { - return val % rand_max; - } - } -} - -int secp256k1_surjectionproof_initialize(const secp256k1_context* ctx, secp256k1_surjectionproof* proof, size_t *input_index, const secp256k1_fixed_asset_tag* fixed_input_tags, const size_t n_input_tags, const size_t n_input_tags_to_use, const secp256k1_fixed_asset_tag* fixed_output_tag, const size_t n_max_iterations, const unsigned char *random_seed32) { - secp256k1_surjectionproof_csprng csprng; - size_t n_iterations = 0; - - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(proof != NULL); - ARG_CHECK(input_index != NULL); - ARG_CHECK(fixed_input_tags != NULL); - ARG_CHECK(fixed_output_tag != NULL); - ARG_CHECK(random_seed32 != NULL); - ARG_CHECK(n_input_tags <= SECP256K1_SURJECTIONPROOF_MAX_N_INPUTS); - ARG_CHECK(n_input_tags_to_use <= n_input_tags); - (void) ctx; - - secp256k1_surjectionproof_csprng_init(&csprng, random_seed32); - memset(proof->data, 0, sizeof(proof->data)); - proof->n_inputs = n_input_tags; - - while (1) { - int has_output_tag = 0; - size_t i; - - /* obtain a random set of indices */ - memset(proof->used_inputs, 0, sizeof(proof->used_inputs)); - for (i = 0; i < n_input_tags_to_use; i++) { - while (1) { - size_t next_input_index; - next_input_index = secp256k1_surjectionproof_csprng_next(&csprng, n_input_tags); - if (memcmp(&fixed_input_tags[next_input_index], fixed_output_tag, sizeof(*fixed_output_tag)) == 0) { - *input_index = next_input_index; - has_output_tag = 1; - } - - if (!(proof->used_inputs[next_input_index / 8] & (1 << (next_input_index % 8)))) { - proof->used_inputs[next_input_index / 8] |= (1 << (next_input_index % 8)); - break; - } - } - } - - /* Check if we succeeded */ - n_iterations++; - if (has_output_tag) { -#ifdef VERIFY - proof->initialized = 1; -#endif - return n_iterations; - } - if (n_iterations >= n_max_iterations) { -#ifdef VERIFY - proof->initialized = 0; -#endif - return 0; - } - } -} - -int secp256k1_surjectionproof_generate(const secp256k1_context* ctx, secp256k1_surjectionproof* proof, const secp256k1_generator* ephemeral_input_tags, size_t n_ephemeral_input_tags, const secp256k1_generator* ephemeral_output_tag, size_t input_index, const unsigned char *input_blinding_key, const unsigned char *output_blinding_key) { - secp256k1_scalar blinding_key; - secp256k1_scalar tmps; - secp256k1_scalar nonce; - int overflow = 0; - size_t rsizes[1]; /* array needed for borromean sig API */ - size_t indices[1]; /* array needed for borromean sig API */ - size_t i; - size_t n_total_pubkeys; - size_t n_used_pubkeys; - size_t ring_input_index = 0; - secp256k1_gej ring_pubkeys[SECP256K1_SURJECTIONPROOF_MAX_N_INPUTS]; - secp256k1_scalar borromean_s[SECP256K1_SURJECTIONPROOF_MAX_N_INPUTS]; - secp256k1_ge inputs[SECP256K1_SURJECTIONPROOF_MAX_N_INPUTS]; - secp256k1_ge output; - unsigned char msg32[32]; - - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); - ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); - ARG_CHECK(proof != NULL); - ARG_CHECK(ephemeral_input_tags != NULL); - ARG_CHECK(ephemeral_output_tag != NULL); - ARG_CHECK(input_blinding_key != NULL); - ARG_CHECK(output_blinding_key != NULL); -#ifdef VERIFY - CHECK(proof->initialized == 1); -#endif - - /* Compute secret key */ - secp256k1_scalar_set_b32(&tmps, input_blinding_key, &overflow); - if (overflow) { - return 0; - } - secp256k1_scalar_set_b32(&blinding_key, output_blinding_key, &overflow); - if (overflow) { - return 0; - } - /* The only time the input may equal the output is if neither one was blinded in the first place, - * i.e. both blinding keys are zero. Otherwise this is a privacy leak. */ - if (secp256k1_scalar_eq(&tmps, &blinding_key) && !secp256k1_scalar_is_zero(&blinding_key)) { - return 0; - } - secp256k1_scalar_negate(&tmps, &tmps); - secp256k1_scalar_add(&blinding_key, &blinding_key, &tmps); - - /* Compute public keys */ - n_total_pubkeys = secp256k1_surjectionproof_n_total_inputs(ctx, proof); - n_used_pubkeys = secp256k1_surjectionproof_n_used_inputs(ctx, proof); - if (n_used_pubkeys > n_total_pubkeys || n_total_pubkeys != n_ephemeral_input_tags) { - return 0; - } - - secp256k1_generator_load(&output, ephemeral_output_tag); - for (i = 0; i < n_total_pubkeys; i++) { - secp256k1_generator_load(&inputs[i], &ephemeral_input_tags[i]); - } - - secp256k1_surjection_compute_public_keys(ring_pubkeys, n_used_pubkeys, inputs, n_total_pubkeys, proof->used_inputs, &output, input_index, &ring_input_index); - - /* Produce signature */ - rsizes[0] = (int) n_used_pubkeys; - indices[0] = (int) ring_input_index; - secp256k1_surjection_genmessage(msg32, inputs, n_total_pubkeys, &output); - if (secp256k1_surjection_genrand(borromean_s, n_used_pubkeys, &blinding_key) == 0) { - return 0; - } - /* Borromean sign will overwrite one of the s values we just generated, so use - * it as a nonce instead. This avoids extra random generation and also is an - * homage to the rangeproof code which does this very cleverly to encode messages. */ - nonce = borromean_s[ring_input_index]; - secp256k1_scalar_clear(&borromean_s[ring_input_index]); - if (secp256k1_borromean_sign(&ctx->ecmult_ctx, &ctx->ecmult_gen_ctx, &proof->data[0], borromean_s, ring_pubkeys, &nonce, &blinding_key, rsizes, indices, 1, msg32, 32) == 0) { - return 0; - } - for (i = 0; i < n_used_pubkeys; i++) { - secp256k1_scalar_get_b32(&proof->data[32 + 32 * i], &borromean_s[i]); - } - return 1; -} - -int secp256k1_surjectionproof_verify(const secp256k1_context* ctx, const secp256k1_surjectionproof* proof, const secp256k1_generator* ephemeral_input_tags, size_t n_ephemeral_input_tags, const secp256k1_generator* ephemeral_output_tag) { - size_t rsizes[1]; /* array needed for borromean sig API */ - size_t i; - size_t n_total_pubkeys; - size_t n_used_pubkeys; - secp256k1_gej ring_pubkeys[SECP256K1_SURJECTIONPROOF_MAX_N_INPUTS]; - secp256k1_scalar borromean_s[SECP256K1_SURJECTIONPROOF_MAX_N_INPUTS]; - secp256k1_ge inputs[SECP256K1_SURJECTIONPROOF_MAX_N_INPUTS]; - secp256k1_ge output; - unsigned char msg32[32]; - - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); - ARG_CHECK(proof != NULL); - ARG_CHECK(ephemeral_input_tags != NULL); - ARG_CHECK(ephemeral_output_tag != NULL); - - /* Compute public keys */ - n_total_pubkeys = secp256k1_surjectionproof_n_total_inputs(ctx, proof); - n_used_pubkeys = secp256k1_surjectionproof_n_used_inputs(ctx, proof); - if (n_used_pubkeys == 0 || n_used_pubkeys > n_total_pubkeys || n_total_pubkeys != n_ephemeral_input_tags) { - return 0; - } - - secp256k1_generator_load(&output, ephemeral_output_tag); - for (i = 0; i < n_total_pubkeys; i++) { - secp256k1_generator_load(&inputs[i], &ephemeral_input_tags[i]); - } - - if (secp256k1_surjection_compute_public_keys(ring_pubkeys, n_used_pubkeys, inputs, n_total_pubkeys, proof->used_inputs, &output, 0, NULL) == 0) { - return 0; - } - - /* Verify signature */ - rsizes[0] = (int) n_used_pubkeys; - for (i = 0; i < n_used_pubkeys; i++) { - int overflow = 0; - secp256k1_scalar_set_b32(&borromean_s[i], &proof->data[32 + 32 * i], &overflow); - if (overflow == 1) { - return 0; - } - } - secp256k1_surjection_genmessage(msg32, inputs, n_total_pubkeys, &output); - return secp256k1_borromean_verify(&ctx->ecmult_ctx, NULL, &proof->data[0], borromean_s, ring_pubkeys, rsizes, 1, msg32, 32); -} - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/surjection/surjection.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/surjection/surjection.h deleted file mode 100644 index 20ac493..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/surjection/surjection.h +++ /dev/null @@ -1,19 +0,0 @@ -/********************************************************************** - * Copyright (c) 2016 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef _SECP256K1_SURJECTION_H_ -#define _SECP256K1_SURJECTION_H_ - -#include "group.h" -#include "scalar.h" - -SECP256K1_INLINE static int secp256k1_surjection_genmessage(unsigned char *msg32, secp256k1_ge *ephemeral_input_tags, size_t n_input_tags, secp256k1_ge *ephemeral_output_tag); - -SECP256K1_INLINE static int secp256k1_surjection_genrand(secp256k1_scalar *s, size_t ns, const secp256k1_scalar *blinding_key); - -SECP256K1_INLINE static int secp256k1_surjection_compute_public_keys(secp256k1_gej *pubkeys, size_t n_pubkeys, const secp256k1_ge *input_tags, size_t n_input_tags, const unsigned char *used_tags, const secp256k1_ge *output_tag, size_t input_index, size_t *ring_input_index); - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/surjection/surjection.md b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/surjection/surjection.md deleted file mode 100644 index e7bd4db..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/surjection/surjection.md +++ /dev/null @@ -1,108 +0,0 @@ -Surjection Proof Module -=========================== - -This module implements a scheme by which a given point can be proven to be -equal to one of a set of points, plus a known difference. This is used in -Confidential Assets when reblinding "asset commitments", which are NUMS -points, to prove that the underlying NUMS point does not change during -reblinding. - -Assets are represented, in general, by a 32-byte seed (a hash of some -transaction data) which is hashed to form a NUMS generator, which appears -on the blockchain only in blinded form. We refer to the seed as an -"asset ID" and the blinded generator as an "(ephemeral) asset commitment". -These asset commitments are unique per-output, and their NUMS components -are in general known only to the holder of the output. - -The result is that within a transaction, all outputs are able to have -a new uniformly-random asset commitment which cannot be associated with -any individual input asset id, but verifiers are nonetheless assured that -all assets coming out of a transaction are ones that went in. - -### Terminology - -Assets are identified by a 32-byte "asset ID". In this library these IDs -are used as input to a point-valued hash function `H`. We usually refer -to the hash output as `A`, since this output is the only thing that appears -in the algebra. - -Then transaction outputs have "asset commitments", which are curvepoints -of the form `A + rG`, where `A` is the hash of the asset ID and `r` is -some random "blinding factor". - -### Design Rationale - -Confidential Assets essentially works by replacing the second NUMS generator -`H` in Confidental Transactions with a per-asset unique NUMS generator. This -allows the same verification equation (the sum of all blinded inputs must -equal the sum of all blinded outputs) to imply that quantity of *every* asset -type is preserved in each transaction. - -It turns out that even if outputs are reblinded by the addition of `rG` for -some known `r`, this verification equation has the same meaning, with one -caveat: verifiers must be assured that the reblinding preserves the original -generators (and does not, for example, negate them). - -This assurance is what surjection proofs provide. - -### Limitations - -The naive scheme works as follows: every output asset is shown to have come -from some input asset. However, the proofs scale with the number of input -assets, so for all outputs the total size of all surjection proofs is `O(mn)` -for `m`, `n` the number of inputs and outputs. - -We therefore restrict the number of inputs that each output may have come -from to 3 (well, some fixed number, which is passed into the API), which -provides a weaker form of blinding, but gives `O(n)` scaling. Over many -transactions, the privacy afforded by this increases exponentially. - -### Our Scheme - -Our scheme works as follows. Proofs are generated in two steps, "initialization" -which selects a subset of inputs and "generation" which does the mathematical -part of proof generation. - -Every input has an asset commitment for which we know the blinding key and -underlying asset ID. - -#### Initialization - -The initialization function takes a list of input asset IDs and one output -asset ID. It chooses an input subset of some fixed size repeatedly until it -the output ID appears at least once in its subset. - -It stores a bitmap representing this subset in the proof object and returns -the number of iterations it needed to choose the subset. The reciprocal of -this represents the probability that a uniformly random input-output -mapping would correspond to the actual input-output mapping, and therefore -gives a measure of privacy. (Lower iteration counts are better.) - -It also informs the caller the index of the input whose ID matches the output. - -As the API works on only a single output at a time, the total probability -should be computed by multiplying together the counts for each output. - -#### Generation - -The generation function takes a list of input asset commitments, an output -asset commitment, the input index returned by the initialization step, and -blinding keys for (a) the output commitment, (b) the input commitment. Here -"the input commitment" refers specifically to the input whose index was -chosen during initialization. - -Next, it computes a ring signature over the differences between the output -commitment and every input commitment chosen during initialization. Since -the discrete log of one of these is the difference between the output and -input blinding keys, it is possible to create a ring signature over every -differences will be the blinding factor of the output. We create such a -signature, which completes the proof. - -#### Verification - -Verification takes a surjection proof object, a list of input commitments, -and an output commitment. The proof object contains a ring signature and -a bitmap describing which input commitments to use, and verification -succeeds iff the signature verifies. - - diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/surjection/surjection_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/surjection/surjection_impl.h deleted file mode 100644 index f58026d..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/surjection/surjection_impl.h +++ /dev/null @@ -1,86 +0,0 @@ -/********************************************************************** - * Copyright (c) 2016 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef _SECP256K1_SURJECTION_IMPL_H_ -#define _SECP256K1_SURJECTION_IMPL_H_ - -#include -#include - -#include "eckey.h" -#include "group.h" -#include "scalar.h" -#include "hash.h" - -SECP256K1_INLINE static void secp256k1_surjection_genmessage(unsigned char *msg32, secp256k1_ge *ephemeral_input_tags, size_t n_input_tags, secp256k1_ge *ephemeral_output_tag) { - /* compute message */ - size_t i; - unsigned char pk_ser[33]; - size_t pk_len = sizeof(pk_ser); - secp256k1_sha256 sha256_en; - - secp256k1_sha256_initialize(&sha256_en); - for (i = 0; i < n_input_tags; i++) { - secp256k1_eckey_pubkey_serialize(&ephemeral_input_tags[i], pk_ser, &pk_len, 1); - assert(pk_len == sizeof(pk_ser)); - secp256k1_sha256_write(&sha256_en, pk_ser, pk_len); - } - secp256k1_eckey_pubkey_serialize(ephemeral_output_tag, pk_ser, &pk_len, 1); - assert(pk_len == sizeof(pk_ser)); - secp256k1_sha256_write(&sha256_en, pk_ser, pk_len); - secp256k1_sha256_finalize(&sha256_en, msg32); -} - -SECP256K1_INLINE static int secp256k1_surjection_genrand(secp256k1_scalar *s, size_t ns, const secp256k1_scalar *blinding_key) { - size_t i; - unsigned char sec_input[36]; - secp256k1_sha256 sha256_en; - - /* compute s values */ - secp256k1_scalar_get_b32(&sec_input[4], blinding_key); - for (i = 0; i < ns; i++) { - int overflow = 0; - sec_input[0] = i; - sec_input[1] = i >> 8; - sec_input[2] = i >> 16; - sec_input[3] = i >> 24; - - secp256k1_sha256_initialize(&sha256_en); - secp256k1_sha256_write(&sha256_en, sec_input, 36); - secp256k1_sha256_finalize(&sha256_en, sec_input); - secp256k1_scalar_set_b32(&s[i], sec_input, &overflow); - if (overflow == 1) { - memset(sec_input, 0, 32); - return 0; - } - } - memset(sec_input, 0, 32); - return 1; -} - -SECP256K1_INLINE static int secp256k1_surjection_compute_public_keys(secp256k1_gej *pubkeys, size_t n_pubkeys, const secp256k1_ge *input_tags, size_t n_input_tags, const unsigned char *used_tags, const secp256k1_ge *output_tag, size_t input_index, size_t *ring_input_index) { - size_t i; - size_t j = 0; - for (i = 0; i < n_input_tags; i++) { - if (used_tags[i / 8] & (1 << (i % 8))) { - secp256k1_ge tmpge; - secp256k1_ge_neg(&tmpge, &input_tags[i]); - secp256k1_gej_set_ge(&pubkeys[j], &tmpge); - secp256k1_gej_add_ge_var(&pubkeys[j], &pubkeys[j], output_tag, NULL); - if (ring_input_index != NULL && input_index == i) { - *ring_input_index = j; - } - j++; - if (j > n_pubkeys) { - return 0; - } - } - } - return 1; -} - - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/surjection/tests_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/surjection/tests_impl.h deleted file mode 100644 index a0856e2..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/surjection/tests_impl.h +++ /dev/null @@ -1,494 +0,0 @@ -/********************************************************************** - * Copyright (c) 2016 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_MODULE_SURJECTIONPROOF_TESTS -#define SECP256K1_MODULE_SURJECTIONPROOF_TESTS - -#include "testrand.h" -#include "group.h" -#include "include/secp256k1_generator.h" -#include "include/secp256k1_rangeproof.h" -#include "include/secp256k1_surjectionproof.h" - -static void test_surjectionproof_api(void) { - unsigned char seed[32]; - secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE); - secp256k1_context *sign = secp256k1_context_create(SECP256K1_CONTEXT_SIGN); - secp256k1_context *vrfy = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY); - secp256k1_context *both = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); - secp256k1_fixed_asset_tag fixed_input_tags[10]; - secp256k1_fixed_asset_tag fixed_output_tag; - secp256k1_generator ephemeral_input_tags[10]; - secp256k1_generator ephemeral_output_tag; - unsigned char input_blinding_key[10][32]; - unsigned char output_blinding_key[32]; - unsigned char serialized_proof[SECP256K1_SURJECTIONPROOF_SERIALIZATION_BYTES_MAX]; - size_t serialized_len; - secp256k1_surjectionproof proof; - size_t n_inputs = sizeof(fixed_input_tags) / sizeof(fixed_input_tags[0]); - size_t input_index; - int32_t ecount = 0; - size_t i; - - secp256k1_rand256(seed); - secp256k1_context_set_error_callback(none, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_error_callback(sign, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_error_callback(vrfy, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_error_callback(both, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_illegal_callback(none, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_illegal_callback(sign, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_illegal_callback(vrfy, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_illegal_callback(both, counting_illegal_callback_fn, &ecount); - - for (i = 0; i < n_inputs; i++) { - secp256k1_rand256(input_blinding_key[i]); - secp256k1_rand256(fixed_input_tags[i].data); - CHECK(secp256k1_generator_generate_blinded(ctx, &ephemeral_input_tags[i], fixed_input_tags[i].data, input_blinding_key[i])); - } - secp256k1_rand256(output_blinding_key); - memcpy(&fixed_output_tag, &fixed_input_tags[0], sizeof(fixed_input_tags[0])); - CHECK(secp256k1_generator_generate_blinded(ctx, &ephemeral_output_tag, fixed_output_tag.data, output_blinding_key)); - - /* check initialize */ - CHECK(secp256k1_surjectionproof_initialize(none, &proof, &input_index, fixed_input_tags, n_inputs, 0, &fixed_input_tags[0], 100, seed) == 0); - CHECK(ecount == 0); - CHECK(secp256k1_surjectionproof_initialize(none, &proof, &input_index, fixed_input_tags, n_inputs, 3, &fixed_input_tags[0], 100, seed) != 0); - CHECK(ecount == 0); - CHECK(secp256k1_surjectionproof_initialize(none, NULL, &input_index, fixed_input_tags, n_inputs, 3, &fixed_input_tags[0], 100, seed) == 0); - CHECK(ecount == 1); - CHECK(secp256k1_surjectionproof_initialize(none, &proof, NULL, fixed_input_tags, n_inputs, 3, &fixed_input_tags[0], 100, seed) == 0); - CHECK(ecount == 2); - CHECK(secp256k1_surjectionproof_initialize(none, &proof, &input_index, NULL, n_inputs, 3, &fixed_input_tags[0], 100, seed) == 0); - CHECK(ecount == 3); - CHECK(secp256k1_surjectionproof_initialize(none, &proof, &input_index, fixed_input_tags, SECP256K1_SURJECTIONPROOF_MAX_N_INPUTS + 1, 3, &fixed_input_tags[0], 100, seed) == 0); - CHECK(ecount == 4); - CHECK(secp256k1_surjectionproof_initialize(none, &proof, &input_index, fixed_input_tags, n_inputs, n_inputs, &fixed_input_tags[0], 100, seed) != 0); - CHECK(ecount == 4); - CHECK(secp256k1_surjectionproof_initialize(none, &proof, &input_index, fixed_input_tags, n_inputs, n_inputs + 1, &fixed_input_tags[0], 100, seed) == 0); - CHECK(ecount == 5); - CHECK(secp256k1_surjectionproof_initialize(none, &proof, &input_index, fixed_input_tags, n_inputs, 3, NULL, 100, seed) == 0); - CHECK(ecount == 6); - CHECK((secp256k1_surjectionproof_initialize(none, &proof, &input_index, fixed_input_tags, n_inputs, 0, &fixed_input_tags[0], 0, seed) & 1) == 0); - CHECK(ecount == 6); - CHECK(secp256k1_surjectionproof_initialize(none, &proof, &input_index, fixed_input_tags, n_inputs, 0, &fixed_input_tags[0], 100, NULL) == 0); - CHECK(ecount == 7); - - CHECK(secp256k1_surjectionproof_initialize(none, &proof, &input_index, fixed_input_tags, n_inputs, 3, &fixed_input_tags[0], 100, seed) != 0); - /* check generate */ - CHECK(secp256k1_surjectionproof_generate(none, &proof, ephemeral_input_tags, n_inputs, &ephemeral_output_tag, 0, input_blinding_key[0], output_blinding_key) == 0); - CHECK(ecount == 8); - CHECK(secp256k1_surjectionproof_generate(vrfy, &proof, ephemeral_input_tags, n_inputs, &ephemeral_output_tag, 0, input_blinding_key[0], output_blinding_key) == 0); - CHECK(ecount == 9); - - CHECK(secp256k1_surjectionproof_generate(sign, &proof, ephemeral_input_tags, n_inputs, &ephemeral_output_tag, 0, input_blinding_key[0], output_blinding_key) == 0); - CHECK(ecount == 10); - CHECK(secp256k1_surjectionproof_generate(both, &proof, ephemeral_input_tags, n_inputs, &ephemeral_output_tag, 0, input_blinding_key[0], output_blinding_key) != 0); - CHECK(ecount == 10); - - CHECK(secp256k1_surjectionproof_generate(both, NULL, ephemeral_input_tags, n_inputs, &ephemeral_output_tag, 0, input_blinding_key[0], output_blinding_key) == 0); - CHECK(ecount == 11); - CHECK(secp256k1_surjectionproof_generate(both, &proof, NULL, n_inputs, &ephemeral_output_tag, 0, input_blinding_key[0], output_blinding_key) == 0); - CHECK(ecount == 12); - CHECK(secp256k1_surjectionproof_generate(both, &proof, ephemeral_input_tags, n_inputs + 1, &ephemeral_output_tag, 0, input_blinding_key[0], output_blinding_key) == 0); - CHECK(ecount == 12); - CHECK(secp256k1_surjectionproof_generate(both, &proof, ephemeral_input_tags, n_inputs - 1, &ephemeral_output_tag, 0, input_blinding_key[0], output_blinding_key) == 0); - CHECK(ecount == 12); - CHECK(secp256k1_surjectionproof_generate(both, &proof, ephemeral_input_tags, 0, &ephemeral_output_tag, 0, input_blinding_key[0], output_blinding_key) == 0); - CHECK(ecount == 12); - CHECK(secp256k1_surjectionproof_generate(both, &proof, ephemeral_input_tags, n_inputs, NULL, 0, input_blinding_key[0], output_blinding_key) == 0); - CHECK(ecount == 13); - CHECK(secp256k1_surjectionproof_generate(both, &proof, ephemeral_input_tags, n_inputs, &ephemeral_output_tag, 1, input_blinding_key[0], output_blinding_key) != 0); - CHECK(ecount == 13); /* the above line "succeeds" but generates an invalid proof as the input_index is wrong. it is fairly expensive to detect this. should we? */ - CHECK(secp256k1_surjectionproof_generate(both, &proof, ephemeral_input_tags, n_inputs, &ephemeral_output_tag, n_inputs + 1, input_blinding_key[0], output_blinding_key) != 0); - CHECK(ecount == 13); - CHECK(secp256k1_surjectionproof_generate(both, &proof, ephemeral_input_tags, n_inputs, &ephemeral_output_tag, 0, NULL, output_blinding_key) == 0); - CHECK(ecount == 14); - CHECK(secp256k1_surjectionproof_generate(both, &proof, ephemeral_input_tags, n_inputs, &ephemeral_output_tag, 0, input_blinding_key[0], NULL) == 0); - CHECK(ecount == 15); - - CHECK(secp256k1_surjectionproof_generate(both, &proof, ephemeral_input_tags, n_inputs, &ephemeral_output_tag, 0, input_blinding_key[0], output_blinding_key) != 0); - /* check verify */ - CHECK(secp256k1_surjectionproof_verify(none, &proof, ephemeral_input_tags, n_inputs, &ephemeral_output_tag) == 0); - CHECK(ecount == 16); - CHECK(secp256k1_surjectionproof_verify(sign, &proof, ephemeral_input_tags, n_inputs, &ephemeral_output_tag) == 0); - CHECK(ecount == 17); - CHECK(secp256k1_surjectionproof_verify(vrfy, &proof, ephemeral_input_tags, n_inputs, &ephemeral_output_tag) != 0); - CHECK(ecount == 17); - - CHECK(secp256k1_surjectionproof_verify(vrfy, NULL, ephemeral_input_tags, n_inputs, &ephemeral_output_tag) == 0); - CHECK(ecount == 18); - CHECK(secp256k1_surjectionproof_verify(vrfy, &proof, NULL, n_inputs, &ephemeral_output_tag) == 0); - CHECK(ecount == 19); - CHECK(secp256k1_surjectionproof_verify(vrfy, &proof, ephemeral_input_tags, n_inputs - 1, &ephemeral_output_tag) == 0); - CHECK(ecount == 19); - CHECK(secp256k1_surjectionproof_verify(vrfy, &proof, ephemeral_input_tags, n_inputs + 1, &ephemeral_output_tag) == 0); - CHECK(ecount == 19); - CHECK(secp256k1_surjectionproof_verify(vrfy, &proof, ephemeral_input_tags, n_inputs, NULL) == 0); - CHECK(ecount == 20); - - /* Check serialize */ - serialized_len = sizeof(serialized_proof); - CHECK(secp256k1_surjectionproof_serialize(none, serialized_proof, &serialized_len, &proof) != 0); - CHECK(ecount == 20); - serialized_len = sizeof(serialized_proof); - CHECK(secp256k1_surjectionproof_serialize(none, NULL, &serialized_len, &proof) == 0); - CHECK(ecount == 21); - serialized_len = sizeof(serialized_proof); - CHECK(secp256k1_surjectionproof_serialize(none, serialized_proof, NULL, &proof) == 0); - CHECK(ecount == 22); - serialized_len = sizeof(serialized_proof); - CHECK(secp256k1_surjectionproof_serialize(none, serialized_proof, &serialized_len, NULL) == 0); - CHECK(ecount == 23); - - serialized_len = sizeof(serialized_proof); - CHECK(secp256k1_surjectionproof_serialize(none, serialized_proof, &serialized_len, &proof) != 0); - /* Check parse */ - CHECK(secp256k1_surjectionproof_parse(none, &proof, serialized_proof, serialized_len) != 0); - CHECK(ecount == 23); - CHECK(secp256k1_surjectionproof_parse(none, NULL, serialized_proof, serialized_len) == 0); - CHECK(ecount == 24); - CHECK(secp256k1_surjectionproof_parse(none, &proof, NULL, serialized_len) == 0); - CHECK(ecount == 25); - CHECK(secp256k1_surjectionproof_parse(none, &proof, serialized_proof, 0) == 0); - CHECK(ecount == 25); - - secp256k1_context_destroy(none); - secp256k1_context_destroy(sign); - secp256k1_context_destroy(vrfy); - secp256k1_context_destroy(both); -} - -static void test_input_selection(size_t n_inputs) { - unsigned char seed[32]; - size_t i; - size_t result; - size_t input_index; - size_t try_count = n_inputs * 100; - secp256k1_surjectionproof proof; - secp256k1_fixed_asset_tag fixed_input_tags[1000]; - const size_t max_n_inputs = sizeof(fixed_input_tags) / sizeof(fixed_input_tags[0]) - 1; - - CHECK(n_inputs < max_n_inputs); - secp256k1_rand256(seed); - - for (i = 0; i < n_inputs + 1; i++) { - secp256k1_rand256(fixed_input_tags[i].data); - } - - /* cannot match output when told to use zero keys */ - result = secp256k1_surjectionproof_initialize(ctx, &proof, &input_index, fixed_input_tags, n_inputs, 0, &fixed_input_tags[0], try_count, seed); - CHECK(result == 0); - CHECK(secp256k1_surjectionproof_n_used_inputs(ctx, &proof) == 0); - CHECK(secp256k1_surjectionproof_n_total_inputs(ctx, &proof) == n_inputs); - CHECK(secp256k1_surjectionproof_serialized_size(ctx, &proof) == 34 + (n_inputs + 7) / 8); - if (n_inputs > 0) { - /* succeed in 100*n_inputs tries (probability of failure e^-100) */ - result = secp256k1_surjectionproof_initialize(ctx, &proof, &input_index, fixed_input_tags, n_inputs, 1, &fixed_input_tags[0], try_count, seed); - CHECK(result > 0); - CHECK(result < n_inputs * 10); - CHECK(secp256k1_surjectionproof_n_used_inputs(ctx, &proof) == 1); - CHECK(secp256k1_surjectionproof_n_total_inputs(ctx, &proof) == n_inputs); - CHECK(secp256k1_surjectionproof_serialized_size(ctx, &proof) == 66 + (n_inputs + 7) / 8); - CHECK(input_index == 0); - } - - if (n_inputs >= 3) { - /* succeed in 10*n_inputs tries (probability of failure e^-10) */ - result = secp256k1_surjectionproof_initialize(ctx, &proof, &input_index, fixed_input_tags, n_inputs, 3, &fixed_input_tags[1], try_count, seed); - CHECK(result > 0); - CHECK(secp256k1_surjectionproof_n_used_inputs(ctx, &proof) == 3); - CHECK(secp256k1_surjectionproof_n_total_inputs(ctx, &proof) == n_inputs); - CHECK(secp256k1_surjectionproof_serialized_size(ctx, &proof) == 130 + (n_inputs + 7) / 8); - CHECK(input_index == 1); - - /* fail, key not found */ - result = secp256k1_surjectionproof_initialize(ctx, &proof, &input_index, fixed_input_tags, n_inputs, 3, &fixed_input_tags[n_inputs], try_count, seed); - CHECK(result == 0); - - /* succeed on first try when told to use all keys */ - result = secp256k1_surjectionproof_initialize(ctx, &proof, &input_index, fixed_input_tags, n_inputs, n_inputs, &fixed_input_tags[0], try_count, seed); - CHECK(result == 1); - CHECK(secp256k1_surjectionproof_n_used_inputs(ctx, &proof) == n_inputs); - CHECK(secp256k1_surjectionproof_n_total_inputs(ctx, &proof) == n_inputs); - CHECK(secp256k1_surjectionproof_serialized_size(ctx, &proof) == 2 + 32 * (n_inputs + 1) + (n_inputs + 7) / 8); - CHECK(input_index == 0); - - /* succeed in less than 64 tries when told to use half keys. (probability of failure 2^-64) */ - result = secp256k1_surjectionproof_initialize(ctx, &proof, &input_index, fixed_input_tags, n_inputs, n_inputs / 2, &fixed_input_tags[0], 64, seed); - CHECK(result > 0); - CHECK(result < 64); - CHECK(secp256k1_surjectionproof_n_used_inputs(ctx, &proof) == n_inputs / 2); - CHECK(secp256k1_surjectionproof_n_total_inputs(ctx, &proof) == n_inputs); - CHECK(secp256k1_surjectionproof_serialized_size(ctx, &proof) == 2 + 32 * (n_inputs / 2 + 1) + (n_inputs + 7) / 8); - CHECK(input_index == 0); - } -} - -/** Runs surjectionproof_initilize multiple times and records the number of times each input was used. - */ -static void test_input_selection_distribution_helper(const secp256k1_fixed_asset_tag* fixed_input_tags, const size_t n_input_tags, const size_t n_input_tags_to_use, size_t *used_inputs) { - secp256k1_surjectionproof proof; - size_t input_index; - size_t i; - size_t j; - unsigned char seed[32]; - size_t result; - for (i = 0; i < n_input_tags; i++) { - used_inputs[i] = 0; - } - for(j = 0; j < 10000; j++) { - secp256k1_rand256(seed); - result = secp256k1_surjectionproof_initialize(ctx, &proof, &input_index, fixed_input_tags, n_input_tags, n_input_tags_to_use, &fixed_input_tags[0], 64, seed); - CHECK(result > 0); - - for (i = 0; i < n_input_tags; i++) { - if (proof.used_inputs[i / 8] & (1 << (i % 8))) { - used_inputs[i] += 1; - } - } - } -} - -/** Probabilistic test of the distribution of used_inputs after surjectionproof_initialize. - * Each confidence interval assertion fails incorrectly with a probability of 2^-128. - */ -static void test_input_selection_distribution(void) { - size_t i; - size_t n_input_tags_to_use; - const size_t n_inputs = 4; - secp256k1_fixed_asset_tag fixed_input_tags[4]; - size_t used_inputs[4]; - - for (i = 0; i < n_inputs; i++) { - secp256k1_rand256(fixed_input_tags[i].data); - } - - /* If there is one input tag to use, initialize must choose the one equal to fixed_output_tag. */ - n_input_tags_to_use = 1; - test_input_selection_distribution_helper(fixed_input_tags, n_inputs, n_input_tags_to_use, used_inputs); - CHECK(used_inputs[0] == 10000); - CHECK(used_inputs[1] == 0); - CHECK(used_inputs[2] == 0); - CHECK(used_inputs[3] == 0); - - n_input_tags_to_use = 2; - /* The input equal to the fixed_output_tag must be included in all used_inputs sets. - * For each fixed_input_tag != fixed_output_tag the probability that it's included - * in the used_inputs set is P(used_input|not fixed_output_tag) = 1/3. - */ - test_input_selection_distribution_helper(fixed_input_tags, n_inputs, n_input_tags_to_use, used_inputs); - CHECK(used_inputs[0] == 10000); - CHECK(used_inputs[1] > 2725 && used_inputs[1] < 3961); - CHECK(used_inputs[2] > 2725 && used_inputs[2] < 3961); - CHECK(used_inputs[3] > 2725 && used_inputs[3] < 3961); - - n_input_tags_to_use = 3; - /* P(used_input|not fixed_output_tag) = 2/3 */ - test_input_selection_distribution_helper(fixed_input_tags, n_inputs, n_input_tags_to_use, used_inputs); - CHECK(used_inputs[0] == 10000); - CHECK(used_inputs[1] > 6039 && used_inputs[1] < 7275); - CHECK(used_inputs[2] > 6039 && used_inputs[2] < 7275); - CHECK(used_inputs[3] > 6039 && used_inputs[3] < 7275); - - - n_input_tags_to_use = 1; - /* Create second input tag that is equal to the output tag. Therefore, when using only - * one input we have P(used_input|fixed_output_tag) = 1/2 and P(used_input|not fixed_output_tag) = 0 - */ - memcpy(fixed_input_tags[0].data, fixed_input_tags[1].data, 32); - test_input_selection_distribution_helper(fixed_input_tags, n_inputs, n_input_tags_to_use, used_inputs); - CHECK(used_inputs[0] > 4345 && used_inputs[0] < 5655); - CHECK(used_inputs[1] > 4345 && used_inputs[1] < 5655); - CHECK(used_inputs[2] == 0); - CHECK(used_inputs[3] == 0); - - n_input_tags_to_use = 2; - /* When choosing 2 inputs in initialization there are 5 possible combinations of - * input indexes {(0, 1), (1, 2), (0, 3), (1, 3), (0, 2)}. Therefore we have - * P(used_input|fixed_output_tag) = 3/5 and P(used_input|not fixed_output_tag) = 2/5. - */ - test_input_selection_distribution_helper(fixed_input_tags, n_inputs, n_input_tags_to_use, used_inputs); - CHECK(used_inputs[0] > 5352 && used_inputs[0] < 6637); - CHECK(used_inputs[1] > 5352 && used_inputs[1] < 6637); - CHECK(used_inputs[2] > 3363 && used_inputs[2] < 4648); - CHECK(used_inputs[3] > 3363 && used_inputs[3] < 4648); - - n_input_tags_to_use = 3; - /* There are 4 combinations, each with all inputs except one. Therefore we have - * P(used_input|fixed_output_tag) = 3/4 and P(used_input|not fixed_output_tag) = 3/4. - */ - test_input_selection_distribution_helper(fixed_input_tags, n_inputs, n_input_tags_to_use, used_inputs); - CHECK(used_inputs[0] > 6918 && used_inputs[0] < 8053); - CHECK(used_inputs[1] > 6918 && used_inputs[1] < 8053); - CHECK(used_inputs[2] > 6918 && used_inputs[2] < 8053); - CHECK(used_inputs[3] > 6918 && used_inputs[3] < 8053); -} - -static void test_gen_verify(size_t n_inputs, size_t n_used) { - unsigned char seed[32]; - secp256k1_surjectionproof proof; - unsigned char serialized_proof[SECP256K1_SURJECTIONPROOF_SERIALIZATION_BYTES_MAX]; - unsigned char serialized_proof_trailing[SECP256K1_SURJECTIONPROOF_SERIALIZATION_BYTES_MAX + 1]; - size_t serialized_len = SECP256K1_SURJECTIONPROOF_SERIALIZATION_BYTES_MAX; - secp256k1_fixed_asset_tag fixed_input_tags[1000]; - secp256k1_generator ephemeral_input_tags[1000]; - unsigned char *input_blinding_key[1000]; - const size_t max_n_inputs = sizeof(fixed_input_tags) / sizeof(fixed_input_tags[0]) - 1; - size_t try_count = n_inputs * 100; - size_t key_index; - size_t input_index; - size_t i; - int result; - - /* setup */ - CHECK(n_used <= n_inputs); - CHECK(n_inputs < max_n_inputs); - secp256k1_rand256(seed); - - key_index = (((size_t) seed[0] << 8) + seed[1]) % n_inputs; - - for (i = 0; i < n_inputs + 1; i++) { - input_blinding_key[i] = malloc(32); - secp256k1_rand256(input_blinding_key[i]); - /* choose random fixed tag, except that for the output one copy from the key_index */ - if (i < n_inputs) { - secp256k1_rand256(fixed_input_tags[i].data); - } else { - memcpy(&fixed_input_tags[i], &fixed_input_tags[key_index], sizeof(fixed_input_tags[i])); - } - CHECK(secp256k1_generator_generate_blinded(ctx, &ephemeral_input_tags[i], fixed_input_tags[i].data, input_blinding_key[i])); - } - - /* test */ - result = secp256k1_surjectionproof_initialize(ctx, &proof, &input_index, fixed_input_tags, n_inputs, n_used, &fixed_input_tags[key_index], try_count, seed); - if (n_used == 0) { - CHECK(result == 0); - return; - } - CHECK(result > 0); - CHECK(input_index == key_index); - - result = secp256k1_surjectionproof_generate(ctx, &proof, ephemeral_input_tags, n_inputs, &ephemeral_input_tags[n_inputs], input_index, input_blinding_key[input_index], input_blinding_key[n_inputs]); - CHECK(result == 1); - - CHECK(secp256k1_surjectionproof_serialize(ctx, serialized_proof, &serialized_len, &proof)); - CHECK(serialized_len == secp256k1_surjectionproof_serialized_size(ctx, &proof)); - CHECK(serialized_len == SECP256K1_SURJECTIONPROOF_SERIALIZATION_BYTES(n_inputs, n_used)); - - /* trailing garbage */ - memcpy(&serialized_proof_trailing, &serialized_proof, serialized_len); - serialized_proof_trailing[serialized_len] = seed[0]; - CHECK(secp256k1_surjectionproof_parse(ctx, &proof, serialized_proof, serialized_len + 1) == 0); - - CHECK(secp256k1_surjectionproof_parse(ctx, &proof, serialized_proof, serialized_len)); - result = secp256k1_surjectionproof_verify(ctx, &proof, ephemeral_input_tags, n_inputs, &ephemeral_input_tags[n_inputs]); - CHECK(result == 1); - /* various fail cases */ - if (n_inputs > 1) { - result = secp256k1_surjectionproof_verify(ctx, &proof, ephemeral_input_tags, n_inputs, &ephemeral_input_tags[n_inputs - 1]); - CHECK(result == 0); - - /* number of entries in ephemeral_input_tags array is less than proof.n_inputs */ - n_inputs -= 1; - result = secp256k1_surjectionproof_generate(ctx, &proof, ephemeral_input_tags, n_inputs, &ephemeral_input_tags[n_inputs], input_index, input_blinding_key[input_index], input_blinding_key[n_inputs]); - CHECK(result == 0); - result = secp256k1_surjectionproof_verify(ctx, &proof, ephemeral_input_tags, n_inputs, &ephemeral_input_tags[n_inputs - 1]); - CHECK(result == 0); - n_inputs += 1; - } - - /* cleanup */ - for (i = 0; i < n_inputs + 1; i++) { - free(input_blinding_key[i]); - } -} - -/* check that a proof with empty n_used_inputs is invalid */ -static void test_no_used_inputs_verify(void) { - secp256k1_surjectionproof proof; - secp256k1_fixed_asset_tag fixed_input_tag; - secp256k1_fixed_asset_tag fixed_output_tag; - secp256k1_generator ephemeral_input_tags[1]; - size_t n_ephemeral_input_tags = 1; - secp256k1_generator ephemeral_output_tag; - unsigned char blinding_key[32]; - secp256k1_ge inputs[1]; - secp256k1_ge output; - secp256k1_sha256 sha256_e0; - int result; - - /* Create proof that doesn't use inputs. secp256k1_surjectionproof_initialize - * will not work here since it insists on selecting an input that matches the output. */ - proof.n_inputs = 1; - memset(proof.used_inputs, 0, SECP256K1_SURJECTIONPROOF_MAX_N_INPUTS / 8); - - /* create different fixed input and output tags */ - secp256k1_rand256(fixed_input_tag.data); - secp256k1_rand256(fixed_output_tag.data); - - /* blind fixed output tags with random blinding key */ - secp256k1_rand256(blinding_key); - CHECK(secp256k1_generator_generate_blinded(ctx, &ephemeral_input_tags[0], fixed_input_tag.data, blinding_key)); - CHECK(secp256k1_generator_generate_blinded(ctx, &ephemeral_output_tag, fixed_output_tag.data, blinding_key)); - - /* create "borromean signature" which is just a hash of metadata (pubkeys, etc) in this case */ - secp256k1_generator_load(&output, &ephemeral_output_tag); - secp256k1_generator_load(&inputs[0], &ephemeral_input_tags[0]); - secp256k1_surjection_genmessage(proof.data, inputs, 1, &output); - secp256k1_sha256_initialize(&sha256_e0); - secp256k1_sha256_write(&sha256_e0, proof.data, 32); - secp256k1_sha256_finalize(&sha256_e0, proof.data); - - result = secp256k1_surjectionproof_verify(ctx, &proof, ephemeral_input_tags, n_ephemeral_input_tags, &ephemeral_output_tag); - CHECK(result == 0); -} - -void test_bad_serialize(void) { - secp256k1_surjectionproof proof; - unsigned char serialized_proof[SECP256K1_SURJECTIONPROOF_SERIALIZATION_BYTES_MAX]; - size_t serialized_len; - - proof.n_inputs = 0; - serialized_len = 2 + 31; - /* e0 is one byte too short */ - CHECK(secp256k1_surjectionproof_serialize(ctx, serialized_proof, &serialized_len, &proof) == 0); -} - -void test_bad_parse(void) { - secp256k1_surjectionproof proof; - unsigned char serialized_proof0[] = { 0x00 }; - unsigned char serialized_proof1[] = { 0x01, 0x00 }; - unsigned char serialized_proof2[33] = { 0 }; - - /* Missing total input count */ - CHECK(secp256k1_surjectionproof_parse(ctx, &proof, serialized_proof0, sizeof(serialized_proof0)) == 0); - /* Missing bitmap */ - CHECK(secp256k1_surjectionproof_parse(ctx, &proof, serialized_proof1, sizeof(serialized_proof1)) == 0); - /* Missing e0 value */ - CHECK(secp256k1_surjectionproof_parse(ctx, &proof, serialized_proof2, sizeof(serialized_proof2)) == 0); -} - -void run_surjection_tests(void) { - int i; - for (i = 0; i < count; i++) { - test_surjectionproof_api(); - } - - test_input_selection(0); - test_input_selection(1); - test_input_selection(5); - test_input_selection(100); - test_input_selection(SECP256K1_SURJECTIONPROOF_MAX_N_INPUTS); - - test_input_selection_distribution(); - test_gen_verify(10, 3); - test_gen_verify(SECP256K1_SURJECTIONPROOF_MAX_N_INPUTS, SECP256K1_SURJECTIONPROOF_MAX_N_INPUTS); - test_no_used_inputs_verify(); - test_bad_serialize(); - test_bad_parse(); -} - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/whitelist/Makefile.am.include b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/whitelist/Makefile.am.include deleted file mode 100644 index 0dc5a64..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/whitelist/Makefile.am.include +++ /dev/null @@ -1,10 +0,0 @@ -include_HEADERS += include/secp256k1_whitelist.h -noinst_HEADERS += src/modules/whitelist/whitelist_impl.h -noinst_HEADERS += src/modules/whitelist/main_impl.h -noinst_HEADERS += src/modules/whitelist/tests_impl.h -if USE_BENCHMARK -noinst_PROGRAMS += bench_whitelist -bench_whitelist_SOURCES = src/bench_whitelist.c -bench_whitelist_LDADD = libsecp256k1.la $(SECP_LIBS) -bench_generator_LDFLAGS = -static -endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/whitelist/main_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/whitelist/main_impl.h deleted file mode 100644 index 0b2d6c9..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/whitelist/main_impl.h +++ /dev/null @@ -1,174 +0,0 @@ -/********************************************************************** - * Copyright (c) 2016 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_MODULE_WHITELIST_MAIN -#define SECP256K1_MODULE_WHITELIST_MAIN - -#include "include/secp256k1_whitelist.h" -#include "modules/whitelist/whitelist_impl.h" - -#define MAX_KEYS SECP256K1_WHITELIST_MAX_N_KEYS /* shorter alias */ - -int secp256k1_whitelist_sign(const secp256k1_context* ctx, secp256k1_whitelist_signature *sig, const secp256k1_pubkey *online_pubkeys, const secp256k1_pubkey *offline_pubkeys, const size_t n_keys, const secp256k1_pubkey *sub_pubkey, const unsigned char *online_seckey, const unsigned char *summed_seckey, const size_t index, secp256k1_nonce_function noncefp, const void *noncedata) { - secp256k1_gej pubs[MAX_KEYS]; - secp256k1_scalar s[MAX_KEYS]; - secp256k1_scalar sec, non; - unsigned char msg32[32]; - int ret; - - if (noncefp == NULL) { - noncefp = secp256k1_nonce_function_default; - } - - /* Sanity checks */ - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); - ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); - ARG_CHECK(sig != NULL); - ARG_CHECK(online_pubkeys != NULL); - ARG_CHECK(offline_pubkeys != NULL); - ARG_CHECK(n_keys <= MAX_KEYS); - ARG_CHECK(sub_pubkey != NULL); - ARG_CHECK(online_seckey != NULL); - ARG_CHECK(summed_seckey != NULL); - ARG_CHECK(index < n_keys); - - /* Compute pubkeys: online_pubkey + tweaked(offline_pubkey + address), and message */ - ret = secp256k1_whitelist_compute_keys_and_message(ctx, msg32, pubs, online_pubkeys, offline_pubkeys, n_keys, sub_pubkey); - - /* Compute signing key: online_seckey + tweaked(summed_seckey) */ - if (ret) { - ret = secp256k1_whitelist_compute_tweaked_privkey(ctx, &sec, online_seckey, summed_seckey); - } - /* Compute nonce and random s-values */ - if (ret) { - unsigned char seckey32[32]; - unsigned int count = 0; - int overflow = 0; - - secp256k1_scalar_get_b32(seckey32, &sec); - while (1) { - size_t i; - unsigned char nonce32[32]; - int done; - ret = noncefp(nonce32, msg32, seckey32, NULL, (void*)noncedata, count); - if (!ret) { - break; - } - secp256k1_scalar_set_b32(&non, nonce32, &overflow); - memset(nonce32, 0, 32); - if (overflow || secp256k1_scalar_is_zero(&non)) { - count++; - continue; - } - done = 1; - for (i = 0; i < n_keys; i++) { - msg32[0] ^= i + 1; - msg32[1] ^= (i + 1) / 0x100; - ret = noncefp(&sig->data[32 * (i + 1)], msg32, seckey32, NULL, (void*)noncedata, count); - if (!ret) { - break; - } - secp256k1_scalar_set_b32(&s[i], &sig->data[32 * (i + 1)], &overflow); - msg32[0] ^= i + 1; - msg32[1] ^= (i + 1) / 0x100; - if (overflow || secp256k1_scalar_is_zero(&s[i])) { - count++; - done = 0; - break; - } - } - if (done) { - break; - } - } - memset(seckey32, 0, 32); - } - /* Actually sign */ - if (ret) { - sig->n_keys = n_keys; - ret = secp256k1_borromean_sign(&ctx->ecmult_ctx, &ctx->ecmult_gen_ctx, &sig->data[0], s, pubs, &non, &sec, &n_keys, &index, 1, msg32, 32); - /* Signing will change s[index], so update in the sig structure */ - secp256k1_scalar_get_b32(&sig->data[32 * (index + 1)], &s[index]); - } - - secp256k1_scalar_clear(&non); - secp256k1_scalar_clear(&sec); - return ret; -} - -int secp256k1_whitelist_verify(const secp256k1_context* ctx, const secp256k1_whitelist_signature *sig, const secp256k1_pubkey *online_pubkeys, const secp256k1_pubkey *offline_pubkeys, const size_t n_keys, const secp256k1_pubkey *sub_pubkey) { - secp256k1_scalar s[MAX_KEYS]; - secp256k1_gej pubs[MAX_KEYS]; - unsigned char msg32[32]; - size_t i; - - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); - ARG_CHECK(sig != NULL); - ARG_CHECK(online_pubkeys != NULL); - ARG_CHECK(offline_pubkeys != NULL); - ARG_CHECK(sub_pubkey != NULL); - - if (sig->n_keys > MAX_KEYS || sig->n_keys != n_keys) { - return 0; - } - for (i = 0; i < sig->n_keys; i++) { - int overflow = 0; - secp256k1_scalar_set_b32(&s[i], &sig->data[32 * (i + 1)], &overflow); - if (overflow || secp256k1_scalar_is_zero(&s[i])) { - return 0; - } - } - - /* Compute pubkeys: online_pubkey + tweaked(offline_pubkey + address), and message */ - if (!secp256k1_whitelist_compute_keys_and_message(ctx, msg32, pubs, online_pubkeys, offline_pubkeys, sig->n_keys, sub_pubkey)) { - return 0; - } - /* Do verification */ - return secp256k1_borromean_verify(&ctx->ecmult_ctx, NULL, &sig->data[0], s, pubs, &sig->n_keys, 1, msg32, 32); -} - -size_t secp256k1_whitelist_signature_n_keys(const secp256k1_whitelist_signature *sig) { - return sig->n_keys; -} - -int secp256k1_whitelist_signature_parse(const secp256k1_context* ctx, secp256k1_whitelist_signature *sig, const unsigned char *input, size_t input_len) { - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(sig != NULL); - ARG_CHECK(input != NULL); - - if (input_len == 0) { - return 0; - } - - sig->n_keys = input[0]; - if (sig->n_keys >= MAX_KEYS || input_len != 1 + 32 * (sig->n_keys + 1)) { - return 0; - } - memcpy(&sig->data[0], &input[1], 32 * (sig->n_keys + 1)); - - return 1; -} - -int secp256k1_whitelist_signature_serialize(const secp256k1_context* ctx, unsigned char *output, size_t *output_len, const secp256k1_whitelist_signature *sig) { - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(output != NULL); - ARG_CHECK(output_len != NULL); - ARG_CHECK(sig != NULL); - - if (*output_len < 1 + 32 * (sig->n_keys + 1)) { - return 0; - } - - output[0] = sig->n_keys; - memcpy(&output[1], &sig->data[0], 32 * (sig->n_keys + 1)); - *output_len = 1 + 32 * (sig->n_keys + 1); - - return 1; -} - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/whitelist/tests_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/whitelist/tests_impl.h deleted file mode 100644 index 7cf1fb0..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/whitelist/tests_impl.h +++ /dev/null @@ -1,151 +0,0 @@ -/********************************************************************** - * Copyright (c) 2014-2016 Pieter Wuille, Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_MODULE_WHITELIST_TESTS -#define SECP256K1_MODULE_WHITELIST_TESTS - -#include "include/secp256k1_whitelist.h" - -void test_whitelist_end_to_end(const size_t n_keys) { - unsigned char **online_seckey = (unsigned char **) malloc(n_keys * sizeof(*online_seckey)); - unsigned char **summed_seckey = (unsigned char **) malloc(n_keys * sizeof(*summed_seckey)); - secp256k1_pubkey *online_pubkeys = (secp256k1_pubkey *) malloc(n_keys * sizeof(*online_pubkeys)); - secp256k1_pubkey *offline_pubkeys = (secp256k1_pubkey *) malloc(n_keys * sizeof(*offline_pubkeys)); - - secp256k1_scalar ssub; - unsigned char csub[32]; - secp256k1_pubkey sub_pubkey; - - /* Generate random keys */ - size_t i; - /* Start with subkey */ - random_scalar_order_test(&ssub); - secp256k1_scalar_get_b32(csub, &ssub); - CHECK(secp256k1_ec_seckey_verify(ctx, csub) == 1); - CHECK(secp256k1_ec_pubkey_create(ctx, &sub_pubkey, csub) == 1); - /* Then offline and online whitelist keys */ - for (i = 0; i < n_keys; i++) { - secp256k1_scalar son, soff; - - online_seckey[i] = (unsigned char *) malloc(32); - summed_seckey[i] = (unsigned char *) malloc(32); - - /* Create two keys */ - random_scalar_order_test(&son); - secp256k1_scalar_get_b32(online_seckey[i], &son); - CHECK(secp256k1_ec_seckey_verify(ctx, online_seckey[i]) == 1); - CHECK(secp256k1_ec_pubkey_create(ctx, &online_pubkeys[i], online_seckey[i]) == 1); - - random_scalar_order_test(&soff); - secp256k1_scalar_get_b32(summed_seckey[i], &soff); - CHECK(secp256k1_ec_seckey_verify(ctx, summed_seckey[i]) == 1); - CHECK(secp256k1_ec_pubkey_create(ctx, &offline_pubkeys[i], summed_seckey[i]) == 1); - - /* Make summed_seckey correspond to the sum of offline_pubkey and sub_pubkey */ - secp256k1_scalar_add(&soff, &soff, &ssub); - secp256k1_scalar_get_b32(summed_seckey[i], &soff); - CHECK(secp256k1_ec_seckey_verify(ctx, summed_seckey[i]) == 1); - } - - /* Sign/verify with each one */ - for (i = 0; i < n_keys; i++) { - unsigned char serialized[32 + 4 + 32 * SECP256K1_WHITELIST_MAX_N_KEYS] = {0}; - size_t slen = sizeof(serialized); - secp256k1_whitelist_signature sig; - secp256k1_whitelist_signature sig1; - - CHECK(secp256k1_whitelist_sign(ctx, &sig, online_pubkeys, offline_pubkeys, n_keys, &sub_pubkey, online_seckey[i], summed_seckey[i], i, NULL, NULL)); - CHECK(secp256k1_whitelist_verify(ctx, &sig, online_pubkeys, offline_pubkeys, n_keys, &sub_pubkey) == 1); - /* Check that exchanging keys causes a failure */ - CHECK(secp256k1_whitelist_verify(ctx, &sig, offline_pubkeys, online_pubkeys, n_keys, &sub_pubkey) != 1); - /* Serialization round trip */ - CHECK(secp256k1_whitelist_signature_serialize(ctx, serialized, &slen, &sig) == 1); - CHECK(slen == 33 + 32 * n_keys); - CHECK(secp256k1_whitelist_signature_parse(ctx, &sig1, serialized, slen) == 1); - /* (Check various bad-length conditions) */ - CHECK(secp256k1_whitelist_signature_parse(ctx, &sig1, serialized, slen + 32) == 0); - CHECK(secp256k1_whitelist_signature_parse(ctx, &sig1, serialized, slen + 1) == 0); - CHECK(secp256k1_whitelist_signature_parse(ctx, &sig1, serialized, slen - 1) == 0); - CHECK(secp256k1_whitelist_signature_parse(ctx, &sig1, serialized, 0) == 0); - CHECK(secp256k1_whitelist_verify(ctx, &sig1, online_pubkeys, offline_pubkeys, n_keys, &sub_pubkey) == 1); - CHECK(secp256k1_whitelist_verify(ctx, &sig1, offline_pubkeys, online_pubkeys, n_keys, &sub_pubkey) != 1); - - /* Test n_keys */ - CHECK(secp256k1_whitelist_signature_n_keys(&sig) == n_keys); - CHECK(secp256k1_whitelist_signature_n_keys(&sig1) == n_keys); - - /* Test bad number of keys in signature */ - sig.n_keys = n_keys + 1; - CHECK(secp256k1_whitelist_verify(ctx, &sig, offline_pubkeys, online_pubkeys, n_keys, &sub_pubkey) != 1); - sig.n_keys = n_keys; - } - - for (i = 0; i < n_keys; i++) { - free(online_seckey[i]); - free(summed_seckey[i]); - } - free(online_seckey); - free(summed_seckey); - free(online_pubkeys); - free(offline_pubkeys); -} - -void test_whitelist_bad_parse(void) { - secp256k1_whitelist_signature sig; - - const unsigned char serialized0[] = { 1+32*(0+1) }; - const unsigned char serialized1[] = { - 0x00, - 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, - 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, - 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, - 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06 - }; - const unsigned char serialized2[] = { - 0x01, - 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, - 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, - 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, - 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 - }; - - /* Empty input */ - CHECK(secp256k1_whitelist_signature_parse(ctx, &sig, serialized0, 0) == 0); - /* Misses one byte of e0 */ - CHECK(secp256k1_whitelist_signature_parse(ctx, &sig, serialized1, sizeof(serialized1)) == 0); - /* Enough bytes for e0, but there is no s value */ - CHECK(secp256k1_whitelist_signature_parse(ctx, &sig, serialized2, sizeof(serialized2)) == 0); -} - -void test_whitelist_bad_serialize(void) { - unsigned char serialized[] = { - 0x00, - 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, - 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, - 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, - 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 - }; - size_t serialized_len; - secp256k1_whitelist_signature sig; - - CHECK(secp256k1_whitelist_signature_parse(ctx, &sig, serialized, sizeof(serialized)) == 1); - serialized_len = sizeof(serialized) - 1; - /* Output buffer is one byte too short */ - CHECK(secp256k1_whitelist_signature_serialize(ctx, serialized, &serialized_len, &sig) == 0); -} - -void run_whitelist_tests(void) { - int i; - test_whitelist_bad_parse(); - test_whitelist_bad_serialize(); - for (i = 0; i < count; i++) { - test_whitelist_end_to_end(1); - test_whitelist_end_to_end(10); - test_whitelist_end_to_end(50); - } -} - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/whitelist/whitelist.md b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/whitelist/whitelist.md deleted file mode 100644 index 15ab998..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/whitelist/whitelist.md +++ /dev/null @@ -1,96 +0,0 @@ -Address Whitelisting Module -=========================== - -This module implements a scheme by which members of some group, having fixed -signing keys, can prove control of an arbitrary other key without associating -their own identity (only that they belong to the group) to the new key. The -application is to patch ring-signature-like behaviour onto systems such as -Bitcoin or PGP which do not directly support this. - -We refer to such delegation as "whitelisting" because we expect it to be used -to build a dynamic whitelist of authorized keys. - -For example, imagine a private sidechain with a fixed membership set but -stronger privacy properties than Bitcoin. When moving coins from this system -to Bitcoin, it is desirable that the destination Bitcoin addresses be provably -in control of some user of the sidechain. This prevents malicious or erroneous -behaviour on the sidechain, which can likely be resolved by its participants, -from translating to theft on the wider Bitcoin network, which is irreversible. - -### Unused Schemes and Design Rationale - -#### Direct Signing - -An obvious scheme for such delegation is to simply have participants sign the -key they want to whitelist. To avoid revealing their specific identity, they -could use a ring signature. The problem with this is that it really only proves -that a participant *signed off* on a key, not that they control it. Thus any -security failure that allows text substitution could be used to subvert this -and redirect coins to an attacker-controlled address. - -#### Signing with Difference-of-Keys - -A less obvious scheme is to have a participant sign an arbitrary message with -the sum of her key `P` and the whitelisted key `W`. Such a signature with the key -`P + W` proves knowledge of either (a) discrete logarithms of both `P` and `W`; -or (b) neither. This makes directly attacking participants' signing schemes much -harder, but allows an attacker to whitelist arbitrary "garbage" keys by computing -`W` as the difference between an attacker-controlled key and `P`. For Bitcoin, -the effect of garbage keys is to "burn" stolen coins, destroying them. - -In an important sense, this "burning coins" attack is a good thing: it enables -*offline delegation*. That is, the key `P` does not need to be available at the -time of delegation. Instead, participants could choose `S = P + W`, sign with -this to delegate, and only later compute the discrete logarithm of `W = P - S`. -This allows `P` to be in cold storage or be otherwise inaccessible, improving -the overall system security. - -#### Signing with Tweaked-Difference-of-Keys - -A modification of this scheme, which prevents this "garbage key" attack, is to -instead have participants sign some message with the key `P + H(W)W`, for `H` -some random-oracle hash that maps group elements to scalars. This key, and its -discrete logarithm, cannot be known until after `W` is chosen, so `W` cannot -be selected as the difference between it and `P`. (Note that `P` could still -be some chosen difference; however `P` is a fixed key and must be verified -out-of-band to have come from a legitimate participant anyway.) - -This scheme is almost what we want, but it no longer supports offline -delegation. However, we can get this back by introducing a new key, `P'`, -and signing with the key `P + H(W + P')(W + P')`. This gives us the best -of both worlds: `P'` does not need to be online to delegate, allowing it -to be securely stored and preventing real-time attacks; `P` does need to -be online, but its compromise only allows an attacker to whitelist "garbage -keys", not attacker-controlled ones. - -### Our Scheme - -Our scheme works as follows: each participant `i` chooses two keys, `P_i` and `Q_i`. -We refer to `P_i` as the "online key" and `Q_i` as the "offline key". To whitelist -a key `W`, the participant computes the key `L_j = P_j + H(W + Q_j)(W + Q_j)` for -every participant `j`. Then she will know the discrete logarithm of `L_i` for her -own `i`. - -Next, she signs a message containing every `P_i` and `Q_i` as well as `W` with -a ring signature over all the keys `L_j`. This proves that she knows the discrete -logarithm of some `L_i` (though it is zero-knowledge which one), and therefore -knows: -1. The discrete logarithms of all of `W`, `P_i` and `Q_i`; or -2. The discrete logarithm of `P_i` but of *neither* `W` nor `Q_i`. -In other words, compromise of the online key `P_i` allows an attacker to whitelist -"garbage keys" for which nobody knows the discrete logarithm; to whitelist an -attacker-controlled key, he must compromise both `P_i` and `Q_i`. This is difficult -because by design, only the sum `S = W + Q_i` is used when signing; then by choosing -`S` freely, a participant can delegate without the secret key to `Q_i` ever being online. -(Later, when she wants to actually use `W`, she will need to compute its key as the -difference between `S` and `Q_i`; but this can be done offline and much later -and with more expensive security requirements.) - -The message to be signed contains all public keys to prevent a class of attacks -centered around choosing keys to match pre-computed signatures. In our proposed -use case, whitelisted keys already must be computed before they are signed, and -the remaining public keys are verified out-of-band when setting up the system, -so there is no direct benefit to this. We do it only to reduce fragility and -increase safety of unforeseen uses. - - diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/whitelist/whitelist_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/whitelist/whitelist_impl.h deleted file mode 100644 index ff8d87f..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/modules/whitelist/whitelist_impl.h +++ /dev/null @@ -1,129 +0,0 @@ -/********************************************************************** - * Copyright (c) 2016 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef _SECP256K1_WHITELIST_IMPL_H_ -#define _SECP256K1_WHITELIST_IMPL_H_ - -static int secp256k1_whitelist_hash_pubkey(secp256k1_scalar* output, secp256k1_gej* pubkey) { - unsigned char h[32]; - unsigned char c[33]; - secp256k1_sha256 sha; - int overflow = 0; - size_t size = 33; - secp256k1_ge ge; - - secp256k1_ge_set_gej(&ge, pubkey); - - secp256k1_sha256_initialize(&sha); - if (!secp256k1_eckey_pubkey_serialize(&ge, c, &size, SECP256K1_EC_COMPRESSED)) { - return 0; - } - secp256k1_sha256_write(&sha, c, size); - secp256k1_sha256_finalize(&sha, h); - - secp256k1_scalar_set_b32(output, h, &overflow); - if (overflow || secp256k1_scalar_is_zero(output)) { - /* This return path is mathematically impossible to hit */ - secp256k1_scalar_clear(output); - return 0; - } - return 1; -} - -static int secp256k1_whitelist_tweak_pubkey(const secp256k1_context* ctx, secp256k1_gej* pub_tweaked) { - secp256k1_scalar tweak; - secp256k1_scalar zero; - int ret; - - secp256k1_scalar_set_int(&zero, 0); - - ret = secp256k1_whitelist_hash_pubkey(&tweak, pub_tweaked); - if (ret) { - secp256k1_ecmult(&ctx->ecmult_ctx, pub_tweaked, pub_tweaked, &tweak, &zero); - } - return ret; -} - -static int secp256k1_whitelist_compute_tweaked_privkey(const secp256k1_context* ctx, secp256k1_scalar* skey, const unsigned char *online_key, const unsigned char *summed_key) { - secp256k1_scalar tweak; - int ret = 1; - int overflow = 0; - - secp256k1_scalar_set_b32(skey, summed_key, &overflow); - if (overflow || secp256k1_scalar_is_zero(skey)) { - ret = 0; - } - if (ret) { - secp256k1_gej pkeyj; - secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pkeyj, skey); - ret = secp256k1_whitelist_hash_pubkey(&tweak, &pkeyj); - } - if (ret) { - secp256k1_scalar sonline; - secp256k1_scalar_mul(skey, skey, &tweak); - - secp256k1_scalar_set_b32(&sonline, online_key, &overflow); - if (overflow || secp256k1_scalar_is_zero(&sonline)) { - ret = 0; - } - secp256k1_scalar_add(skey, skey, &sonline); - secp256k1_scalar_clear(&sonline); - secp256k1_scalar_clear(&tweak); - } - - if (!ret) { - secp256k1_scalar_clear(skey); - } - return ret; -} - -/* Takes a list of pubkeys and combines them to form the public keys needed - * for the ring signature; also produce a commitment to every one that will - * be our "message". */ -static int secp256k1_whitelist_compute_keys_and_message(const secp256k1_context* ctx, unsigned char *msg32, secp256k1_gej *keys, const secp256k1_pubkey *online_pubkeys, const secp256k1_pubkey *offline_pubkeys, const int n_keys, const secp256k1_pubkey *sub_pubkey) { - unsigned char c[33]; - size_t size = 33; - secp256k1_sha256 sha; - int i; - secp256k1_ge subkey_ge; - - secp256k1_sha256_initialize(&sha); - secp256k1_pubkey_load(ctx, &subkey_ge, sub_pubkey); - - /* commit to sub-key */ - if (!secp256k1_eckey_pubkey_serialize(&subkey_ge, c, &size, SECP256K1_EC_COMPRESSED)) { - return 0; - } - secp256k1_sha256_write(&sha, c, size); - for (i = 0; i < n_keys; i++) { - secp256k1_ge offline_ge; - secp256k1_ge online_ge; - secp256k1_gej tweaked_gej; - - /* commit to fixed keys */ - secp256k1_pubkey_load(ctx, &offline_ge, &offline_pubkeys[i]); - if (!secp256k1_eckey_pubkey_serialize(&offline_ge, c, &size, SECP256K1_EC_COMPRESSED)) { - return 0; - } - secp256k1_sha256_write(&sha, c, size); - secp256k1_pubkey_load(ctx, &online_ge, &online_pubkeys[i]); - if (!secp256k1_eckey_pubkey_serialize(&online_ge, c, &size, SECP256K1_EC_COMPRESSED)) { - return 0; - } - secp256k1_sha256_write(&sha, c, size); - - /* compute tweaked keys */ - secp256k1_gej_set_ge(&tweaked_gej, &offline_ge); - secp256k1_gej_add_ge_var(&tweaked_gej, &tweaked_gej, &subkey_ge, NULL); - secp256k1_whitelist_tweak_pubkey(ctx, &tweaked_gej); - secp256k1_gej_add_ge_var(&keys[i], &tweaked_gej, &online_ge, NULL); - } - secp256k1_sha256_finalize(&sha, msg32); - return 1; -} - - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/num.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/num.h deleted file mode 100644 index 49f2dd7..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/num.h +++ /dev/null @@ -1,74 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_NUM_H -#define SECP256K1_NUM_H - -#ifndef USE_NUM_NONE - -#if defined HAVE_CONFIG_H -#include "libsecp256k1-config.h" -#endif - -#if defined(USE_NUM_GMP) -#include "num_gmp.h" -#else -#error "Please select num implementation" -#endif - -/** Copy a number. */ -static void secp256k1_num_copy(secp256k1_num *r, const secp256k1_num *a); - -/** Convert a number's absolute value to a binary big-endian string. - * There must be enough place. */ -static void secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num *a); - -/** Set a number to the value of a binary big-endian string. */ -static void secp256k1_num_set_bin(secp256k1_num *r, const unsigned char *a, unsigned int alen); - -/** Compute a modular inverse. The input must be less than the modulus. */ -static void secp256k1_num_mod_inverse(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *m); - -/** Compute the jacobi symbol (a|b). b must be positive and odd. */ -static int secp256k1_num_jacobi(const secp256k1_num *a, const secp256k1_num *b); - -/** Compare the absolute value of two numbers. */ -static int secp256k1_num_cmp(const secp256k1_num *a, const secp256k1_num *b); - -/** Test whether two number are equal (including sign). */ -static int secp256k1_num_eq(const secp256k1_num *a, const secp256k1_num *b); - -/** Add two (signed) numbers. */ -static void secp256k1_num_add(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b); - -/** Subtract two (signed) numbers. */ -static void secp256k1_num_sub(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b); - -/** Multiply two (signed) numbers. */ -static void secp256k1_num_mul(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b); - -/** Replace a number by its remainder modulo m. M's sign is ignored. The result is a number between 0 and m-1, - even if r was negative. */ -static void secp256k1_num_mod(secp256k1_num *r, const secp256k1_num *m); - -/** Right-shift the passed number by bits bits. */ -static void secp256k1_num_shift(secp256k1_num *r, int bits); - -/** Check whether a number is zero. */ -static int secp256k1_num_is_zero(const secp256k1_num *a); - -/** Check whether a number is one. */ -static int secp256k1_num_is_one(const secp256k1_num *a); - -/** Check whether a number is strictly negative. */ -static int secp256k1_num_is_neg(const secp256k1_num *a); - -/** Change a number's sign. */ -static void secp256k1_num_negate(secp256k1_num *r); - -#endif - -#endif /* SECP256K1_NUM_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/num_gmp.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/num_gmp.h deleted file mode 100644 index 3619844..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/num_gmp.h +++ /dev/null @@ -1,20 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_NUM_REPR_H -#define SECP256K1_NUM_REPR_H - -#include - -#define NUM_LIMBS ((256+GMP_NUMB_BITS-1)/GMP_NUMB_BITS) - -typedef struct { - mp_limb_t data[2*NUM_LIMBS]; - int neg; - int limbs; -} secp256k1_num; - -#endif /* SECP256K1_NUM_REPR_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/num_gmp_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/num_gmp_impl.h deleted file mode 100644 index 0ae2a8b..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/num_gmp_impl.h +++ /dev/null @@ -1,288 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_NUM_REPR_IMPL_H -#define SECP256K1_NUM_REPR_IMPL_H - -#include -#include -#include - -#include "util.h" -#include "num.h" - -#ifdef VERIFY -static void secp256k1_num_sanity(const secp256k1_num *a) { - VERIFY_CHECK(a->limbs == 1 || (a->limbs > 1 && a->data[a->limbs-1] != 0)); -} -#else -#define secp256k1_num_sanity(a) do { } while(0) -#endif - -static void secp256k1_num_copy(secp256k1_num *r, const secp256k1_num *a) { - *r = *a; -} - -static void secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num *a) { - unsigned char tmp[65]; - int len = 0; - int shift = 0; - if (a->limbs>1 || a->data[0] != 0) { - len = mpn_get_str(tmp, 256, (mp_limb_t*)a->data, a->limbs); - } - while (shift < len && tmp[shift] == 0) shift++; - VERIFY_CHECK(len-shift <= (int)rlen); - memset(r, 0, rlen - len + shift); - if (len > shift) { - memcpy(r + rlen - len + shift, tmp + shift, len - shift); - } - memset(tmp, 0, sizeof(tmp)); -} - -static void secp256k1_num_set_bin(secp256k1_num *r, const unsigned char *a, unsigned int alen) { - int len; - VERIFY_CHECK(alen > 0); - VERIFY_CHECK(alen <= 64); - len = mpn_set_str(r->data, a, alen, 256); - if (len == 0) { - r->data[0] = 0; - len = 1; - } - VERIFY_CHECK(len <= NUM_LIMBS*2); - r->limbs = len; - r->neg = 0; - while (r->limbs > 1 && r->data[r->limbs-1]==0) { - r->limbs--; - } -} - -static void secp256k1_num_add_abs(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) { - mp_limb_t c = mpn_add(r->data, a->data, a->limbs, b->data, b->limbs); - r->limbs = a->limbs; - if (c != 0) { - VERIFY_CHECK(r->limbs < 2*NUM_LIMBS); - r->data[r->limbs++] = c; - } -} - -static void secp256k1_num_sub_abs(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) { - mp_limb_t c = mpn_sub(r->data, a->data, a->limbs, b->data, b->limbs); - (void)c; - VERIFY_CHECK(c == 0); - r->limbs = a->limbs; - while (r->limbs > 1 && r->data[r->limbs-1]==0) { - r->limbs--; - } -} - -static void secp256k1_num_mod(secp256k1_num *r, const secp256k1_num *m) { - secp256k1_num_sanity(r); - secp256k1_num_sanity(m); - - if (r->limbs >= m->limbs) { - mp_limb_t t[2*NUM_LIMBS]; - mpn_tdiv_qr(t, r->data, 0, r->data, r->limbs, m->data, m->limbs); - memset(t, 0, sizeof(t)); - r->limbs = m->limbs; - while (r->limbs > 1 && r->data[r->limbs-1]==0) { - r->limbs--; - } - } - - if (r->neg && (r->limbs > 1 || r->data[0] != 0)) { - secp256k1_num_sub_abs(r, m, r); - r->neg = 0; - } -} - -static void secp256k1_num_mod_inverse(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *m) { - int i; - mp_limb_t g[NUM_LIMBS+1]; - mp_limb_t u[NUM_LIMBS+1]; - mp_limb_t v[NUM_LIMBS+1]; - mp_size_t sn; - mp_size_t gn; - secp256k1_num_sanity(a); - secp256k1_num_sanity(m); - - /** mpn_gcdext computes: (G,S) = gcdext(U,V), where - * * G = gcd(U,V) - * * G = U*S + V*T - * * U has equal or more limbs than V, and V has no padding - * If we set U to be (a padded version of) a, and V = m: - * G = a*S + m*T - * G = a*S mod m - * Assuming G=1: - * S = 1/a mod m - */ - VERIFY_CHECK(m->limbs <= NUM_LIMBS); - VERIFY_CHECK(m->data[m->limbs-1] != 0); - for (i = 0; i < m->limbs; i++) { - u[i] = (i < a->limbs) ? a->data[i] : 0; - v[i] = m->data[i]; - } - sn = NUM_LIMBS+1; - gn = mpn_gcdext(g, r->data, &sn, u, m->limbs, v, m->limbs); - (void)gn; - VERIFY_CHECK(gn == 1); - VERIFY_CHECK(g[0] == 1); - r->neg = a->neg ^ m->neg; - if (sn < 0) { - mpn_sub(r->data, m->data, m->limbs, r->data, -sn); - r->limbs = m->limbs; - while (r->limbs > 1 && r->data[r->limbs-1]==0) { - r->limbs--; - } - } else { - r->limbs = sn; - } - memset(g, 0, sizeof(g)); - memset(u, 0, sizeof(u)); - memset(v, 0, sizeof(v)); -} - -static int secp256k1_num_jacobi(const secp256k1_num *a, const secp256k1_num *b) { - int ret; - mpz_t ga, gb; - secp256k1_num_sanity(a); - secp256k1_num_sanity(b); - VERIFY_CHECK(!b->neg && (b->limbs > 0) && (b->data[0] & 1)); - - mpz_inits(ga, gb, NULL); - - mpz_import(gb, b->limbs, -1, sizeof(mp_limb_t), 0, 0, b->data); - mpz_import(ga, a->limbs, -1, sizeof(mp_limb_t), 0, 0, a->data); - if (a->neg) { - mpz_neg(ga, ga); - } - - ret = mpz_jacobi(ga, gb); - - mpz_clears(ga, gb, NULL); - - return ret; -} - -static int secp256k1_num_is_one(const secp256k1_num *a) { - return (a->limbs == 1 && a->data[0] == 1); -} - -static int secp256k1_num_is_zero(const secp256k1_num *a) { - return (a->limbs == 1 && a->data[0] == 0); -} - -static int secp256k1_num_is_neg(const secp256k1_num *a) { - return (a->limbs > 1 || a->data[0] != 0) && a->neg; -} - -static int secp256k1_num_cmp(const secp256k1_num *a, const secp256k1_num *b) { - if (a->limbs > b->limbs) { - return 1; - } - if (a->limbs < b->limbs) { - return -1; - } - return mpn_cmp(a->data, b->data, a->limbs); -} - -static int secp256k1_num_eq(const secp256k1_num *a, const secp256k1_num *b) { - if (a->limbs > b->limbs) { - return 0; - } - if (a->limbs < b->limbs) { - return 0; - } - if ((a->neg && !secp256k1_num_is_zero(a)) != (b->neg && !secp256k1_num_is_zero(b))) { - return 0; - } - return mpn_cmp(a->data, b->data, a->limbs) == 0; -} - -static void secp256k1_num_subadd(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b, int bneg) { - if (!(b->neg ^ bneg ^ a->neg)) { /* a and b have the same sign */ - r->neg = a->neg; - if (a->limbs >= b->limbs) { - secp256k1_num_add_abs(r, a, b); - } else { - secp256k1_num_add_abs(r, b, a); - } - } else { - if (secp256k1_num_cmp(a, b) > 0) { - r->neg = a->neg; - secp256k1_num_sub_abs(r, a, b); - } else { - r->neg = b->neg ^ bneg; - secp256k1_num_sub_abs(r, b, a); - } - } -} - -static void secp256k1_num_add(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) { - secp256k1_num_sanity(a); - secp256k1_num_sanity(b); - secp256k1_num_subadd(r, a, b, 0); -} - -static void secp256k1_num_sub(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) { - secp256k1_num_sanity(a); - secp256k1_num_sanity(b); - secp256k1_num_subadd(r, a, b, 1); -} - -static void secp256k1_num_mul(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) { - mp_limb_t tmp[2*NUM_LIMBS+1]; - secp256k1_num_sanity(a); - secp256k1_num_sanity(b); - - VERIFY_CHECK(a->limbs + b->limbs <= 2*NUM_LIMBS+1); - if ((a->limbs==1 && a->data[0]==0) || (b->limbs==1 && b->data[0]==0)) { - r->limbs = 1; - r->neg = 0; - r->data[0] = 0; - return; - } - if (a->limbs >= b->limbs) { - mpn_mul(tmp, a->data, a->limbs, b->data, b->limbs); - } else { - mpn_mul(tmp, b->data, b->limbs, a->data, a->limbs); - } - r->limbs = a->limbs + b->limbs; - if (r->limbs > 1 && tmp[r->limbs - 1]==0) { - r->limbs--; - } - VERIFY_CHECK(r->limbs <= 2*NUM_LIMBS); - mpn_copyi(r->data, tmp, r->limbs); - r->neg = a->neg ^ b->neg; - memset(tmp, 0, sizeof(tmp)); -} - -static void secp256k1_num_shift(secp256k1_num *r, int bits) { - if (bits % GMP_NUMB_BITS) { - /* Shift within limbs. */ - mpn_rshift(r->data, r->data, r->limbs, bits % GMP_NUMB_BITS); - } - if (bits >= GMP_NUMB_BITS) { - int i; - /* Shift full limbs. */ - for (i = 0; i < r->limbs; i++) { - int index = i + (bits / GMP_NUMB_BITS); - if (index < r->limbs && index < 2*NUM_LIMBS) { - r->data[i] = r->data[index]; - } else { - r->data[i] = 0; - } - } - } - while (r->limbs>1 && r->data[r->limbs-1]==0) { - r->limbs--; - } -} - -static void secp256k1_num_negate(secp256k1_num *r) { - r->neg ^= 1; -} - -#endif /* SECP256K1_NUM_REPR_IMPL_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/num_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/num_impl.h deleted file mode 100644 index c45193b..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/num_impl.h +++ /dev/null @@ -1,24 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_NUM_IMPL_H -#define SECP256K1_NUM_IMPL_H - -#if defined HAVE_CONFIG_H -#include "libsecp256k1-config.h" -#endif - -#include "num.h" - -#if defined(USE_NUM_GMP) -#include "num_gmp_impl.h" -#elif defined(USE_NUM_NONE) -/* Nothing. */ -#else -#error "Please select num implementation" -#endif - -#endif /* SECP256K1_NUM_IMPL_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar.h deleted file mode 100644 index 57389da..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar.h +++ /dev/null @@ -1,112 +0,0 @@ -/********************************************************************** - * Copyright (c) 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_SCALAR_H -#define SECP256K1_SCALAR_H - -#include "num.h" - -#if defined HAVE_CONFIG_H -#include "libsecp256k1-config.h" -#endif - -#if defined(EXHAUSTIVE_TEST_ORDER) -#include "scalar_low.h" -#elif defined(USE_SCALAR_4X64) -#include "scalar_4x64.h" -#elif defined(USE_SCALAR_8X32) -#include "scalar_8x32.h" -#else -#error "Please select scalar implementation" -#endif - -/** Clear a scalar to prevent the leak of sensitive data. */ -static void secp256k1_scalar_clear(secp256k1_scalar *r); - -/** Access bits from a scalar. All requested bits must belong to the same 32-bit limb. */ -static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count); - -/** Access bits from a scalar. Not constant time. */ -static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count); - -/** Set a scalar from a big endian byte array. */ -static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow); - -/** Set a scalar to an unsigned integer. */ -static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v); - -/** Set a scalar to an unsigned 64-bit integer */ -static void secp256k1_scalar_set_u64(secp256k1_scalar *r, uint64_t v); - -/** Convert a scalar to a byte array. */ -static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a); - -/** Add two scalars together (modulo the group order). Returns whether it overflowed. */ -static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b); - -/** Conditionally add a power of two to a scalar. The result is not allowed to overflow. */ -static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag); - -/** Multiply two scalars (modulo the group order). */ -static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b); - -/** Shift a scalar right by some amount strictly between 0 and 16, returning - * the low bits that were shifted off */ -static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n); - -/** Compute the square of a scalar (modulo the group order). */ -static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a); - -/** Compute the inverse of a scalar (modulo the group order). */ -static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *a); - -/** Compute the inverse of a scalar (modulo the group order), without constant-time guarantee. */ -static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *a); - -/** Compute the complement of a scalar (modulo the group order). */ -static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a); - -/** Check whether a scalar equals zero. */ -static int secp256k1_scalar_is_zero(const secp256k1_scalar *a); - -/** Check whether a scalar equals one. */ -static int secp256k1_scalar_is_one(const secp256k1_scalar *a); - -/** Check whether a scalar, considered as an nonnegative integer, is even. */ -static int secp256k1_scalar_is_even(const secp256k1_scalar *a); - -/** Check whether a scalar is higher than the group order divided by 2. */ -static int secp256k1_scalar_is_high(const secp256k1_scalar *a); - -/** Conditionally negate a number, in constant time. - * Returns -1 if the number was negated, 1 otherwise */ -static int secp256k1_scalar_cond_negate(secp256k1_scalar *a, int flag); - -#ifndef USE_NUM_NONE -/** Convert a scalar to a number. */ -static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a); - -/** Get the order of the group as a number. */ -static void secp256k1_scalar_order_get_num(secp256k1_num *r); -#endif - -/** Compare two scalars. */ -static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b); - -#ifdef USE_ENDOMORPHISM -/** Find r1 and r2 such that r1+r2*2^128 = a. */ -static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a); -/** Find r1 and r2 such that r1+r2*lambda = a, and r1 and r2 are maximum 128 bits long (see secp256k1_gej_mul_lambda). */ -static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a); -#endif - -/** Multiply a and b (without taking the modulus!), divide by 2**shift, and round to the nearest integer. Shift must be at least 256. */ -static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift); - -/** Generate two scalars from a 32-byte seed and an integer using the chacha20 stream cipher */ -static void secp256k1_scalar_chacha20(secp256k1_scalar *r1, secp256k1_scalar *r2, const unsigned char *seed, uint64_t idx); - -#endif /* SECP256K1_SCALAR_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_4x64.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_4x64.h deleted file mode 100644 index 19c7495..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_4x64.h +++ /dev/null @@ -1,19 +0,0 @@ -/********************************************************************** - * Copyright (c) 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_SCALAR_REPR_H -#define SECP256K1_SCALAR_REPR_H - -#include - -/** A scalar modulo the group order of the secp256k1 curve. */ -typedef struct { - uint64_t d[4]; -} secp256k1_scalar; - -#define SECP256K1_SCALAR_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{((uint64_t)(d1)) << 32 | (d0), ((uint64_t)(d3)) << 32 | (d2), ((uint64_t)(d5)) << 32 | (d4), ((uint64_t)(d7)) << 32 | (d6)}} - -#endif /* SECP256K1_SCALAR_REPR_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_4x64_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_4x64_impl.h deleted file mode 100644 index 2673caa..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_4x64_impl.h +++ /dev/null @@ -1,1049 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_SCALAR_REPR_IMPL_H -#define SECP256K1_SCALAR_REPR_IMPL_H - -#include "scalar.h" -#include - -/* Limbs of the secp256k1 order. */ -#define SECP256K1_N_0 ((uint64_t)0xBFD25E8CD0364141ULL) -#define SECP256K1_N_1 ((uint64_t)0xBAAEDCE6AF48A03BULL) -#define SECP256K1_N_2 ((uint64_t)0xFFFFFFFFFFFFFFFEULL) -#define SECP256K1_N_3 ((uint64_t)0xFFFFFFFFFFFFFFFFULL) - -/* Limbs of 2^256 minus the secp256k1 order. */ -#define SECP256K1_N_C_0 (~SECP256K1_N_0 + 1) -#define SECP256K1_N_C_1 (~SECP256K1_N_1) -#define SECP256K1_N_C_2 (1) - -/* Limbs of half the secp256k1 order. */ -#define SECP256K1_N_H_0 ((uint64_t)0xDFE92F46681B20A0ULL) -#define SECP256K1_N_H_1 ((uint64_t)0x5D576E7357A4501DULL) -#define SECP256K1_N_H_2 ((uint64_t)0xFFFFFFFFFFFFFFFFULL) -#define SECP256K1_N_H_3 ((uint64_t)0x7FFFFFFFFFFFFFFFULL) - -SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) { - r->d[0] = 0; - r->d[1] = 0; - r->d[2] = 0; - r->d[3] = 0; -} - -SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) { - r->d[0] = v; - r->d[1] = 0; - r->d[2] = 0; - r->d[3] = 0; -} - -SECP256K1_INLINE static void secp256k1_scalar_set_u64(secp256k1_scalar *r, uint64_t v) { - r->d[0] = v; - r->d[1] = 0; - r->d[2] = 0; - r->d[3] = 0; -} - -SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) { - VERIFY_CHECK((offset + count - 1) >> 6 == offset >> 6); - return (a->d[offset >> 6] >> (offset & 0x3F)) & ((((uint64_t)1) << count) - 1); -} - -SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) { - VERIFY_CHECK(count < 32); - VERIFY_CHECK(offset + count <= 256); - if ((offset + count - 1) >> 6 == offset >> 6) { - return secp256k1_scalar_get_bits(a, offset, count); - } else { - VERIFY_CHECK((offset >> 6) + 1 < 4); - return ((a->d[offset >> 6] >> (offset & 0x3F)) | (a->d[(offset >> 6) + 1] << (64 - (offset & 0x3F)))) & ((((uint64_t)1) << count) - 1); - } -} - -SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) { - int yes = 0; - int no = 0; - no |= (a->d[3] < SECP256K1_N_3); /* No need for a > check. */ - no |= (a->d[2] < SECP256K1_N_2); - yes |= (a->d[2] > SECP256K1_N_2) & ~no; - no |= (a->d[1] < SECP256K1_N_1); - yes |= (a->d[1] > SECP256K1_N_1) & ~no; - yes |= (a->d[0] >= SECP256K1_N_0) & ~no; - return yes; -} - -SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, unsigned int overflow) { - uint128_t t; - VERIFY_CHECK(overflow <= 1); - t = (uint128_t)r->d[0] + overflow * SECP256K1_N_C_0; - r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; - t += (uint128_t)r->d[1] + overflow * SECP256K1_N_C_1; - r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; - t += (uint128_t)r->d[2] + overflow * SECP256K1_N_C_2; - r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; - t += (uint64_t)r->d[3]; - r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL; - return overflow; -} - -static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) { - int overflow; - uint128_t t = (uint128_t)a->d[0] + b->d[0]; - r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; - t += (uint128_t)a->d[1] + b->d[1]; - r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; - t += (uint128_t)a->d[2] + b->d[2]; - r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; - t += (uint128_t)a->d[3] + b->d[3]; - r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; - overflow = t + secp256k1_scalar_check_overflow(r); - VERIFY_CHECK(overflow == 0 || overflow == 1); - secp256k1_scalar_reduce(r, overflow); - return overflow; -} - -static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) { - uint128_t t; - VERIFY_CHECK(bit < 256); - bit += ((uint32_t) flag - 1) & 0x100; /* forcing (bit >> 6) > 3 makes this a noop */ - t = (uint128_t)r->d[0] + (((uint64_t)((bit >> 6) == 0)) << (bit & 0x3F)); - r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; - t += (uint128_t)r->d[1] + (((uint64_t)((bit >> 6) == 1)) << (bit & 0x3F)); - r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; - t += (uint128_t)r->d[2] + (((uint64_t)((bit >> 6) == 2)) << (bit & 0x3F)); - r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64; - t += (uint128_t)r->d[3] + (((uint64_t)((bit >> 6) == 3)) << (bit & 0x3F)); - r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL; -#ifdef VERIFY - VERIFY_CHECK((t >> 64) == 0); - VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0); -#endif -} - -static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) { - int over; - r->d[0] = (uint64_t)b32[31] | (uint64_t)b32[30] << 8 | (uint64_t)b32[29] << 16 | (uint64_t)b32[28] << 24 | (uint64_t)b32[27] << 32 | (uint64_t)b32[26] << 40 | (uint64_t)b32[25] << 48 | (uint64_t)b32[24] << 56; - r->d[1] = (uint64_t)b32[23] | (uint64_t)b32[22] << 8 | (uint64_t)b32[21] << 16 | (uint64_t)b32[20] << 24 | (uint64_t)b32[19] << 32 | (uint64_t)b32[18] << 40 | (uint64_t)b32[17] << 48 | (uint64_t)b32[16] << 56; - r->d[2] = (uint64_t)b32[15] | (uint64_t)b32[14] << 8 | (uint64_t)b32[13] << 16 | (uint64_t)b32[12] << 24 | (uint64_t)b32[11] << 32 | (uint64_t)b32[10] << 40 | (uint64_t)b32[9] << 48 | (uint64_t)b32[8] << 56; - r->d[3] = (uint64_t)b32[7] | (uint64_t)b32[6] << 8 | (uint64_t)b32[5] << 16 | (uint64_t)b32[4] << 24 | (uint64_t)b32[3] << 32 | (uint64_t)b32[2] << 40 | (uint64_t)b32[1] << 48 | (uint64_t)b32[0] << 56; - over = secp256k1_scalar_reduce(r, secp256k1_scalar_check_overflow(r)); - if (overflow) { - *overflow = over; - } -} - -static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) { - bin[0] = a->d[3] >> 56; bin[1] = a->d[3] >> 48; bin[2] = a->d[3] >> 40; bin[3] = a->d[3] >> 32; bin[4] = a->d[3] >> 24; bin[5] = a->d[3] >> 16; bin[6] = a->d[3] >> 8; bin[7] = a->d[3]; - bin[8] = a->d[2] >> 56; bin[9] = a->d[2] >> 48; bin[10] = a->d[2] >> 40; bin[11] = a->d[2] >> 32; bin[12] = a->d[2] >> 24; bin[13] = a->d[2] >> 16; bin[14] = a->d[2] >> 8; bin[15] = a->d[2]; - bin[16] = a->d[1] >> 56; bin[17] = a->d[1] >> 48; bin[18] = a->d[1] >> 40; bin[19] = a->d[1] >> 32; bin[20] = a->d[1] >> 24; bin[21] = a->d[1] >> 16; bin[22] = a->d[1] >> 8; bin[23] = a->d[1]; - bin[24] = a->d[0] >> 56; bin[25] = a->d[0] >> 48; bin[26] = a->d[0] >> 40; bin[27] = a->d[0] >> 32; bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0]; -} - -SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) { - return (a->d[0] | a->d[1] | a->d[2] | a->d[3]) == 0; -} - -static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) { - uint64_t nonzero = 0xFFFFFFFFFFFFFFFFULL * (secp256k1_scalar_is_zero(a) == 0); - uint128_t t = (uint128_t)(~a->d[0]) + SECP256K1_N_0 + 1; - r->d[0] = t & nonzero; t >>= 64; - t += (uint128_t)(~a->d[1]) + SECP256K1_N_1; - r->d[1] = t & nonzero; t >>= 64; - t += (uint128_t)(~a->d[2]) + SECP256K1_N_2; - r->d[2] = t & nonzero; t >>= 64; - t += (uint128_t)(~a->d[3]) + SECP256K1_N_3; - r->d[3] = t & nonzero; -} - -SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) { - return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3]) == 0; -} - -static int secp256k1_scalar_is_high(const secp256k1_scalar *a) { - int yes = 0; - int no = 0; - no |= (a->d[3] < SECP256K1_N_H_3); - yes |= (a->d[3] > SECP256K1_N_H_3) & ~no; - no |= (a->d[2] < SECP256K1_N_H_2) & ~yes; /* No need for a > check. */ - no |= (a->d[1] < SECP256K1_N_H_1) & ~yes; - yes |= (a->d[1] > SECP256K1_N_H_1) & ~no; - yes |= (a->d[0] > SECP256K1_N_H_0) & ~no; - return yes; -} - -static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) { - /* If we are flag = 0, mask = 00...00 and this is a no-op; - * if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */ - uint64_t mask = !flag - 1; - uint64_t nonzero = (secp256k1_scalar_is_zero(r) != 0) - 1; - uint128_t t = (uint128_t)(r->d[0] ^ mask) + ((SECP256K1_N_0 + 1) & mask); - r->d[0] = t & nonzero; t >>= 64; - t += (uint128_t)(r->d[1] ^ mask) + (SECP256K1_N_1 & mask); - r->d[1] = t & nonzero; t >>= 64; - t += (uint128_t)(r->d[2] ^ mask) + (SECP256K1_N_2 & mask); - r->d[2] = t & nonzero; t >>= 64; - t += (uint128_t)(r->d[3] ^ mask) + (SECP256K1_N_3 & mask); - r->d[3] = t & nonzero; - return 2 * (mask == 0) - 1; -} - -/* Inspired by the macros in OpenSSL's crypto/bn/asm/x86_64-gcc.c. */ - -/** Add a*b to the number defined by (c0,c1,c2). c2 must never overflow. */ -#define muladd(a,b) { \ - uint64_t tl, th; \ - { \ - uint128_t t = (uint128_t)a * b; \ - th = t >> 64; /* at most 0xFFFFFFFFFFFFFFFE */ \ - tl = t; \ - } \ - c0 += tl; /* overflow is handled on the next line */ \ - th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFFFFFFFFFF */ \ - c1 += th; /* overflow is handled on the next line */ \ - c2 += (c1 < th) ? 1 : 0; /* never overflows by contract (verified in the next line) */ \ - VERIFY_CHECK((c1 >= th) || (c2 != 0)); \ -} - -/** Add a*b to the number defined by (c0,c1). c1 must never overflow. */ -#define muladd_fast(a,b) { \ - uint64_t tl, th; \ - { \ - uint128_t t = (uint128_t)a * b; \ - th = t >> 64; /* at most 0xFFFFFFFFFFFFFFFE */ \ - tl = t; \ - } \ - c0 += tl; /* overflow is handled on the next line */ \ - th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFFFFFFFFFF */ \ - c1 += th; /* never overflows by contract (verified in the next line) */ \ - VERIFY_CHECK(c1 >= th); \ -} - -/** Add 2*a*b to the number defined by (c0,c1,c2). c2 must never overflow. */ -#define muladd2(a,b) { \ - uint64_t tl, th, th2, tl2; \ - { \ - uint128_t t = (uint128_t)a * b; \ - th = t >> 64; /* at most 0xFFFFFFFFFFFFFFFE */ \ - tl = t; \ - } \ - th2 = th + th; /* at most 0xFFFFFFFFFFFFFFFE (in case th was 0x7FFFFFFFFFFFFFFF) */ \ - c2 += (th2 < th) ? 1 : 0; /* never overflows by contract (verified the next line) */ \ - VERIFY_CHECK((th2 >= th) || (c2 != 0)); \ - tl2 = tl + tl; /* at most 0xFFFFFFFFFFFFFFFE (in case the lowest 63 bits of tl were 0x7FFFFFFFFFFFFFFF) */ \ - th2 += (tl2 < tl) ? 1 : 0; /* at most 0xFFFFFFFFFFFFFFFF */ \ - c0 += tl2; /* overflow is handled on the next line */ \ - th2 += (c0 < tl2) ? 1 : 0; /* second overflow is handled on the next line */ \ - c2 += (c0 < tl2) & (th2 == 0); /* never overflows by contract (verified the next line) */ \ - VERIFY_CHECK((c0 >= tl2) || (th2 != 0) || (c2 != 0)); \ - c1 += th2; /* overflow is handled on the next line */ \ - c2 += (c1 < th2) ? 1 : 0; /* never overflows by contract (verified the next line) */ \ - VERIFY_CHECK((c1 >= th2) || (c2 != 0)); \ -} - -/** Add a to the number defined by (c0,c1,c2). c2 must never overflow. */ -#define sumadd(a) { \ - unsigned int over; \ - c0 += (a); /* overflow is handled on the next line */ \ - over = (c0 < (a)) ? 1 : 0; \ - c1 += over; /* overflow is handled on the next line */ \ - c2 += (c1 < over) ? 1 : 0; /* never overflows by contract */ \ -} - -/** Add a to the number defined by (c0,c1). c1 must never overflow, c2 must be zero. */ -#define sumadd_fast(a) { \ - c0 += (a); /* overflow is handled on the next line */ \ - c1 += (c0 < (a)) ? 1 : 0; /* never overflows by contract (verified the next line) */ \ - VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \ - VERIFY_CHECK(c2 == 0); \ -} - -/** Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits. */ -#define extract(n) { \ - (n) = c0; \ - c0 = c1; \ - c1 = c2; \ - c2 = 0; \ -} - -/** Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits. c2 is required to be zero. */ -#define extract_fast(n) { \ - (n) = c0; \ - c0 = c1; \ - c1 = 0; \ - VERIFY_CHECK(c2 == 0); \ -} - -static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l) { -#ifdef USE_ASM_X86_64 - /* Reduce 512 bits into 385. */ - uint64_t m0, m1, m2, m3, m4, m5, m6; - uint64_t p0, p1, p2, p3, p4; - uint64_t c; - - __asm__ __volatile__( - /* Preload. */ - "movq 32(%%rsi), %%r11\n" - "movq 40(%%rsi), %%r12\n" - "movq 48(%%rsi), %%r13\n" - "movq 56(%%rsi), %%r14\n" - /* Initialize r8,r9,r10 */ - "movq 0(%%rsi), %%r8\n" - "xorq %%r9, %%r9\n" - "xorq %%r10, %%r10\n" - /* (r8,r9) += n0 * c0 */ - "movq %8, %%rax\n" - "mulq %%r11\n" - "addq %%rax, %%r8\n" - "adcq %%rdx, %%r9\n" - /* extract m0 */ - "movq %%r8, %q0\n" - "xorq %%r8, %%r8\n" - /* (r9,r10) += l1 */ - "addq 8(%%rsi), %%r9\n" - "adcq $0, %%r10\n" - /* (r9,r10,r8) += n1 * c0 */ - "movq %8, %%rax\n" - "mulq %%r12\n" - "addq %%rax, %%r9\n" - "adcq %%rdx, %%r10\n" - "adcq $0, %%r8\n" - /* (r9,r10,r8) += n0 * c1 */ - "movq %9, %%rax\n" - "mulq %%r11\n" - "addq %%rax, %%r9\n" - "adcq %%rdx, %%r10\n" - "adcq $0, %%r8\n" - /* extract m1 */ - "movq %%r9, %q1\n" - "xorq %%r9, %%r9\n" - /* (r10,r8,r9) += l2 */ - "addq 16(%%rsi), %%r10\n" - "adcq $0, %%r8\n" - "adcq $0, %%r9\n" - /* (r10,r8,r9) += n2 * c0 */ - "movq %8, %%rax\n" - "mulq %%r13\n" - "addq %%rax, %%r10\n" - "adcq %%rdx, %%r8\n" - "adcq $0, %%r9\n" - /* (r10,r8,r9) += n1 * c1 */ - "movq %9, %%rax\n" - "mulq %%r12\n" - "addq %%rax, %%r10\n" - "adcq %%rdx, %%r8\n" - "adcq $0, %%r9\n" - /* (r10,r8,r9) += n0 */ - "addq %%r11, %%r10\n" - "adcq $0, %%r8\n" - "adcq $0, %%r9\n" - /* extract m2 */ - "movq %%r10, %q2\n" - "xorq %%r10, %%r10\n" - /* (r8,r9,r10) += l3 */ - "addq 24(%%rsi), %%r8\n" - "adcq $0, %%r9\n" - "adcq $0, %%r10\n" - /* (r8,r9,r10) += n3 * c0 */ - "movq %8, %%rax\n" - "mulq %%r14\n" - "addq %%rax, %%r8\n" - "adcq %%rdx, %%r9\n" - "adcq $0, %%r10\n" - /* (r8,r9,r10) += n2 * c1 */ - "movq %9, %%rax\n" - "mulq %%r13\n" - "addq %%rax, %%r8\n" - "adcq %%rdx, %%r9\n" - "adcq $0, %%r10\n" - /* (r8,r9,r10) += n1 */ - "addq %%r12, %%r8\n" - "adcq $0, %%r9\n" - "adcq $0, %%r10\n" - /* extract m3 */ - "movq %%r8, %q3\n" - "xorq %%r8, %%r8\n" - /* (r9,r10,r8) += n3 * c1 */ - "movq %9, %%rax\n" - "mulq %%r14\n" - "addq %%rax, %%r9\n" - "adcq %%rdx, %%r10\n" - "adcq $0, %%r8\n" - /* (r9,r10,r8) += n2 */ - "addq %%r13, %%r9\n" - "adcq $0, %%r10\n" - "adcq $0, %%r8\n" - /* extract m4 */ - "movq %%r9, %q4\n" - /* (r10,r8) += n3 */ - "addq %%r14, %%r10\n" - "adcq $0, %%r8\n" - /* extract m5 */ - "movq %%r10, %q5\n" - /* extract m6 */ - "movq %%r8, %q6\n" - : "=g"(m0), "=g"(m1), "=g"(m2), "=g"(m3), "=g"(m4), "=g"(m5), "=g"(m6) - : "S"(l), "n"(SECP256K1_N_C_0), "n"(SECP256K1_N_C_1) - : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "cc"); - - /* Reduce 385 bits into 258. */ - __asm__ __volatile__( - /* Preload */ - "movq %q9, %%r11\n" - "movq %q10, %%r12\n" - "movq %q11, %%r13\n" - /* Initialize (r8,r9,r10) */ - "movq %q5, %%r8\n" - "xorq %%r9, %%r9\n" - "xorq %%r10, %%r10\n" - /* (r8,r9) += m4 * c0 */ - "movq %12, %%rax\n" - "mulq %%r11\n" - "addq %%rax, %%r8\n" - "adcq %%rdx, %%r9\n" - /* extract p0 */ - "movq %%r8, %q0\n" - "xorq %%r8, %%r8\n" - /* (r9,r10) += m1 */ - "addq %q6, %%r9\n" - "adcq $0, %%r10\n" - /* (r9,r10,r8) += m5 * c0 */ - "movq %12, %%rax\n" - "mulq %%r12\n" - "addq %%rax, %%r9\n" - "adcq %%rdx, %%r10\n" - "adcq $0, %%r8\n" - /* (r9,r10,r8) += m4 * c1 */ - "movq %13, %%rax\n" - "mulq %%r11\n" - "addq %%rax, %%r9\n" - "adcq %%rdx, %%r10\n" - "adcq $0, %%r8\n" - /* extract p1 */ - "movq %%r9, %q1\n" - "xorq %%r9, %%r9\n" - /* (r10,r8,r9) += m2 */ - "addq %q7, %%r10\n" - "adcq $0, %%r8\n" - "adcq $0, %%r9\n" - /* (r10,r8,r9) += m6 * c0 */ - "movq %12, %%rax\n" - "mulq %%r13\n" - "addq %%rax, %%r10\n" - "adcq %%rdx, %%r8\n" - "adcq $0, %%r9\n" - /* (r10,r8,r9) += m5 * c1 */ - "movq %13, %%rax\n" - "mulq %%r12\n" - "addq %%rax, %%r10\n" - "adcq %%rdx, %%r8\n" - "adcq $0, %%r9\n" - /* (r10,r8,r9) += m4 */ - "addq %%r11, %%r10\n" - "adcq $0, %%r8\n" - "adcq $0, %%r9\n" - /* extract p2 */ - "movq %%r10, %q2\n" - /* (r8,r9) += m3 */ - "addq %q8, %%r8\n" - "adcq $0, %%r9\n" - /* (r8,r9) += m6 * c1 */ - "movq %13, %%rax\n" - "mulq %%r13\n" - "addq %%rax, %%r8\n" - "adcq %%rdx, %%r9\n" - /* (r8,r9) += m5 */ - "addq %%r12, %%r8\n" - "adcq $0, %%r9\n" - /* extract p3 */ - "movq %%r8, %q3\n" - /* (r9) += m6 */ - "addq %%r13, %%r9\n" - /* extract p4 */ - "movq %%r9, %q4\n" - : "=&g"(p0), "=&g"(p1), "=&g"(p2), "=g"(p3), "=g"(p4) - : "g"(m0), "g"(m1), "g"(m2), "g"(m3), "g"(m4), "g"(m5), "g"(m6), "n"(SECP256K1_N_C_0), "n"(SECP256K1_N_C_1) - : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "cc"); - - /* Reduce 258 bits into 256. */ - __asm__ __volatile__( - /* Preload */ - "movq %q5, %%r10\n" - /* (rax,rdx) = p4 * c0 */ - "movq %7, %%rax\n" - "mulq %%r10\n" - /* (rax,rdx) += p0 */ - "addq %q1, %%rax\n" - "adcq $0, %%rdx\n" - /* extract r0 */ - "movq %%rax, 0(%q6)\n" - /* Move to (r8,r9) */ - "movq %%rdx, %%r8\n" - "xorq %%r9, %%r9\n" - /* (r8,r9) += p1 */ - "addq %q2, %%r8\n" - "adcq $0, %%r9\n" - /* (r8,r9) += p4 * c1 */ - "movq %8, %%rax\n" - "mulq %%r10\n" - "addq %%rax, %%r8\n" - "adcq %%rdx, %%r9\n" - /* Extract r1 */ - "movq %%r8, 8(%q6)\n" - "xorq %%r8, %%r8\n" - /* (r9,r8) += p4 */ - "addq %%r10, %%r9\n" - "adcq $0, %%r8\n" - /* (r9,r8) += p2 */ - "addq %q3, %%r9\n" - "adcq $0, %%r8\n" - /* Extract r2 */ - "movq %%r9, 16(%q6)\n" - "xorq %%r9, %%r9\n" - /* (r8,r9) += p3 */ - "addq %q4, %%r8\n" - "adcq $0, %%r9\n" - /* Extract r3 */ - "movq %%r8, 24(%q6)\n" - /* Extract c */ - "movq %%r9, %q0\n" - : "=g"(c) - : "g"(p0), "g"(p1), "g"(p2), "g"(p3), "g"(p4), "D"(r), "n"(SECP256K1_N_C_0), "n"(SECP256K1_N_C_1) - : "rax", "rdx", "r8", "r9", "r10", "cc", "memory"); -#else - uint128_t c; - uint64_t c0, c1, c2; - uint64_t n0 = l[4], n1 = l[5], n2 = l[6], n3 = l[7]; - uint64_t m0, m1, m2, m3, m4, m5; - uint32_t m6; - uint64_t p0, p1, p2, p3; - uint32_t p4; - - /* Reduce 512 bits into 385. */ - /* m[0..6] = l[0..3] + n[0..3] * SECP256K1_N_C. */ - c0 = l[0]; c1 = 0; c2 = 0; - muladd_fast(n0, SECP256K1_N_C_0); - extract_fast(m0); - sumadd_fast(l[1]); - muladd(n1, SECP256K1_N_C_0); - muladd(n0, SECP256K1_N_C_1); - extract(m1); - sumadd(l[2]); - muladd(n2, SECP256K1_N_C_0); - muladd(n1, SECP256K1_N_C_1); - sumadd(n0); - extract(m2); - sumadd(l[3]); - muladd(n3, SECP256K1_N_C_0); - muladd(n2, SECP256K1_N_C_1); - sumadd(n1); - extract(m3); - muladd(n3, SECP256K1_N_C_1); - sumadd(n2); - extract(m4); - sumadd_fast(n3); - extract_fast(m5); - VERIFY_CHECK(c0 <= 1); - m6 = c0; - - /* Reduce 385 bits into 258. */ - /* p[0..4] = m[0..3] + m[4..6] * SECP256K1_N_C. */ - c0 = m0; c1 = 0; c2 = 0; - muladd_fast(m4, SECP256K1_N_C_0); - extract_fast(p0); - sumadd_fast(m1); - muladd(m5, SECP256K1_N_C_0); - muladd(m4, SECP256K1_N_C_1); - extract(p1); - sumadd(m2); - muladd(m6, SECP256K1_N_C_0); - muladd(m5, SECP256K1_N_C_1); - sumadd(m4); - extract(p2); - sumadd_fast(m3); - muladd_fast(m6, SECP256K1_N_C_1); - sumadd_fast(m5); - extract_fast(p3); - p4 = c0 + m6; - VERIFY_CHECK(p4 <= 2); - - /* Reduce 258 bits into 256. */ - /* r[0..3] = p[0..3] + p[4] * SECP256K1_N_C. */ - c = p0 + (uint128_t)SECP256K1_N_C_0 * p4; - r->d[0] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64; - c += p1 + (uint128_t)SECP256K1_N_C_1 * p4; - r->d[1] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64; - c += p2 + (uint128_t)p4; - r->d[2] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64; - c += p3; - r->d[3] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64; -#endif - - /* Final reduction of r. */ - secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r)); -} - -static void secp256k1_scalar_mul_512(uint64_t l[8], const secp256k1_scalar *a, const secp256k1_scalar *b) { -#ifdef USE_ASM_X86_64 - const uint64_t *pb = b->d; - __asm__ __volatile__( - /* Preload */ - "movq 0(%%rdi), %%r15\n" - "movq 8(%%rdi), %%rbx\n" - "movq 16(%%rdi), %%rcx\n" - "movq 0(%%rdx), %%r11\n" - "movq 8(%%rdx), %%r12\n" - "movq 16(%%rdx), %%r13\n" - "movq 24(%%rdx), %%r14\n" - /* (rax,rdx) = a0 * b0 */ - "movq %%r15, %%rax\n" - "mulq %%r11\n" - /* Extract l0 */ - "movq %%rax, 0(%%rsi)\n" - /* (r8,r9,r10) = (rdx) */ - "movq %%rdx, %%r8\n" - "xorq %%r9, %%r9\n" - "xorq %%r10, %%r10\n" - /* (r8,r9,r10) += a0 * b1 */ - "movq %%r15, %%rax\n" - "mulq %%r12\n" - "addq %%rax, %%r8\n" - "adcq %%rdx, %%r9\n" - "adcq $0, %%r10\n" - /* (r8,r9,r10) += a1 * b0 */ - "movq %%rbx, %%rax\n" - "mulq %%r11\n" - "addq %%rax, %%r8\n" - "adcq %%rdx, %%r9\n" - "adcq $0, %%r10\n" - /* Extract l1 */ - "movq %%r8, 8(%%rsi)\n" - "xorq %%r8, %%r8\n" - /* (r9,r10,r8) += a0 * b2 */ - "movq %%r15, %%rax\n" - "mulq %%r13\n" - "addq %%rax, %%r9\n" - "adcq %%rdx, %%r10\n" - "adcq $0, %%r8\n" - /* (r9,r10,r8) += a1 * b1 */ - "movq %%rbx, %%rax\n" - "mulq %%r12\n" - "addq %%rax, %%r9\n" - "adcq %%rdx, %%r10\n" - "adcq $0, %%r8\n" - /* (r9,r10,r8) += a2 * b0 */ - "movq %%rcx, %%rax\n" - "mulq %%r11\n" - "addq %%rax, %%r9\n" - "adcq %%rdx, %%r10\n" - "adcq $0, %%r8\n" - /* Extract l2 */ - "movq %%r9, 16(%%rsi)\n" - "xorq %%r9, %%r9\n" - /* (r10,r8,r9) += a0 * b3 */ - "movq %%r15, %%rax\n" - "mulq %%r14\n" - "addq %%rax, %%r10\n" - "adcq %%rdx, %%r8\n" - "adcq $0, %%r9\n" - /* Preload a3 */ - "movq 24(%%rdi), %%r15\n" - /* (r10,r8,r9) += a1 * b2 */ - "movq %%rbx, %%rax\n" - "mulq %%r13\n" - "addq %%rax, %%r10\n" - "adcq %%rdx, %%r8\n" - "adcq $0, %%r9\n" - /* (r10,r8,r9) += a2 * b1 */ - "movq %%rcx, %%rax\n" - "mulq %%r12\n" - "addq %%rax, %%r10\n" - "adcq %%rdx, %%r8\n" - "adcq $0, %%r9\n" - /* (r10,r8,r9) += a3 * b0 */ - "movq %%r15, %%rax\n" - "mulq %%r11\n" - "addq %%rax, %%r10\n" - "adcq %%rdx, %%r8\n" - "adcq $0, %%r9\n" - /* Extract l3 */ - "movq %%r10, 24(%%rsi)\n" - "xorq %%r10, %%r10\n" - /* (r8,r9,r10) += a1 * b3 */ - "movq %%rbx, %%rax\n" - "mulq %%r14\n" - "addq %%rax, %%r8\n" - "adcq %%rdx, %%r9\n" - "adcq $0, %%r10\n" - /* (r8,r9,r10) += a2 * b2 */ - "movq %%rcx, %%rax\n" - "mulq %%r13\n" - "addq %%rax, %%r8\n" - "adcq %%rdx, %%r9\n" - "adcq $0, %%r10\n" - /* (r8,r9,r10) += a3 * b1 */ - "movq %%r15, %%rax\n" - "mulq %%r12\n" - "addq %%rax, %%r8\n" - "adcq %%rdx, %%r9\n" - "adcq $0, %%r10\n" - /* Extract l4 */ - "movq %%r8, 32(%%rsi)\n" - "xorq %%r8, %%r8\n" - /* (r9,r10,r8) += a2 * b3 */ - "movq %%rcx, %%rax\n" - "mulq %%r14\n" - "addq %%rax, %%r9\n" - "adcq %%rdx, %%r10\n" - "adcq $0, %%r8\n" - /* (r9,r10,r8) += a3 * b2 */ - "movq %%r15, %%rax\n" - "mulq %%r13\n" - "addq %%rax, %%r9\n" - "adcq %%rdx, %%r10\n" - "adcq $0, %%r8\n" - /* Extract l5 */ - "movq %%r9, 40(%%rsi)\n" - /* (r10,r8) += a3 * b3 */ - "movq %%r15, %%rax\n" - "mulq %%r14\n" - "addq %%rax, %%r10\n" - "adcq %%rdx, %%r8\n" - /* Extract l6 */ - "movq %%r10, 48(%%rsi)\n" - /* Extract l7 */ - "movq %%r8, 56(%%rsi)\n" - : "+d"(pb) - : "S"(l), "D"(a->d) - : "rax", "rbx", "rcx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "cc", "memory"); -#else - /* 160 bit accumulator. */ - uint64_t c0 = 0, c1 = 0; - uint32_t c2 = 0; - - /* l[0..7] = a[0..3] * b[0..3]. */ - muladd_fast(a->d[0], b->d[0]); - extract_fast(l[0]); - muladd(a->d[0], b->d[1]); - muladd(a->d[1], b->d[0]); - extract(l[1]); - muladd(a->d[0], b->d[2]); - muladd(a->d[1], b->d[1]); - muladd(a->d[2], b->d[0]); - extract(l[2]); - muladd(a->d[0], b->d[3]); - muladd(a->d[1], b->d[2]); - muladd(a->d[2], b->d[1]); - muladd(a->d[3], b->d[0]); - extract(l[3]); - muladd(a->d[1], b->d[3]); - muladd(a->d[2], b->d[2]); - muladd(a->d[3], b->d[1]); - extract(l[4]); - muladd(a->d[2], b->d[3]); - muladd(a->d[3], b->d[2]); - extract(l[5]); - muladd_fast(a->d[3], b->d[3]); - extract_fast(l[6]); - VERIFY_CHECK(c1 == 0); - l[7] = c0; -#endif -} - -static void secp256k1_scalar_sqr_512(uint64_t l[8], const secp256k1_scalar *a) { -#ifdef USE_ASM_X86_64 - __asm__ __volatile__( - /* Preload */ - "movq 0(%%rdi), %%r11\n" - "movq 8(%%rdi), %%r12\n" - "movq 16(%%rdi), %%r13\n" - "movq 24(%%rdi), %%r14\n" - /* (rax,rdx) = a0 * a0 */ - "movq %%r11, %%rax\n" - "mulq %%r11\n" - /* Extract l0 */ - "movq %%rax, 0(%%rsi)\n" - /* (r8,r9,r10) = (rdx,0) */ - "movq %%rdx, %%r8\n" - "xorq %%r9, %%r9\n" - "xorq %%r10, %%r10\n" - /* (r8,r9,r10) += 2 * a0 * a1 */ - "movq %%r11, %%rax\n" - "mulq %%r12\n" - "addq %%rax, %%r8\n" - "adcq %%rdx, %%r9\n" - "adcq $0, %%r10\n" - "addq %%rax, %%r8\n" - "adcq %%rdx, %%r9\n" - "adcq $0, %%r10\n" - /* Extract l1 */ - "movq %%r8, 8(%%rsi)\n" - "xorq %%r8, %%r8\n" - /* (r9,r10,r8) += 2 * a0 * a2 */ - "movq %%r11, %%rax\n" - "mulq %%r13\n" - "addq %%rax, %%r9\n" - "adcq %%rdx, %%r10\n" - "adcq $0, %%r8\n" - "addq %%rax, %%r9\n" - "adcq %%rdx, %%r10\n" - "adcq $0, %%r8\n" - /* (r9,r10,r8) += a1 * a1 */ - "movq %%r12, %%rax\n" - "mulq %%r12\n" - "addq %%rax, %%r9\n" - "adcq %%rdx, %%r10\n" - "adcq $0, %%r8\n" - /* Extract l2 */ - "movq %%r9, 16(%%rsi)\n" - "xorq %%r9, %%r9\n" - /* (r10,r8,r9) += 2 * a0 * a3 */ - "movq %%r11, %%rax\n" - "mulq %%r14\n" - "addq %%rax, %%r10\n" - "adcq %%rdx, %%r8\n" - "adcq $0, %%r9\n" - "addq %%rax, %%r10\n" - "adcq %%rdx, %%r8\n" - "adcq $0, %%r9\n" - /* (r10,r8,r9) += 2 * a1 * a2 */ - "movq %%r12, %%rax\n" - "mulq %%r13\n" - "addq %%rax, %%r10\n" - "adcq %%rdx, %%r8\n" - "adcq $0, %%r9\n" - "addq %%rax, %%r10\n" - "adcq %%rdx, %%r8\n" - "adcq $0, %%r9\n" - /* Extract l3 */ - "movq %%r10, 24(%%rsi)\n" - "xorq %%r10, %%r10\n" - /* (r8,r9,r10) += 2 * a1 * a3 */ - "movq %%r12, %%rax\n" - "mulq %%r14\n" - "addq %%rax, %%r8\n" - "adcq %%rdx, %%r9\n" - "adcq $0, %%r10\n" - "addq %%rax, %%r8\n" - "adcq %%rdx, %%r9\n" - "adcq $0, %%r10\n" - /* (r8,r9,r10) += a2 * a2 */ - "movq %%r13, %%rax\n" - "mulq %%r13\n" - "addq %%rax, %%r8\n" - "adcq %%rdx, %%r9\n" - "adcq $0, %%r10\n" - /* Extract l4 */ - "movq %%r8, 32(%%rsi)\n" - "xorq %%r8, %%r8\n" - /* (r9,r10,r8) += 2 * a2 * a3 */ - "movq %%r13, %%rax\n" - "mulq %%r14\n" - "addq %%rax, %%r9\n" - "adcq %%rdx, %%r10\n" - "adcq $0, %%r8\n" - "addq %%rax, %%r9\n" - "adcq %%rdx, %%r10\n" - "adcq $0, %%r8\n" - /* Extract l5 */ - "movq %%r9, 40(%%rsi)\n" - /* (r10,r8) += a3 * a3 */ - "movq %%r14, %%rax\n" - "mulq %%r14\n" - "addq %%rax, %%r10\n" - "adcq %%rdx, %%r8\n" - /* Extract l6 */ - "movq %%r10, 48(%%rsi)\n" - /* Extract l7 */ - "movq %%r8, 56(%%rsi)\n" - : - : "S"(l), "D"(a->d) - : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "cc", "memory"); -#else - /* 160 bit accumulator. */ - uint64_t c0 = 0, c1 = 0; - uint32_t c2 = 0; - - /* l[0..7] = a[0..3] * b[0..3]. */ - muladd_fast(a->d[0], a->d[0]); - extract_fast(l[0]); - muladd2(a->d[0], a->d[1]); - extract(l[1]); - muladd2(a->d[0], a->d[2]); - muladd(a->d[1], a->d[1]); - extract(l[2]); - muladd2(a->d[0], a->d[3]); - muladd2(a->d[1], a->d[2]); - extract(l[3]); - muladd2(a->d[1], a->d[3]); - muladd(a->d[2], a->d[2]); - extract(l[4]); - muladd2(a->d[2], a->d[3]); - extract(l[5]); - muladd_fast(a->d[3], a->d[3]); - extract_fast(l[6]); - VERIFY_CHECK(c1 == 0); - l[7] = c0; -#endif -} - -#undef sumadd -#undef sumadd_fast -#undef muladd -#undef muladd_fast -#undef muladd2 -#undef extract -#undef extract_fast - -static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) { - uint64_t l[8]; - secp256k1_scalar_mul_512(l, a, b); - secp256k1_scalar_reduce_512(r, l); -} - -static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) { - int ret; - VERIFY_CHECK(n > 0); - VERIFY_CHECK(n < 16); - ret = r->d[0] & ((1 << n) - 1); - r->d[0] = (r->d[0] >> n) + (r->d[1] << (64 - n)); - r->d[1] = (r->d[1] >> n) + (r->d[2] << (64 - n)); - r->d[2] = (r->d[2] >> n) + (r->d[3] << (64 - n)); - r->d[3] = (r->d[3] >> n); - return ret; -} - -static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) { - uint64_t l[8]; - secp256k1_scalar_sqr_512(l, a); - secp256k1_scalar_reduce_512(r, l); -} - -#ifdef USE_ENDOMORPHISM -static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) { - r1->d[0] = a->d[0]; - r1->d[1] = a->d[1]; - r1->d[2] = 0; - r1->d[3] = 0; - r2->d[0] = a->d[2]; - r2->d[1] = a->d[3]; - r2->d[2] = 0; - r2->d[3] = 0; -} -#endif - -SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) { - return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3])) == 0; -} - -SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift) { - uint64_t l[8]; - unsigned int shiftlimbs; - unsigned int shiftlow; - unsigned int shifthigh; - VERIFY_CHECK(shift >= 256); - secp256k1_scalar_mul_512(l, a, b); - shiftlimbs = shift >> 6; - shiftlow = shift & 0x3F; - shifthigh = 64 - shiftlow; - r->d[0] = shift < 512 ? (l[0 + shiftlimbs] >> shiftlow | (shift < 448 && shiftlow ? (l[1 + shiftlimbs] << shifthigh) : 0)) : 0; - r->d[1] = shift < 448 ? (l[1 + shiftlimbs] >> shiftlow | (shift < 384 && shiftlow ? (l[2 + shiftlimbs] << shifthigh) : 0)) : 0; - r->d[2] = shift < 384 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0; - r->d[3] = shift < 320 ? (l[3 + shiftlimbs] >> shiftlow) : 0; - secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 6] >> ((shift - 1) & 0x3f)) & 1); -} - -#define ROTL32(x,n) ((x) << (n) | (x) >> (32-(n))) -#define QUARTERROUND(a,b,c,d) \ - a += b; d = ROTL32(d ^ a, 16); \ - c += d; b = ROTL32(b ^ c, 12); \ - a += b; d = ROTL32(d ^ a, 8); \ - c += d; b = ROTL32(b ^ c, 7); - -#ifdef WORDS_BIGENDIAN -#define LE32(p) ((((p) & 0xFF) << 24) | (((p) & 0xFF00) << 8) | (((p) & 0xFF0000) >> 8) | (((p) & 0xFF000000) >> 24)) -#define BE32(p) (p) -#else -#define BE32(p) ((((p) & 0xFF) << 24) | (((p) & 0xFF00) << 8) | (((p) & 0xFF0000) >> 8) | (((p) & 0xFF000000) >> 24)) -#define LE32(p) (p) -#endif - -static void secp256k1_scalar_chacha20(secp256k1_scalar *r1, secp256k1_scalar *r2, const unsigned char *seed, uint64_t idx) { - size_t n; - size_t over_count = 0; - uint32_t seed32[8]; - uint32_t x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15; - int over1, over2; - - memcpy((void *) seed32, (const void *) seed, 32); - do { - x0 = 0x61707865; - x1 = 0x3320646e; - x2 = 0x79622d32; - x3 = 0x6b206574; - x4 = LE32(seed32[0]); - x5 = LE32(seed32[1]); - x6 = LE32(seed32[2]); - x7 = LE32(seed32[3]); - x8 = LE32(seed32[4]); - x9 = LE32(seed32[5]); - x10 = LE32(seed32[6]); - x11 = LE32(seed32[7]); - x12 = idx; - x13 = idx >> 32; - x14 = 0; - x15 = over_count; - - n = 10; - while (n--) { - QUARTERROUND(x0, x4, x8,x12) - QUARTERROUND(x1, x5, x9,x13) - QUARTERROUND(x2, x6,x10,x14) - QUARTERROUND(x3, x7,x11,x15) - QUARTERROUND(x0, x5,x10,x15) - QUARTERROUND(x1, x6,x11,x12) - QUARTERROUND(x2, x7, x8,x13) - QUARTERROUND(x3, x4, x9,x14) - } - - x0 += 0x61707865; - x1 += 0x3320646e; - x2 += 0x79622d32; - x3 += 0x6b206574; - x4 += LE32(seed32[0]); - x5 += LE32(seed32[1]); - x6 += LE32(seed32[2]); - x7 += LE32(seed32[3]); - x8 += LE32(seed32[4]); - x9 += LE32(seed32[5]); - x10 += LE32(seed32[6]); - x11 += LE32(seed32[7]); - x12 += idx; - x13 += idx >> 32; - x14 += 0; - x15 += over_count; - - r1->d[3] = BE32((uint64_t) x0) << 32 | BE32(x1); - r1->d[2] = BE32((uint64_t) x2) << 32 | BE32(x3); - r1->d[1] = BE32((uint64_t) x4) << 32 | BE32(x5); - r1->d[0] = BE32((uint64_t) x6) << 32 | BE32(x7); - r2->d[3] = BE32((uint64_t) x8) << 32 | BE32(x9); - r2->d[2] = BE32((uint64_t) x10) << 32 | BE32(x11); - r2->d[1] = BE32((uint64_t) x12) << 32 | BE32(x13); - r2->d[0] = BE32((uint64_t) x14) << 32 | BE32(x15); - - over1 = secp256k1_scalar_check_overflow(r1); - over2 = secp256k1_scalar_check_overflow(r2); - over_count++; - } while (over1 | over2); -} - -#undef ROTL32 -#undef QUARTERROUND -#undef BE32 -#undef LE32 - -#endif /* SECP256K1_SCALAR_REPR_IMPL_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_8x32.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_8x32.h deleted file mode 100644 index 2c9a348..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_8x32.h +++ /dev/null @@ -1,19 +0,0 @@ -/********************************************************************** - * Copyright (c) 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_SCALAR_REPR_H -#define SECP256K1_SCALAR_REPR_H - -#include - -/** A scalar modulo the group order of the secp256k1 curve. */ -typedef struct { - uint32_t d[8]; -} secp256k1_scalar; - -#define SECP256K1_SCALAR_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{(d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7)}} - -#endif /* SECP256K1_SCALAR_REPR_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_8x32_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_8x32_impl.h deleted file mode 100644 index 9cf5c54..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_8x32_impl.h +++ /dev/null @@ -1,832 +0,0 @@ -/********************************************************************** - * Copyright (c) 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_SCALAR_REPR_IMPL_H -#define SECP256K1_SCALAR_REPR_IMPL_H - -#include - -/* Limbs of the secp256k1 order. */ -#define SECP256K1_N_0 ((uint32_t)0xD0364141UL) -#define SECP256K1_N_1 ((uint32_t)0xBFD25E8CUL) -#define SECP256K1_N_2 ((uint32_t)0xAF48A03BUL) -#define SECP256K1_N_3 ((uint32_t)0xBAAEDCE6UL) -#define SECP256K1_N_4 ((uint32_t)0xFFFFFFFEUL) -#define SECP256K1_N_5 ((uint32_t)0xFFFFFFFFUL) -#define SECP256K1_N_6 ((uint32_t)0xFFFFFFFFUL) -#define SECP256K1_N_7 ((uint32_t)0xFFFFFFFFUL) - -/* Limbs of 2^256 minus the secp256k1 order. */ -#define SECP256K1_N_C_0 (~SECP256K1_N_0 + 1) -#define SECP256K1_N_C_1 (~SECP256K1_N_1) -#define SECP256K1_N_C_2 (~SECP256K1_N_2) -#define SECP256K1_N_C_3 (~SECP256K1_N_3) -#define SECP256K1_N_C_4 (1) - -/* Limbs of half the secp256k1 order. */ -#define SECP256K1_N_H_0 ((uint32_t)0x681B20A0UL) -#define SECP256K1_N_H_1 ((uint32_t)0xDFE92F46UL) -#define SECP256K1_N_H_2 ((uint32_t)0x57A4501DUL) -#define SECP256K1_N_H_3 ((uint32_t)0x5D576E73UL) -#define SECP256K1_N_H_4 ((uint32_t)0xFFFFFFFFUL) -#define SECP256K1_N_H_5 ((uint32_t)0xFFFFFFFFUL) -#define SECP256K1_N_H_6 ((uint32_t)0xFFFFFFFFUL) -#define SECP256K1_N_H_7 ((uint32_t)0x7FFFFFFFUL) - -SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) { - r->d[0] = 0; - r->d[1] = 0; - r->d[2] = 0; - r->d[3] = 0; - r->d[4] = 0; - r->d[5] = 0; - r->d[6] = 0; - r->d[7] = 0; -} - -SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) { - r->d[0] = v; - r->d[1] = 0; - r->d[2] = 0; - r->d[3] = 0; - r->d[4] = 0; - r->d[5] = 0; - r->d[6] = 0; - r->d[7] = 0; -} - -SECP256K1_INLINE static void secp256k1_scalar_set_u64(secp256k1_scalar *r, uint64_t v) { - r->d[0] = v; - r->d[1] = v >> 32; - r->d[2] = 0; - r->d[3] = 0; - r->d[4] = 0; - r->d[5] = 0; - r->d[6] = 0; - r->d[7] = 0; -} - -SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) { - VERIFY_CHECK((offset + count - 1) >> 5 == offset >> 5); - return (a->d[offset >> 5] >> (offset & 0x1F)) & ((1 << count) - 1); -} - -SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) { - VERIFY_CHECK(count < 32); - VERIFY_CHECK(offset + count <= 256); - if ((offset + count - 1) >> 5 == offset >> 5) { - return secp256k1_scalar_get_bits(a, offset, count); - } else { - VERIFY_CHECK((offset >> 5) + 1 < 8); - return ((a->d[offset >> 5] >> (offset & 0x1F)) | (a->d[(offset >> 5) + 1] << (32 - (offset & 0x1F)))) & ((((uint32_t)1) << count) - 1); - } -} - -SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) { - int yes = 0; - int no = 0; - no |= (a->d[7] < SECP256K1_N_7); /* No need for a > check. */ - no |= (a->d[6] < SECP256K1_N_6); /* No need for a > check. */ - no |= (a->d[5] < SECP256K1_N_5); /* No need for a > check. */ - no |= (a->d[4] < SECP256K1_N_4); - yes |= (a->d[4] > SECP256K1_N_4) & ~no; - no |= (a->d[3] < SECP256K1_N_3) & ~yes; - yes |= (a->d[3] > SECP256K1_N_3) & ~no; - no |= (a->d[2] < SECP256K1_N_2) & ~yes; - yes |= (a->d[2] > SECP256K1_N_2) & ~no; - no |= (a->d[1] < SECP256K1_N_1) & ~yes; - yes |= (a->d[1] > SECP256K1_N_1) & ~no; - yes |= (a->d[0] >= SECP256K1_N_0) & ~no; - return yes; -} - -SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, uint32_t overflow) { - uint64_t t; - VERIFY_CHECK(overflow <= 1); - t = (uint64_t)r->d[0] + overflow * SECP256K1_N_C_0; - r->d[0] = t & 0xFFFFFFFFUL; t >>= 32; - t += (uint64_t)r->d[1] + overflow * SECP256K1_N_C_1; - r->d[1] = t & 0xFFFFFFFFUL; t >>= 32; - t += (uint64_t)r->d[2] + overflow * SECP256K1_N_C_2; - r->d[2] = t & 0xFFFFFFFFUL; t >>= 32; - t += (uint64_t)r->d[3] + overflow * SECP256K1_N_C_3; - r->d[3] = t & 0xFFFFFFFFUL; t >>= 32; - t += (uint64_t)r->d[4] + overflow * SECP256K1_N_C_4; - r->d[4] = t & 0xFFFFFFFFUL; t >>= 32; - t += (uint64_t)r->d[5]; - r->d[5] = t & 0xFFFFFFFFUL; t >>= 32; - t += (uint64_t)r->d[6]; - r->d[6] = t & 0xFFFFFFFFUL; t >>= 32; - t += (uint64_t)r->d[7]; - r->d[7] = t & 0xFFFFFFFFUL; - return overflow; -} - -static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) { - int overflow; - uint64_t t = (uint64_t)a->d[0] + b->d[0]; - r->d[0] = t & 0xFFFFFFFFULL; t >>= 32; - t += (uint64_t)a->d[1] + b->d[1]; - r->d[1] = t & 0xFFFFFFFFULL; t >>= 32; - t += (uint64_t)a->d[2] + b->d[2]; - r->d[2] = t & 0xFFFFFFFFULL; t >>= 32; - t += (uint64_t)a->d[3] + b->d[3]; - r->d[3] = t & 0xFFFFFFFFULL; t >>= 32; - t += (uint64_t)a->d[4] + b->d[4]; - r->d[4] = t & 0xFFFFFFFFULL; t >>= 32; - t += (uint64_t)a->d[5] + b->d[5]; - r->d[5] = t & 0xFFFFFFFFULL; t >>= 32; - t += (uint64_t)a->d[6] + b->d[6]; - r->d[6] = t & 0xFFFFFFFFULL; t >>= 32; - t += (uint64_t)a->d[7] + b->d[7]; - r->d[7] = t & 0xFFFFFFFFULL; t >>= 32; - overflow = t + secp256k1_scalar_check_overflow(r); - VERIFY_CHECK(overflow == 0 || overflow == 1); - secp256k1_scalar_reduce(r, overflow); - return overflow; -} - -static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) { - uint64_t t; - VERIFY_CHECK(bit < 256); - bit += ((uint32_t) flag - 1) & 0x100; /* forcing (bit >> 5) > 7 makes this a noop */ - t = (uint64_t)r->d[0] + (((uint32_t)((bit >> 5) == 0)) << (bit & 0x1F)); - r->d[0] = t & 0xFFFFFFFFULL; t >>= 32; - t += (uint64_t)r->d[1] + (((uint32_t)((bit >> 5) == 1)) << (bit & 0x1F)); - r->d[1] = t & 0xFFFFFFFFULL; t >>= 32; - t += (uint64_t)r->d[2] + (((uint32_t)((bit >> 5) == 2)) << (bit & 0x1F)); - r->d[2] = t & 0xFFFFFFFFULL; t >>= 32; - t += (uint64_t)r->d[3] + (((uint32_t)((bit >> 5) == 3)) << (bit & 0x1F)); - r->d[3] = t & 0xFFFFFFFFULL; t >>= 32; - t += (uint64_t)r->d[4] + (((uint32_t)((bit >> 5) == 4)) << (bit & 0x1F)); - r->d[4] = t & 0xFFFFFFFFULL; t >>= 32; - t += (uint64_t)r->d[5] + (((uint32_t)((bit >> 5) == 5)) << (bit & 0x1F)); - r->d[5] = t & 0xFFFFFFFFULL; t >>= 32; - t += (uint64_t)r->d[6] + (((uint32_t)((bit >> 5) == 6)) << (bit & 0x1F)); - r->d[6] = t & 0xFFFFFFFFULL; t >>= 32; - t += (uint64_t)r->d[7] + (((uint32_t)((bit >> 5) == 7)) << (bit & 0x1F)); - r->d[7] = t & 0xFFFFFFFFULL; -#ifdef VERIFY - VERIFY_CHECK((t >> 32) == 0); - VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0); -#endif -} - -static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) { - int over; - r->d[0] = (uint32_t)b32[31] | (uint32_t)b32[30] << 8 | (uint32_t)b32[29] << 16 | (uint32_t)b32[28] << 24; - r->d[1] = (uint32_t)b32[27] | (uint32_t)b32[26] << 8 | (uint32_t)b32[25] << 16 | (uint32_t)b32[24] << 24; - r->d[2] = (uint32_t)b32[23] | (uint32_t)b32[22] << 8 | (uint32_t)b32[21] << 16 | (uint32_t)b32[20] << 24; - r->d[3] = (uint32_t)b32[19] | (uint32_t)b32[18] << 8 | (uint32_t)b32[17] << 16 | (uint32_t)b32[16] << 24; - r->d[4] = (uint32_t)b32[15] | (uint32_t)b32[14] << 8 | (uint32_t)b32[13] << 16 | (uint32_t)b32[12] << 24; - r->d[5] = (uint32_t)b32[11] | (uint32_t)b32[10] << 8 | (uint32_t)b32[9] << 16 | (uint32_t)b32[8] << 24; - r->d[6] = (uint32_t)b32[7] | (uint32_t)b32[6] << 8 | (uint32_t)b32[5] << 16 | (uint32_t)b32[4] << 24; - r->d[7] = (uint32_t)b32[3] | (uint32_t)b32[2] << 8 | (uint32_t)b32[1] << 16 | (uint32_t)b32[0] << 24; - over = secp256k1_scalar_reduce(r, secp256k1_scalar_check_overflow(r)); - if (overflow) { - *overflow = over; - } -} - -static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) { - bin[0] = a->d[7] >> 24; bin[1] = a->d[7] >> 16; bin[2] = a->d[7] >> 8; bin[3] = a->d[7]; - bin[4] = a->d[6] >> 24; bin[5] = a->d[6] >> 16; bin[6] = a->d[6] >> 8; bin[7] = a->d[6]; - bin[8] = a->d[5] >> 24; bin[9] = a->d[5] >> 16; bin[10] = a->d[5] >> 8; bin[11] = a->d[5]; - bin[12] = a->d[4] >> 24; bin[13] = a->d[4] >> 16; bin[14] = a->d[4] >> 8; bin[15] = a->d[4]; - bin[16] = a->d[3] >> 24; bin[17] = a->d[3] >> 16; bin[18] = a->d[3] >> 8; bin[19] = a->d[3]; - bin[20] = a->d[2] >> 24; bin[21] = a->d[2] >> 16; bin[22] = a->d[2] >> 8; bin[23] = a->d[2]; - bin[24] = a->d[1] >> 24; bin[25] = a->d[1] >> 16; bin[26] = a->d[1] >> 8; bin[27] = a->d[1]; - bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0]; -} - -SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) { - return (a->d[0] | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0; -} - -static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) { - uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(a) == 0); - uint64_t t = (uint64_t)(~a->d[0]) + SECP256K1_N_0 + 1; - r->d[0] = t & nonzero; t >>= 32; - t += (uint64_t)(~a->d[1]) + SECP256K1_N_1; - r->d[1] = t & nonzero; t >>= 32; - t += (uint64_t)(~a->d[2]) + SECP256K1_N_2; - r->d[2] = t & nonzero; t >>= 32; - t += (uint64_t)(~a->d[3]) + SECP256K1_N_3; - r->d[3] = t & nonzero; t >>= 32; - t += (uint64_t)(~a->d[4]) + SECP256K1_N_4; - r->d[4] = t & nonzero; t >>= 32; - t += (uint64_t)(~a->d[5]) + SECP256K1_N_5; - r->d[5] = t & nonzero; t >>= 32; - t += (uint64_t)(~a->d[6]) + SECP256K1_N_6; - r->d[6] = t & nonzero; t >>= 32; - t += (uint64_t)(~a->d[7]) + SECP256K1_N_7; - r->d[7] = t & nonzero; -} - -SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) { - return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0; -} - -static int secp256k1_scalar_is_high(const secp256k1_scalar *a) { - int yes = 0; - int no = 0; - no |= (a->d[7] < SECP256K1_N_H_7); - yes |= (a->d[7] > SECP256K1_N_H_7) & ~no; - no |= (a->d[6] < SECP256K1_N_H_6) & ~yes; /* No need for a > check. */ - no |= (a->d[5] < SECP256K1_N_H_5) & ~yes; /* No need for a > check. */ - no |= (a->d[4] < SECP256K1_N_H_4) & ~yes; /* No need for a > check. */ - no |= (a->d[3] < SECP256K1_N_H_3) & ~yes; - yes |= (a->d[3] > SECP256K1_N_H_3) & ~no; - no |= (a->d[2] < SECP256K1_N_H_2) & ~yes; - yes |= (a->d[2] > SECP256K1_N_H_2) & ~no; - no |= (a->d[1] < SECP256K1_N_H_1) & ~yes; - yes |= (a->d[1] > SECP256K1_N_H_1) & ~no; - yes |= (a->d[0] > SECP256K1_N_H_0) & ~no; - return yes; -} - -static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) { - /* If we are flag = 0, mask = 00...00 and this is a no-op; - * if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */ - uint32_t mask = !flag - 1; - uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(r) == 0); - uint64_t t = (uint64_t)(r->d[0] ^ mask) + ((SECP256K1_N_0 + 1) & mask); - r->d[0] = t & nonzero; t >>= 32; - t += (uint64_t)(r->d[1] ^ mask) + (SECP256K1_N_1 & mask); - r->d[1] = t & nonzero; t >>= 32; - t += (uint64_t)(r->d[2] ^ mask) + (SECP256K1_N_2 & mask); - r->d[2] = t & nonzero; t >>= 32; - t += (uint64_t)(r->d[3] ^ mask) + (SECP256K1_N_3 & mask); - r->d[3] = t & nonzero; t >>= 32; - t += (uint64_t)(r->d[4] ^ mask) + (SECP256K1_N_4 & mask); - r->d[4] = t & nonzero; t >>= 32; - t += (uint64_t)(r->d[5] ^ mask) + (SECP256K1_N_5 & mask); - r->d[5] = t & nonzero; t >>= 32; - t += (uint64_t)(r->d[6] ^ mask) + (SECP256K1_N_6 & mask); - r->d[6] = t & nonzero; t >>= 32; - t += (uint64_t)(r->d[7] ^ mask) + (SECP256K1_N_7 & mask); - r->d[7] = t & nonzero; - return 2 * (mask == 0) - 1; -} - - -/* Inspired by the macros in OpenSSL's crypto/bn/asm/x86_64-gcc.c. */ - -/** Add a*b to the number defined by (c0,c1,c2). c2 must never overflow. */ -#define muladd(a,b) { \ - uint32_t tl, th; \ - { \ - uint64_t t = (uint64_t)a * b; \ - th = t >> 32; /* at most 0xFFFFFFFE */ \ - tl = t; \ - } \ - c0 += tl; /* overflow is handled on the next line */ \ - th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFF */ \ - c1 += th; /* overflow is handled on the next line */ \ - c2 += (c1 < th) ? 1 : 0; /* never overflows by contract (verified in the next line) */ \ - VERIFY_CHECK((c1 >= th) || (c2 != 0)); \ -} - -/** Add a*b to the number defined by (c0,c1). c1 must never overflow. */ -#define muladd_fast(a,b) { \ - uint32_t tl, th; \ - { \ - uint64_t t = (uint64_t)a * b; \ - th = t >> 32; /* at most 0xFFFFFFFE */ \ - tl = t; \ - } \ - c0 += tl; /* overflow is handled on the next line */ \ - th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFF */ \ - c1 += th; /* never overflows by contract (verified in the next line) */ \ - VERIFY_CHECK(c1 >= th); \ -} - -/** Add 2*a*b to the number defined by (c0,c1,c2). c2 must never overflow. */ -#define muladd2(a,b) { \ - uint32_t tl, th, th2, tl2; \ - { \ - uint64_t t = (uint64_t)a * b; \ - th = t >> 32; /* at most 0xFFFFFFFE */ \ - tl = t; \ - } \ - th2 = th + th; /* at most 0xFFFFFFFE (in case th was 0x7FFFFFFF) */ \ - c2 += (th2 < th) ? 1 : 0; /* never overflows by contract (verified the next line) */ \ - VERIFY_CHECK((th2 >= th) || (c2 != 0)); \ - tl2 = tl + tl; /* at most 0xFFFFFFFE (in case the lowest 63 bits of tl were 0x7FFFFFFF) */ \ - th2 += (tl2 < tl) ? 1 : 0; /* at most 0xFFFFFFFF */ \ - c0 += tl2; /* overflow is handled on the next line */ \ - th2 += (c0 < tl2) ? 1 : 0; /* second overflow is handled on the next line */ \ - c2 += (c0 < tl2) & (th2 == 0); /* never overflows by contract (verified the next line) */ \ - VERIFY_CHECK((c0 >= tl2) || (th2 != 0) || (c2 != 0)); \ - c1 += th2; /* overflow is handled on the next line */ \ - c2 += (c1 < th2) ? 1 : 0; /* never overflows by contract (verified the next line) */ \ - VERIFY_CHECK((c1 >= th2) || (c2 != 0)); \ -} - -/** Add a to the number defined by (c0,c1,c2). c2 must never overflow. */ -#define sumadd(a) { \ - unsigned int over; \ - c0 += (a); /* overflow is handled on the next line */ \ - over = (c0 < (a)) ? 1 : 0; \ - c1 += over; /* overflow is handled on the next line */ \ - c2 += (c1 < over) ? 1 : 0; /* never overflows by contract */ \ -} - -/** Add a to the number defined by (c0,c1). c1 must never overflow, c2 must be zero. */ -#define sumadd_fast(a) { \ - c0 += (a); /* overflow is handled on the next line */ \ - c1 += (c0 < (a)) ? 1 : 0; /* never overflows by contract (verified the next line) */ \ - VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \ - VERIFY_CHECK(c2 == 0); \ -} - -/** Extract the lowest 32 bits of (c0,c1,c2) into n, and left shift the number 32 bits. */ -#define extract(n) { \ - (n) = c0; \ - c0 = c1; \ - c1 = c2; \ - c2 = 0; \ -} - -/** Extract the lowest 32 bits of (c0,c1,c2) into n, and left shift the number 32 bits. c2 is required to be zero. */ -#define extract_fast(n) { \ - (n) = c0; \ - c0 = c1; \ - c1 = 0; \ - VERIFY_CHECK(c2 == 0); \ -} - -static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint32_t *l) { - uint64_t c; - uint32_t n0 = l[8], n1 = l[9], n2 = l[10], n3 = l[11], n4 = l[12], n5 = l[13], n6 = l[14], n7 = l[15]; - uint32_t m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12; - uint32_t p0, p1, p2, p3, p4, p5, p6, p7, p8; - - /* 96 bit accumulator. */ - uint32_t c0, c1, c2; - - /* Reduce 512 bits into 385. */ - /* m[0..12] = l[0..7] + n[0..7] * SECP256K1_N_C. */ - c0 = l[0]; c1 = 0; c2 = 0; - muladd_fast(n0, SECP256K1_N_C_0); - extract_fast(m0); - sumadd_fast(l[1]); - muladd(n1, SECP256K1_N_C_0); - muladd(n0, SECP256K1_N_C_1); - extract(m1); - sumadd(l[2]); - muladd(n2, SECP256K1_N_C_0); - muladd(n1, SECP256K1_N_C_1); - muladd(n0, SECP256K1_N_C_2); - extract(m2); - sumadd(l[3]); - muladd(n3, SECP256K1_N_C_0); - muladd(n2, SECP256K1_N_C_1); - muladd(n1, SECP256K1_N_C_2); - muladd(n0, SECP256K1_N_C_3); - extract(m3); - sumadd(l[4]); - muladd(n4, SECP256K1_N_C_0); - muladd(n3, SECP256K1_N_C_1); - muladd(n2, SECP256K1_N_C_2); - muladd(n1, SECP256K1_N_C_3); - sumadd(n0); - extract(m4); - sumadd(l[5]); - muladd(n5, SECP256K1_N_C_0); - muladd(n4, SECP256K1_N_C_1); - muladd(n3, SECP256K1_N_C_2); - muladd(n2, SECP256K1_N_C_3); - sumadd(n1); - extract(m5); - sumadd(l[6]); - muladd(n6, SECP256K1_N_C_0); - muladd(n5, SECP256K1_N_C_1); - muladd(n4, SECP256K1_N_C_2); - muladd(n3, SECP256K1_N_C_3); - sumadd(n2); - extract(m6); - sumadd(l[7]); - muladd(n7, SECP256K1_N_C_0); - muladd(n6, SECP256K1_N_C_1); - muladd(n5, SECP256K1_N_C_2); - muladd(n4, SECP256K1_N_C_3); - sumadd(n3); - extract(m7); - muladd(n7, SECP256K1_N_C_1); - muladd(n6, SECP256K1_N_C_2); - muladd(n5, SECP256K1_N_C_3); - sumadd(n4); - extract(m8); - muladd(n7, SECP256K1_N_C_2); - muladd(n6, SECP256K1_N_C_3); - sumadd(n5); - extract(m9); - muladd(n7, SECP256K1_N_C_3); - sumadd(n6); - extract(m10); - sumadd_fast(n7); - extract_fast(m11); - VERIFY_CHECK(c0 <= 1); - m12 = c0; - - /* Reduce 385 bits into 258. */ - /* p[0..8] = m[0..7] + m[8..12] * SECP256K1_N_C. */ - c0 = m0; c1 = 0; c2 = 0; - muladd_fast(m8, SECP256K1_N_C_0); - extract_fast(p0); - sumadd_fast(m1); - muladd(m9, SECP256K1_N_C_0); - muladd(m8, SECP256K1_N_C_1); - extract(p1); - sumadd(m2); - muladd(m10, SECP256K1_N_C_0); - muladd(m9, SECP256K1_N_C_1); - muladd(m8, SECP256K1_N_C_2); - extract(p2); - sumadd(m3); - muladd(m11, SECP256K1_N_C_0); - muladd(m10, SECP256K1_N_C_1); - muladd(m9, SECP256K1_N_C_2); - muladd(m8, SECP256K1_N_C_3); - extract(p3); - sumadd(m4); - muladd(m12, SECP256K1_N_C_0); - muladd(m11, SECP256K1_N_C_1); - muladd(m10, SECP256K1_N_C_2); - muladd(m9, SECP256K1_N_C_3); - sumadd(m8); - extract(p4); - sumadd(m5); - muladd(m12, SECP256K1_N_C_1); - muladd(m11, SECP256K1_N_C_2); - muladd(m10, SECP256K1_N_C_3); - sumadd(m9); - extract(p5); - sumadd(m6); - muladd(m12, SECP256K1_N_C_2); - muladd(m11, SECP256K1_N_C_3); - sumadd(m10); - extract(p6); - sumadd_fast(m7); - muladd_fast(m12, SECP256K1_N_C_3); - sumadd_fast(m11); - extract_fast(p7); - p8 = c0 + m12; - VERIFY_CHECK(p8 <= 2); - - /* Reduce 258 bits into 256. */ - /* r[0..7] = p[0..7] + p[8] * SECP256K1_N_C. */ - c = p0 + (uint64_t)SECP256K1_N_C_0 * p8; - r->d[0] = c & 0xFFFFFFFFUL; c >>= 32; - c += p1 + (uint64_t)SECP256K1_N_C_1 * p8; - r->d[1] = c & 0xFFFFFFFFUL; c >>= 32; - c += p2 + (uint64_t)SECP256K1_N_C_2 * p8; - r->d[2] = c & 0xFFFFFFFFUL; c >>= 32; - c += p3 + (uint64_t)SECP256K1_N_C_3 * p8; - r->d[3] = c & 0xFFFFFFFFUL; c >>= 32; - c += p4 + (uint64_t)p8; - r->d[4] = c & 0xFFFFFFFFUL; c >>= 32; - c += p5; - r->d[5] = c & 0xFFFFFFFFUL; c >>= 32; - c += p6; - r->d[6] = c & 0xFFFFFFFFUL; c >>= 32; - c += p7; - r->d[7] = c & 0xFFFFFFFFUL; c >>= 32; - - /* Final reduction of r. */ - secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r)); -} - -static void secp256k1_scalar_mul_512(uint32_t *l, const secp256k1_scalar *a, const secp256k1_scalar *b) { - /* 96 bit accumulator. */ - uint32_t c0 = 0, c1 = 0, c2 = 0; - - /* l[0..15] = a[0..7] * b[0..7]. */ - muladd_fast(a->d[0], b->d[0]); - extract_fast(l[0]); - muladd(a->d[0], b->d[1]); - muladd(a->d[1], b->d[0]); - extract(l[1]); - muladd(a->d[0], b->d[2]); - muladd(a->d[1], b->d[1]); - muladd(a->d[2], b->d[0]); - extract(l[2]); - muladd(a->d[0], b->d[3]); - muladd(a->d[1], b->d[2]); - muladd(a->d[2], b->d[1]); - muladd(a->d[3], b->d[0]); - extract(l[3]); - muladd(a->d[0], b->d[4]); - muladd(a->d[1], b->d[3]); - muladd(a->d[2], b->d[2]); - muladd(a->d[3], b->d[1]); - muladd(a->d[4], b->d[0]); - extract(l[4]); - muladd(a->d[0], b->d[5]); - muladd(a->d[1], b->d[4]); - muladd(a->d[2], b->d[3]); - muladd(a->d[3], b->d[2]); - muladd(a->d[4], b->d[1]); - muladd(a->d[5], b->d[0]); - extract(l[5]); - muladd(a->d[0], b->d[6]); - muladd(a->d[1], b->d[5]); - muladd(a->d[2], b->d[4]); - muladd(a->d[3], b->d[3]); - muladd(a->d[4], b->d[2]); - muladd(a->d[5], b->d[1]); - muladd(a->d[6], b->d[0]); - extract(l[6]); - muladd(a->d[0], b->d[7]); - muladd(a->d[1], b->d[6]); - muladd(a->d[2], b->d[5]); - muladd(a->d[3], b->d[4]); - muladd(a->d[4], b->d[3]); - muladd(a->d[5], b->d[2]); - muladd(a->d[6], b->d[1]); - muladd(a->d[7], b->d[0]); - extract(l[7]); - muladd(a->d[1], b->d[7]); - muladd(a->d[2], b->d[6]); - muladd(a->d[3], b->d[5]); - muladd(a->d[4], b->d[4]); - muladd(a->d[5], b->d[3]); - muladd(a->d[6], b->d[2]); - muladd(a->d[7], b->d[1]); - extract(l[8]); - muladd(a->d[2], b->d[7]); - muladd(a->d[3], b->d[6]); - muladd(a->d[4], b->d[5]); - muladd(a->d[5], b->d[4]); - muladd(a->d[6], b->d[3]); - muladd(a->d[7], b->d[2]); - extract(l[9]); - muladd(a->d[3], b->d[7]); - muladd(a->d[4], b->d[6]); - muladd(a->d[5], b->d[5]); - muladd(a->d[6], b->d[4]); - muladd(a->d[7], b->d[3]); - extract(l[10]); - muladd(a->d[4], b->d[7]); - muladd(a->d[5], b->d[6]); - muladd(a->d[6], b->d[5]); - muladd(a->d[7], b->d[4]); - extract(l[11]); - muladd(a->d[5], b->d[7]); - muladd(a->d[6], b->d[6]); - muladd(a->d[7], b->d[5]); - extract(l[12]); - muladd(a->d[6], b->d[7]); - muladd(a->d[7], b->d[6]); - extract(l[13]); - muladd_fast(a->d[7], b->d[7]); - extract_fast(l[14]); - VERIFY_CHECK(c1 == 0); - l[15] = c0; -} - -static void secp256k1_scalar_sqr_512(uint32_t *l, const secp256k1_scalar *a) { - /* 96 bit accumulator. */ - uint32_t c0 = 0, c1 = 0, c2 = 0; - - /* l[0..15] = a[0..7]^2. */ - muladd_fast(a->d[0], a->d[0]); - extract_fast(l[0]); - muladd2(a->d[0], a->d[1]); - extract(l[1]); - muladd2(a->d[0], a->d[2]); - muladd(a->d[1], a->d[1]); - extract(l[2]); - muladd2(a->d[0], a->d[3]); - muladd2(a->d[1], a->d[2]); - extract(l[3]); - muladd2(a->d[0], a->d[4]); - muladd2(a->d[1], a->d[3]); - muladd(a->d[2], a->d[2]); - extract(l[4]); - muladd2(a->d[0], a->d[5]); - muladd2(a->d[1], a->d[4]); - muladd2(a->d[2], a->d[3]); - extract(l[5]); - muladd2(a->d[0], a->d[6]); - muladd2(a->d[1], a->d[5]); - muladd2(a->d[2], a->d[4]); - muladd(a->d[3], a->d[3]); - extract(l[6]); - muladd2(a->d[0], a->d[7]); - muladd2(a->d[1], a->d[6]); - muladd2(a->d[2], a->d[5]); - muladd2(a->d[3], a->d[4]); - extract(l[7]); - muladd2(a->d[1], a->d[7]); - muladd2(a->d[2], a->d[6]); - muladd2(a->d[3], a->d[5]); - muladd(a->d[4], a->d[4]); - extract(l[8]); - muladd2(a->d[2], a->d[7]); - muladd2(a->d[3], a->d[6]); - muladd2(a->d[4], a->d[5]); - extract(l[9]); - muladd2(a->d[3], a->d[7]); - muladd2(a->d[4], a->d[6]); - muladd(a->d[5], a->d[5]); - extract(l[10]); - muladd2(a->d[4], a->d[7]); - muladd2(a->d[5], a->d[6]); - extract(l[11]); - muladd2(a->d[5], a->d[7]); - muladd(a->d[6], a->d[6]); - extract(l[12]); - muladd2(a->d[6], a->d[7]); - extract(l[13]); - muladd_fast(a->d[7], a->d[7]); - extract_fast(l[14]); - VERIFY_CHECK(c1 == 0); - l[15] = c0; -} - -#undef sumadd -#undef sumadd_fast -#undef muladd -#undef muladd_fast -#undef muladd2 -#undef extract -#undef extract_fast - -static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) { - uint32_t l[16]; - secp256k1_scalar_mul_512(l, a, b); - secp256k1_scalar_reduce_512(r, l); -} - -static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) { - int ret; - VERIFY_CHECK(n > 0); - VERIFY_CHECK(n < 16); - ret = r->d[0] & ((1 << n) - 1); - r->d[0] = (r->d[0] >> n) + (r->d[1] << (32 - n)); - r->d[1] = (r->d[1] >> n) + (r->d[2] << (32 - n)); - r->d[2] = (r->d[2] >> n) + (r->d[3] << (32 - n)); - r->d[3] = (r->d[3] >> n) + (r->d[4] << (32 - n)); - r->d[4] = (r->d[4] >> n) + (r->d[5] << (32 - n)); - r->d[5] = (r->d[5] >> n) + (r->d[6] << (32 - n)); - r->d[6] = (r->d[6] >> n) + (r->d[7] << (32 - n)); - r->d[7] = (r->d[7] >> n); - return ret; -} - -static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) { - uint32_t l[16]; - secp256k1_scalar_sqr_512(l, a); - secp256k1_scalar_reduce_512(r, l); -} - -#ifdef USE_ENDOMORPHISM -static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) { - r1->d[0] = a->d[0]; - r1->d[1] = a->d[1]; - r1->d[2] = a->d[2]; - r1->d[3] = a->d[3]; - r1->d[4] = 0; - r1->d[5] = 0; - r1->d[6] = 0; - r1->d[7] = 0; - r2->d[0] = a->d[4]; - r2->d[1] = a->d[5]; - r2->d[2] = a->d[6]; - r2->d[3] = a->d[7]; - r2->d[4] = 0; - r2->d[5] = 0; - r2->d[6] = 0; - r2->d[7] = 0; -} -#endif - -SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) { - return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3]) | (a->d[4] ^ b->d[4]) | (a->d[5] ^ b->d[5]) | (a->d[6] ^ b->d[6]) | (a->d[7] ^ b->d[7])) == 0; -} - -SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift) { - uint32_t l[16]; - unsigned int shiftlimbs; - unsigned int shiftlow; - unsigned int shifthigh; - VERIFY_CHECK(shift >= 256); - secp256k1_scalar_mul_512(l, a, b); - shiftlimbs = shift >> 5; - shiftlow = shift & 0x1F; - shifthigh = 32 - shiftlow; - r->d[0] = shift < 512 ? (l[0 + shiftlimbs] >> shiftlow | (shift < 480 && shiftlow ? (l[1 + shiftlimbs] << shifthigh) : 0)) : 0; - r->d[1] = shift < 480 ? (l[1 + shiftlimbs] >> shiftlow | (shift < 448 && shiftlow ? (l[2 + shiftlimbs] << shifthigh) : 0)) : 0; - r->d[2] = shift < 448 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 416 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0; - r->d[3] = shift < 416 ? (l[3 + shiftlimbs] >> shiftlow | (shift < 384 && shiftlow ? (l[4 + shiftlimbs] << shifthigh) : 0)) : 0; - r->d[4] = shift < 384 ? (l[4 + shiftlimbs] >> shiftlow | (shift < 352 && shiftlow ? (l[5 + shiftlimbs] << shifthigh) : 0)) : 0; - r->d[5] = shift < 352 ? (l[5 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[6 + shiftlimbs] << shifthigh) : 0)) : 0; - r->d[6] = shift < 320 ? (l[6 + shiftlimbs] >> shiftlow | (shift < 288 && shiftlow ? (l[7 + shiftlimbs] << shifthigh) : 0)) : 0; - r->d[7] = shift < 288 ? (l[7 + shiftlimbs] >> shiftlow) : 0; - secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 5] >> ((shift - 1) & 0x1f)) & 1); -} - -#define ROTL32(x,n) ((x) << (n) | (x) >> (32-(n))) -#define QUARTERROUND(a,b,c,d) \ - a += b; d = ROTL32(d ^ a, 16); \ - c += d; b = ROTL32(b ^ c, 12); \ - a += b; d = ROTL32(d ^ a, 8); \ - c += d; b = ROTL32(b ^ c, 7); - -#ifdef WORDS_BIGENDIAN -#define LE32(p) ((((p) & 0xFF) << 24) | (((p) & 0xFF00) << 8) | (((p) & 0xFF0000) >> 8) | (((p) & 0xFF000000) >> 24)) -#define BE32(p) (p) -#else -#define BE32(p) ((((p) & 0xFF) << 24) | (((p) & 0xFF00) << 8) | (((p) & 0xFF0000) >> 8) | (((p) & 0xFF000000) >> 24)) -#define LE32(p) (p) -#endif - -static void secp256k1_scalar_chacha20(secp256k1_scalar *r1, secp256k1_scalar *r2, const unsigned char *seed, uint64_t idx) { - size_t n; - size_t over_count = 0; - uint32_t seed32[8]; - uint32_t x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15; - int over1, over2; - - memcpy((void *) seed32, (const void *) seed, 32); - do { - x0 = 0x61707865; - x1 = 0x3320646e; - x2 = 0x79622d32; - x3 = 0x6b206574; - x4 = LE32(seed32[0]); - x5 = LE32(seed32[1]); - x6 = LE32(seed32[2]); - x7 = LE32(seed32[3]); - x8 = LE32(seed32[4]); - x9 = LE32(seed32[5]); - x10 = LE32(seed32[6]); - x11 = LE32(seed32[7]); - x12 = idx; - x13 = idx >> 32; - x14 = 0; - x15 = over_count; - - n = 10; - while (n--) { - QUARTERROUND(x0, x4, x8,x12) - QUARTERROUND(x1, x5, x9,x13) - QUARTERROUND(x2, x6,x10,x14) - QUARTERROUND(x3, x7,x11,x15) - QUARTERROUND(x0, x5,x10,x15) - QUARTERROUND(x1, x6,x11,x12) - QUARTERROUND(x2, x7, x8,x13) - QUARTERROUND(x3, x4, x9,x14) - } - - x0 += 0x61707865; - x1 += 0x3320646e; - x2 += 0x79622d32; - x3 += 0x6b206574; - x4 += LE32(seed32[0]); - x5 += LE32(seed32[1]); - x6 += LE32(seed32[2]); - x7 += LE32(seed32[3]); - x8 += LE32(seed32[4]); - x9 += LE32(seed32[5]); - x10 += LE32(seed32[6]); - x11 += LE32(seed32[7]); - x12 += idx; - x13 += idx >> 32; - x14 += 0; - x15 += over_count; - - r1->d[7] = BE32(x0); - r1->d[6] = BE32(x1); - r1->d[5] = BE32(x2); - r1->d[4] = BE32(x3); - r1->d[3] = BE32(x4); - r1->d[2] = BE32(x5); - r1->d[1] = BE32(x6); - r1->d[0] = BE32(x7); - r2->d[7] = BE32(x8); - r2->d[6] = BE32(x9); - r2->d[5] = BE32(x10); - r2->d[4] = BE32(x11); - r2->d[3] = BE32(x12); - r2->d[2] = BE32(x13); - r2->d[1] = BE32(x14); - r2->d[0] = BE32(x15); - - over1 = secp256k1_scalar_check_overflow(r1); - over2 = secp256k1_scalar_check_overflow(r2); - over_count++; - } while (over1 | over2); -} - -#undef ROTL32 -#undef QUARTERROUND -#undef BE32 -#undef LE32 - -#endif /* SECP256K1_SCALAR_REPR_IMPL_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_impl.h deleted file mode 100644 index fa79057..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_impl.h +++ /dev/null @@ -1,333 +0,0 @@ -/********************************************************************** - * Copyright (c) 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_SCALAR_IMPL_H -#define SECP256K1_SCALAR_IMPL_H - -#include "group.h" -#include "scalar.h" - -#if defined HAVE_CONFIG_H -#include "libsecp256k1-config.h" -#endif - -#if defined(EXHAUSTIVE_TEST_ORDER) -#include "scalar_low_impl.h" -#elif defined(USE_SCALAR_4X64) -#include "scalar_4x64_impl.h" -#elif defined(USE_SCALAR_8X32) -#include "scalar_8x32_impl.h" -#else -#error "Please select scalar implementation" -#endif - -#ifndef USE_NUM_NONE -static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a) { - unsigned char c[32]; - secp256k1_scalar_get_b32(c, a); - secp256k1_num_set_bin(r, c, 32); -} - -/** secp256k1 curve order, see secp256k1_ecdsa_const_order_as_fe in ecdsa_impl.h */ -static void secp256k1_scalar_order_get_num(secp256k1_num *r) { -#if defined(EXHAUSTIVE_TEST_ORDER) - static const unsigned char order[32] = { - 0,0,0,0,0,0,0,0, - 0,0,0,0,0,0,0,0, - 0,0,0,0,0,0,0,0, - 0,0,0,0,0,0,0,EXHAUSTIVE_TEST_ORDER - }; -#else - static const unsigned char order[32] = { - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE, - 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B, - 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41 - }; -#endif - secp256k1_num_set_bin(r, order, 32); -} -#endif - -static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) { -#if defined(EXHAUSTIVE_TEST_ORDER) - int i; - *r = 0; - for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) - if ((i * *x) % EXHAUSTIVE_TEST_ORDER == 1) - *r = i; - /* If this VERIFY_CHECK triggers we were given a noninvertible scalar (and thus - * have a composite group order; fix it in exhaustive_tests.c). */ - VERIFY_CHECK(*r != 0); -} -#else - secp256k1_scalar *t; - int i; - /* First compute xN as x ^ (2^N - 1) for some values of N, - * and uM as x ^ M for some values of M. */ - secp256k1_scalar x2, x3, x6, x8, x14, x28, x56, x112, x126; - secp256k1_scalar u2, u5, u9, u11, u13; - - secp256k1_scalar_sqr(&u2, x); - secp256k1_scalar_mul(&x2, &u2, x); - secp256k1_scalar_mul(&u5, &u2, &x2); - secp256k1_scalar_mul(&x3, &u5, &u2); - secp256k1_scalar_mul(&u9, &x3, &u2); - secp256k1_scalar_mul(&u11, &u9, &u2); - secp256k1_scalar_mul(&u13, &u11, &u2); - - secp256k1_scalar_sqr(&x6, &u13); - secp256k1_scalar_sqr(&x6, &x6); - secp256k1_scalar_mul(&x6, &x6, &u11); - - secp256k1_scalar_sqr(&x8, &x6); - secp256k1_scalar_sqr(&x8, &x8); - secp256k1_scalar_mul(&x8, &x8, &x2); - - secp256k1_scalar_sqr(&x14, &x8); - for (i = 0; i < 5; i++) { - secp256k1_scalar_sqr(&x14, &x14); - } - secp256k1_scalar_mul(&x14, &x14, &x6); - - secp256k1_scalar_sqr(&x28, &x14); - for (i = 0; i < 13; i++) { - secp256k1_scalar_sqr(&x28, &x28); - } - secp256k1_scalar_mul(&x28, &x28, &x14); - - secp256k1_scalar_sqr(&x56, &x28); - for (i = 0; i < 27; i++) { - secp256k1_scalar_sqr(&x56, &x56); - } - secp256k1_scalar_mul(&x56, &x56, &x28); - - secp256k1_scalar_sqr(&x112, &x56); - for (i = 0; i < 55; i++) { - secp256k1_scalar_sqr(&x112, &x112); - } - secp256k1_scalar_mul(&x112, &x112, &x56); - - secp256k1_scalar_sqr(&x126, &x112); - for (i = 0; i < 13; i++) { - secp256k1_scalar_sqr(&x126, &x126); - } - secp256k1_scalar_mul(&x126, &x126, &x14); - - /* Then accumulate the final result (t starts at x126). */ - t = &x126; - for (i = 0; i < 3; i++) { - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u5); /* 101 */ - for (i = 0; i < 4; i++) { /* 0 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &x3); /* 111 */ - for (i = 0; i < 4; i++) { /* 0 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u5); /* 101 */ - for (i = 0; i < 5; i++) { /* 0 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u11); /* 1011 */ - for (i = 0; i < 4; i++) { - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u11); /* 1011 */ - for (i = 0; i < 4; i++) { /* 0 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &x3); /* 111 */ - for (i = 0; i < 5; i++) { /* 00 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &x3); /* 111 */ - for (i = 0; i < 6; i++) { /* 00 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u13); /* 1101 */ - for (i = 0; i < 4; i++) { /* 0 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u5); /* 101 */ - for (i = 0; i < 3; i++) { - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &x3); /* 111 */ - for (i = 0; i < 5; i++) { /* 0 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u9); /* 1001 */ - for (i = 0; i < 6; i++) { /* 000 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u5); /* 101 */ - for (i = 0; i < 10; i++) { /* 0000000 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &x3); /* 111 */ - for (i = 0; i < 4; i++) { /* 0 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &x3); /* 111 */ - for (i = 0; i < 9; i++) { /* 0 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &x8); /* 11111111 */ - for (i = 0; i < 5; i++) { /* 0 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u9); /* 1001 */ - for (i = 0; i < 6; i++) { /* 00 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u11); /* 1011 */ - for (i = 0; i < 4; i++) { - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u13); /* 1101 */ - for (i = 0; i < 5; i++) { - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &x2); /* 11 */ - for (i = 0; i < 6; i++) { /* 00 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u13); /* 1101 */ - for (i = 0; i < 10; i++) { /* 000000 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u13); /* 1101 */ - for (i = 0; i < 4; i++) { - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u9); /* 1001 */ - for (i = 0; i < 6; i++) { /* 00000 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, x); /* 1 */ - for (i = 0; i < 8; i++) { /* 00 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(r, t, &x6); /* 111111 */ -} - -SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) { - return !(a->d[0] & 1); -} -#endif - -static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) { -#if defined(USE_SCALAR_INV_BUILTIN) - secp256k1_scalar_inverse(r, x); -#elif defined(USE_SCALAR_INV_NUM) - unsigned char b[32]; - secp256k1_num n, m; - secp256k1_scalar t = *x; - secp256k1_scalar_get_b32(b, &t); - secp256k1_num_set_bin(&n, b, 32); - secp256k1_scalar_order_get_num(&m); - secp256k1_num_mod_inverse(&n, &n, &m); - secp256k1_num_get_bin(b, 32, &n); - secp256k1_scalar_set_b32(r, b, NULL); - /* Verify that the inverse was computed correctly, without GMP code. */ - secp256k1_scalar_mul(&t, &t, r); - CHECK(secp256k1_scalar_is_one(&t)); -#else -#error "Please select scalar inverse implementation" -#endif -} - -#ifdef USE_ENDOMORPHISM -#if defined(EXHAUSTIVE_TEST_ORDER) -/** - * Find k1 and k2 given k, such that k1 + k2 * lambda == k mod n; unlike in the - * full case we don't bother making k1 and k2 be small, we just want them to be - * nontrivial to get full test coverage for the exhaustive tests. We therefore - * (arbitrarily) set k2 = k + 5 and k1 = k - k2 * lambda. - */ -static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) { - *r2 = (*a + 5) % EXHAUSTIVE_TEST_ORDER; - *r1 = (*a + (EXHAUSTIVE_TEST_ORDER - *r2) * EXHAUSTIVE_TEST_LAMBDA) % EXHAUSTIVE_TEST_ORDER; -} -#else -/** - * The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where - * lambda is {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a, - * 0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72} - * - * "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm - * (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1 - * and k2 have a small size. - * It relies on constants a1, b1, a2, b2. These constants for the value of lambda above are: - * - * - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15} - * - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3} - * - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8} - * - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15} - * - * The algorithm then computes c1 = round(b1 * k / n) and c2 = round(b2 * k / n), and gives - * k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and - * compute k1 as k - k2 * lambda, avoiding the need for constants a1 and a2. - * - * g1, g2 are precomputed constants used to replace division with a rounded multiplication - * when decomposing the scalar for an endomorphism-based point multiplication. - * - * The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve - * Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5. - * - * The derivation is described in the paper "Efficient Software Implementation of Public-Key - * Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez), - * Section 4.3 (here we use a somewhat higher-precision estimate): - * d = a1*b2 - b1*a2 - * g1 = round((2^272)*b2/d) - * g2 = round((2^272)*b1/d) - * - * (Note that 'd' is also equal to the curve order here because [a1,b1] and [a2,b2] are found - * as outputs of the Extended Euclidean Algorithm on inputs 'order' and 'lambda'). - * - * The function below splits a in r1 and r2, such that r1 + lambda * r2 == a (mod order). - */ - -static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) { - secp256k1_scalar c1, c2; - static const secp256k1_scalar minus_lambda = SECP256K1_SCALAR_CONST( - 0xAC9C52B3UL, 0x3FA3CF1FUL, 0x5AD9E3FDUL, 0x77ED9BA4UL, - 0xA880B9FCUL, 0x8EC739C2UL, 0xE0CFC810UL, 0xB51283CFUL - ); - static const secp256k1_scalar minus_b1 = SECP256K1_SCALAR_CONST( - 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL, - 0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL - ); - static const secp256k1_scalar minus_b2 = SECP256K1_SCALAR_CONST( - 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, - 0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL - ); - static const secp256k1_scalar g1 = SECP256K1_SCALAR_CONST( - 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00003086UL, - 0xD221A7D4UL, 0x6BCDE86CUL, 0x90E49284UL, 0xEB153DABUL - ); - static const secp256k1_scalar g2 = SECP256K1_SCALAR_CONST( - 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x0000E443UL, - 0x7ED6010EUL, 0x88286F54UL, 0x7FA90ABFUL, 0xE4C42212UL - ); - VERIFY_CHECK(r1 != a); - VERIFY_CHECK(r2 != a); - /* these _var calls are constant time since the shift amount is constant */ - secp256k1_scalar_mul_shift_var(&c1, a, &g1, 272); - secp256k1_scalar_mul_shift_var(&c2, a, &g2, 272); - secp256k1_scalar_mul(&c1, &c1, &minus_b1); - secp256k1_scalar_mul(&c2, &c2, &minus_b2); - secp256k1_scalar_add(r2, &c1, &c2); - secp256k1_scalar_mul(r1, r2, &minus_lambda); - secp256k1_scalar_add(r1, r1, a); -} -#endif -#endif - -#endif /* SECP256K1_SCALAR_IMPL_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_low.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_low.h deleted file mode 100644 index 5836feb..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_low.h +++ /dev/null @@ -1,15 +0,0 @@ -/********************************************************************** - * Copyright (c) 2015 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_SCALAR_REPR_H -#define SECP256K1_SCALAR_REPR_H - -#include - -/** A scalar modulo the group order of the secp256k1 curve. */ -typedef uint32_t secp256k1_scalar; - -#endif /* SECP256K1_SCALAR_REPR_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_low_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_low_impl.h deleted file mode 100644 index d6fdead..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scalar_low_impl.h +++ /dev/null @@ -1,120 +0,0 @@ -/********************************************************************** - * Copyright (c) 2015 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_SCALAR_REPR_IMPL_H -#define SECP256K1_SCALAR_REPR_IMPL_H - -#include "scalar.h" - -#include - -SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) { - return !(*a & 1); -} - -SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) { *r = 0; } -SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) { *r = v; } -SECP256K1_INLINE static void secp256k1_scalar_set_u64(secp256k1_scalar *r, uint64_t v) { *r = v % EXHAUSTIVE_TEST_ORDER; } - -SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) { - if (offset < 32) - return ((*a >> offset) & ((((uint32_t)1) << count) - 1)); - else - return 0; -} - -SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) { - return secp256k1_scalar_get_bits(a, offset, count); -} - -SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) { return *a >= EXHAUSTIVE_TEST_ORDER; } - -static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) { - *r = (*a + *b) % EXHAUSTIVE_TEST_ORDER; - return *r < *b; -} - -static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) { - if (flag && bit < 32) - *r += (1 << bit); -#ifdef VERIFY - VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0); -#endif -} - -static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) { - const int base = 0x100 % EXHAUSTIVE_TEST_ORDER; - int i; - *r = 0; - for (i = 0; i < 32; i++) { - *r = ((*r * base) + b32[i]) % EXHAUSTIVE_TEST_ORDER; - } - /* just deny overflow, it basically always happens */ - if (overflow) *overflow = 0; -} - -static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) { - memset(bin, 0, 32); - bin[28] = *a >> 24; bin[29] = *a >> 16; bin[30] = *a >> 8; bin[31] = *a; -} - -SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) { - return *a == 0; -} - -static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) { - if (*a == 0) { - *r = 0; - } else { - *r = EXHAUSTIVE_TEST_ORDER - *a; - } -} - -SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) { - return *a == 1; -} - -static int secp256k1_scalar_is_high(const secp256k1_scalar *a) { - return *a > EXHAUSTIVE_TEST_ORDER / 2; -} - -static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) { - if (flag) secp256k1_scalar_negate(r, r); - return flag ? -1 : 1; -} - -static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) { - *r = (*a * *b) % EXHAUSTIVE_TEST_ORDER; -} - -static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) { - int ret; - VERIFY_CHECK(n > 0); - VERIFY_CHECK(n < 16); - ret = *r & ((1 << n) - 1); - *r >>= n; - return ret; -} - -static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) { - *r = (*a * *a) % EXHAUSTIVE_TEST_ORDER; -} - -static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) { - *r1 = *a; - *r2 = 0; -} - -SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) { - return *a == *b; -} - -SECP256K1_INLINE static void secp256k1_scalar_chacha20(secp256k1_scalar *r1, secp256k1_scalar *r2, const unsigned char *seed, uint64_t n) { - *r1 = (seed[0] + n) % EXHAUSTIVE_TEST_ORDER; - *r2 = (seed[1] + n) % EXHAUSTIVE_TEST_ORDER; -} - -#endif /* SECP256K1_SCALAR_REPR_IMPL_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scratch.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scratch.h deleted file mode 100644 index fef377a..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scratch.h +++ /dev/null @@ -1,39 +0,0 @@ -/********************************************************************** - * Copyright (c) 2017 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef _SECP256K1_SCRATCH_ -#define _SECP256K1_SCRATCH_ - -#define SECP256K1_SCRATCH_MAX_FRAMES 5 - -/* The typedef is used internally; the struct name is used in the public API - * (where it is exposed as a different typedef) */ -typedef struct secp256k1_scratch_space_struct { - void *data[SECP256K1_SCRATCH_MAX_FRAMES]; - size_t offset[SECP256K1_SCRATCH_MAX_FRAMES]; - size_t frame_size[SECP256K1_SCRATCH_MAX_FRAMES]; - size_t frame; - size_t max_size; - const secp256k1_callback* error_callback; -} secp256k1_scratch; - -static secp256k1_scratch* secp256k1_scratch_create(const secp256k1_callback* error_callback, size_t max_size); - -static void secp256k1_scratch_destroy(secp256k1_scratch* scratch); - -/** Attempts to allocate a new stack frame with `n` available bytes. Returns 1 on success, 0 on failure */ -static int secp256k1_scratch_allocate_frame(secp256k1_scratch* scratch, size_t n, size_t objects); - -/** Deallocates a stack frame */ -static void secp256k1_scratch_deallocate_frame(secp256k1_scratch* scratch); - -/** Returns the maximum allocation the scratch space will allow */ -static size_t secp256k1_scratch_max_allocation(const secp256k1_scratch* scratch, size_t n_objects); - -/** Returns a pointer into the most recently allocated frame, or NULL if there is insufficient available space */ -static void *secp256k1_scratch_alloc(secp256k1_scratch* scratch, size_t n); - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scratch_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scratch_impl.h deleted file mode 100644 index abed713..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/scratch_impl.h +++ /dev/null @@ -1,86 +0,0 @@ -/********************************************************************** - * Copyright (c) 2017 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef _SECP256K1_SCRATCH_IMPL_H_ -#define _SECP256K1_SCRATCH_IMPL_H_ - -#include "scratch.h" - -/* Using 16 bytes alignment because common architectures never have alignment - * requirements above 8 for any of the types we care about. In addition we - * leave some room because currently we don't care about a few bytes. - * TODO: Determine this at configure time. */ -#define ALIGNMENT 16 - -static secp256k1_scratch* secp256k1_scratch_create(const secp256k1_callback* error_callback, size_t max_size) { - secp256k1_scratch* ret = (secp256k1_scratch*)checked_malloc(error_callback, sizeof(*ret)); - if (ret != NULL) { - memset(ret, 0, sizeof(*ret)); - ret->max_size = max_size; - ret->error_callback = error_callback; - } - return ret; -} - -static void secp256k1_scratch_destroy(secp256k1_scratch* scratch) { - if (scratch != NULL) { - VERIFY_CHECK(scratch->frame == 0); - free(scratch); - } -} - -static size_t secp256k1_scratch_max_allocation(const secp256k1_scratch* scratch, size_t objects) { - size_t i = 0; - size_t allocated = 0; - for (i = 0; i < scratch->frame; i++) { - allocated += scratch->frame_size[i]; - } - if (scratch->max_size - allocated <= objects * ALIGNMENT) { - return 0; - } - return scratch->max_size - allocated - objects * ALIGNMENT; -} - -static int secp256k1_scratch_allocate_frame(secp256k1_scratch* scratch, size_t n, size_t objects) { - VERIFY_CHECK(scratch->frame < SECP256K1_SCRATCH_MAX_FRAMES); - - if (n <= secp256k1_scratch_max_allocation(scratch, objects)) { - n += objects * ALIGNMENT; - scratch->data[scratch->frame] = checked_malloc(scratch->error_callback, n); - if (scratch->data[scratch->frame] == NULL) { - return 0; - } - scratch->frame_size[scratch->frame] = n; - scratch->offset[scratch->frame] = 0; - scratch->frame++; - return 1; - } else { - return 0; - } -} - -static void secp256k1_scratch_deallocate_frame(secp256k1_scratch* scratch) { - VERIFY_CHECK(scratch->frame > 0); - scratch->frame -= 1; - free(scratch->data[scratch->frame]); -} - -static void *secp256k1_scratch_alloc(secp256k1_scratch* scratch, size_t size) { - void *ret; - size_t frame = scratch->frame - 1; - size = ((size + ALIGNMENT - 1) / ALIGNMENT) * ALIGNMENT; - - if (scratch->frame == 0 || size + scratch->offset[frame] > scratch->frame_size[frame]) { - return NULL; - } - ret = (void *) ((unsigned char *) scratch->data[frame] + scratch->offset[frame]); - memset(ret, 0, size); - scratch->offset[frame] += size; - - return ret; -} - -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/secp256k1.c b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/secp256k1.c deleted file mode 100644 index 159768a..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/secp256k1.c +++ /dev/null @@ -1,637 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013-2015 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#include "include/secp256k1.h" - -#include "util.h" -#include "num_impl.h" -#include "field_impl.h" -#include "scalar_impl.h" -#include "group_impl.h" -#include "ecmult_impl.h" -#include "ecmult_const_impl.h" -#include "ecmult_gen_impl.h" -#include "ecdsa_impl.h" -#include "eckey_impl.h" -#include "hash_impl.h" -#include "scratch_impl.h" - -#ifdef ENABLE_MODULE_GENERATOR -# include "include/secp256k1_generator.h" -#endif - -#ifdef ENABLE_MODULE_COMMITMENT -# include "include/secp256k1_commitment.h" -#endif - -#ifdef ENABLE_MODULE_RANGEPROOF -# include "include/secp256k1_rangeproof.h" -#endif - -#ifdef ENABLE_MODULE_BULLETPROOF -# include "include/secp256k1_bulletproofs.h" -#endif - -#define ARG_CHECK(cond) do { \ - if (EXPECT(!(cond), 0)) { \ - secp256k1_callback_call(&ctx->illegal_callback, #cond); \ - return 0; \ - } \ -} while(0) - -static void default_illegal_callback_fn(const char* str, void* data) { - (void)data; - fprintf(stderr, "[libsecp256k1] illegal argument: %s\n", str); - abort(); -} - -static const secp256k1_callback default_illegal_callback = { - default_illegal_callback_fn, - NULL -}; - -static void default_error_callback_fn(const char* str, void* data) { - (void)data; - fprintf(stderr, "[libsecp256k1] internal consistency check failed: %s\n", str); - abort(); -} - -static const secp256k1_callback default_error_callback = { - default_error_callback_fn, - NULL -}; - - -struct secp256k1_context_struct { - secp256k1_ecmult_context ecmult_ctx; - secp256k1_ecmult_gen_context ecmult_gen_ctx; - secp256k1_callback illegal_callback; - secp256k1_callback error_callback; -}; - -secp256k1_context* secp256k1_context_create(unsigned int flags) { - secp256k1_context* ret = (secp256k1_context*)checked_malloc(&default_error_callback, sizeof(secp256k1_context)); - ret->illegal_callback = default_illegal_callback; - ret->error_callback = default_error_callback; - - if (EXPECT((flags & SECP256K1_FLAGS_TYPE_MASK) != SECP256K1_FLAGS_TYPE_CONTEXT, 0)) { - secp256k1_callback_call(&ret->illegal_callback, - "Invalid flags"); - free(ret); - return NULL; - } - - secp256k1_ecmult_context_init(&ret->ecmult_ctx); - secp256k1_ecmult_gen_context_init(&ret->ecmult_gen_ctx); - - if (flags & SECP256K1_FLAGS_BIT_CONTEXT_SIGN) { - secp256k1_ecmult_gen_context_build(&ret->ecmult_gen_ctx, &ret->error_callback); - } - if (flags & SECP256K1_FLAGS_BIT_CONTEXT_VERIFY) { - secp256k1_ecmult_context_build(&ret->ecmult_ctx, &ret->error_callback); - } - - return ret; -} - -secp256k1_context* secp256k1_context_clone(const secp256k1_context* ctx) { - secp256k1_context* ret = (secp256k1_context*)checked_malloc(&ctx->error_callback, sizeof(secp256k1_context)); - ret->illegal_callback = ctx->illegal_callback; - ret->error_callback = ctx->error_callback; - secp256k1_ecmult_context_clone(&ret->ecmult_ctx, &ctx->ecmult_ctx, &ctx->error_callback); - secp256k1_ecmult_gen_context_clone(&ret->ecmult_gen_ctx, &ctx->ecmult_gen_ctx, &ctx->error_callback); - return ret; -} - -void secp256k1_context_destroy(secp256k1_context* ctx) { - if (ctx != NULL) { - secp256k1_ecmult_context_clear(&ctx->ecmult_ctx); - secp256k1_ecmult_gen_context_clear(&ctx->ecmult_gen_ctx); - - free(ctx); - } -} - -void secp256k1_context_set_illegal_callback(secp256k1_context* ctx, void (*fun)(const char* message, void* data), const void* data) { - if (fun == NULL) { - fun = default_illegal_callback_fn; - } - ctx->illegal_callback.fn = fun; - ctx->illegal_callback.data = data; -} - -void secp256k1_context_set_error_callback(secp256k1_context* ctx, void (*fun)(const char* message, void* data), const void* data) { - if (fun == NULL) { - fun = default_error_callback_fn; - } - ctx->error_callback.fn = fun; - ctx->error_callback.data = data; -} - -secp256k1_scratch_space* secp256k1_scratch_space_create(const secp256k1_context* ctx, size_t max_size) { - VERIFY_CHECK(ctx != NULL); - return secp256k1_scratch_create(&ctx->error_callback, max_size); -} - -void secp256k1_scratch_space_destroy(secp256k1_scratch_space* scratch) { - secp256k1_scratch_destroy(scratch); -} - -static int secp256k1_pubkey_load(const secp256k1_context* ctx, secp256k1_ge* ge, const secp256k1_pubkey* pubkey) { - if (sizeof(secp256k1_ge_storage) == 64) { - /* When the secp256k1_ge_storage type is exactly 64 byte, use its - * representation inside secp256k1_pubkey, as conversion is very fast. - * Note that secp256k1_pubkey_save must use the same representation. */ - secp256k1_ge_storage s; - memcpy(&s, &pubkey->data[0], sizeof(s)); - secp256k1_ge_from_storage(ge, &s); - } else { - /* Otherwise, fall back to 32-byte big endian for X and Y. */ - secp256k1_fe x, y; - secp256k1_fe_set_b32(&x, pubkey->data); - secp256k1_fe_set_b32(&y, pubkey->data + 32); - secp256k1_ge_set_xy(ge, &x, &y); - } - ARG_CHECK(!secp256k1_fe_is_zero(&ge->x)); - return 1; -} - -static void secp256k1_pubkey_save(secp256k1_pubkey* pubkey, secp256k1_ge* ge) { - if (sizeof(secp256k1_ge_storage) == 64) { - secp256k1_ge_storage s; - secp256k1_ge_to_storage(&s, ge); - memcpy(&pubkey->data[0], &s, sizeof(s)); - } else { - VERIFY_CHECK(!secp256k1_ge_is_infinity(ge)); - secp256k1_fe_normalize_var(&ge->x); - secp256k1_fe_normalize_var(&ge->y); - secp256k1_fe_get_b32(pubkey->data, &ge->x); - secp256k1_fe_get_b32(pubkey->data + 32, &ge->y); - } -} - -int secp256k1_ec_pubkey_parse(const secp256k1_context* ctx, secp256k1_pubkey* pubkey, const unsigned char *input, size_t inputlen) { - secp256k1_ge Q; - - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(pubkey != NULL); - memset(pubkey, 0, sizeof(*pubkey)); - ARG_CHECK(input != NULL); - if (!secp256k1_eckey_pubkey_parse(&Q, input, inputlen)) { - return 0; - } - secp256k1_pubkey_save(pubkey, &Q); - secp256k1_ge_clear(&Q); - return 1; -} - -int secp256k1_ec_pubkey_serialize(const secp256k1_context* ctx, unsigned char *output, size_t *outputlen, const secp256k1_pubkey* pubkey, unsigned int flags) { - secp256k1_ge Q; - size_t len; - int ret = 0; - - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(outputlen != NULL); - ARG_CHECK(*outputlen >= ((flags & SECP256K1_FLAGS_BIT_COMPRESSION) ? 33 : 65)); - len = *outputlen; - *outputlen = 0; - ARG_CHECK(output != NULL); - memset(output, 0, len); - ARG_CHECK(pubkey != NULL); - ARG_CHECK((flags & SECP256K1_FLAGS_TYPE_MASK) == SECP256K1_FLAGS_TYPE_COMPRESSION); - if (secp256k1_pubkey_load(ctx, &Q, pubkey)) { - ret = secp256k1_eckey_pubkey_serialize(&Q, output, &len, flags & SECP256K1_FLAGS_BIT_COMPRESSION); - if (ret) { - *outputlen = len; - } - } - return ret; -} - -static void secp256k1_ecdsa_signature_load(const secp256k1_context* ctx, secp256k1_scalar* r, secp256k1_scalar* s, const secp256k1_ecdsa_signature* sig) { - (void)ctx; - if (sizeof(secp256k1_scalar) == 32) { - /* When the secp256k1_scalar type is exactly 32 byte, use its - * representation inside secp256k1_ecdsa_signature, as conversion is very fast. - * Note that secp256k1_ecdsa_signature_save must use the same representation. */ - memcpy(r, &sig->data[0], 32); - memcpy(s, &sig->data[32], 32); - } else { - secp256k1_scalar_set_b32(r, &sig->data[0], NULL); - secp256k1_scalar_set_b32(s, &sig->data[32], NULL); - } -} - -static void secp256k1_ecdsa_signature_save(secp256k1_ecdsa_signature* sig, const secp256k1_scalar* r, const secp256k1_scalar* s) { - if (sizeof(secp256k1_scalar) == 32) { - memcpy(&sig->data[0], r, 32); - memcpy(&sig->data[32], s, 32); - } else { - secp256k1_scalar_get_b32(&sig->data[0], r); - secp256k1_scalar_get_b32(&sig->data[32], s); - } -} - -int secp256k1_ecdsa_signature_parse_der(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input, size_t inputlen) { - secp256k1_scalar r, s; - - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(sig != NULL); - ARG_CHECK(input != NULL); - - if (secp256k1_ecdsa_sig_parse(&r, &s, input, inputlen)) { - secp256k1_ecdsa_signature_save(sig, &r, &s); - return 1; - } else { - memset(sig, 0, sizeof(*sig)); - return 0; - } -} - -int secp256k1_ecdsa_signature_parse_compact(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input64) { - secp256k1_scalar r, s; - int ret = 1; - int overflow = 0; - - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(sig != NULL); - ARG_CHECK(input64 != NULL); - - secp256k1_scalar_set_b32(&r, &input64[0], &overflow); - ret &= !overflow; - secp256k1_scalar_set_b32(&s, &input64[32], &overflow); - ret &= !overflow; - if (ret) { - secp256k1_ecdsa_signature_save(sig, &r, &s); - } else { - memset(sig, 0, sizeof(*sig)); - } - return ret; -} - -int secp256k1_ecdsa_signature_serialize_der(const secp256k1_context* ctx, unsigned char *output, size_t *outputlen, const secp256k1_ecdsa_signature* sig) { - secp256k1_scalar r, s; - - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(output != NULL); - ARG_CHECK(outputlen != NULL); - ARG_CHECK(sig != NULL); - - secp256k1_ecdsa_signature_load(ctx, &r, &s, sig); - return secp256k1_ecdsa_sig_serialize(output, outputlen, &r, &s); -} - -int secp256k1_ecdsa_signature_serialize_compact(const secp256k1_context* ctx, unsigned char *output64, const secp256k1_ecdsa_signature* sig) { - secp256k1_scalar r, s; - - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(output64 != NULL); - ARG_CHECK(sig != NULL); - - secp256k1_ecdsa_signature_load(ctx, &r, &s, sig); - secp256k1_scalar_get_b32(&output64[0], &r); - secp256k1_scalar_get_b32(&output64[32], &s); - return 1; -} - -int secp256k1_ecdsa_signature_normalize(const secp256k1_context* ctx, secp256k1_ecdsa_signature *sigout, const secp256k1_ecdsa_signature *sigin) { - secp256k1_scalar r, s; - int ret = 0; - - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(sigin != NULL); - - secp256k1_ecdsa_signature_load(ctx, &r, &s, sigin); - ret = secp256k1_scalar_is_high(&s); - if (sigout != NULL) { - if (ret) { - secp256k1_scalar_negate(&s, &s); - } - secp256k1_ecdsa_signature_save(sigout, &r, &s); - } - - return ret; -} - -int secp256k1_ecdsa_verify(const secp256k1_context* ctx, const secp256k1_ecdsa_signature *sig, const unsigned char *msg32, const secp256k1_pubkey *pubkey) { - secp256k1_ge q; - secp256k1_scalar r, s; - secp256k1_scalar m; - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); - ARG_CHECK(msg32 != NULL); - ARG_CHECK(sig != NULL); - ARG_CHECK(pubkey != NULL); - - secp256k1_scalar_set_b32(&m, msg32, NULL); - secp256k1_ecdsa_signature_load(ctx, &r, &s, sig); - return (!secp256k1_scalar_is_high(&s) && - secp256k1_pubkey_load(ctx, &q, pubkey) && - secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &r, &s, &q, &m)); -} - -static SECP256K1_INLINE void buffer_append(unsigned char *buf, unsigned int *offset, const void *data, unsigned int len) { - memcpy(buf + *offset, data, len); - *offset += len; -} - -static int nonce_function_rfc6979(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) { - unsigned char keydata[112]; - unsigned int offset = 0; - secp256k1_rfc6979_hmac_sha256 rng; - unsigned int i; - /* We feed a byte array to the PRNG as input, consisting of: - * - the private key (32 bytes) and message (32 bytes), see RFC 6979 3.2d. - * - optionally 32 extra bytes of data, see RFC 6979 3.6 Additional Data. - * - optionally 16 extra bytes with the algorithm name. - * Because the arguments have distinct fixed lengths it is not possible for - * different argument mixtures to emulate each other and result in the same - * nonces. - */ - buffer_append(keydata, &offset, key32, 32); - buffer_append(keydata, &offset, msg32, 32); - if (data != NULL) { - buffer_append(keydata, &offset, data, 32); - } - if (algo16 != NULL) { - buffer_append(keydata, &offset, algo16, 16); - } - secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, offset); - memset(keydata, 0, sizeof(keydata)); - for (i = 0; i <= counter; i++) { - secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32); - } - secp256k1_rfc6979_hmac_sha256_finalize(&rng); - return 1; -} - -const secp256k1_nonce_function secp256k1_nonce_function_rfc6979 = nonce_function_rfc6979; -const secp256k1_nonce_function secp256k1_nonce_function_default = nonce_function_rfc6979; - -int secp256k1_ecdsa_sign(const secp256k1_context* ctx, secp256k1_ecdsa_signature *signature, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) { - secp256k1_scalar r, s; - secp256k1_scalar sec, non, msg; - int ret = 0; - int overflow = 0; - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); - ARG_CHECK(msg32 != NULL); - ARG_CHECK(signature != NULL); - ARG_CHECK(seckey != NULL); - if (noncefp == NULL) { - noncefp = secp256k1_nonce_function_default; - } - - secp256k1_scalar_set_b32(&sec, seckey, &overflow); - /* Fail if the secret key is invalid. */ - if (!overflow && !secp256k1_scalar_is_zero(&sec)) { - unsigned char nonce32[32]; - unsigned int count = 0; - secp256k1_scalar_set_b32(&msg, msg32, NULL); - while (1) { - ret = noncefp(nonce32, msg32, seckey, NULL, (void*)noncedata, count); - if (!ret) { - break; - } - secp256k1_scalar_set_b32(&non, nonce32, &overflow); - if (!overflow && !secp256k1_scalar_is_zero(&non)) { - if (secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, &r, &s, &sec, &msg, &non, NULL)) { - break; - } - } - count++; - } - memset(nonce32, 0, 32); - secp256k1_scalar_clear(&msg); - secp256k1_scalar_clear(&non); - secp256k1_scalar_clear(&sec); - } - if (ret) { - secp256k1_ecdsa_signature_save(signature, &r, &s); - } else { - memset(signature, 0, sizeof(*signature)); - } - return ret; -} - -int secp256k1_ec_seckey_verify(const secp256k1_context* ctx, const unsigned char *seckey) { - secp256k1_scalar sec; - int ret; - int overflow; - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(seckey != NULL); - - secp256k1_scalar_set_b32(&sec, seckey, &overflow); - ret = !overflow && !secp256k1_scalar_is_zero(&sec); - secp256k1_scalar_clear(&sec); - return ret; -} - -int secp256k1_ec_pubkey_create(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *seckey) { - secp256k1_gej pj; - secp256k1_ge p; - secp256k1_scalar sec; - int overflow; - int ret = 0; - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(pubkey != NULL); - memset(pubkey, 0, sizeof(*pubkey)); - ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); - ARG_CHECK(seckey != NULL); - - secp256k1_scalar_set_b32(&sec, seckey, &overflow); - ret = (!overflow) & (!secp256k1_scalar_is_zero(&sec)); - if (ret) { - secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pj, &sec); - secp256k1_ge_set_gej(&p, &pj); - secp256k1_pubkey_save(pubkey, &p); - } - secp256k1_scalar_clear(&sec); - return ret; -} - -int secp256k1_ec_privkey_negate(const secp256k1_context* ctx, unsigned char *seckey) { - secp256k1_scalar sec; - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(seckey != NULL); - - secp256k1_scalar_set_b32(&sec, seckey, NULL); - secp256k1_scalar_negate(&sec, &sec); - secp256k1_scalar_get_b32(seckey, &sec); - - return 1; -} - -int secp256k1_ec_pubkey_negate(const secp256k1_context* ctx, secp256k1_pubkey *pubkey) { - int ret = 0; - secp256k1_ge p; - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(pubkey != NULL); - - ret = secp256k1_pubkey_load(ctx, &p, pubkey); - memset(pubkey, 0, sizeof(*pubkey)); - if (ret) { - secp256k1_ge_neg(&p, &p); - secp256k1_pubkey_save(pubkey, &p); - } - return ret; -} - -int secp256k1_ec_privkey_tweak_add(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) { - secp256k1_scalar term; - secp256k1_scalar sec; - int ret = 0; - int overflow = 0; - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(seckey != NULL); - ARG_CHECK(tweak != NULL); - - secp256k1_scalar_set_b32(&term, tweak, &overflow); - secp256k1_scalar_set_b32(&sec, seckey, NULL); - - ret = !overflow && secp256k1_eckey_privkey_tweak_add(&sec, &term); - memset(seckey, 0, 32); - if (ret) { - secp256k1_scalar_get_b32(seckey, &sec); - } - - secp256k1_scalar_clear(&sec); - secp256k1_scalar_clear(&term); - return ret; -} - -int secp256k1_ec_pubkey_tweak_add(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak) { - secp256k1_ge p; - secp256k1_scalar term; - int ret = 0; - int overflow = 0; - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); - ARG_CHECK(pubkey != NULL); - ARG_CHECK(tweak != NULL); - - secp256k1_scalar_set_b32(&term, tweak, &overflow); - ret = !overflow && secp256k1_pubkey_load(ctx, &p, pubkey); - memset(pubkey, 0, sizeof(*pubkey)); - if (ret) { - if (secp256k1_eckey_pubkey_tweak_add(&ctx->ecmult_ctx, &p, &term)) { - secp256k1_pubkey_save(pubkey, &p); - } else { - ret = 0; - } - } - - return ret; -} - -int secp256k1_ec_privkey_tweak_mul(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) { - secp256k1_scalar factor; - secp256k1_scalar sec; - int ret = 0; - int overflow = 0; - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(seckey != NULL); - ARG_CHECK(tweak != NULL); - - secp256k1_scalar_set_b32(&factor, tweak, &overflow); - secp256k1_scalar_set_b32(&sec, seckey, NULL); - ret = !overflow && secp256k1_eckey_privkey_tweak_mul(&sec, &factor); - memset(seckey, 0, 32); - if (ret) { - secp256k1_scalar_get_b32(seckey, &sec); - } - - secp256k1_scalar_clear(&sec); - secp256k1_scalar_clear(&factor); - return ret; -} - -int secp256k1_ec_pubkey_tweak_mul(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak) { - secp256k1_ge p; - secp256k1_scalar factor; - int ret = 0; - int overflow = 0; - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); - ARG_CHECK(pubkey != NULL); - ARG_CHECK(tweak != NULL); - - secp256k1_scalar_set_b32(&factor, tweak, &overflow); - ret = !overflow && secp256k1_pubkey_load(ctx, &p, pubkey); - memset(pubkey, 0, sizeof(*pubkey)); - if (ret) { - if (secp256k1_eckey_pubkey_tweak_mul(&ctx->ecmult_ctx, &p, &factor)) { - secp256k1_pubkey_save(pubkey, &p); - } else { - ret = 0; - } - } - - return ret; -} - -int secp256k1_context_randomize(secp256k1_context* ctx, const unsigned char *seed32) { - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); - secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, seed32); - return 1; -} - -int secp256k1_ec_pubkey_combine(const secp256k1_context* ctx, secp256k1_pubkey *pubnonce, const secp256k1_pubkey * const *pubnonces, size_t n) { - size_t i; - secp256k1_gej Qj; - secp256k1_ge Q; - - ARG_CHECK(pubnonce != NULL); - memset(pubnonce, 0, sizeof(*pubnonce)); - ARG_CHECK(n >= 1); - ARG_CHECK(pubnonces != NULL); - - secp256k1_gej_set_infinity(&Qj); - - for (i = 0; i < n; i++) { - secp256k1_pubkey_load(ctx, &Q, pubnonces[i]); - secp256k1_gej_add_ge(&Qj, &Qj, &Q); - } - if (secp256k1_gej_is_infinity(&Qj)) { - return 0; - } - secp256k1_ge_set_gej(&Q, &Qj); - secp256k1_pubkey_save(pubnonce, &Q); - return 1; -} - -#ifdef ENABLE_MODULE_ECDH -# include "modules/ecdh/main_impl.h" -#endif - -#ifdef ENABLE_MODULE_RECOVERY -# include "modules/recovery/main_impl.h" -#endif - -#ifdef ENABLE_MODULE_GENERATOR -# include "modules/generator/main_impl.h" -#endif - -#ifdef ENABLE_MODULE_COMMITMENT -# include "modules/commitment/main_impl.h" -#endif - -#ifdef ENABLE_MODULE_RANGEPROOF -# include "modules/rangeproof/main_impl.h" -#endif - -#ifdef ENABLE_MODULE_BULLETPROOF -# include "modules/bulletproofs/main_impl.h" -#endif - -#ifdef ENABLE_MODULE_WHITELIST -# include "modules/whitelist/main_impl.h" -#endif - -#ifdef ENABLE_MODULE_SURJECTIONPROOF -# include "modules/surjection/main_impl.h" -#endif diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/testrand.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/testrand.h deleted file mode 100644 index 8259959..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/testrand.h +++ /dev/null @@ -1,41 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_TESTRAND_H -#define SECP256K1_TESTRAND_H - -#if defined HAVE_CONFIG_H -#include "libsecp256k1-config.h" -#endif - -/* A non-cryptographic RNG used only for test infrastructure. */ - -/** Seed the pseudorandom number generator for testing. */ -SECP256K1_INLINE static void secp256k1_rand_seed(const unsigned char *seed16); - -/** Generate a pseudorandom number in the range [0..2**32-1]. */ -static uint32_t secp256k1_rand32(void); - -/** Generate a pseudorandom number in the range [0..2**bits-1]. Bits must be 1 or - * more. */ -static uint32_t secp256k1_rand_bits(int bits); - -/** Generate a pseudorandom number in the range [0..range-1]. */ -static uint32_t secp256k1_rand_int(uint32_t range); - -/** Generate a pseudorandom 32-byte array. */ -static void secp256k1_rand256(unsigned char *b32); - -/** Generate a pseudorandom 32-byte array with long sequences of zero and one bits. */ -static void secp256k1_rand256_test(unsigned char *b32); - -/** Generate pseudorandom bytes with long sequences of zero and one bits. */ -static void secp256k1_rand_bytes_test(unsigned char *bytes, size_t len); - -/** Generate a pseudorandom 64-bit integer in the range min..max, inclusive. */ -static int64_t secp256k1_rands64(uint64_t min, uint64_t max); - -#endif /* SECP256K1_TESTRAND_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/testrand_impl.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/testrand_impl.h deleted file mode 100644 index 0db523d..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/testrand_impl.h +++ /dev/null @@ -1,127 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013-2015 Pieter Wuille, Gregory Maxwell * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_TESTRAND_IMPL_H -#define SECP256K1_TESTRAND_IMPL_H - -#include -#include - -#include "testrand.h" -#include "hash.h" - -static secp256k1_rfc6979_hmac_sha256 secp256k1_test_rng; -static uint32_t secp256k1_test_rng_precomputed[8]; -static int secp256k1_test_rng_precomputed_used = 8; -static uint64_t secp256k1_test_rng_integer; -static int secp256k1_test_rng_integer_bits_left = 0; - -SECP256K1_INLINE static void secp256k1_rand_seed(const unsigned char *seed16) { - secp256k1_rfc6979_hmac_sha256_initialize(&secp256k1_test_rng, seed16, 16); -} - -SECP256K1_INLINE static uint32_t secp256k1_rand32(void) { - if (secp256k1_test_rng_precomputed_used == 8) { - secp256k1_rfc6979_hmac_sha256_generate(&secp256k1_test_rng, (unsigned char*)(&secp256k1_test_rng_precomputed[0]), sizeof(secp256k1_test_rng_precomputed)); - secp256k1_test_rng_precomputed_used = 0; - } - return secp256k1_test_rng_precomputed[secp256k1_test_rng_precomputed_used++]; -} - -static uint32_t secp256k1_rand_bits(int bits) { - uint32_t ret; - if (secp256k1_test_rng_integer_bits_left < bits) { - secp256k1_test_rng_integer |= (((uint64_t)secp256k1_rand32()) << secp256k1_test_rng_integer_bits_left); - secp256k1_test_rng_integer_bits_left += 32; - } - ret = secp256k1_test_rng_integer; - secp256k1_test_rng_integer >>= bits; - secp256k1_test_rng_integer_bits_left -= bits; - ret &= ((~((uint32_t)0)) >> (32 - bits)); - return ret; -} - -static uint32_t secp256k1_rand_int(uint32_t range) { - /* We want a uniform integer between 0 and range-1, inclusive. - * B is the smallest number such that range <= 2**B. - * two mechanisms implemented here: - * - generate B bits numbers until one below range is found, and return it - * - find the largest multiple M of range that is <= 2**(B+A), generate B+A - * bits numbers until one below M is found, and return it modulo range - * The second mechanism consumes A more bits of entropy in every iteration, - * but may need fewer iterations due to M being closer to 2**(B+A) then - * range is to 2**B. The array below (indexed by B) contains a 0 when the - * first mechanism is to be used, and the number A otherwise. - */ - static const int addbits[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 1, 0}; - uint32_t trange, mult; - int bits = 0; - if (range <= 1) { - return 0; - } - trange = range - 1; - while (trange > 0) { - trange >>= 1; - bits++; - } - if (addbits[bits]) { - bits = bits + addbits[bits]; - mult = ((~((uint32_t)0)) >> (32 - bits)) / range; - trange = range * mult; - } else { - trange = range; - mult = 1; - } - while(1) { - uint32_t x = secp256k1_rand_bits(bits); - if (x < trange) { - return (mult == 1) ? x : (x % range); - } - } -} - -static void secp256k1_rand256(unsigned char *b32) { - secp256k1_rfc6979_hmac_sha256_generate(&secp256k1_test_rng, b32, 32); -} - -static void secp256k1_rand_bytes_test(unsigned char *bytes, size_t len) { - size_t bits = 0; - memset(bytes, 0, len); - while (bits < len * 8) { - int now; - uint32_t val; - now = 1 + (secp256k1_rand_bits(6) * secp256k1_rand_bits(5) + 16) / 31; - val = secp256k1_rand_bits(1); - while (now > 0 && bits < len * 8) { - bytes[bits / 8] |= val << (bits % 8); - now--; - bits++; - } - } -} - -static void secp256k1_rand256_test(unsigned char *b32) { - secp256k1_rand_bytes_test(b32, 32); -} - -SECP256K1_INLINE static int64_t secp256k1_rands64(uint64_t min, uint64_t max) { - uint64_t range; - uint64_t r; - uint64_t clz; - VERIFY_CHECK(max >= min); - if (max == min) { - return min; - } - range = max - min; - clz = secp256k1_clz64_var(range); - do { - r = ((uint64_t)secp256k1_rand32() << 32) | secp256k1_rand32(); - r >>= clz; - } while (r > range); - return min + (int64_t)r; -} - -#endif /* SECP256K1_TESTRAND_IMPL_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/tests.c b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/tests.c deleted file mode 100644 index 7b0af8a..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/tests.c +++ /dev/null @@ -1,5231 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013-2015 Pieter Wuille, Gregory Maxwell * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#if defined HAVE_CONFIG_H -#include "libsecp256k1-config.h" -#endif - -#include -#include -#include - -#include - -#include "secp256k1.c" -#include "include/secp256k1.h" -#include "testrand_impl.h" - -#ifdef ENABLE_OPENSSL_TESTS -#include "openssl/bn.h" -#include "openssl/ec.h" -#include "openssl/ecdsa.h" -#include "openssl/obj_mac.h" -# if OPENSSL_VERSION_NUMBER < 0x10100000L -void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **pr, const BIGNUM **ps) {*pr = sig->r; *ps = sig->s;} -# endif -#endif - -#include "contrib/lax_der_parsing.c" -#include "contrib/lax_der_privatekey_parsing.c" - -#if !defined(VG_CHECK) -# if defined(VALGRIND) -# include -# define VG_UNDEF(x,y) VALGRIND_MAKE_MEM_UNDEFINED((x),(y)) -# define VG_CHECK(x,y) VALGRIND_CHECK_MEM_IS_DEFINED((x),(y)) -# else -# define VG_UNDEF(x,y) -# define VG_CHECK(x,y) -# endif -#endif - -static int count = 64; -static secp256k1_context *ctx = NULL; - -static void counting_illegal_callback_fn(const char* str, void* data) { - /* Dummy callback function that just counts. */ - int32_t *p; - (void)str; - p = data; - (*p)++; -} - -static void uncounting_illegal_callback_fn(const char* str, void* data) { - /* Dummy callback function that just counts (backwards). */ - int32_t *p; - (void)str; - p = data; - (*p)--; -} - -void random_field_element_test(secp256k1_fe *fe) { - do { - unsigned char b32[32]; - secp256k1_rand256_test(b32); - if (secp256k1_fe_set_b32(fe, b32)) { - break; - } - } while(1); -} - -void random_field_element_magnitude(secp256k1_fe *fe) { - secp256k1_fe zero; - int n = secp256k1_rand_int(9); - secp256k1_fe_normalize(fe); - if (n == 0) { - return; - } - secp256k1_fe_clear(&zero); - secp256k1_fe_negate(&zero, &zero, 0); - secp256k1_fe_mul_int(&zero, n - 1); - secp256k1_fe_add(fe, &zero); - VERIFY_CHECK(fe->magnitude == n); -} - -void random_group_element_test(secp256k1_ge *ge) { - secp256k1_fe fe; - do { - random_field_element_test(&fe); - if (secp256k1_ge_set_xo_var(ge, &fe, secp256k1_rand_bits(1))) { - secp256k1_fe_normalize(&ge->y); - break; - } - } while(1); -} - -void random_group_element_jacobian_test(secp256k1_gej *gej, const secp256k1_ge *ge) { - secp256k1_fe z2, z3; - do { - random_field_element_test(&gej->z); - if (!secp256k1_fe_is_zero(&gej->z)) { - break; - } - } while(1); - secp256k1_fe_sqr(&z2, &gej->z); - secp256k1_fe_mul(&z3, &z2, &gej->z); - secp256k1_fe_mul(&gej->x, &ge->x, &z2); - secp256k1_fe_mul(&gej->y, &ge->y, &z3); - gej->infinity = ge->infinity; -} - -void random_scalar_order_test(secp256k1_scalar *num) { - do { - unsigned char b32[32]; - int overflow = 0; - secp256k1_rand256_test(b32); - secp256k1_scalar_set_b32(num, b32, &overflow); - if (overflow || secp256k1_scalar_is_zero(num)) { - continue; - } - break; - } while(1); -} - -void random_scalar_order(secp256k1_scalar *num) { - do { - unsigned char b32[32]; - int overflow = 0; - secp256k1_rand256(b32); - secp256k1_scalar_set_b32(num, b32, &overflow); - if (overflow || secp256k1_scalar_is_zero(num)) { - continue; - } - break; - } while(1); -} - -void run_util_tests(void) { - int i; - uint64_t r; - uint64_t r2; - uint64_t r3; - int64_t s; - CHECK(secp256k1_clz64_var(0) == 64); - CHECK(secp256k1_clz64_var(1) == 63); - CHECK(secp256k1_clz64_var(2) == 62); - CHECK(secp256k1_clz64_var(3) == 62); - CHECK(secp256k1_clz64_var(~0ULL) == 0); - CHECK(secp256k1_clz64_var((~0ULL) - 1) == 0); - CHECK(secp256k1_clz64_var((~0ULL) >> 1) == 1); - CHECK(secp256k1_clz64_var((~0ULL) >> 2) == 2); - CHECK(secp256k1_sign_and_abs64(&r, INT64_MAX) == 0); - CHECK(r == INT64_MAX); - CHECK(secp256k1_sign_and_abs64(&r, INT64_MAX - 1) == 0); - CHECK(r == INT64_MAX - 1); - CHECK(secp256k1_sign_and_abs64(&r, INT64_MIN) == 1); - CHECK(r == (uint64_t)INT64_MAX + 1); - CHECK(secp256k1_sign_and_abs64(&r, INT64_MIN + 1) == 1); - CHECK(r == (uint64_t)INT64_MAX); - CHECK(secp256k1_sign_and_abs64(&r, 0) == 0); - CHECK(r == 0); - CHECK(secp256k1_sign_and_abs64(&r, 1) == 0); - CHECK(r == 1); - CHECK(secp256k1_sign_and_abs64(&r, -1) == 1); - CHECK(r == 1); - CHECK(secp256k1_sign_and_abs64(&r, 2) == 0); - CHECK(r == 2); - CHECK(secp256k1_sign_and_abs64(&r, -2) == 1); - CHECK(r == 2); - for (i = 0; i < 10; i++) { - CHECK(secp256k1_clz64_var((~0ULL) - secp256k1_rand32()) == 0); - r = ((uint64_t)secp256k1_rand32() << 32) | secp256k1_rand32(); - r2 = secp256k1_rands64(0, r); - CHECK(r2 <= r); - r3 = secp256k1_rands64(r2, r); - CHECK((r3 >= r2) && (r3 <= r)); - r = secp256k1_rands64(0, INT64_MAX); - s = (int64_t)r * (secp256k1_rand32()&1?-1:1); - CHECK(secp256k1_sign_and_abs64(&r2, s) == (s < 0)); - CHECK(r2 == r); - } -} - -void run_context_tests(void) { - secp256k1_pubkey pubkey; - secp256k1_pubkey zero_pubkey; - secp256k1_ecdsa_signature sig; - unsigned char ctmp[32]; - int32_t ecount; - int32_t ecount2; - secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE); - secp256k1_context *sign = secp256k1_context_create(SECP256K1_CONTEXT_SIGN); - secp256k1_context *vrfy = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY); - secp256k1_context *both = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); - - secp256k1_gej pubj; - secp256k1_ge pub; - secp256k1_scalar msg, key, nonce; - secp256k1_scalar sigr, sigs; - - memset(&zero_pubkey, 0, sizeof(zero_pubkey)); - - ecount = 0; - ecount2 = 10; - secp256k1_context_set_illegal_callback(vrfy, counting_illegal_callback_fn, &ecount); - secp256k1_context_set_illegal_callback(sign, counting_illegal_callback_fn, &ecount2); - secp256k1_context_set_error_callback(sign, counting_illegal_callback_fn, NULL); - CHECK(vrfy->error_callback.fn != sign->error_callback.fn); - - /*** clone and destroy all of them to make sure cloning was complete ***/ - { - secp256k1_context *ctx_tmp; - - ctx_tmp = none; none = secp256k1_context_clone(none); secp256k1_context_destroy(ctx_tmp); - ctx_tmp = sign; sign = secp256k1_context_clone(sign); secp256k1_context_destroy(ctx_tmp); - ctx_tmp = vrfy; vrfy = secp256k1_context_clone(vrfy); secp256k1_context_destroy(ctx_tmp); - ctx_tmp = both; both = secp256k1_context_clone(both); secp256k1_context_destroy(ctx_tmp); - } - - /* Verify that the error callback makes it across the clone. */ - CHECK(vrfy->error_callback.fn != sign->error_callback.fn); - /* And that it resets back to default. */ - secp256k1_context_set_error_callback(sign, NULL, NULL); - CHECK(vrfy->error_callback.fn == sign->error_callback.fn); - - /*** attempt to use them ***/ - random_scalar_order_test(&msg); - random_scalar_order_test(&key); - secp256k1_ecmult_gen(&both->ecmult_gen_ctx, &pubj, &key); - secp256k1_ge_set_gej(&pub, &pubj); - - /* Verify context-type checking illegal-argument errors. */ - memset(ctmp, 1, 32); - CHECK(secp256k1_ec_pubkey_create(vrfy, &pubkey, ctmp) == 0); - CHECK(ecount == 1); - VG_UNDEF(&pubkey, sizeof(pubkey)); - CHECK(secp256k1_ec_pubkey_create(sign, &pubkey, ctmp) == 1); - VG_CHECK(&pubkey, sizeof(pubkey)); - CHECK(secp256k1_ecdsa_sign(vrfy, &sig, ctmp, ctmp, NULL, NULL) == 0); - CHECK(ecount == 2); - VG_UNDEF(&sig, sizeof(sig)); - CHECK(secp256k1_ecdsa_sign(sign, &sig, ctmp, ctmp, NULL, NULL) == 1); - VG_CHECK(&sig, sizeof(sig)); - CHECK(ecount2 == 10); - CHECK(secp256k1_ecdsa_verify(sign, &sig, ctmp, &pubkey) == 0); - CHECK(ecount2 == 11); - CHECK(secp256k1_ecdsa_verify(vrfy, &sig, ctmp, &pubkey) == 1); - CHECK(ecount == 2); - CHECK(secp256k1_ec_pubkey_tweak_add(sign, &pubkey, ctmp) == 0); - CHECK(ecount2 == 12); - CHECK(secp256k1_ec_pubkey_tweak_add(vrfy, &pubkey, ctmp) == 1); - CHECK(ecount == 2); - CHECK(secp256k1_ec_pubkey_tweak_mul(sign, &pubkey, ctmp) == 0); - CHECK(ecount2 == 13); - CHECK(secp256k1_ec_pubkey_negate(vrfy, &pubkey) == 1); - CHECK(ecount == 2); - CHECK(secp256k1_ec_pubkey_negate(sign, &pubkey) == 1); - CHECK(ecount == 2); - CHECK(secp256k1_ec_pubkey_negate(sign, NULL) == 0); - CHECK(ecount2 == 14); - CHECK(secp256k1_ec_pubkey_negate(vrfy, &zero_pubkey) == 0); - CHECK(ecount == 3); - CHECK(secp256k1_ec_pubkey_tweak_mul(vrfy, &pubkey, ctmp) == 1); - CHECK(ecount == 3); - CHECK(secp256k1_context_randomize(vrfy, ctmp) == 0); - CHECK(ecount == 4); - CHECK(secp256k1_context_randomize(sign, NULL) == 1); - CHECK(ecount2 == 14); - secp256k1_context_set_illegal_callback(vrfy, NULL, NULL); - secp256k1_context_set_illegal_callback(sign, NULL, NULL); - - /* This shouldn't leak memory, due to already-set tests. */ - secp256k1_ecmult_gen_context_build(&sign->ecmult_gen_ctx, NULL); - secp256k1_ecmult_context_build(&vrfy->ecmult_ctx, NULL); - - /* obtain a working nonce */ - do { - random_scalar_order_test(&nonce); - } while(!secp256k1_ecdsa_sig_sign(&both->ecmult_gen_ctx, &sigr, &sigs, &key, &msg, &nonce, NULL)); - - /* try signing */ - CHECK(secp256k1_ecdsa_sig_sign(&sign->ecmult_gen_ctx, &sigr, &sigs, &key, &msg, &nonce, NULL)); - CHECK(secp256k1_ecdsa_sig_sign(&both->ecmult_gen_ctx, &sigr, &sigs, &key, &msg, &nonce, NULL)); - - /* try verifying */ - CHECK(secp256k1_ecdsa_sig_verify(&vrfy->ecmult_ctx, &sigr, &sigs, &pub, &msg)); - CHECK(secp256k1_ecdsa_sig_verify(&both->ecmult_ctx, &sigr, &sigs, &pub, &msg)); - - /* cleanup */ - secp256k1_context_destroy(none); - secp256k1_context_destroy(sign); - secp256k1_context_destroy(vrfy); - secp256k1_context_destroy(both); - /* Defined as no-op. */ - secp256k1_context_destroy(NULL); -} - -void run_scratch_tests(void) { - int32_t ecount = 0; - secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE); - secp256k1_scratch_space *scratch; - - /* Test public API */ - secp256k1_context_set_illegal_callback(none, counting_illegal_callback_fn, &ecount); - - scratch = secp256k1_scratch_space_create(none, 1000); - CHECK(scratch != NULL); - CHECK(ecount == 0); - - /* Test internal API */ - CHECK(secp256k1_scratch_max_allocation(scratch, 0) == 1000); - CHECK(secp256k1_scratch_max_allocation(scratch, 1) < 1000); - - /* Allocating 500 bytes with no frame fails */ - CHECK(secp256k1_scratch_alloc(scratch, 500) == NULL); - CHECK(secp256k1_scratch_max_allocation(scratch, 0) == 1000); - - /* ...but pushing a new stack frame does affect the max allocation */ - CHECK(secp256k1_scratch_allocate_frame(scratch, 500, 1 == 1)); - CHECK(secp256k1_scratch_max_allocation(scratch, 1) < 500); /* 500 - ALIGNMENT */ - CHECK(secp256k1_scratch_alloc(scratch, 500) != NULL); - CHECK(secp256k1_scratch_alloc(scratch, 500) == NULL); - - CHECK(secp256k1_scratch_allocate_frame(scratch, 500, 1) == 0); - - /* ...and this effect is undone by popping the frame */ - secp256k1_scratch_deallocate_frame(scratch); - CHECK(secp256k1_scratch_max_allocation(scratch, 0) == 1000); - CHECK(secp256k1_scratch_alloc(scratch, 500) == NULL); - - /* cleanup */ - secp256k1_scratch_space_destroy(scratch); - secp256k1_context_destroy(none); -} - -/***** HASH TESTS *****/ - -void run_sha256_tests(void) { - static const char *inputs[8] = { - "", "abc", "message digest", "secure hash algorithm", "SHA256 is considered to be safe", - "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", - "For this sample, this 63-byte string will be used as input data", - "This is exactly 64 bytes long, not counting the terminating byte" - }; - static const unsigned char outputs[8][32] = { - {0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55}, - {0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea, 0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23, 0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c, 0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad}, - {0xf7, 0x84, 0x6f, 0x55, 0xcf, 0x23, 0xe1, 0x4e, 0xeb, 0xea, 0xb5, 0xb4, 0xe1, 0x55, 0x0c, 0xad, 0x5b, 0x50, 0x9e, 0x33, 0x48, 0xfb, 0xc4, 0xef, 0xa3, 0xa1, 0x41, 0x3d, 0x39, 0x3c, 0xb6, 0x50}, - {0xf3, 0x0c, 0xeb, 0x2b, 0xb2, 0x82, 0x9e, 0x79, 0xe4, 0xca, 0x97, 0x53, 0xd3, 0x5a, 0x8e, 0xcc, 0x00, 0x26, 0x2d, 0x16, 0x4c, 0xc0, 0x77, 0x08, 0x02, 0x95, 0x38, 0x1c, 0xbd, 0x64, 0x3f, 0x0d}, - {0x68, 0x19, 0xd9, 0x15, 0xc7, 0x3f, 0x4d, 0x1e, 0x77, 0xe4, 0xe1, 0xb5, 0x2d, 0x1f, 0xa0, 0xf9, 0xcf, 0x9b, 0xea, 0xea, 0xd3, 0x93, 0x9f, 0x15, 0x87, 0x4b, 0xd9, 0x88, 0xe2, 0xa2, 0x36, 0x30}, - {0x24, 0x8d, 0x6a, 0x61, 0xd2, 0x06, 0x38, 0xb8, 0xe5, 0xc0, 0x26, 0x93, 0x0c, 0x3e, 0x60, 0x39, 0xa3, 0x3c, 0xe4, 0x59, 0x64, 0xff, 0x21, 0x67, 0xf6, 0xec, 0xed, 0xd4, 0x19, 0xdb, 0x06, 0xc1}, - {0xf0, 0x8a, 0x78, 0xcb, 0xba, 0xee, 0x08, 0x2b, 0x05, 0x2a, 0xe0, 0x70, 0x8f, 0x32, 0xfa, 0x1e, 0x50, 0xc5, 0xc4, 0x21, 0xaa, 0x77, 0x2b, 0xa5, 0xdb, 0xb4, 0x06, 0xa2, 0xea, 0x6b, 0xe3, 0x42}, - {0xab, 0x64, 0xef, 0xf7, 0xe8, 0x8e, 0x2e, 0x46, 0x16, 0x5e, 0x29, 0xf2, 0xbc, 0xe4, 0x18, 0x26, 0xbd, 0x4c, 0x7b, 0x35, 0x52, 0xf6, 0xb3, 0x82, 0xa9, 0xe7, 0xd3, 0xaf, 0x47, 0xc2, 0x45, 0xf8} - }; - int i; - for (i = 0; i < 8; i++) { - unsigned char out[32]; - secp256k1_sha256 hasher; - secp256k1_sha256_initialize(&hasher); - secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i]), strlen(inputs[i])); - secp256k1_sha256_finalize(&hasher, out); - CHECK(memcmp(out, outputs[i], 32) == 0); - if (strlen(inputs[i]) > 0) { - int split = secp256k1_rand_int(strlen(inputs[i])); - secp256k1_sha256_initialize(&hasher); - secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i]), split); - secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i] + split), strlen(inputs[i]) - split); - secp256k1_sha256_finalize(&hasher, out); - CHECK(memcmp(out, outputs[i], 32) == 0); - } - } -} - -void run_hmac_sha256_tests(void) { - static const char *keys[6] = { - "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b", - "\x4a\x65\x66\x65", - "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa", - "\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19", - "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa", - "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" - }; - static const char *inputs[6] = { - "\x48\x69\x20\x54\x68\x65\x72\x65", - "\x77\x68\x61\x74\x20\x64\x6f\x20\x79\x61\x20\x77\x61\x6e\x74\x20\x66\x6f\x72\x20\x6e\x6f\x74\x68\x69\x6e\x67\x3f", - "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd", - "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd", - "\x54\x65\x73\x74\x20\x55\x73\x69\x6e\x67\x20\x4c\x61\x72\x67\x65\x72\x20\x54\x68\x61\x6e\x20\x42\x6c\x6f\x63\x6b\x2d\x53\x69\x7a\x65\x20\x4b\x65\x79\x20\x2d\x20\x48\x61\x73\x68\x20\x4b\x65\x79\x20\x46\x69\x72\x73\x74", - "\x54\x68\x69\x73\x20\x69\x73\x20\x61\x20\x74\x65\x73\x74\x20\x75\x73\x69\x6e\x67\x20\x61\x20\x6c\x61\x72\x67\x65\x72\x20\x74\x68\x61\x6e\x20\x62\x6c\x6f\x63\x6b\x2d\x73\x69\x7a\x65\x20\x6b\x65\x79\x20\x61\x6e\x64\x20\x61\x20\x6c\x61\x72\x67\x65\x72\x20\x74\x68\x61\x6e\x20\x62\x6c\x6f\x63\x6b\x2d\x73\x69\x7a\x65\x20\x64\x61\x74\x61\x2e\x20\x54\x68\x65\x20\x6b\x65\x79\x20\x6e\x65\x65\x64\x73\x20\x74\x6f\x20\x62\x65\x20\x68\x61\x73\x68\x65\x64\x20\x62\x65\x66\x6f\x72\x65\x20\x62\x65\x69\x6e\x67\x20\x75\x73\x65\x64\x20\x62\x79\x20\x74\x68\x65\x20\x48\x4d\x41\x43\x20\x61\x6c\x67\x6f\x72\x69\x74\x68\x6d\x2e" - }; - static const unsigned char outputs[6][32] = { - {0xb0, 0x34, 0x4c, 0x61, 0xd8, 0xdb, 0x38, 0x53, 0x5c, 0xa8, 0xaf, 0xce, 0xaf, 0x0b, 0xf1, 0x2b, 0x88, 0x1d, 0xc2, 0x00, 0xc9, 0x83, 0x3d, 0xa7, 0x26, 0xe9, 0x37, 0x6c, 0x2e, 0x32, 0xcf, 0xf7}, - {0x5b, 0xdc, 0xc1, 0x46, 0xbf, 0x60, 0x75, 0x4e, 0x6a, 0x04, 0x24, 0x26, 0x08, 0x95, 0x75, 0xc7, 0x5a, 0x00, 0x3f, 0x08, 0x9d, 0x27, 0x39, 0x83, 0x9d, 0xec, 0x58, 0xb9, 0x64, 0xec, 0x38, 0x43}, - {0x77, 0x3e, 0xa9, 0x1e, 0x36, 0x80, 0x0e, 0x46, 0x85, 0x4d, 0xb8, 0xeb, 0xd0, 0x91, 0x81, 0xa7, 0x29, 0x59, 0x09, 0x8b, 0x3e, 0xf8, 0xc1, 0x22, 0xd9, 0x63, 0x55, 0x14, 0xce, 0xd5, 0x65, 0xfe}, - {0x82, 0x55, 0x8a, 0x38, 0x9a, 0x44, 0x3c, 0x0e, 0xa4, 0xcc, 0x81, 0x98, 0x99, 0xf2, 0x08, 0x3a, 0x85, 0xf0, 0xfa, 0xa3, 0xe5, 0x78, 0xf8, 0x07, 0x7a, 0x2e, 0x3f, 0xf4, 0x67, 0x29, 0x66, 0x5b}, - {0x60, 0xe4, 0x31, 0x59, 0x1e, 0xe0, 0xb6, 0x7f, 0x0d, 0x8a, 0x26, 0xaa, 0xcb, 0xf5, 0xb7, 0x7f, 0x8e, 0x0b, 0xc6, 0x21, 0x37, 0x28, 0xc5, 0x14, 0x05, 0x46, 0x04, 0x0f, 0x0e, 0xe3, 0x7f, 0x54}, - {0x9b, 0x09, 0xff, 0xa7, 0x1b, 0x94, 0x2f, 0xcb, 0x27, 0x63, 0x5f, 0xbc, 0xd5, 0xb0, 0xe9, 0x44, 0xbf, 0xdc, 0x63, 0x64, 0x4f, 0x07, 0x13, 0x93, 0x8a, 0x7f, 0x51, 0x53, 0x5c, 0x3a, 0x35, 0xe2} - }; - int i; - for (i = 0; i < 6; i++) { - secp256k1_hmac_sha256 hasher; - unsigned char out[32]; - secp256k1_hmac_sha256_initialize(&hasher, (const unsigned char*)(keys[i]), strlen(keys[i])); - secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i]), strlen(inputs[i])); - secp256k1_hmac_sha256_finalize(&hasher, out); - CHECK(memcmp(out, outputs[i], 32) == 0); - if (strlen(inputs[i]) > 0) { - int split = secp256k1_rand_int(strlen(inputs[i])); - secp256k1_hmac_sha256_initialize(&hasher, (const unsigned char*)(keys[i]), strlen(keys[i])); - secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i]), split); - secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i] + split), strlen(inputs[i]) - split); - secp256k1_hmac_sha256_finalize(&hasher, out); - CHECK(memcmp(out, outputs[i], 32) == 0); - } - } -} - -void run_rfc6979_hmac_sha256_tests(void) { - static const unsigned char key1[65] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x00, 0x4b, 0xf5, 0x12, 0x2f, 0x34, 0x45, 0x54, 0xc5, 0x3b, 0xde, 0x2e, 0xbb, 0x8c, 0xd2, 0xb7, 0xe3, 0xd1, 0x60, 0x0a, 0xd6, 0x31, 0xc3, 0x85, 0xa5, 0xd7, 0xcc, 0xe2, 0x3c, 0x77, 0x85, 0x45, 0x9a, 0}; - static const unsigned char out1[3][32] = { - {0x4f, 0xe2, 0x95, 0x25, 0xb2, 0x08, 0x68, 0x09, 0x15, 0x9a, 0xcd, 0xf0, 0x50, 0x6e, 0xfb, 0x86, 0xb0, 0xec, 0x93, 0x2c, 0x7b, 0xa4, 0x42, 0x56, 0xab, 0x32, 0x1e, 0x42, 0x1e, 0x67, 0xe9, 0xfb}, - {0x2b, 0xf0, 0xff, 0xf1, 0xd3, 0xc3, 0x78, 0xa2, 0x2d, 0xc5, 0xde, 0x1d, 0x85, 0x65, 0x22, 0x32, 0x5c, 0x65, 0xb5, 0x04, 0x49, 0x1a, 0x0c, 0xbd, 0x01, 0xcb, 0x8f, 0x3a, 0xa6, 0x7f, 0xfd, 0x4a}, - {0xf5, 0x28, 0xb4, 0x10, 0xcb, 0x54, 0x1f, 0x77, 0x00, 0x0d, 0x7a, 0xfb, 0x6c, 0x5b, 0x53, 0xc5, 0xc4, 0x71, 0xea, 0xb4, 0x3e, 0x46, 0x6d, 0x9a, 0xc5, 0x19, 0x0c, 0x39, 0xc8, 0x2f, 0xd8, 0x2e} - }; - - static const unsigned char key2[64] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55}; - static const unsigned char out2[3][32] = { - {0x9c, 0x23, 0x6c, 0x16, 0x5b, 0x82, 0xae, 0x0c, 0xd5, 0x90, 0x65, 0x9e, 0x10, 0x0b, 0x6b, 0xab, 0x30, 0x36, 0xe7, 0xba, 0x8b, 0x06, 0x74, 0x9b, 0xaf, 0x69, 0x81, 0xe1, 0x6f, 0x1a, 0x2b, 0x95}, - {0xdf, 0x47, 0x10, 0x61, 0x62, 0x5b, 0xc0, 0xea, 0x14, 0xb6, 0x82, 0xfe, 0xee, 0x2c, 0x9c, 0x02, 0xf2, 0x35, 0xda, 0x04, 0x20, 0x4c, 0x1d, 0x62, 0xa1, 0x53, 0x6c, 0x6e, 0x17, 0xae, 0xd7, 0xa9}, - {0x75, 0x97, 0x88, 0x7c, 0xbd, 0x76, 0x32, 0x1f, 0x32, 0xe3, 0x04, 0x40, 0x67, 0x9a, 0x22, 0xcf, 0x7f, 0x8d, 0x9d, 0x2e, 0xac, 0x39, 0x0e, 0x58, 0x1f, 0xea, 0x09, 0x1c, 0xe2, 0x02, 0xba, 0x94} - }; - - secp256k1_rfc6979_hmac_sha256 rng; - unsigned char out[32]; - int i; - - secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 64); - for (i = 0; i < 3; i++) { - secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32); - CHECK(memcmp(out, out1[i], 32) == 0); - } - secp256k1_rfc6979_hmac_sha256_finalize(&rng); - - secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 65); - for (i = 0; i < 3; i++) { - secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32); - CHECK(memcmp(out, out1[i], 32) != 0); - } - secp256k1_rfc6979_hmac_sha256_finalize(&rng); - - secp256k1_rfc6979_hmac_sha256_initialize(&rng, key2, 64); - for (i = 0; i < 3; i++) { - secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32); - CHECK(memcmp(out, out2[i], 32) == 0); - } - secp256k1_rfc6979_hmac_sha256_finalize(&rng); -} - -/***** RANDOM TESTS *****/ - -void test_rand_bits(int rand32, int bits) { - /* (1-1/2^B)^rounds[B] < 1/10^9, so rounds is the number of iterations to - * get a false negative chance below once in a billion */ - static const unsigned int rounds[7] = {1, 30, 73, 156, 322, 653, 1316}; - /* We try multiplying the results with various odd numbers, which shouldn't - * influence the uniform distribution modulo a power of 2. */ - static const uint32_t mults[6] = {1, 3, 21, 289, 0x9999, 0x80402011}; - /* We only select up to 6 bits from the output to analyse */ - unsigned int usebits = bits > 6 ? 6 : bits; - unsigned int maxshift = bits - usebits; - /* For each of the maxshift+1 usebits-bit sequences inside a bits-bit - number, track all observed outcomes, one per bit in a uint64_t. */ - uint64_t x[6][27] = {{0}}; - unsigned int i, shift, m; - /* Multiply the output of all rand calls with the odd number m, which - should not change the uniformity of its distribution. */ - for (i = 0; i < rounds[usebits]; i++) { - uint32_t r = (rand32 ? secp256k1_rand32() : secp256k1_rand_bits(bits)); - CHECK((((uint64_t)r) >> bits) == 0); - for (m = 0; m < sizeof(mults) / sizeof(mults[0]); m++) { - uint32_t rm = r * mults[m]; - for (shift = 0; shift <= maxshift; shift++) { - x[m][shift] |= (((uint64_t)1) << ((rm >> shift) & ((1 << usebits) - 1))); - } - } - } - for (m = 0; m < sizeof(mults) / sizeof(mults[0]); m++) { - for (shift = 0; shift <= maxshift; shift++) { - /* Test that the lower usebits bits of x[shift] are 1 */ - CHECK(((~x[m][shift]) << (64 - (1 << usebits))) == 0); - } - } -} - -/* Subrange must be a whole divisor of range, and at most 64 */ -void test_rand_int(uint32_t range, uint32_t subrange) { - /* (1-1/subrange)^rounds < 1/10^9 */ - int rounds = (subrange * 2073) / 100; - int i; - uint64_t x = 0; - CHECK((range % subrange) == 0); - for (i = 0; i < rounds; i++) { - uint32_t r = secp256k1_rand_int(range); - CHECK(r < range); - r = r % subrange; - x |= (((uint64_t)1) << r); - } - /* Test that the lower subrange bits of x are 1. */ - CHECK(((~x) << (64 - subrange)) == 0); -} - -void run_rand_bits(void) { - size_t b; - test_rand_bits(1, 32); - for (b = 1; b <= 32; b++) { - test_rand_bits(0, b); - } -} - -void run_rand_int(void) { - static const uint32_t ms[] = {1, 3, 17, 1000, 13771, 999999, 33554432}; - static const uint32_t ss[] = {1, 3, 6, 9, 13, 31, 64}; - unsigned int m, s; - for (m = 0; m < sizeof(ms) / sizeof(ms[0]); m++) { - for (s = 0; s < sizeof(ss) / sizeof(ss[0]); s++) { - test_rand_int(ms[m] * ss[s], ss[s]); - } - } -} - -/***** NUM TESTS *****/ - -#ifndef USE_NUM_NONE -void random_num_negate(secp256k1_num *num) { - if (secp256k1_rand_bits(1)) { - secp256k1_num_negate(num); - } -} - -void random_num_order_test(secp256k1_num *num) { - secp256k1_scalar sc; - random_scalar_order_test(&sc); - secp256k1_scalar_get_num(num, &sc); -} - -void random_num_order(secp256k1_num *num) { - secp256k1_scalar sc; - random_scalar_order(&sc); - secp256k1_scalar_get_num(num, &sc); -} - -void test_num_negate(void) { - secp256k1_num n1; - secp256k1_num n2; - random_num_order_test(&n1); /* n1 = R */ - random_num_negate(&n1); - secp256k1_num_copy(&n2, &n1); /* n2 = R */ - secp256k1_num_sub(&n1, &n2, &n1); /* n1 = n2-n1 = 0 */ - CHECK(secp256k1_num_is_zero(&n1)); - secp256k1_num_copy(&n1, &n2); /* n1 = R */ - secp256k1_num_negate(&n1); /* n1 = -R */ - CHECK(!secp256k1_num_is_zero(&n1)); - secp256k1_num_add(&n1, &n2, &n1); /* n1 = n2+n1 = 0 */ - CHECK(secp256k1_num_is_zero(&n1)); - secp256k1_num_copy(&n1, &n2); /* n1 = R */ - secp256k1_num_negate(&n1); /* n1 = -R */ - CHECK(secp256k1_num_is_neg(&n1) != secp256k1_num_is_neg(&n2)); - secp256k1_num_negate(&n1); /* n1 = R */ - CHECK(secp256k1_num_eq(&n1, &n2)); -} - -void test_num_add_sub(void) { - int i; - secp256k1_scalar s; - secp256k1_num n1; - secp256k1_num n2; - secp256k1_num n1p2, n2p1, n1m2, n2m1; - random_num_order_test(&n1); /* n1 = R1 */ - if (secp256k1_rand_bits(1)) { - random_num_negate(&n1); - } - random_num_order_test(&n2); /* n2 = R2 */ - if (secp256k1_rand_bits(1)) { - random_num_negate(&n2); - } - secp256k1_num_add(&n1p2, &n1, &n2); /* n1p2 = R1 + R2 */ - secp256k1_num_add(&n2p1, &n2, &n1); /* n2p1 = R2 + R1 */ - secp256k1_num_sub(&n1m2, &n1, &n2); /* n1m2 = R1 - R2 */ - secp256k1_num_sub(&n2m1, &n2, &n1); /* n2m1 = R2 - R1 */ - CHECK(secp256k1_num_eq(&n1p2, &n2p1)); - CHECK(!secp256k1_num_eq(&n1p2, &n1m2)); - secp256k1_num_negate(&n2m1); /* n2m1 = -R2 + R1 */ - CHECK(secp256k1_num_eq(&n2m1, &n1m2)); - CHECK(!secp256k1_num_eq(&n2m1, &n1)); - secp256k1_num_add(&n2m1, &n2m1, &n2); /* n2m1 = -R2 + R1 + R2 = R1 */ - CHECK(secp256k1_num_eq(&n2m1, &n1)); - CHECK(!secp256k1_num_eq(&n2p1, &n1)); - secp256k1_num_sub(&n2p1, &n2p1, &n2); /* n2p1 = R2 + R1 - R2 = R1 */ - CHECK(secp256k1_num_eq(&n2p1, &n1)); - - /* check is_one */ - secp256k1_scalar_set_int(&s, 1); - secp256k1_scalar_get_num(&n1, &s); - CHECK(secp256k1_num_is_one(&n1)); - /* check that 2^n + 1 is never 1 */ - secp256k1_scalar_get_num(&n2, &s); - for (i = 0; i < 250; ++i) { - secp256k1_num_add(&n1, &n1, &n1); /* n1 *= 2 */ - secp256k1_num_add(&n1p2, &n1, &n2); /* n1p2 = n1 + 1 */ - CHECK(!secp256k1_num_is_one(&n1p2)); - } -} - -void test_num_mod(void) { - int i; - secp256k1_scalar s; - secp256k1_num order, n; - - /* check that 0 mod anything is 0 */ - random_scalar_order_test(&s); - secp256k1_scalar_get_num(&order, &s); - secp256k1_scalar_set_int(&s, 0); - secp256k1_scalar_get_num(&n, &s); - secp256k1_num_mod(&n, &order); - CHECK(secp256k1_num_is_zero(&n)); - - /* check that anything mod 1 is 0 */ - secp256k1_scalar_set_int(&s, 1); - secp256k1_scalar_get_num(&order, &s); - secp256k1_scalar_get_num(&n, &s); - secp256k1_num_mod(&n, &order); - CHECK(secp256k1_num_is_zero(&n)); - - /* check that increasing the number past 2^256 does not break this */ - random_scalar_order_test(&s); - secp256k1_scalar_get_num(&n, &s); - /* multiply by 2^8, which'll test this case with high probability */ - for (i = 0; i < 8; ++i) { - secp256k1_num_add(&n, &n, &n); - } - secp256k1_num_mod(&n, &order); - CHECK(secp256k1_num_is_zero(&n)); -} - -void test_num_jacobi(void) { - secp256k1_scalar sqr; - secp256k1_scalar small; - secp256k1_scalar five; /* five is not a quadratic residue */ - secp256k1_num order, n; - int i; - /* squares mod 5 are 1, 4 */ - const int jacobi5[10] = { 0, 1, -1, -1, 1, 0, 1, -1, -1, 1 }; - - /* check some small values with 5 as the order */ - secp256k1_scalar_set_int(&five, 5); - secp256k1_scalar_get_num(&order, &five); - for (i = 0; i < 10; ++i) { - secp256k1_scalar_set_int(&small, i); - secp256k1_scalar_get_num(&n, &small); - CHECK(secp256k1_num_jacobi(&n, &order) == jacobi5[i]); - } - - /** test large values with 5 as group order */ - secp256k1_scalar_get_num(&order, &five); - /* we first need a scalar which is not a multiple of 5 */ - do { - secp256k1_num fiven; - random_scalar_order_test(&sqr); - secp256k1_scalar_get_num(&fiven, &five); - secp256k1_scalar_get_num(&n, &sqr); - secp256k1_num_mod(&n, &fiven); - } while (secp256k1_num_is_zero(&n)); - /* next force it to be a residue. 2 is a nonresidue mod 5 so we can - * just multiply by two, i.e. add the number to itself */ - if (secp256k1_num_jacobi(&n, &order) == -1) { - secp256k1_num_add(&n, &n, &n); - } - - /* test residue */ - CHECK(secp256k1_num_jacobi(&n, &order) == 1); - /* test nonresidue */ - secp256k1_num_add(&n, &n, &n); - CHECK(secp256k1_num_jacobi(&n, &order) == -1); - - /** test with secp group order as order */ - secp256k1_scalar_order_get_num(&order); - random_scalar_order_test(&sqr); - secp256k1_scalar_sqr(&sqr, &sqr); - /* test residue */ - secp256k1_scalar_get_num(&n, &sqr); - CHECK(secp256k1_num_jacobi(&n, &order) == 1); - /* test nonresidue */ - secp256k1_scalar_mul(&sqr, &sqr, &five); - secp256k1_scalar_get_num(&n, &sqr); - CHECK(secp256k1_num_jacobi(&n, &order) == -1); - /* test multiple of the order*/ - CHECK(secp256k1_num_jacobi(&order, &order) == 0); - - /* check one less than the order */ - secp256k1_scalar_set_int(&small, 1); - secp256k1_scalar_get_num(&n, &small); - secp256k1_num_sub(&n, &order, &n); - CHECK(secp256k1_num_jacobi(&n, &order) == 1); /* sage confirms this is 1 */ -} - -void run_num_smalltests(void) { - int i; - for (i = 0; i < 100*count; i++) { - test_num_negate(); - test_num_add_sub(); - test_num_mod(); - test_num_jacobi(); - } -} -#endif - -/***** SCALAR TESTS *****/ - -void scalar_test(void) { - secp256k1_scalar s; - secp256k1_scalar s1; - secp256k1_scalar s2; -#ifndef USE_NUM_NONE - secp256k1_num snum, s1num, s2num; - secp256k1_num order, half_order; -#endif - unsigned char c[32]; - - /* Set 's' to a random scalar, with value 'snum'. */ - random_scalar_order_test(&s); - - /* Set 's1' to a random scalar, with value 's1num'. */ - random_scalar_order_test(&s1); - - /* Set 's2' to a random scalar, with value 'snum2', and byte array representation 'c'. */ - random_scalar_order_test(&s2); - secp256k1_scalar_get_b32(c, &s2); - -#ifndef USE_NUM_NONE - secp256k1_scalar_get_num(&snum, &s); - secp256k1_scalar_get_num(&s1num, &s1); - secp256k1_scalar_get_num(&s2num, &s2); - - secp256k1_scalar_order_get_num(&order); - half_order = order; - secp256k1_num_shift(&half_order, 1); -#endif - - { - int i; - /* Test that fetching groups of 4 bits from a scalar and recursing n(i)=16*n(i-1)+p(i) reconstructs it. */ - secp256k1_scalar n; - secp256k1_scalar_set_int(&n, 0); - for (i = 0; i < 256; i += 4) { - secp256k1_scalar t; - int j; - secp256k1_scalar_set_int(&t, secp256k1_scalar_get_bits(&s, 256 - 4 - i, 4)); - for (j = 0; j < 4; j++) { - secp256k1_scalar_add(&n, &n, &n); - } - secp256k1_scalar_add(&n, &n, &t); - } - CHECK(secp256k1_scalar_eq(&n, &s)); - } - - { - /* Test that fetching groups of randomly-sized bits from a scalar and recursing n(i)=b*n(i-1)+p(i) reconstructs it. */ - secp256k1_scalar n; - int i = 0; - secp256k1_scalar_set_int(&n, 0); - while (i < 256) { - secp256k1_scalar t; - int j; - int now = secp256k1_rand_int(15) + 1; - if (now + i > 256) { - now = 256 - i; - } - secp256k1_scalar_set_int(&t, secp256k1_scalar_get_bits_var(&s, 256 - now - i, now)); - for (j = 0; j < now; j++) { - secp256k1_scalar_add(&n, &n, &n); - } - secp256k1_scalar_add(&n, &n, &t); - i += now; - } - CHECK(secp256k1_scalar_eq(&n, &s)); - } - -#ifndef USE_NUM_NONE - { - /* Test that adding the scalars together is equal to adding their numbers together modulo the order. */ - secp256k1_num rnum; - secp256k1_num r2num; - secp256k1_scalar r; - secp256k1_num_add(&rnum, &snum, &s2num); - secp256k1_num_mod(&rnum, &order); - secp256k1_scalar_add(&r, &s, &s2); - secp256k1_scalar_get_num(&r2num, &r); - CHECK(secp256k1_num_eq(&rnum, &r2num)); - } - - { - /* Test that multiplying the scalars is equal to multiplying their numbers modulo the order. */ - secp256k1_scalar r; - secp256k1_num r2num; - secp256k1_num rnum; - secp256k1_num_mul(&rnum, &snum, &s2num); - secp256k1_num_mod(&rnum, &order); - secp256k1_scalar_mul(&r, &s, &s2); - secp256k1_scalar_get_num(&r2num, &r); - CHECK(secp256k1_num_eq(&rnum, &r2num)); - /* The result can only be zero if at least one of the factors was zero. */ - CHECK(secp256k1_scalar_is_zero(&r) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_zero(&s2))); - /* The results can only be equal to one of the factors if that factor was zero, or the other factor was one. */ - CHECK(secp256k1_num_eq(&rnum, &snum) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_one(&s2))); - CHECK(secp256k1_num_eq(&rnum, &s2num) == (secp256k1_scalar_is_zero(&s2) || secp256k1_scalar_is_one(&s))); - } - - { - secp256k1_scalar neg; - secp256k1_num negnum; - secp256k1_num negnum2; - /* Check that comparison with zero matches comparison with zero on the number. */ - CHECK(secp256k1_num_is_zero(&snum) == secp256k1_scalar_is_zero(&s)); - /* Check that comparison with the half order is equal to testing for high scalar. */ - CHECK(secp256k1_scalar_is_high(&s) == (secp256k1_num_cmp(&snum, &half_order) > 0)); - secp256k1_scalar_negate(&neg, &s); - secp256k1_num_sub(&negnum, &order, &snum); - secp256k1_num_mod(&negnum, &order); - /* Check that comparison with the half order is equal to testing for high scalar after negation. */ - CHECK(secp256k1_scalar_is_high(&neg) == (secp256k1_num_cmp(&negnum, &half_order) > 0)); - /* Negating should change the high property, unless the value was already zero. */ - CHECK((secp256k1_scalar_is_high(&s) == secp256k1_scalar_is_high(&neg)) == secp256k1_scalar_is_zero(&s)); - secp256k1_scalar_get_num(&negnum2, &neg); - /* Negating a scalar should be equal to (order - n) mod order on the number. */ - CHECK(secp256k1_num_eq(&negnum, &negnum2)); - secp256k1_scalar_add(&neg, &neg, &s); - /* Adding a number to its negation should result in zero. */ - CHECK(secp256k1_scalar_is_zero(&neg)); - secp256k1_scalar_negate(&neg, &neg); - /* Negating zero should still result in zero. */ - CHECK(secp256k1_scalar_is_zero(&neg)); - } - - { - /* Test secp256k1_scalar_mul_shift_var. */ - secp256k1_scalar r; - secp256k1_num one; - secp256k1_num rnum; - secp256k1_num rnum2; - unsigned char cone[1] = {0x01}; - unsigned int shift = 256 + secp256k1_rand_int(257); - secp256k1_scalar_mul_shift_var(&r, &s1, &s2, shift); - secp256k1_num_mul(&rnum, &s1num, &s2num); - secp256k1_num_shift(&rnum, shift - 1); - secp256k1_num_set_bin(&one, cone, 1); - secp256k1_num_add(&rnum, &rnum, &one); - secp256k1_num_shift(&rnum, 1); - secp256k1_scalar_get_num(&rnum2, &r); - CHECK(secp256k1_num_eq(&rnum, &rnum2)); - } - - { - /* test secp256k1_scalar_shr_int */ - secp256k1_scalar r; - int i; - random_scalar_order_test(&r); - for (i = 0; i < 100; ++i) { - int low; - int shift = 1 + secp256k1_rand_int(15); - int expected = r.d[0] % (1 << shift); - low = secp256k1_scalar_shr_int(&r, shift); - CHECK(expected == low); - } - } -#endif - - { - /* Test that scalar inverses are equal to the inverse of their number modulo the order. */ - if (!secp256k1_scalar_is_zero(&s)) { - secp256k1_scalar inv; -#ifndef USE_NUM_NONE - secp256k1_num invnum; - secp256k1_num invnum2; -#endif - secp256k1_scalar_inverse(&inv, &s); -#ifndef USE_NUM_NONE - secp256k1_num_mod_inverse(&invnum, &snum, &order); - secp256k1_scalar_get_num(&invnum2, &inv); - CHECK(secp256k1_num_eq(&invnum, &invnum2)); -#endif - secp256k1_scalar_mul(&inv, &inv, &s); - /* Multiplying a scalar with its inverse must result in one. */ - CHECK(secp256k1_scalar_is_one(&inv)); - secp256k1_scalar_inverse(&inv, &inv); - /* Inverting one must result in one. */ - CHECK(secp256k1_scalar_is_one(&inv)); -#ifndef USE_NUM_NONE - secp256k1_scalar_get_num(&invnum, &inv); - CHECK(secp256k1_num_is_one(&invnum)); -#endif - } - } - - { - /* Test commutativity of add. */ - secp256k1_scalar r1, r2; - secp256k1_scalar_add(&r1, &s1, &s2); - secp256k1_scalar_add(&r2, &s2, &s1); - CHECK(secp256k1_scalar_eq(&r1, &r2)); - } - - { - secp256k1_scalar r1, r2; - secp256k1_scalar b; - int i; - /* Test add_bit. */ - int bit = secp256k1_rand_bits(8); - secp256k1_scalar_set_int(&b, 1); - CHECK(secp256k1_scalar_is_one(&b)); - for (i = 0; i < bit; i++) { - secp256k1_scalar_add(&b, &b, &b); - } - r1 = s1; - r2 = s1; - if (!secp256k1_scalar_add(&r1, &r1, &b)) { - /* No overflow happened. */ - secp256k1_scalar_cadd_bit(&r2, bit, 1); - CHECK(secp256k1_scalar_eq(&r1, &r2)); - /* cadd is a noop when flag is zero */ - secp256k1_scalar_cadd_bit(&r2, bit, 0); - CHECK(secp256k1_scalar_eq(&r1, &r2)); - } - } - - { - /* Test commutativity of mul. */ - secp256k1_scalar r1, r2; - secp256k1_scalar_mul(&r1, &s1, &s2); - secp256k1_scalar_mul(&r2, &s2, &s1); - CHECK(secp256k1_scalar_eq(&r1, &r2)); - } - - { - /* Test associativity of add. */ - secp256k1_scalar r1, r2; - secp256k1_scalar_add(&r1, &s1, &s2); - secp256k1_scalar_add(&r1, &r1, &s); - secp256k1_scalar_add(&r2, &s2, &s); - secp256k1_scalar_add(&r2, &s1, &r2); - CHECK(secp256k1_scalar_eq(&r1, &r2)); - } - - { - /* Test associativity of mul. */ - secp256k1_scalar r1, r2; - secp256k1_scalar_mul(&r1, &s1, &s2); - secp256k1_scalar_mul(&r1, &r1, &s); - secp256k1_scalar_mul(&r2, &s2, &s); - secp256k1_scalar_mul(&r2, &s1, &r2); - CHECK(secp256k1_scalar_eq(&r1, &r2)); - } - - { - /* Test distributitivity of mul over add. */ - secp256k1_scalar r1, r2, t; - secp256k1_scalar_add(&r1, &s1, &s2); - secp256k1_scalar_mul(&r1, &r1, &s); - secp256k1_scalar_mul(&r2, &s1, &s); - secp256k1_scalar_mul(&t, &s2, &s); - secp256k1_scalar_add(&r2, &r2, &t); - CHECK(secp256k1_scalar_eq(&r1, &r2)); - } - - { - /* Test square. */ - secp256k1_scalar r1, r2; - secp256k1_scalar_sqr(&r1, &s1); - secp256k1_scalar_mul(&r2, &s1, &s1); - CHECK(secp256k1_scalar_eq(&r1, &r2)); - } - - { - /* Test multiplicative identity. */ - secp256k1_scalar r1, v1; - secp256k1_scalar_set_int(&v1,1); - secp256k1_scalar_mul(&r1, &s1, &v1); - CHECK(secp256k1_scalar_eq(&r1, &s1)); - } - - { - /* Test additive identity. */ - secp256k1_scalar r1, v0; - secp256k1_scalar_set_int(&v0,0); - secp256k1_scalar_add(&r1, &s1, &v0); - CHECK(secp256k1_scalar_eq(&r1, &s1)); - } - - { - /* Test zero product property. */ - secp256k1_scalar r1, v0; - secp256k1_scalar_set_int(&v0,0); - secp256k1_scalar_mul(&r1, &s1, &v0); - CHECK(secp256k1_scalar_eq(&r1, &v0)); - } - -} - -void scalar_chacha_tests(void) { - unsigned char expected1[64] = { - 0x76, 0xb8, 0xe0, 0xad, 0xa0, 0xf1, 0x3d, 0x90, - 0x40, 0x5d, 0x6a, 0xe5, 0x53, 0x86, 0xbd, 0x28, - 0xbd, 0xd2, 0x19, 0xb8, 0xa0, 0x8d, 0xed, 0x1a, - 0xa8, 0x36, 0xef, 0xcc, 0x8b, 0x77, 0x0d, 0xc7, - 0xda, 0x41, 0x59, 0x7c, 0x51, 0x57, 0x48, 0x8d, - 0x77, 0x24, 0xe0, 0x3f, 0xb8, 0xd8, 0x4a, 0x37, - 0x6a, 0x43, 0xb8, 0xf4, 0x15, 0x18, 0xa1, 0x1c, - 0xc3, 0x87, 0xb6, 0x69, 0xb2, 0xee, 0x65, 0x86 - }; - unsigned char expected2[64] = { - 0x45, 0x40, 0xf0, 0x5a, 0x9f, 0x1f, 0xb2, 0x96, - 0xd7, 0x73, 0x6e, 0x7b, 0x20, 0x8e, 0x3c, 0x96, - 0xeb, 0x4f, 0xe1, 0x83, 0x46, 0x88, 0xd2, 0x60, - 0x4f, 0x45, 0x09, 0x52, 0xed, 0x43, 0x2d, 0x41, - 0xbb, 0xe2, 0xa0, 0xb6, 0xea, 0x75, 0x66, 0xd2, - 0xa5, 0xd1, 0xe7, 0xe2, 0x0d, 0x42, 0xaf, 0x2c, - 0x53, 0xd7, 0x92, 0xb1, 0xc4, 0x3f, 0xea, 0x81, - 0x7e, 0x9a, 0xd2, 0x75, 0xae, 0x54, 0x69, 0x63 - }; - unsigned char expected3[64] = { - 0x47, 0x4a, 0x4f, 0x35, 0x4f, 0xee, 0x93, 0x59, - 0xbb, 0x65, 0x81, 0xe5, 0xd9, 0x15, 0xa6, 0x01, - 0xb6, 0x8c, 0x68, 0x03, 0x38, 0xff, 0x65, 0xe6, - 0x56, 0x4a, 0x3e, 0x65, 0x59, 0xfc, 0x12, 0x3f, - 0xa9, 0xb2, 0xf9, 0x3e, 0x57, 0xc3, 0xa5, 0xcb, - 0xe0, 0x72, 0x74, 0x27, 0x88, 0x1c, 0x23, 0xdf, - 0xe2, 0xb6, 0xcc, 0xfb, 0x93, 0xed, 0xcb, 0x02, - 0xd7, 0x50, 0x52, 0x45, 0x84, 0x88, 0xbb, 0xea - }; - - secp256k1_scalar exp_r1, exp_r2; - secp256k1_scalar r1, r2; - unsigned char seed1[32] = { 0 }; - - secp256k1_scalar_chacha20(&r1, &r2, seed1, 0); - secp256k1_scalar_set_b32(&exp_r1, &expected1[0], NULL); - secp256k1_scalar_set_b32(&exp_r2, &expected1[32], NULL); - CHECK(secp256k1_scalar_eq(&exp_r1, &r1)); - CHECK(secp256k1_scalar_eq(&exp_r2, &r2)); - - seed1[31] = 1; - secp256k1_scalar_chacha20(&r1, &r2, seed1, 0); - secp256k1_scalar_set_b32(&exp_r1, &expected2[0], NULL); - secp256k1_scalar_set_b32(&exp_r2, &expected2[32], NULL); - CHECK(secp256k1_scalar_eq(&exp_r1, &r1)); - CHECK(secp256k1_scalar_eq(&exp_r2, &r2)); - - secp256k1_scalar_chacha20(&r1, &r2, seed1, 100); - secp256k1_scalar_set_b32(&exp_r1, &expected3[0], NULL); - secp256k1_scalar_set_b32(&exp_r2, &expected3[32], NULL); - CHECK(secp256k1_scalar_eq(&exp_r1, &r1)); - CHECK(secp256k1_scalar_eq(&exp_r2, &r2)); -} - -void run_scalar_tests(void) { - int i; - for (i = 0; i < 128 * count; i++) { - scalar_test(); - } - - scalar_chacha_tests(); - - { - /* (-1)+1 should be zero. */ - secp256k1_scalar s, o; - secp256k1_scalar_set_int(&s, 1); - CHECK(secp256k1_scalar_is_one(&s)); - secp256k1_scalar_negate(&o, &s); - secp256k1_scalar_add(&o, &o, &s); - CHECK(secp256k1_scalar_is_zero(&o)); - secp256k1_scalar_negate(&o, &o); - CHECK(secp256k1_scalar_is_zero(&o)); - } - -#ifndef USE_NUM_NONE - { - /* A scalar with value of the curve order should be 0. */ - secp256k1_num order; - secp256k1_scalar zero; - unsigned char bin[32]; - int overflow = 0; - secp256k1_scalar_order_get_num(&order); - secp256k1_num_get_bin(bin, 32, &order); - secp256k1_scalar_set_b32(&zero, bin, &overflow); - CHECK(overflow == 1); - CHECK(secp256k1_scalar_is_zero(&zero)); - } -#endif - - { - /* Does check_overflow check catch all ones? */ - static const secp256k1_scalar overflowed = SECP256K1_SCALAR_CONST( - 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, - 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL - ); - CHECK(secp256k1_scalar_check_overflow(&overflowed)); - } - - { - /* Static test vectors. - * These were reduced from ~10^12 random vectors based on comparison-decision - * and edge-case coverage on 32-bit and 64-bit implementations. - * The responses were generated with Sage 5.9. - */ - secp256k1_scalar x; - secp256k1_scalar y; - secp256k1_scalar z; - secp256k1_scalar zz; - secp256k1_scalar one; - secp256k1_scalar r1; - secp256k1_scalar r2; -#if defined(USE_SCALAR_INV_NUM) - secp256k1_scalar zzv; -#endif - int overflow; - unsigned char chal[33][2][32] = { - {{0xff, 0xff, 0x03, 0x07, 0x00, 0x00, 0x00, 0x00, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, - 0x00, 0x00, 0x00, 0x00, 0x00, 0xf8, 0xff, 0xff, - 0xff, 0xff, 0x03, 0x00, 0xc0, 0xff, 0xff, 0xff}, - {0xff, 0xff, 0xff, 0xff, 0xff, 0x0f, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf8, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0x03, 0x00, 0x00, 0x00, 0x00, 0xe0, 0xff}}, - {{0xef, 0xff, 0x1f, 0x00, 0x00, 0x00, 0x00, 0x00, - 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0x3f, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, - {0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xe0, - 0xff, 0xff, 0xff, 0xff, 0xfc, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0x7f, 0x00, 0x80, 0xff}}, - {{0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, - 0x80, 0x00, 0x00, 0x80, 0xff, 0x3f, 0x00, 0x00, - 0x00, 0x00, 0x00, 0xf8, 0xff, 0xff, 0xff, 0x00}, - {0x00, 0x00, 0xfc, 0xff, 0xff, 0xff, 0xff, 0x80, - 0xff, 0xff, 0xff, 0xff, 0xff, 0x0f, 0x00, 0xe0, - 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x7f, 0xff, 0xff, 0xff}}, - {{0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x80, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, - 0x00, 0x1e, 0xf8, 0xff, 0xff, 0xff, 0xfd, 0xff}, - {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x1f, - 0x00, 0x00, 0x00, 0xf8, 0xff, 0x03, 0x00, 0xe0, - 0xff, 0x0f, 0x00, 0x00, 0x00, 0x00, 0xf0, 0xff, - 0xf3, 0xff, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00}}, - {{0x80, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0x00, - 0x00, 0x1c, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xe0, 0xff, 0xff, 0xff, 0x00, - 0x00, 0x00, 0x00, 0x00, 0xe0, 0xff, 0xff, 0xff}, - {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, 0x00, - 0xf8, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0x1f, 0x00, 0x00, 0x80, 0xff, 0xff, 0x3f, - 0x00, 0xfe, 0xff, 0xff, 0xff, 0xdf, 0xff, 0xff}}, - {{0xff, 0xff, 0xff, 0xff, 0x00, 0x0f, 0xfc, 0x9f, - 0xff, 0xff, 0xff, 0x00, 0x80, 0x00, 0x00, 0x80, - 0xff, 0x0f, 0xfc, 0xff, 0x7f, 0x00, 0x00, 0x00, - 0x00, 0xf8, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00}, - {0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, - 0x00, 0x00, 0xf8, 0xff, 0x0f, 0xc0, 0xff, 0xff, - 0xff, 0x1f, 0x00, 0x00, 0x00, 0xc0, 0xff, 0xff, - 0xff, 0xff, 0xff, 0x07, 0x80, 0xff, 0xff, 0xff}}, - {{0xff, 0xff, 0xff, 0xff, 0xff, 0x3f, 0x00, 0x00, - 0x80, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff, - 0xf7, 0xff, 0xff, 0xef, 0xff, 0xff, 0xff, 0x00, - 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0xf0}, - {0x00, 0x00, 0x00, 0x00, 0xf8, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0x01, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}}, - {{0x00, 0xf8, 0xff, 0x03, 0xff, 0xff, 0xff, 0x00, - 0x00, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, - 0x80, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0x03, 0xc0, 0xff, 0x0f, 0xfc, 0xff}, - {0xff, 0xff, 0xff, 0xff, 0xff, 0xe0, 0xff, 0xff, - 0xff, 0x01, 0x00, 0x00, 0x00, 0x3f, 0x00, 0xc0, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}}, - {{0x8f, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0xf8, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0x7f, 0x00, 0x00, 0x80, 0x00, 0x00, 0x80, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00}, - {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}}, - {{0x00, 0x00, 0x00, 0xc0, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0x03, 0x00, 0x80, 0x00, 0x00, 0x80, - 0xff, 0xff, 0xff, 0x00, 0x00, 0x80, 0xff, 0x7f}, - {0xff, 0xcf, 0xff, 0xff, 0x01, 0x00, 0x00, 0x00, - 0x00, 0xc0, 0xff, 0xcf, 0xff, 0xff, 0xff, 0xff, - 0xbf, 0xff, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x80, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00}}, - {{0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0xff, 0xff, - 0xff, 0xff, 0x00, 0xfc, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0x00, 0x80, 0x00, 0x00, 0x80, - 0xff, 0x01, 0xfc, 0xff, 0x01, 0x00, 0xfe, 0xff}, - {0xff, 0xff, 0xff, 0x03, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc0, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, 0x00}}, - {{0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, - 0xe0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0x00, 0xf8, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0x7f, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x80}, - {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0xf8, 0xff, 0x01, 0x00, 0xf0, 0xff, 0xff, - 0xe0, 0xff, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}}, - {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0xf8, 0xff, 0x00}, - {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, - 0xfc, 0xff, 0xff, 0x3f, 0xf0, 0xff, 0xff, 0x3f, - 0x00, 0x00, 0xf8, 0x07, 0x00, 0x00, 0x00, 0xff, - 0xff, 0xff, 0xff, 0xff, 0x0f, 0x7e, 0x00, 0x00}}, - {{0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x80, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0x1f, 0x00, 0x00, 0xfe, 0x07, 0x00}, - {0x00, 0x00, 0x00, 0xf0, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xfb, 0xff, 0x07, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x60}}, - {{0xff, 0x01, 0x00, 0xff, 0xff, 0xff, 0x0f, 0x00, - 0x80, 0x7f, 0xfe, 0xff, 0xff, 0xff, 0xff, 0x03, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, - {0xff, 0xff, 0x1f, 0x00, 0xf0, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0x3f, 0x00, 0x00, 0x00, 0x00}}, - {{0x80, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, - {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf1, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, - 0x00, 0x00, 0x00, 0xe0, 0xff, 0xff, 0xff, 0xff}}, - {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, - 0x7e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0xc0, 0xff, 0xff, 0xcf, 0xff, 0x1f, 0x00, 0x00, - 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80}, - {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0xe0, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0x3f, 0x00, 0x7e, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}}, - {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0xfc, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7c, 0x00}, - {0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, - 0xff, 0xff, 0x7f, 0x00, 0x80, 0x00, 0x00, 0x00, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, - 0x00, 0x00, 0xe0, 0xff, 0xff, 0xff, 0xff, 0xff}}, - {{0xff, 0xff, 0xff, 0xff, 0xff, 0x1f, 0x00, 0x80, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, - 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00}, - {0xf0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0x3f, 0x00, 0x00, 0x80, - 0xff, 0x01, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, - 0xff, 0x7f, 0xf8, 0xff, 0xff, 0x1f, 0x00, 0xfe}}, - {{0xff, 0xff, 0xff, 0x3f, 0xf8, 0xff, 0xff, 0xff, - 0xff, 0x03, 0xfe, 0x01, 0x00, 0x00, 0x00, 0x00, - 0xf0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x07}, - {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, - 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, - 0xff, 0xff, 0xff, 0xff, 0x01, 0x80, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00}}, - {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, - {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, - 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b, - 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x40}}, - {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, - {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}}, - {{0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, - {0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}}, - {{0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0xc0, - 0xff, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0xf0, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f}, - {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x01, 0x00, - 0xf0, 0xff, 0xff, 0xff, 0xff, 0x07, 0x00, 0x00, - 0x00, 0x00, 0x00, 0xfe, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0x01, 0xff, 0xff, 0xff}}, - {{0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, - {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02}}, - {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, - 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b, - 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x40}, - {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}}, - {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0x7e, 0x00, 0x00, 0xc0, 0xff, 0xff, 0x07, 0x00, - 0x80, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, - 0xfc, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, - {0xff, 0x01, 0x00, 0x00, 0x00, 0xe0, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0x1f, 0x00, 0x80, - 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, 0x00, 0x00, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}}, - {{0xff, 0xff, 0xf0, 0xff, 0xff, 0xff, 0xff, 0x00, - 0xf0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, - 0x00, 0xe0, 0xff, 0xff, 0xff, 0xff, 0xff, 0x01, - 0x80, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff}, - {0x00, 0x00, 0x00, 0x00, 0x00, 0xe0, 0xff, 0xff, - 0xff, 0xff, 0x3f, 0x00, 0xf8, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0x3f, 0x00, 0x00, 0xc0, 0xf1, 0x7f, 0x00}}, - {{0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0xc0, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x80, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0x00}, - {0x00, 0xf8, 0xff, 0xff, 0xff, 0xff, 0xff, 0x01, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf8, 0xff, - 0xff, 0x7f, 0x00, 0x00, 0x00, 0x00, 0x80, 0x1f, - 0x00, 0x00, 0xfc, 0xff, 0xff, 0x01, 0xff, 0xff}}, - {{0x00, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, - 0x80, 0x00, 0x00, 0x80, 0xff, 0x03, 0xe0, 0x01, - 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0xfc, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00}, - {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, - 0xfe, 0xff, 0xff, 0xf0, 0x07, 0x00, 0x3c, 0x80, - 0xff, 0xff, 0xff, 0xff, 0xfc, 0xff, 0xff, 0xff, - 0xff, 0xff, 0x07, 0xe0, 0xff, 0x00, 0x00, 0x00}}, - {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, - 0xfc, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x07, 0xf8, - 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x80}, - {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0x0c, 0x80, 0x00, - 0x00, 0x00, 0x00, 0xc0, 0x7f, 0xfe, 0xff, 0x1f, - 0x00, 0xfe, 0xff, 0x03, 0x00, 0x00, 0xfe, 0xff}}, - {{0xff, 0xff, 0x81, 0xff, 0xff, 0xff, 0xff, 0x00, - 0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x83, - 0xff, 0xff, 0x00, 0x00, 0x80, 0x00, 0x00, 0x80, - 0xff, 0xff, 0x7f, 0x00, 0x00, 0x00, 0x00, 0xf0}, - {0xff, 0x01, 0x00, 0x00, 0x00, 0x00, 0xf8, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0x1f, 0x00, 0x00, - 0xf8, 0x07, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xc7, 0xff, 0xff, 0xe0, 0xff, 0xff, 0xff}}, - {{0x82, 0xc9, 0xfa, 0xb0, 0x68, 0x04, 0xa0, 0x00, - 0x82, 0xc9, 0xfa, 0xb0, 0x68, 0x04, 0xa0, 0x00, - 0xff, 0xff, 0xff, 0xff, 0xff, 0x6f, 0x03, 0xfb, - 0xfa, 0x8a, 0x7d, 0xdf, 0x13, 0x86, 0xe2, 0x03}, - {0x82, 0xc9, 0xfa, 0xb0, 0x68, 0x04, 0xa0, 0x00, - 0x82, 0xc9, 0xfa, 0xb0, 0x68, 0x04, 0xa0, 0x00, - 0xff, 0xff, 0xff, 0xff, 0xff, 0x6f, 0x03, 0xfb, - 0xfa, 0x8a, 0x7d, 0xdf, 0x13, 0x86, 0xe2, 0x03}} - }; - unsigned char res[33][2][32] = { - {{0x0c, 0x3b, 0x0a, 0xca, 0x8d, 0x1a, 0x2f, 0xb9, - 0x8a, 0x7b, 0x53, 0x5a, 0x1f, 0xc5, 0x22, 0xa1, - 0x07, 0x2a, 0x48, 0xea, 0x02, 0xeb, 0xb3, 0xd6, - 0x20, 0x1e, 0x86, 0xd0, 0x95, 0xf6, 0x92, 0x35}, - {0xdc, 0x90, 0x7a, 0x07, 0x2e, 0x1e, 0x44, 0x6d, - 0xf8, 0x15, 0x24, 0x5b, 0x5a, 0x96, 0x37, 0x9c, - 0x37, 0x7b, 0x0d, 0xac, 0x1b, 0x65, 0x58, 0x49, - 0x43, 0xb7, 0x31, 0xbb, 0xa7, 0xf4, 0x97, 0x15}}, - {{0xf1, 0xf7, 0x3a, 0x50, 0xe6, 0x10, 0xba, 0x22, - 0x43, 0x4d, 0x1f, 0x1f, 0x7c, 0x27, 0xca, 0x9c, - 0xb8, 0xb6, 0xa0, 0xfc, 0xd8, 0xc0, 0x05, 0x2f, - 0xf7, 0x08, 0xe1, 0x76, 0xdd, 0xd0, 0x80, 0xc8}, - {0xe3, 0x80, 0x80, 0xb8, 0xdb, 0xe3, 0xa9, 0x77, - 0x00, 0xb0, 0xf5, 0x2e, 0x27, 0xe2, 0x68, 0xc4, - 0x88, 0xe8, 0x04, 0xc1, 0x12, 0xbf, 0x78, 0x59, - 0xe6, 0xa9, 0x7c, 0xe1, 0x81, 0xdd, 0xb9, 0xd5}}, - {{0x96, 0xe2, 0xee, 0x01, 0xa6, 0x80, 0x31, 0xef, - 0x5c, 0xd0, 0x19, 0xb4, 0x7d, 0x5f, 0x79, 0xab, - 0xa1, 0x97, 0xd3, 0x7e, 0x33, 0xbb, 0x86, 0x55, - 0x60, 0x20, 0x10, 0x0d, 0x94, 0x2d, 0x11, 0x7c}, - {0xcc, 0xab, 0xe0, 0xe8, 0x98, 0x65, 0x12, 0x96, - 0x38, 0x5a, 0x1a, 0xf2, 0x85, 0x23, 0x59, 0x5f, - 0xf9, 0xf3, 0xc2, 0x81, 0x70, 0x92, 0x65, 0x12, - 0x9c, 0x65, 0x1e, 0x96, 0x00, 0xef, 0xe7, 0x63}}, - {{0xac, 0x1e, 0x62, 0xc2, 0x59, 0xfc, 0x4e, 0x5c, - 0x83, 0xb0, 0xd0, 0x6f, 0xce, 0x19, 0xf6, 0xbf, - 0xa4, 0xb0, 0xe0, 0x53, 0x66, 0x1f, 0xbf, 0xc9, - 0x33, 0x47, 0x37, 0xa9, 0x3d, 0x5d, 0xb0, 0x48}, - {0x86, 0xb9, 0x2a, 0x7f, 0x8e, 0xa8, 0x60, 0x42, - 0x26, 0x6d, 0x6e, 0x1c, 0xa2, 0xec, 0xe0, 0xe5, - 0x3e, 0x0a, 0x33, 0xbb, 0x61, 0x4c, 0x9f, 0x3c, - 0xd1, 0xdf, 0x49, 0x33, 0xcd, 0x72, 0x78, 0x18}}, - {{0xf7, 0xd3, 0xcd, 0x49, 0x5c, 0x13, 0x22, 0xfb, - 0x2e, 0xb2, 0x2f, 0x27, 0xf5, 0x8a, 0x5d, 0x74, - 0xc1, 0x58, 0xc5, 0xc2, 0x2d, 0x9f, 0x52, 0xc6, - 0x63, 0x9f, 0xba, 0x05, 0x76, 0x45, 0x7a, 0x63}, - {0x8a, 0xfa, 0x55, 0x4d, 0xdd, 0xa3, 0xb2, 0xc3, - 0x44, 0xfd, 0xec, 0x72, 0xde, 0xef, 0xc0, 0x99, - 0xf5, 0x9f, 0xe2, 0x52, 0xb4, 0x05, 0x32, 0x58, - 0x57, 0xc1, 0x8f, 0xea, 0xc3, 0x24, 0x5b, 0x94}}, - {{0x05, 0x83, 0xee, 0xdd, 0x64, 0xf0, 0x14, 0x3b, - 0xa0, 0x14, 0x4a, 0x3a, 0x41, 0x82, 0x7c, 0xa7, - 0x2c, 0xaa, 0xb1, 0x76, 0xbb, 0x59, 0x64, 0x5f, - 0x52, 0xad, 0x25, 0x29, 0x9d, 0x8f, 0x0b, 0xb0}, - {0x7e, 0xe3, 0x7c, 0xca, 0xcd, 0x4f, 0xb0, 0x6d, - 0x7a, 0xb2, 0x3e, 0xa0, 0x08, 0xb9, 0xa8, 0x2d, - 0xc2, 0xf4, 0x99, 0x66, 0xcc, 0xac, 0xd8, 0xb9, - 0x72, 0x2a, 0x4a, 0x3e, 0x0f, 0x7b, 0xbf, 0xf4}}, - {{0x8c, 0x9c, 0x78, 0x2b, 0x39, 0x61, 0x7e, 0xf7, - 0x65, 0x37, 0x66, 0x09, 0x38, 0xb9, 0x6f, 0x70, - 0x78, 0x87, 0xff, 0xcf, 0x93, 0xca, 0x85, 0x06, - 0x44, 0x84, 0xa7, 0xfe, 0xd3, 0xa4, 0xe3, 0x7e}, - {0xa2, 0x56, 0x49, 0x23, 0x54, 0xa5, 0x50, 0xe9, - 0x5f, 0xf0, 0x4d, 0xe7, 0xdc, 0x38, 0x32, 0x79, - 0x4f, 0x1c, 0xb7, 0xe4, 0xbb, 0xf8, 0xbb, 0x2e, - 0x40, 0x41, 0x4b, 0xcc, 0xe3, 0x1e, 0x16, 0x36}}, - {{0x0c, 0x1e, 0xd7, 0x09, 0x25, 0x40, 0x97, 0xcb, - 0x5c, 0x46, 0xa8, 0xda, 0xef, 0x25, 0xd5, 0xe5, - 0x92, 0x4d, 0xcf, 0xa3, 0xc4, 0x5d, 0x35, 0x4a, - 0xe4, 0x61, 0x92, 0xf3, 0xbf, 0x0e, 0xcd, 0xbe}, - {0xe4, 0xaf, 0x0a, 0xb3, 0x30, 0x8b, 0x9b, 0x48, - 0x49, 0x43, 0xc7, 0x64, 0x60, 0x4a, 0x2b, 0x9e, - 0x95, 0x5f, 0x56, 0xe8, 0x35, 0xdc, 0xeb, 0xdc, - 0xc7, 0xc4, 0xfe, 0x30, 0x40, 0xc7, 0xbf, 0xa4}}, - {{0xd4, 0xa0, 0xf5, 0x81, 0x49, 0x6b, 0xb6, 0x8b, - 0x0a, 0x69, 0xf9, 0xfe, 0xa8, 0x32, 0xe5, 0xe0, - 0xa5, 0xcd, 0x02, 0x53, 0xf9, 0x2c, 0xe3, 0x53, - 0x83, 0x36, 0xc6, 0x02, 0xb5, 0xeb, 0x64, 0xb8}, - {0x1d, 0x42, 0xb9, 0xf9, 0xe9, 0xe3, 0x93, 0x2c, - 0x4c, 0xee, 0x6c, 0x5a, 0x47, 0x9e, 0x62, 0x01, - 0x6b, 0x04, 0xfe, 0xa4, 0x30, 0x2b, 0x0d, 0x4f, - 0x71, 0x10, 0xd3, 0x55, 0xca, 0xf3, 0x5e, 0x80}}, - {{0x77, 0x05, 0xf6, 0x0c, 0x15, 0x9b, 0x45, 0xe7, - 0xb9, 0x11, 0xb8, 0xf5, 0xd6, 0xda, 0x73, 0x0c, - 0xda, 0x92, 0xea, 0xd0, 0x9d, 0xd0, 0x18, 0x92, - 0xce, 0x9a, 0xaa, 0xee, 0x0f, 0xef, 0xde, 0x30}, - {0xf1, 0xf1, 0xd6, 0x9b, 0x51, 0xd7, 0x77, 0x62, - 0x52, 0x10, 0xb8, 0x7a, 0x84, 0x9d, 0x15, 0x4e, - 0x07, 0xdc, 0x1e, 0x75, 0x0d, 0x0c, 0x3b, 0xdb, - 0x74, 0x58, 0x62, 0x02, 0x90, 0x54, 0x8b, 0x43}}, - {{0xa6, 0xfe, 0x0b, 0x87, 0x80, 0x43, 0x67, 0x25, - 0x57, 0x5d, 0xec, 0x40, 0x50, 0x08, 0xd5, 0x5d, - 0x43, 0xd7, 0xe0, 0xaa, 0xe0, 0x13, 0xb6, 0xb0, - 0xc0, 0xd4, 0xe5, 0x0d, 0x45, 0x83, 0xd6, 0x13}, - {0x40, 0x45, 0x0a, 0x92, 0x31, 0xea, 0x8c, 0x60, - 0x8c, 0x1f, 0xd8, 0x76, 0x45, 0xb9, 0x29, 0x00, - 0x26, 0x32, 0xd8, 0xa6, 0x96, 0x88, 0xe2, 0xc4, - 0x8b, 0xdb, 0x7f, 0x17, 0x87, 0xcc, 0xc8, 0xf2}}, - {{0xc2, 0x56, 0xe2, 0xb6, 0x1a, 0x81, 0xe7, 0x31, - 0x63, 0x2e, 0xbb, 0x0d, 0x2f, 0x81, 0x67, 0xd4, - 0x22, 0xe2, 0x38, 0x02, 0x25, 0x97, 0xc7, 0x88, - 0x6e, 0xdf, 0xbe, 0x2a, 0xa5, 0x73, 0x63, 0xaa}, - {0x50, 0x45, 0xe2, 0xc3, 0xbd, 0x89, 0xfc, 0x57, - 0xbd, 0x3c, 0xa3, 0x98, 0x7e, 0x7f, 0x36, 0x38, - 0x92, 0x39, 0x1f, 0x0f, 0x81, 0x1a, 0x06, 0x51, - 0x1f, 0x8d, 0x6a, 0xff, 0x47, 0x16, 0x06, 0x9c}}, - {{0x33, 0x95, 0xa2, 0x6f, 0x27, 0x5f, 0x9c, 0x9c, - 0x64, 0x45, 0xcb, 0xd1, 0x3c, 0xee, 0x5e, 0x5f, - 0x48, 0xa6, 0xaf, 0xe3, 0x79, 0xcf, 0xb1, 0xe2, - 0xbf, 0x55, 0x0e, 0xa2, 0x3b, 0x62, 0xf0, 0xe4}, - {0x14, 0xe8, 0x06, 0xe3, 0xbe, 0x7e, 0x67, 0x01, - 0xc5, 0x21, 0x67, 0xd8, 0x54, 0xb5, 0x7f, 0xa4, - 0xf9, 0x75, 0x70, 0x1c, 0xfd, 0x79, 0xdb, 0x86, - 0xad, 0x37, 0x85, 0x83, 0x56, 0x4e, 0xf0, 0xbf}}, - {{0xbc, 0xa6, 0xe0, 0x56, 0x4e, 0xef, 0xfa, 0xf5, - 0x1d, 0x5d, 0x3f, 0x2a, 0x5b, 0x19, 0xab, 0x51, - 0xc5, 0x8b, 0xdd, 0x98, 0x28, 0x35, 0x2f, 0xc3, - 0x81, 0x4f, 0x5c, 0xe5, 0x70, 0xb9, 0xeb, 0x62}, - {0xc4, 0x6d, 0x26, 0xb0, 0x17, 0x6b, 0xfe, 0x6c, - 0x12, 0xf8, 0xe7, 0xc1, 0xf5, 0x2f, 0xfa, 0x91, - 0x13, 0x27, 0xbd, 0x73, 0xcc, 0x33, 0x31, 0x1c, - 0x39, 0xe3, 0x27, 0x6a, 0x95, 0xcf, 0xc5, 0xfb}}, - {{0x30, 0xb2, 0x99, 0x84, 0xf0, 0x18, 0x2a, 0x6e, - 0x1e, 0x27, 0xed, 0xa2, 0x29, 0x99, 0x41, 0x56, - 0xe8, 0xd4, 0x0d, 0xef, 0x99, 0x9c, 0xf3, 0x58, - 0x29, 0x55, 0x1a, 0xc0, 0x68, 0xd6, 0x74, 0xa4}, - {0x07, 0x9c, 0xe7, 0xec, 0xf5, 0x36, 0x73, 0x41, - 0xa3, 0x1c, 0xe5, 0x93, 0x97, 0x6a, 0xfd, 0xf7, - 0x53, 0x18, 0xab, 0xaf, 0xeb, 0x85, 0xbd, 0x92, - 0x90, 0xab, 0x3c, 0xbf, 0x30, 0x82, 0xad, 0xf6}}, - {{0xc6, 0x87, 0x8a, 0x2a, 0xea, 0xc0, 0xa9, 0xec, - 0x6d, 0xd3, 0xdc, 0x32, 0x23, 0xce, 0x62, 0x19, - 0xa4, 0x7e, 0xa8, 0xdd, 0x1c, 0x33, 0xae, 0xd3, - 0x4f, 0x62, 0x9f, 0x52, 0xe7, 0x65, 0x46, 0xf4}, - {0x97, 0x51, 0x27, 0x67, 0x2d, 0xa2, 0x82, 0x87, - 0x98, 0xd3, 0xb6, 0x14, 0x7f, 0x51, 0xd3, 0x9a, - 0x0b, 0xd0, 0x76, 0x81, 0xb2, 0x4f, 0x58, 0x92, - 0xa4, 0x86, 0xa1, 0xa7, 0x09, 0x1d, 0xef, 0x9b}}, - {{0xb3, 0x0f, 0x2b, 0x69, 0x0d, 0x06, 0x90, 0x64, - 0xbd, 0x43, 0x4c, 0x10, 0xe8, 0x98, 0x1c, 0xa3, - 0xe1, 0x68, 0xe9, 0x79, 0x6c, 0x29, 0x51, 0x3f, - 0x41, 0xdc, 0xdf, 0x1f, 0xf3, 0x60, 0xbe, 0x33}, - {0xa1, 0x5f, 0xf7, 0x1d, 0xb4, 0x3e, 0x9b, 0x3c, - 0xe7, 0xbd, 0xb6, 0x06, 0xd5, 0x60, 0x06, 0x6d, - 0x50, 0xd2, 0xf4, 0x1a, 0x31, 0x08, 0xf2, 0xea, - 0x8e, 0xef, 0x5f, 0x7d, 0xb6, 0xd0, 0xc0, 0x27}}, - {{0x62, 0x9a, 0xd9, 0xbb, 0x38, 0x36, 0xce, 0xf7, - 0x5d, 0x2f, 0x13, 0xec, 0xc8, 0x2d, 0x02, 0x8a, - 0x2e, 0x72, 0xf0, 0xe5, 0x15, 0x9d, 0x72, 0xae, - 0xfc, 0xb3, 0x4f, 0x02, 0xea, 0xe1, 0x09, 0xfe}, - {0x00, 0x00, 0x00, 0x00, 0xfa, 0x0a, 0x3d, 0xbc, - 0xad, 0x16, 0x0c, 0xb6, 0xe7, 0x7c, 0x8b, 0x39, - 0x9a, 0x43, 0xbb, 0xe3, 0xc2, 0x55, 0x15, 0x14, - 0x75, 0xac, 0x90, 0x9b, 0x7f, 0x9a, 0x92, 0x00}}, - {{0x8b, 0xac, 0x70, 0x86, 0x29, 0x8f, 0x00, 0x23, - 0x7b, 0x45, 0x30, 0xaa, 0xb8, 0x4c, 0xc7, 0x8d, - 0x4e, 0x47, 0x85, 0xc6, 0x19, 0xe3, 0x96, 0xc2, - 0x9a, 0xa0, 0x12, 0xed, 0x6f, 0xd7, 0x76, 0x16}, - {0x45, 0xaf, 0x7e, 0x33, 0xc7, 0x7f, 0x10, 0x6c, - 0x7c, 0x9f, 0x29, 0xc1, 0xa8, 0x7e, 0x15, 0x84, - 0xe7, 0x7d, 0xc0, 0x6d, 0xab, 0x71, 0x5d, 0xd0, - 0x6b, 0x9f, 0x97, 0xab, 0xcb, 0x51, 0x0c, 0x9f}}, - {{0x9e, 0xc3, 0x92, 0xb4, 0x04, 0x9f, 0xc8, 0xbb, - 0xdd, 0x9e, 0xc6, 0x05, 0xfd, 0x65, 0xec, 0x94, - 0x7f, 0x2c, 0x16, 0xc4, 0x40, 0xac, 0x63, 0x7b, - 0x7d, 0xb8, 0x0c, 0xe4, 0x5b, 0xe3, 0xa7, 0x0e}, - {0x43, 0xf4, 0x44, 0xe8, 0xcc, 0xc8, 0xd4, 0x54, - 0x33, 0x37, 0x50, 0xf2, 0x87, 0x42, 0x2e, 0x00, - 0x49, 0x60, 0x62, 0x02, 0xfd, 0x1a, 0x7c, 0xdb, - 0x29, 0x6c, 0x6d, 0x54, 0x53, 0x08, 0xd1, 0xc8}}, - {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, - {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}}, - {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, - {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}}, - {{0x27, 0x59, 0xc7, 0x35, 0x60, 0x71, 0xa6, 0xf1, - 0x79, 0xa5, 0xfd, 0x79, 0x16, 0xf3, 0x41, 0xf0, - 0x57, 0xb4, 0x02, 0x97, 0x32, 0xe7, 0xde, 0x59, - 0xe2, 0x2d, 0x9b, 0x11, 0xea, 0x2c, 0x35, 0x92}, - {0x27, 0x59, 0xc7, 0x35, 0x60, 0x71, 0xa6, 0xf1, - 0x79, 0xa5, 0xfd, 0x79, 0x16, 0xf3, 0x41, 0xf0, - 0x57, 0xb4, 0x02, 0x97, 0x32, 0xe7, 0xde, 0x59, - 0xe2, 0x2d, 0x9b, 0x11, 0xea, 0x2c, 0x35, 0x92}}, - {{0x28, 0x56, 0xac, 0x0e, 0x4f, 0x98, 0x09, 0xf0, - 0x49, 0xfa, 0x7f, 0x84, 0xac, 0x7e, 0x50, 0x5b, - 0x17, 0x43, 0x14, 0x89, 0x9c, 0x53, 0xa8, 0x94, - 0x30, 0xf2, 0x11, 0x4d, 0x92, 0x14, 0x27, 0xe8}, - {0x39, 0x7a, 0x84, 0x56, 0x79, 0x9d, 0xec, 0x26, - 0x2c, 0x53, 0xc1, 0x94, 0xc9, 0x8d, 0x9e, 0x9d, - 0x32, 0x1f, 0xdd, 0x84, 0x04, 0xe8, 0xe2, 0x0a, - 0x6b, 0xbe, 0xbb, 0x42, 0x40, 0x67, 0x30, 0x6c}}, - {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, - 0x45, 0x51, 0x23, 0x19, 0x50, 0xb7, 0x5f, 0xc4, - 0x40, 0x2d, 0xa1, 0x73, 0x2f, 0xc9, 0xbe, 0xbd}, - {0x27, 0x59, 0xc7, 0x35, 0x60, 0x71, 0xa6, 0xf1, - 0x79, 0xa5, 0xfd, 0x79, 0x16, 0xf3, 0x41, 0xf0, - 0x57, 0xb4, 0x02, 0x97, 0x32, 0xe7, 0xde, 0x59, - 0xe2, 0x2d, 0x9b, 0x11, 0xea, 0x2c, 0x35, 0x92}}, - {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, - 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b, - 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x40}, - {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}}, - {{0x1c, 0xc4, 0xf7, 0xda, 0x0f, 0x65, 0xca, 0x39, - 0x70, 0x52, 0x92, 0x8e, 0xc3, 0xc8, 0x15, 0xea, - 0x7f, 0x10, 0x9e, 0x77, 0x4b, 0x6e, 0x2d, 0xdf, - 0xe8, 0x30, 0x9d, 0xda, 0xe8, 0x9a, 0x65, 0xae}, - {0x02, 0xb0, 0x16, 0xb1, 0x1d, 0xc8, 0x57, 0x7b, - 0xa2, 0x3a, 0xa2, 0xa3, 0x38, 0x5c, 0x8f, 0xeb, - 0x66, 0x37, 0x91, 0xa8, 0x5f, 0xef, 0x04, 0xf6, - 0x59, 0x75, 0xe1, 0xee, 0x92, 0xf6, 0x0e, 0x30}}, - {{0x8d, 0x76, 0x14, 0xa4, 0x14, 0x06, 0x9f, 0x9a, - 0xdf, 0x4a, 0x85, 0xa7, 0x6b, 0xbf, 0x29, 0x6f, - 0xbc, 0x34, 0x87, 0x5d, 0xeb, 0xbb, 0x2e, 0xa9, - 0xc9, 0x1f, 0x58, 0xd6, 0x9a, 0x82, 0xa0, 0x56}, - {0xd4, 0xb9, 0xdb, 0x88, 0x1d, 0x04, 0xe9, 0x93, - 0x8d, 0x3f, 0x20, 0xd5, 0x86, 0xa8, 0x83, 0x07, - 0xdb, 0x09, 0xd8, 0x22, 0x1f, 0x7f, 0xf1, 0x71, - 0xc8, 0xe7, 0x5d, 0x47, 0xaf, 0x8b, 0x72, 0xe9}}, - {{0x83, 0xb9, 0x39, 0xb2, 0xa4, 0xdf, 0x46, 0x87, - 0xc2, 0xb8, 0xf1, 0xe6, 0x4c, 0xd1, 0xe2, 0xa9, - 0xe4, 0x70, 0x30, 0x34, 0xbc, 0x52, 0x7c, 0x55, - 0xa6, 0xec, 0x80, 0xa4, 0xe5, 0xd2, 0xdc, 0x73}, - {0x08, 0xf1, 0x03, 0xcf, 0x16, 0x73, 0xe8, 0x7d, - 0xb6, 0x7e, 0x9b, 0xc0, 0xb4, 0xc2, 0xa5, 0x86, - 0x02, 0x77, 0xd5, 0x27, 0x86, 0xa5, 0x15, 0xfb, - 0xae, 0x9b, 0x8c, 0xa9, 0xf9, 0xf8, 0xa8, 0x4a}}, - {{0x8b, 0x00, 0x49, 0xdb, 0xfa, 0xf0, 0x1b, 0xa2, - 0xed, 0x8a, 0x9a, 0x7a, 0x36, 0x78, 0x4a, 0xc7, - 0xf7, 0xad, 0x39, 0xd0, 0x6c, 0x65, 0x7a, 0x41, - 0xce, 0xd6, 0xd6, 0x4c, 0x20, 0x21, 0x6b, 0xc7}, - {0xc6, 0xca, 0x78, 0x1d, 0x32, 0x6c, 0x6c, 0x06, - 0x91, 0xf2, 0x1a, 0xe8, 0x43, 0x16, 0xea, 0x04, - 0x3c, 0x1f, 0x07, 0x85, 0xf7, 0x09, 0x22, 0x08, - 0xba, 0x13, 0xfd, 0x78, 0x1e, 0x3f, 0x6f, 0x62}}, - {{0x25, 0x9b, 0x7c, 0xb0, 0xac, 0x72, 0x6f, 0xb2, - 0xe3, 0x53, 0x84, 0x7a, 0x1a, 0x9a, 0x98, 0x9b, - 0x44, 0xd3, 0x59, 0xd0, 0x8e, 0x57, 0x41, 0x40, - 0x78, 0xa7, 0x30, 0x2f, 0x4c, 0x9c, 0xb9, 0x68}, - {0xb7, 0x75, 0x03, 0x63, 0x61, 0xc2, 0x48, 0x6e, - 0x12, 0x3d, 0xbf, 0x4b, 0x27, 0xdf, 0xb1, 0x7a, - 0xff, 0x4e, 0x31, 0x07, 0x83, 0xf4, 0x62, 0x5b, - 0x19, 0xa5, 0xac, 0xa0, 0x32, 0x58, 0x0d, 0xa7}}, - {{0x43, 0x4f, 0x10, 0xa4, 0xca, 0xdb, 0x38, 0x67, - 0xfa, 0xae, 0x96, 0xb5, 0x6d, 0x97, 0xff, 0x1f, - 0xb6, 0x83, 0x43, 0xd3, 0xa0, 0x2d, 0x70, 0x7a, - 0x64, 0x05, 0x4c, 0xa7, 0xc1, 0xa5, 0x21, 0x51}, - {0xe4, 0xf1, 0x23, 0x84, 0xe1, 0xb5, 0x9d, 0xf2, - 0xb8, 0x73, 0x8b, 0x45, 0x2b, 0x35, 0x46, 0x38, - 0x10, 0x2b, 0x50, 0xf8, 0x8b, 0x35, 0xcd, 0x34, - 0xc8, 0x0e, 0xf6, 0xdb, 0x09, 0x35, 0xf0, 0xda}}, - {{0xdb, 0x21, 0x5c, 0x8d, 0x83, 0x1d, 0xb3, 0x34, - 0xc7, 0x0e, 0x43, 0xa1, 0x58, 0x79, 0x67, 0x13, - 0x1e, 0x86, 0x5d, 0x89, 0x63, 0xe6, 0x0a, 0x46, - 0x5c, 0x02, 0x97, 0x1b, 0x62, 0x43, 0x86, 0xf5}, - {0xdb, 0x21, 0x5c, 0x8d, 0x83, 0x1d, 0xb3, 0x34, - 0xc7, 0x0e, 0x43, 0xa1, 0x58, 0x79, 0x67, 0x13, - 0x1e, 0x86, 0x5d, 0x89, 0x63, 0xe6, 0x0a, 0x46, - 0x5c, 0x02, 0x97, 0x1b, 0x62, 0x43, 0x86, 0xf5}} - }; - secp256k1_scalar_set_int(&one, 1); - for (i = 0; i < 33; i++) { - secp256k1_scalar_set_b32(&x, chal[i][0], &overflow); - CHECK(!overflow); - secp256k1_scalar_set_b32(&y, chal[i][1], &overflow); - CHECK(!overflow); - secp256k1_scalar_set_b32(&r1, res[i][0], &overflow); - CHECK(!overflow); - secp256k1_scalar_set_b32(&r2, res[i][1], &overflow); - CHECK(!overflow); - secp256k1_scalar_mul(&z, &x, &y); - CHECK(!secp256k1_scalar_check_overflow(&z)); - CHECK(secp256k1_scalar_eq(&r1, &z)); - if (!secp256k1_scalar_is_zero(&y)) { - secp256k1_scalar_inverse(&zz, &y); - CHECK(!secp256k1_scalar_check_overflow(&zz)); -#if defined(USE_SCALAR_INV_NUM) - secp256k1_scalar_inverse_var(&zzv, &y); - CHECK(secp256k1_scalar_eq(&zzv, &zz)); -#endif - secp256k1_scalar_mul(&z, &z, &zz); - CHECK(!secp256k1_scalar_check_overflow(&z)); - CHECK(secp256k1_scalar_eq(&x, &z)); - secp256k1_scalar_mul(&zz, &zz, &y); - CHECK(!secp256k1_scalar_check_overflow(&zz)); - CHECK(secp256k1_scalar_eq(&one, &zz)); - } - secp256k1_scalar_mul(&z, &x, &x); - CHECK(!secp256k1_scalar_check_overflow(&z)); - secp256k1_scalar_sqr(&zz, &x); - CHECK(!secp256k1_scalar_check_overflow(&zz)); - CHECK(secp256k1_scalar_eq(&zz, &z)); - CHECK(secp256k1_scalar_eq(&r2, &zz)); - } - } -} - -/***** FIELD TESTS *****/ - -void random_fe(secp256k1_fe *x) { - unsigned char bin[32]; - do { - secp256k1_rand256(bin); - if (secp256k1_fe_set_b32(x, bin)) { - return; - } - } while(1); -} - -void random_fe_test(secp256k1_fe *x) { - unsigned char bin[32]; - do { - secp256k1_rand256_test(bin); - if (secp256k1_fe_set_b32(x, bin)) { - return; - } - } while(1); -} - -void random_fe_non_zero(secp256k1_fe *nz) { - int tries = 10; - while (--tries >= 0) { - random_fe(nz); - secp256k1_fe_normalize(nz); - if (!secp256k1_fe_is_zero(nz)) { - break; - } - } - /* Infinitesimal probability of spurious failure here */ - CHECK(tries >= 0); -} - -void random_fe_non_square(secp256k1_fe *ns) { - secp256k1_fe r; - random_fe_non_zero(ns); - if (secp256k1_fe_sqrt(&r, ns)) { - secp256k1_fe_negate(ns, ns, 1); - } -} - -int check_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) { - secp256k1_fe an = *a; - secp256k1_fe bn = *b; - secp256k1_fe_normalize_weak(&an); - secp256k1_fe_normalize_var(&bn); - return secp256k1_fe_equal_var(&an, &bn); -} - -int check_fe_inverse(const secp256k1_fe *a, const secp256k1_fe *ai) { - secp256k1_fe x; - secp256k1_fe one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1); - secp256k1_fe_mul(&x, a, ai); - return check_fe_equal(&x, &one); -} - -void run_field_convert(void) { - static const unsigned char b32[32] = { - 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, - 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, - 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, - 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x40 - }; - static const secp256k1_fe_storage fes = SECP256K1_FE_STORAGE_CONST( - 0x00010203UL, 0x04050607UL, 0x11121314UL, 0x15161718UL, - 0x22232425UL, 0x26272829UL, 0x33343536UL, 0x37383940UL - ); - static const secp256k1_fe fe = SECP256K1_FE_CONST( - 0x00010203UL, 0x04050607UL, 0x11121314UL, 0x15161718UL, - 0x22232425UL, 0x26272829UL, 0x33343536UL, 0x37383940UL - ); - secp256k1_fe fe2; - unsigned char b322[32]; - secp256k1_fe_storage fes2; - /* Check conversions to fe. */ - CHECK(secp256k1_fe_set_b32(&fe2, b32)); - CHECK(secp256k1_fe_equal_var(&fe, &fe2)); - secp256k1_fe_from_storage(&fe2, &fes); - CHECK(secp256k1_fe_equal_var(&fe, &fe2)); - /* Check conversion from fe. */ - secp256k1_fe_get_b32(b322, &fe); - CHECK(memcmp(b322, b32, 32) == 0); - secp256k1_fe_to_storage(&fes2, &fe); - CHECK(memcmp(&fes2, &fes, sizeof(fes)) == 0); -} - -int fe_memcmp(const secp256k1_fe *a, const secp256k1_fe *b) { - secp256k1_fe t = *b; -#ifdef VERIFY - t.magnitude = a->magnitude; - t.normalized = a->normalized; -#endif - return memcmp(a, &t, sizeof(secp256k1_fe)); -} - -void run_field_misc(void) { - secp256k1_fe x; - secp256k1_fe y; - secp256k1_fe z; - secp256k1_fe q; - secp256k1_fe fe5 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 5); - int i, j; - for (i = 0; i < 5*count; i++) { - secp256k1_fe_storage xs, ys, zs; - random_fe(&x); - random_fe_non_zero(&y); - /* Test the fe equality and comparison operations. */ - CHECK(secp256k1_fe_cmp_var(&x, &x) == 0); - CHECK(secp256k1_fe_equal_var(&x, &x)); - z = x; - secp256k1_fe_add(&z,&y); - /* Test fe conditional move; z is not normalized here. */ - q = x; - secp256k1_fe_cmov(&x, &z, 0); - VERIFY_CHECK(!x.normalized && x.magnitude == z.magnitude); - secp256k1_fe_cmov(&x, &x, 1); - CHECK(fe_memcmp(&x, &z) != 0); - CHECK(fe_memcmp(&x, &q) == 0); - secp256k1_fe_cmov(&q, &z, 1); - VERIFY_CHECK(!q.normalized && q.magnitude == z.magnitude); - CHECK(fe_memcmp(&q, &z) == 0); - secp256k1_fe_normalize_var(&x); - secp256k1_fe_normalize_var(&z); - CHECK(!secp256k1_fe_equal_var(&x, &z)); - secp256k1_fe_normalize_var(&q); - secp256k1_fe_cmov(&q, &z, (i&1)); - VERIFY_CHECK(q.normalized && q.magnitude == 1); - for (j = 0; j < 6; j++) { - secp256k1_fe_negate(&z, &z, j+1); - secp256k1_fe_normalize_var(&q); - secp256k1_fe_cmov(&q, &z, (j&1)); - VERIFY_CHECK(!q.normalized && q.magnitude == (j+2)); - } - secp256k1_fe_normalize_var(&z); - /* Test storage conversion and conditional moves. */ - secp256k1_fe_to_storage(&xs, &x); - secp256k1_fe_to_storage(&ys, &y); - secp256k1_fe_to_storage(&zs, &z); - secp256k1_fe_storage_cmov(&zs, &xs, 0); - secp256k1_fe_storage_cmov(&zs, &zs, 1); - CHECK(memcmp(&xs, &zs, sizeof(xs)) != 0); - secp256k1_fe_storage_cmov(&ys, &xs, 1); - CHECK(memcmp(&xs, &ys, sizeof(xs)) == 0); - secp256k1_fe_from_storage(&x, &xs); - secp256k1_fe_from_storage(&y, &ys); - secp256k1_fe_from_storage(&z, &zs); - /* Test that mul_int, mul, and add agree. */ - secp256k1_fe_add(&y, &x); - secp256k1_fe_add(&y, &x); - z = x; - secp256k1_fe_mul_int(&z, 3); - CHECK(check_fe_equal(&y, &z)); - secp256k1_fe_add(&y, &x); - secp256k1_fe_add(&z, &x); - CHECK(check_fe_equal(&z, &y)); - z = x; - secp256k1_fe_mul_int(&z, 5); - secp256k1_fe_mul(&q, &x, &fe5); - CHECK(check_fe_equal(&z, &q)); - secp256k1_fe_negate(&x, &x, 1); - secp256k1_fe_add(&z, &x); - secp256k1_fe_add(&q, &x); - CHECK(check_fe_equal(&y, &z)); - CHECK(check_fe_equal(&q, &y)); - } -} - -void run_field_inv(void) { - secp256k1_fe x, xi, xii; - int i; - for (i = 0; i < 10*count; i++) { - random_fe_non_zero(&x); - secp256k1_fe_inv(&xi, &x); - CHECK(check_fe_inverse(&x, &xi)); - secp256k1_fe_inv(&xii, &xi); - CHECK(check_fe_equal(&x, &xii)); - } -} - -void run_field_inv_var(void) { - secp256k1_fe x, xi, xii; - int i; - for (i = 0; i < 10*count; i++) { - random_fe_non_zero(&x); - secp256k1_fe_inv_var(&xi, &x); - CHECK(check_fe_inverse(&x, &xi)); - secp256k1_fe_inv_var(&xii, &xi); - CHECK(check_fe_equal(&x, &xii)); - } -} - -void run_field_inv_all_var(void) { - secp256k1_fe x[16], xi[16], xii[16]; - int i; - /* Check it's safe to call for 0 elements */ - secp256k1_fe_inv_all_var(xi, x, 0); - for (i = 0; i < count; i++) { - size_t j; - size_t len = secp256k1_rand_int(15) + 1; - for (j = 0; j < len; j++) { - random_fe_non_zero(&x[j]); - } - secp256k1_fe_inv_all_var(xi, x, len); - for (j = 0; j < len; j++) { - CHECK(check_fe_inverse(&x[j], &xi[j])); - } - secp256k1_fe_inv_all_var(xii, xi, len); - for (j = 0; j < len; j++) { - CHECK(check_fe_equal(&x[j], &xii[j])); - } - } -} - -void run_sqr(void) { - secp256k1_fe x, s; - - { - int i; - secp256k1_fe_set_int(&x, 1); - secp256k1_fe_negate(&x, &x, 1); - - for (i = 1; i <= 512; ++i) { - secp256k1_fe_mul_int(&x, 2); - secp256k1_fe_normalize(&x); - secp256k1_fe_sqr(&s, &x); - } - } -} - -void test_sqrt(const secp256k1_fe *a, const secp256k1_fe *k) { - secp256k1_fe r1, r2; - int v = secp256k1_fe_sqrt(&r1, a); - CHECK((v == 0) == (k == NULL)); - - if (k != NULL) { - /* Check that the returned root is +/- the given known answer */ - secp256k1_fe_negate(&r2, &r1, 1); - secp256k1_fe_add(&r1, k); secp256k1_fe_add(&r2, k); - secp256k1_fe_normalize(&r1); secp256k1_fe_normalize(&r2); - CHECK(secp256k1_fe_is_zero(&r1) || secp256k1_fe_is_zero(&r2)); - } -} - -void run_sqrt(void) { - secp256k1_fe ns, x, s, t; - int i; - - /* Check sqrt(0) is 0 */ - secp256k1_fe_set_int(&x, 0); - secp256k1_fe_sqr(&s, &x); - test_sqrt(&s, &x); - - /* Check sqrt of small squares (and their negatives) */ - for (i = 1; i <= 100; i++) { - secp256k1_fe_set_int(&x, i); - secp256k1_fe_sqr(&s, &x); - test_sqrt(&s, &x); - secp256k1_fe_negate(&t, &s, 1); - test_sqrt(&t, NULL); - } - - /* Consistency checks for large random values */ - for (i = 0; i < 10; i++) { - int j; - random_fe_non_square(&ns); - for (j = 0; j < count; j++) { - random_fe(&x); - secp256k1_fe_sqr(&s, &x); - test_sqrt(&s, &x); - secp256k1_fe_negate(&t, &s, 1); - test_sqrt(&t, NULL); - secp256k1_fe_mul(&t, &s, &ns); - test_sqrt(&t, NULL); - } - } -} - -/***** GROUP TESTS *****/ - -void ge_equals_ge(const secp256k1_ge *a, const secp256k1_ge *b) { - CHECK(a->infinity == b->infinity); - if (a->infinity) { - return; - } - CHECK(secp256k1_fe_equal_var(&a->x, &b->x)); - CHECK(secp256k1_fe_equal_var(&a->y, &b->y)); -} - -/* This compares jacobian points including their Z, not just their geometric meaning. */ -int gej_xyz_equals_gej(const secp256k1_gej *a, const secp256k1_gej *b) { - secp256k1_gej a2; - secp256k1_gej b2; - int ret = 1; - ret &= a->infinity == b->infinity; - if (ret && !a->infinity) { - a2 = *a; - b2 = *b; - secp256k1_fe_normalize(&a2.x); - secp256k1_fe_normalize(&a2.y); - secp256k1_fe_normalize(&a2.z); - secp256k1_fe_normalize(&b2.x); - secp256k1_fe_normalize(&b2.y); - secp256k1_fe_normalize(&b2.z); - ret &= secp256k1_fe_cmp_var(&a2.x, &b2.x) == 0; - ret &= secp256k1_fe_cmp_var(&a2.y, &b2.y) == 0; - ret &= secp256k1_fe_cmp_var(&a2.z, &b2.z) == 0; - } - return ret; -} - -void ge_equals_gej(const secp256k1_ge *a, const secp256k1_gej *b) { - secp256k1_fe z2s; - secp256k1_fe u1, u2, s1, s2; - CHECK(a->infinity == b->infinity); - if (a->infinity) { - return; - } - /* Check a.x * b.z^2 == b.x && a.y * b.z^3 == b.y, to avoid inverses. */ - secp256k1_fe_sqr(&z2s, &b->z); - secp256k1_fe_mul(&u1, &a->x, &z2s); - u2 = b->x; secp256k1_fe_normalize_weak(&u2); - secp256k1_fe_mul(&s1, &a->y, &z2s); secp256k1_fe_mul(&s1, &s1, &b->z); - s2 = b->y; secp256k1_fe_normalize_weak(&s2); - CHECK(secp256k1_fe_equal_var(&u1, &u2)); - CHECK(secp256k1_fe_equal_var(&s1, &s2)); -} - -void test_ge(void) { - int i, i1; -#ifdef USE_ENDOMORPHISM - int runs = 6; -#else - int runs = 4; -#endif - /* Points: (infinity, p1, p1, -p1, -p1, p2, p2, -p2, -p2, p3, p3, -p3, -p3, p4, p4, -p4, -p4). - * The second in each pair of identical points uses a random Z coordinate in the Jacobian form. - * All magnitudes are randomized. - * All 17*17 combinations of points are added to each other, using all applicable methods. - * - * When the endomorphism code is compiled in, p5 = lambda*p1 and p6 = lambda^2*p1 are added as well. - */ - secp256k1_ge *ge = (secp256k1_ge *)checked_malloc(&ctx->error_callback, sizeof(secp256k1_ge) * (1 + 4 * runs)); - secp256k1_gej *gej = (secp256k1_gej *)checked_malloc(&ctx->error_callback, sizeof(secp256k1_gej) * (1 + 4 * runs)); - secp256k1_fe *zinv = (secp256k1_fe *)checked_malloc(&ctx->error_callback, sizeof(secp256k1_fe) * (1 + 4 * runs)); - secp256k1_fe zf; - secp256k1_fe zfi2, zfi3; - - secp256k1_gej_set_infinity(&gej[0]); - secp256k1_ge_clear(&ge[0]); - secp256k1_ge_set_gej_var(&ge[0], &gej[0]); - for (i = 0; i < runs; i++) { - int j; - secp256k1_ge g; - random_group_element_test(&g); -#ifdef USE_ENDOMORPHISM - if (i >= runs - 2) { - secp256k1_ge_mul_lambda(&g, &ge[1]); - } - if (i >= runs - 1) { - secp256k1_ge_mul_lambda(&g, &g); - } -#endif - ge[1 + 4 * i] = g; - ge[2 + 4 * i] = g; - secp256k1_ge_neg(&ge[3 + 4 * i], &g); - secp256k1_ge_neg(&ge[4 + 4 * i], &g); - secp256k1_gej_set_ge(&gej[1 + 4 * i], &ge[1 + 4 * i]); - random_group_element_jacobian_test(&gej[2 + 4 * i], &ge[2 + 4 * i]); - secp256k1_gej_set_ge(&gej[3 + 4 * i], &ge[3 + 4 * i]); - random_group_element_jacobian_test(&gej[4 + 4 * i], &ge[4 + 4 * i]); - for (j = 0; j < 4; j++) { - random_field_element_magnitude(&ge[1 + j + 4 * i].x); - random_field_element_magnitude(&ge[1 + j + 4 * i].y); - random_field_element_magnitude(&gej[1 + j + 4 * i].x); - random_field_element_magnitude(&gej[1 + j + 4 * i].y); - random_field_element_magnitude(&gej[1 + j + 4 * i].z); - } - } - - /* Compute z inverses. */ - { - secp256k1_fe *zs = checked_malloc(&ctx->error_callback, sizeof(secp256k1_fe) * (1 + 4 * runs)); - for (i = 0; i < 4 * runs + 1; i++) { - if (i == 0) { - /* The point at infinity does not have a meaningful z inverse. Any should do. */ - do { - random_field_element_test(&zs[i]); - } while(secp256k1_fe_is_zero(&zs[i])); - } else { - zs[i] = gej[i].z; - } - } - secp256k1_fe_inv_all_var(zinv, zs, 4 * runs + 1); - free(zs); - } - - /* Generate random zf, and zfi2 = 1/zf^2, zfi3 = 1/zf^3 */ - do { - random_field_element_test(&zf); - } while(secp256k1_fe_is_zero(&zf)); - random_field_element_magnitude(&zf); - secp256k1_fe_inv_var(&zfi3, &zf); - secp256k1_fe_sqr(&zfi2, &zfi3); - secp256k1_fe_mul(&zfi3, &zfi3, &zfi2); - - for (i1 = 0; i1 < 1 + 4 * runs; i1++) { - int i2; - for (i2 = 0; i2 < 1 + 4 * runs; i2++) { - /* Compute reference result using gej + gej (var). */ - secp256k1_gej refj, resj; - secp256k1_ge ref; - secp256k1_fe zr; - secp256k1_gej_add_var(&refj, &gej[i1], &gej[i2], secp256k1_gej_is_infinity(&gej[i1]) ? NULL : &zr); - /* Check Z ratio. */ - if (!secp256k1_gej_is_infinity(&gej[i1]) && !secp256k1_gej_is_infinity(&refj)) { - secp256k1_fe zrz; secp256k1_fe_mul(&zrz, &zr, &gej[i1].z); - CHECK(secp256k1_fe_equal_var(&zrz, &refj.z)); - } - secp256k1_ge_set_gej_var(&ref, &refj); - - /* Test gej + ge with Z ratio result (var). */ - secp256k1_gej_add_ge_var(&resj, &gej[i1], &ge[i2], secp256k1_gej_is_infinity(&gej[i1]) ? NULL : &zr); - ge_equals_gej(&ref, &resj); - if (!secp256k1_gej_is_infinity(&gej[i1]) && !secp256k1_gej_is_infinity(&resj)) { - secp256k1_fe zrz; secp256k1_fe_mul(&zrz, &zr, &gej[i1].z); - CHECK(secp256k1_fe_equal_var(&zrz, &resj.z)); - } - - /* Test gej + ge (var, with additional Z factor). */ - { - secp256k1_ge ge2_zfi = ge[i2]; /* the second term with x and y rescaled for z = 1/zf */ - secp256k1_fe_mul(&ge2_zfi.x, &ge2_zfi.x, &zfi2); - secp256k1_fe_mul(&ge2_zfi.y, &ge2_zfi.y, &zfi3); - random_field_element_magnitude(&ge2_zfi.x); - random_field_element_magnitude(&ge2_zfi.y); - secp256k1_gej_add_zinv_var(&resj, &gej[i1], &ge2_zfi, &zf); - ge_equals_gej(&ref, &resj); - } - - /* Test gej + ge (const). */ - if (i2 != 0) { - /* secp256k1_gej_add_ge does not support its second argument being infinity. */ - secp256k1_gej_add_ge(&resj, &gej[i1], &ge[i2]); - ge_equals_gej(&ref, &resj); - } - - /* Test doubling (var). */ - if ((i1 == 0 && i2 == 0) || ((i1 + 3)/4 == (i2 + 3)/4 && ((i1 + 3)%4)/2 == ((i2 + 3)%4)/2)) { - secp256k1_fe zr2; - /* Normal doubling with Z ratio result. */ - secp256k1_gej_double_var(&resj, &gej[i1], &zr2); - ge_equals_gej(&ref, &resj); - /* Check Z ratio. */ - secp256k1_fe_mul(&zr2, &zr2, &gej[i1].z); - CHECK(secp256k1_fe_equal_var(&zr2, &resj.z)); - /* Normal doubling. */ - secp256k1_gej_double_var(&resj, &gej[i2], NULL); - ge_equals_gej(&ref, &resj); - } - - /* Test adding opposites. */ - if ((i1 == 0 && i2 == 0) || ((i1 + 3)/4 == (i2 + 3)/4 && ((i1 + 3)%4)/2 != ((i2 + 3)%4)/2)) { - CHECK(secp256k1_ge_is_infinity(&ref)); - } - - /* Test adding infinity. */ - if (i1 == 0) { - CHECK(secp256k1_ge_is_infinity(&ge[i1])); - CHECK(secp256k1_gej_is_infinity(&gej[i1])); - ge_equals_gej(&ref, &gej[i2]); - } - if (i2 == 0) { - CHECK(secp256k1_ge_is_infinity(&ge[i2])); - CHECK(secp256k1_gej_is_infinity(&gej[i2])); - ge_equals_gej(&ref, &gej[i1]); - } - } - } - - /* Test adding all points together in random order equals infinity. */ - { - secp256k1_gej sum = SECP256K1_GEJ_CONST_INFINITY; - secp256k1_gej *gej_shuffled = (secp256k1_gej *)checked_malloc(&ctx->error_callback, (4 * runs + 1) * sizeof(secp256k1_gej)); - for (i = 0; i < 4 * runs + 1; i++) { - gej_shuffled[i] = gej[i]; - } - for (i = 0; i < 4 * runs + 1; i++) { - int swap = i + secp256k1_rand_int(4 * runs + 1 - i); - if (swap != i) { - secp256k1_gej t = gej_shuffled[i]; - gej_shuffled[i] = gej_shuffled[swap]; - gej_shuffled[swap] = t; - } - } - for (i = 0; i < 4 * runs + 1; i++) { - secp256k1_gej_add_var(&sum, &sum, &gej_shuffled[i], NULL); - } - CHECK(secp256k1_gej_is_infinity(&sum)); - free(gej_shuffled); - } - - /* Test batch gej -> ge conversion with and without known z ratios. */ - { - secp256k1_fe *zr = (secp256k1_fe *)checked_malloc(&ctx->error_callback, (4 * runs + 1) * sizeof(secp256k1_fe)); - secp256k1_ge *ge_set_table = (secp256k1_ge *)checked_malloc(&ctx->error_callback, (4 * runs + 1) * sizeof(secp256k1_ge)); - secp256k1_ge *ge_set_all = (secp256k1_ge *)checked_malloc(&ctx->error_callback, (4 * runs + 1) * sizeof(secp256k1_ge)); - for (i = 0; i < 4 * runs + 1; i++) { - /* Compute gej[i + 1].z / gez[i].z (with gej[n].z taken to be 1). */ - if (i < 4 * runs) { - secp256k1_fe_mul(&zr[i + 1], &zinv[i], &gej[i + 1].z); - } - } - secp256k1_ge_set_table_gej_var(ge_set_table, gej, zr, 4 * runs + 1); - secp256k1_ge_set_all_gej_var(ge_set_all, gej, 4 * runs + 1, &ctx->error_callback); - for (i = 0; i < 4 * runs + 1; i++) { - secp256k1_fe s; - random_fe_non_zero(&s); - secp256k1_gej_rescale(&gej[i], &s); - ge_equals_gej(&ge_set_table[i], &gej[i]); - ge_equals_gej(&ge_set_all[i], &gej[i]); - } - free(ge_set_table); - free(ge_set_all); - free(zr); - } - - free(ge); - free(gej); - free(zinv); -} - -void test_add_neg_y_diff_x(void) { - /* The point of this test is to check that we can add two points - * whose y-coordinates are negatives of each other but whose x - * coordinates differ. If the x-coordinates were the same, these - * points would be negatives of each other and their sum is - * infinity. This is cool because it "covers up" any degeneracy - * in the addition algorithm that would cause the xy coordinates - * of the sum to be wrong (since infinity has no xy coordinates). - * HOWEVER, if the x-coordinates are different, infinity is the - * wrong answer, and such degeneracies are exposed. This is the - * root of https://github.com/bitcoin-core/secp256k1/issues/257 - * which this test is a regression test for. - * - * These points were generated in sage as - * # secp256k1 params - * F = FiniteField (0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F) - * C = EllipticCurve ([F (0), F (7)]) - * G = C.lift_x(0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798) - * N = FiniteField(G.order()) - * - * # endomorphism values (lambda is 1^{1/3} in N, beta is 1^{1/3} in F) - * x = polygen(N) - * lam = (1 - x^3).roots()[1][0] - * - * # random "bad pair" - * P = C.random_element() - * Q = -int(lam) * P - * print " P: %x %x" % P.xy() - * print " Q: %x %x" % Q.xy() - * print "P + Q: %x %x" % (P + Q).xy() - */ - secp256k1_gej aj = SECP256K1_GEJ_CONST( - 0x8d24cd95, 0x0a355af1, 0x3c543505, 0x44238d30, - 0x0643d79f, 0x05a59614, 0x2f8ec030, 0xd58977cb, - 0x001e337a, 0x38093dcd, 0x6c0f386d, 0x0b1293a8, - 0x4d72c879, 0xd7681924, 0x44e6d2f3, 0x9190117d - ); - secp256k1_gej bj = SECP256K1_GEJ_CONST( - 0xc7b74206, 0x1f788cd9, 0xabd0937d, 0x164a0d86, - 0x95f6ff75, 0xf19a4ce9, 0xd013bd7b, 0xbf92d2a7, - 0xffe1cc85, 0xc7f6c232, 0x93f0c792, 0xf4ed6c57, - 0xb28d3786, 0x2897e6db, 0xbb192d0b, 0x6e6feab2 - ); - secp256k1_gej sumj = SECP256K1_GEJ_CONST( - 0x671a63c0, 0x3efdad4c, 0x389a7798, 0x24356027, - 0xb3d69010, 0x278625c3, 0x5c86d390, 0x184a8f7a, - 0x5f6409c2, 0x2ce01f2b, 0x511fd375, 0x25071d08, - 0xda651801, 0x70e95caf, 0x8f0d893c, 0xbed8fbbe - ); - secp256k1_ge b; - secp256k1_gej resj; - secp256k1_ge res; - secp256k1_ge_set_gej(&b, &bj); - - secp256k1_gej_add_var(&resj, &aj, &bj, NULL); - secp256k1_ge_set_gej(&res, &resj); - ge_equals_gej(&res, &sumj); - - secp256k1_gej_add_ge(&resj, &aj, &b); - secp256k1_ge_set_gej(&res, &resj); - ge_equals_gej(&res, &sumj); - - secp256k1_gej_add_ge_var(&resj, &aj, &b, NULL); - secp256k1_ge_set_gej(&res, &resj); - ge_equals_gej(&res, &sumj); -} - -void run_ge(void) { - int i; - for (i = 0; i < count * 32; i++) { - test_ge(); - } - test_add_neg_y_diff_x(); -} - -void test_ec_combine(void) { - secp256k1_scalar sum = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0); - secp256k1_pubkey data[6]; - const secp256k1_pubkey* d[6]; - secp256k1_pubkey sd; - secp256k1_pubkey sd2; - secp256k1_gej Qj; - secp256k1_ge Q; - int i; - for (i = 1; i <= 6; i++) { - secp256k1_scalar s; - random_scalar_order_test(&s); - secp256k1_scalar_add(&sum, &sum, &s); - secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &Qj, &s); - secp256k1_ge_set_gej(&Q, &Qj); - secp256k1_pubkey_save(&data[i - 1], &Q); - d[i - 1] = &data[i - 1]; - secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &Qj, &sum); - secp256k1_ge_set_gej(&Q, &Qj); - secp256k1_pubkey_save(&sd, &Q); - CHECK(secp256k1_ec_pubkey_combine(ctx, &sd2, d, i) == 1); - CHECK(memcmp(&sd, &sd2, sizeof(sd)) == 0); - } -} - -void run_ec_combine(void) { - int i; - for (i = 0; i < count * 8; i++) { - test_ec_combine(); - } -} - -void test_group_decompress(const secp256k1_fe* x) { - /* The input itself, normalized. */ - secp256k1_fe fex = *x; - secp256k1_fe fez; - /* Results of set_xquad_var, set_xo_var(..., 0), set_xo_var(..., 1). */ - secp256k1_ge ge_quad, ge_even, ge_odd; - secp256k1_gej gej_quad; - /* Return values of the above calls. */ - int res_quad, res_even, res_odd; - - secp256k1_fe_normalize_var(&fex); - - res_quad = secp256k1_ge_set_xquad(&ge_quad, &fex); - res_even = secp256k1_ge_set_xo_var(&ge_even, &fex, 0); - res_odd = secp256k1_ge_set_xo_var(&ge_odd, &fex, 1); - - CHECK(res_quad == res_even); - CHECK(res_quad == res_odd); - - if (res_quad) { - secp256k1_fe_normalize_var(&ge_quad.x); - secp256k1_fe_normalize_var(&ge_odd.x); - secp256k1_fe_normalize_var(&ge_even.x); - secp256k1_fe_normalize_var(&ge_quad.y); - secp256k1_fe_normalize_var(&ge_odd.y); - secp256k1_fe_normalize_var(&ge_even.y); - - /* No infinity allowed. */ - CHECK(!ge_quad.infinity); - CHECK(!ge_even.infinity); - CHECK(!ge_odd.infinity); - - /* Check that the x coordinates check out. */ - CHECK(secp256k1_fe_equal_var(&ge_quad.x, x)); - CHECK(secp256k1_fe_equal_var(&ge_even.x, x)); - CHECK(secp256k1_fe_equal_var(&ge_odd.x, x)); - - /* Check that the Y coordinate result in ge_quad is a square. */ - CHECK(secp256k1_fe_is_quad_var(&ge_quad.y)); - - /* Check odd/even Y in ge_odd, ge_even. */ - CHECK(secp256k1_fe_is_odd(&ge_odd.y)); - CHECK(!secp256k1_fe_is_odd(&ge_even.y)); - - /* Check secp256k1_gej_has_quad_y_var. */ - secp256k1_gej_set_ge(&gej_quad, &ge_quad); - CHECK(secp256k1_gej_has_quad_y_var(&gej_quad)); - do { - random_fe_test(&fez); - } while (secp256k1_fe_is_zero(&fez)); - secp256k1_gej_rescale(&gej_quad, &fez); - CHECK(secp256k1_gej_has_quad_y_var(&gej_quad)); - secp256k1_gej_neg(&gej_quad, &gej_quad); - CHECK(!secp256k1_gej_has_quad_y_var(&gej_quad)); - do { - random_fe_test(&fez); - } while (secp256k1_fe_is_zero(&fez)); - secp256k1_gej_rescale(&gej_quad, &fez); - CHECK(!secp256k1_gej_has_quad_y_var(&gej_quad)); - secp256k1_gej_neg(&gej_quad, &gej_quad); - CHECK(secp256k1_gej_has_quad_y_var(&gej_quad)); - } -} - -void run_group_decompress(void) { - int i; - for (i = 0; i < count * 4; i++) { - secp256k1_fe fe; - random_fe_test(&fe); - test_group_decompress(&fe); - } -} - -/***** ECMULT TESTS *****/ - -void run_ecmult_chain(void) { - /* random starting point A (on the curve) */ - secp256k1_gej a = SECP256K1_GEJ_CONST( - 0x8b30bbe9, 0xae2a9906, 0x96b22f67, 0x0709dff3, - 0x727fd8bc, 0x04d3362c, 0x6c7bf458, 0xe2846004, - 0xa357ae91, 0x5c4a6528, 0x1309edf2, 0x0504740f, - 0x0eb33439, 0x90216b4f, 0x81063cb6, 0x5f2f7e0f - ); - /* two random initial factors xn and gn */ - secp256k1_scalar xn = SECP256K1_SCALAR_CONST( - 0x84cc5452, 0xf7fde1ed, 0xb4d38a8c, 0xe9b1b84c, - 0xcef31f14, 0x6e569be9, 0x705d357a, 0x42985407 - ); - secp256k1_scalar gn = SECP256K1_SCALAR_CONST( - 0xa1e58d22, 0x553dcd42, 0xb2398062, 0x5d4c57a9, - 0x6e9323d4, 0x2b3152e5, 0xca2c3990, 0xedc7c9de - ); - /* two small multipliers to be applied to xn and gn in every iteration: */ - static const secp256k1_scalar xf = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0x1337); - static const secp256k1_scalar gf = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0x7113); - /* accumulators with the resulting coefficients to A and G */ - secp256k1_scalar ae = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1); - secp256k1_scalar ge = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0); - /* actual points */ - secp256k1_gej x; - secp256k1_gej x2; - int i; - - /* the point being computed */ - x = a; - for (i = 0; i < 200*count; i++) { - /* in each iteration, compute X = xn*X + gn*G; */ - secp256k1_ecmult(&ctx->ecmult_ctx, &x, &x, &xn, &gn); - /* also compute ae and ge: the actual accumulated factors for A and G */ - /* if X was (ae*A+ge*G), xn*X + gn*G results in (xn*ae*A + (xn*ge+gn)*G) */ - secp256k1_scalar_mul(&ae, &ae, &xn); - secp256k1_scalar_mul(&ge, &ge, &xn); - secp256k1_scalar_add(&ge, &ge, &gn); - /* modify xn and gn */ - secp256k1_scalar_mul(&xn, &xn, &xf); - secp256k1_scalar_mul(&gn, &gn, &gf); - - /* verify */ - if (i == 19999) { - /* expected result after 19999 iterations */ - secp256k1_gej rp = SECP256K1_GEJ_CONST( - 0xD6E96687, 0xF9B10D09, 0x2A6F3543, 0x9D86CEBE, - 0xA4535D0D, 0x409F5358, 0x6440BD74, 0xB933E830, - 0xB95CBCA2, 0xC77DA786, 0x539BE8FD, 0x53354D2D, - 0x3B4F566A, 0xE6580454, 0x07ED6015, 0xEE1B2A88 - ); - - secp256k1_gej_neg(&rp, &rp); - secp256k1_gej_add_var(&rp, &rp, &x, NULL); - CHECK(secp256k1_gej_is_infinity(&rp)); - } - } - /* redo the computation, but directly with the resulting ae and ge coefficients: */ - secp256k1_ecmult(&ctx->ecmult_ctx, &x2, &a, &ae, &ge); - secp256k1_gej_neg(&x2, &x2); - secp256k1_gej_add_var(&x2, &x2, &x, NULL); - CHECK(secp256k1_gej_is_infinity(&x2)); -} - -void test_point_times_order(const secp256k1_gej *point) { - /* X * (point + G) + (order-X) * (pointer + G) = 0 */ - secp256k1_scalar x; - secp256k1_scalar nx; - secp256k1_scalar zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0); - secp256k1_scalar one = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1); - secp256k1_gej res1, res2; - secp256k1_ge res3; - unsigned char pub[65]; - size_t psize = 65; - random_scalar_order_test(&x); - secp256k1_scalar_negate(&nx, &x); - secp256k1_ecmult(&ctx->ecmult_ctx, &res1, point, &x, &x); /* calc res1 = x * point + x * G; */ - secp256k1_ecmult(&ctx->ecmult_ctx, &res2, point, &nx, &nx); /* calc res2 = (order - x) * point + (order - x) * G; */ - secp256k1_gej_add_var(&res1, &res1, &res2, NULL); - CHECK(secp256k1_gej_is_infinity(&res1)); - CHECK(secp256k1_gej_is_valid_var(&res1) == 0); - secp256k1_ge_set_gej(&res3, &res1); - CHECK(secp256k1_ge_is_infinity(&res3)); - CHECK(secp256k1_ge_is_valid_var(&res3) == 0); - CHECK(secp256k1_eckey_pubkey_serialize(&res3, pub, &psize, 0) == 0); - psize = 65; - CHECK(secp256k1_eckey_pubkey_serialize(&res3, pub, &psize, 1) == 0); - /* check zero/one edge cases */ - secp256k1_ecmult(&ctx->ecmult_ctx, &res1, point, &zero, &zero); - secp256k1_ge_set_gej(&res3, &res1); - CHECK(secp256k1_ge_is_infinity(&res3)); - secp256k1_ecmult(&ctx->ecmult_ctx, &res1, point, &one, &zero); - secp256k1_ge_set_gej(&res3, &res1); - ge_equals_gej(&res3, point); - secp256k1_ecmult(&ctx->ecmult_ctx, &res1, point, &zero, &one); - secp256k1_ge_set_gej(&res3, &res1); - ge_equals_ge(&res3, &secp256k1_ge_const_g); -} - -void run_point_times_order(void) { - int i; - secp256k1_fe x = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 2); - static const secp256k1_fe xr = SECP256K1_FE_CONST( - 0x7603CB59, 0xB0EF6C63, 0xFE608479, 0x2A0C378C, - 0xDB3233A8, 0x0F8A9A09, 0xA877DEAD, 0x31B38C45 - ); - for (i = 0; i < 500; i++) { - secp256k1_ge p; - if (secp256k1_ge_set_xo_var(&p, &x, 1)) { - secp256k1_gej j; - CHECK(secp256k1_ge_is_valid_var(&p)); - secp256k1_gej_set_ge(&j, &p); - CHECK(secp256k1_gej_is_valid_var(&j)); - test_point_times_order(&j); - } - secp256k1_fe_sqr(&x, &x); - } - secp256k1_fe_normalize_var(&x); - CHECK(secp256k1_fe_equal_var(&x, &xr)); -} - -void ecmult_const_random_mult(void) { - /* random starting point A (on the curve) */ - secp256k1_ge a = SECP256K1_GE_CONST( - 0x6d986544, 0x57ff52b8, 0xcf1b8126, 0x5b802a5b, - 0xa97f9263, 0xb1e88044, 0x93351325, 0x91bc450a, - 0x535c59f7, 0x325e5d2b, 0xc391fbe8, 0x3c12787c, - 0x337e4a98, 0xe82a9011, 0x0123ba37, 0xdd769c7d - ); - /* random initial factor xn */ - secp256k1_scalar xn = SECP256K1_SCALAR_CONST( - 0x649d4f77, 0xc4242df7, 0x7f2079c9, 0x14530327, - 0xa31b876a, 0xd2d8ce2a, 0x2236d5c6, 0xd7b2029b - ); - /* expected xn * A (from sage) */ - secp256k1_ge expected_b = SECP256K1_GE_CONST( - 0x23773684, 0x4d209dc7, 0x098a786f, 0x20d06fcd, - 0x070a38bf, 0xc11ac651, 0x03004319, 0x1e2a8786, - 0xed8c3b8e, 0xc06dd57b, 0xd06ea66e, 0x45492b0f, - 0xb84e4e1b, 0xfb77e21f, 0x96baae2a, 0x63dec956 - ); - secp256k1_gej b; - secp256k1_ecmult_const(&b, &a, &xn, 256); - - CHECK(secp256k1_ge_is_valid_var(&a)); - ge_equals_gej(&expected_b, &b); -} - -void ecmult_const_commutativity(void) { - secp256k1_scalar a; - secp256k1_scalar b; - secp256k1_gej res1; - secp256k1_gej res2; - secp256k1_ge mid1; - secp256k1_ge mid2; - random_scalar_order_test(&a); - random_scalar_order_test(&b); - - secp256k1_ecmult_const(&res1, &secp256k1_ge_const_g, &a, 256); - secp256k1_ecmult_const(&res2, &secp256k1_ge_const_g, &b, 256); - secp256k1_ge_set_gej(&mid1, &res1); - secp256k1_ge_set_gej(&mid2, &res2); - secp256k1_ecmult_const(&res1, &mid1, &b, 256); - secp256k1_ecmult_const(&res2, &mid2, &a, 256); - secp256k1_ge_set_gej(&mid1, &res1); - secp256k1_ge_set_gej(&mid2, &res2); - ge_equals_ge(&mid1, &mid2); -} - -void ecmult_const_mult_zero_one(void) { - secp256k1_scalar zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0); - secp256k1_scalar one = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1); - secp256k1_scalar negone; - secp256k1_gej res1; - secp256k1_ge res2; - secp256k1_ge point; - secp256k1_scalar_negate(&negone, &one); - - random_group_element_test(&point); - secp256k1_ecmult_const(&res1, &point, &zero, 3); - secp256k1_ge_set_gej(&res2, &res1); - CHECK(secp256k1_ge_is_infinity(&res2)); - secp256k1_ecmult_const(&res1, &point, &one, 2); - secp256k1_ge_set_gej(&res2, &res1); - ge_equals_ge(&res2, &point); - secp256k1_ecmult_const(&res1, &point, &negone, 256); - secp256k1_gej_neg(&res1, &res1); - secp256k1_ge_set_gej(&res2, &res1); - ge_equals_ge(&res2, &point); -} - -void ecmult_const_chain_multiply(void) { - /* Check known result (randomly generated test problem from sage) */ - const secp256k1_scalar scalar = SECP256K1_SCALAR_CONST( - 0x4968d524, 0x2abf9b7a, 0x466abbcf, 0x34b11b6d, - 0xcd83d307, 0x827bed62, 0x05fad0ce, 0x18fae63b - ); - const secp256k1_gej expected_point = SECP256K1_GEJ_CONST( - 0x5494c15d, 0x32099706, 0xc2395f94, 0x348745fd, - 0x757ce30e, 0x4e8c90fb, 0xa2bad184, 0xf883c69f, - 0x5d195d20, 0xe191bf7f, 0x1be3e55f, 0x56a80196, - 0x6071ad01, 0xf1462f66, 0xc997fa94, 0xdb858435 - ); - secp256k1_gej point; - secp256k1_ge res; - int i; - - secp256k1_gej_set_ge(&point, &secp256k1_ge_const_g); - for (i = 0; i < 100; ++i) { - secp256k1_ge tmp; - secp256k1_ge_set_gej(&tmp, &point); - secp256k1_ecmult_const(&point, &tmp, &scalar, 256); - } - secp256k1_ge_set_gej(&res, &point); - ge_equals_gej(&res, &expected_point); -} - -void run_ecmult_const_tests(void) { - ecmult_const_mult_zero_one(); - ecmult_const_random_mult(); - ecmult_const_commutativity(); - ecmult_const_chain_multiply(); -} - -typedef struct { - secp256k1_scalar *sc; - secp256k1_ge *pt; -} ecmult_multi_data; - -static int ecmult_multi_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *cbdata) { - ecmult_multi_data *data = (ecmult_multi_data*) cbdata; - *sc = data->sc[idx]; - *pt = data->pt[idx]; - return 1; -} - -static int ecmult_multi_false_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *cbdata) { - (void)sc; - (void)pt; - (void)idx; - (void)cbdata; - return 0; -} - -void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi_func ecmult_multi) { - int ncount; - secp256k1_scalar szero; - secp256k1_scalar sc[32]; - secp256k1_ge pt[32]; - secp256k1_gej r; - secp256k1_gej r2; - ecmult_multi_data data; - secp256k1_scratch *scratch_empty; - - data.sc = sc; - data.pt = pt; - secp256k1_scalar_set_int(&szero, 0); - - /* No points to multiply */ - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, NULL, ecmult_multi_callback, &data, 0)); - - /* Check 1- and 2-point multiplies against ecmult */ - for (ncount = 0; ncount < count; ncount++) { - secp256k1_ge ptg; - secp256k1_gej ptgj; - random_scalar_order(&sc[0]); - random_scalar_order(&sc[1]); - - random_group_element_test(&ptg); - secp256k1_gej_set_ge(&ptgj, &ptg); - pt[0] = ptg; - pt[1] = secp256k1_ge_const_g; - - /* only G scalar */ - secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &ptgj, &szero, &sc[0]); - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &sc[0], ecmult_multi_callback, &data, 0)); - secp256k1_gej_neg(&r2, &r2); - secp256k1_gej_add_var(&r, &r, &r2, NULL); - CHECK(secp256k1_gej_is_infinity(&r)); - - /* 1-point */ - secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &ptgj, &sc[0], &szero); - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 1)); - secp256k1_gej_neg(&r2, &r2); - secp256k1_gej_add_var(&r, &r, &r2, NULL); - CHECK(secp256k1_gej_is_infinity(&r)); - - /* Try to multiply 1 point, but scratch space is empty */ - scratch_empty = secp256k1_scratch_create(&ctx->error_callback, 0); - CHECK(!ecmult_multi(&ctx->ecmult_ctx, scratch_empty, &r, &szero, ecmult_multi_callback, &data, 1)); - secp256k1_scratch_destroy(scratch_empty); - - /* Try to multiply 1 point, but callback returns false */ - CHECK(!ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_false_callback, &data, 1)); - - /* 2-point */ - secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &ptgj, &sc[0], &sc[1]); - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 2)); - secp256k1_gej_neg(&r2, &r2); - secp256k1_gej_add_var(&r, &r, &r2, NULL); - CHECK(secp256k1_gej_is_infinity(&r)); - - /* 2-point with G scalar */ - secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &ptgj, &sc[0], &sc[1]); - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &sc[1], ecmult_multi_callback, &data, 1)); - secp256k1_gej_neg(&r2, &r2); - secp256k1_gej_add_var(&r, &r, &r2, NULL); - CHECK(secp256k1_gej_is_infinity(&r)); - } - - /* Check infinite outputs of various forms */ - for (ncount = 0; ncount < count; ncount++) { - secp256k1_ge ptg; - size_t i, j; - size_t sizes[] = { 2, 10, 32 }; - - for (j = 0; j < 3; j++) { - for (i = 0; i < 32; i++) { - random_scalar_order(&sc[i]); - secp256k1_ge_set_infinity(&pt[i]); - } - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j])); - CHECK(secp256k1_gej_is_infinity(&r)); - } - - for (j = 0; j < 3; j++) { - for (i = 0; i < 32; i++) { - random_group_element_test(&ptg); - pt[i] = ptg; - secp256k1_scalar_set_int(&sc[i], 0); - } - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j])); - CHECK(secp256k1_gej_is_infinity(&r)); - } - - for (j = 0; j < 3; j++) { - random_group_element_test(&ptg); - for (i = 0; i < 16; i++) { - random_scalar_order(&sc[2*i]); - secp256k1_scalar_negate(&sc[2*i + 1], &sc[2*i]); - pt[2 * i] = ptg; - pt[2 * i + 1] = ptg; - } - - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j])); - CHECK(secp256k1_gej_is_infinity(&r)); - - random_scalar_order(&sc[0]); - for (i = 0; i < 16; i++) { - random_group_element_test(&ptg); - - sc[2*i] = sc[0]; - sc[2*i+1] = sc[0]; - pt[2 * i] = ptg; - secp256k1_ge_neg(&pt[2*i+1], &pt[2*i]); - } - - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j])); - CHECK(secp256k1_gej_is_infinity(&r)); - } - - random_group_element_test(&ptg); - secp256k1_scalar_set_int(&sc[0], 0); - pt[0] = ptg; - for (i = 1; i < 32; i++) { - pt[i] = ptg; - - random_scalar_order(&sc[i]); - secp256k1_scalar_add(&sc[0], &sc[0], &sc[i]); - secp256k1_scalar_negate(&sc[i], &sc[i]); - } - - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 32)); - CHECK(secp256k1_gej_is_infinity(&r)); - } - - /* Check random points, constant scalar */ - for (ncount = 0; ncount < count; ncount++) { - size_t i; - secp256k1_gej_set_infinity(&r); - - random_scalar_order(&sc[0]); - for (i = 0; i < 20; i++) { - secp256k1_ge ptg; - sc[i] = sc[0]; - random_group_element_test(&ptg); - pt[i] = ptg; - secp256k1_gej_add_ge_var(&r, &r, &pt[i], NULL); - } - - secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &r, &sc[0], &szero); - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 20)); - secp256k1_gej_neg(&r2, &r2); - secp256k1_gej_add_var(&r, &r, &r2, NULL); - CHECK(secp256k1_gej_is_infinity(&r)); - } - - /* Check random scalars, constant point */ - for (ncount = 0; ncount < count; ncount++) { - size_t i; - secp256k1_ge ptg; - secp256k1_gej p0j; - secp256k1_scalar rs; - secp256k1_scalar_set_int(&rs, 0); - - random_group_element_test(&ptg); - for (i = 0; i < 20; i++) { - random_scalar_order(&sc[i]); - pt[i] = ptg; - secp256k1_scalar_add(&rs, &rs, &sc[i]); - } - - secp256k1_gej_set_ge(&p0j, &pt[0]); - secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &p0j, &rs, &szero); - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 20)); - secp256k1_gej_neg(&r2, &r2); - secp256k1_gej_add_var(&r, &r, &r2, NULL); - CHECK(secp256k1_gej_is_infinity(&r)); - } - - /* Sanity check that zero scalars don't cause problems */ - secp256k1_scalar_clear(&sc[0]); - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 20)); - secp256k1_scalar_clear(&sc[1]); - secp256k1_scalar_clear(&sc[2]); - secp256k1_scalar_clear(&sc[3]); - secp256k1_scalar_clear(&sc[4]); - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 6)); - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 5)); - CHECK(secp256k1_gej_is_infinity(&r)); - - /* Run through s0*(t0*P) + s1*(t1*P) exhaustively for many small values of s0, s1, t0, t1 */ - { - const size_t TOP = 8; - size_t s0i, s1i; - size_t t0i, t1i; - secp256k1_ge ptg; - secp256k1_gej ptgj; - - random_group_element_test(&ptg); - secp256k1_gej_set_ge(&ptgj, &ptg); - - for(t0i = 0; t0i < TOP; t0i++) { - for(t1i = 0; t1i < TOP; t1i++) { - secp256k1_gej t0p, t1p; - secp256k1_scalar t0, t1; - - secp256k1_scalar_set_int(&t0, (t0i + 1) / 2); - secp256k1_scalar_cond_negate(&t0, t0i & 1); - secp256k1_scalar_set_int(&t1, (t1i + 1) / 2); - secp256k1_scalar_cond_negate(&t1, t1i & 1); - - secp256k1_ecmult(&ctx->ecmult_ctx, &t0p, &ptgj, &t0, &szero); - secp256k1_ecmult(&ctx->ecmult_ctx, &t1p, &ptgj, &t1, &szero); - - for(s0i = 0; s0i < TOP; s0i++) { - for(s1i = 0; s1i < TOP; s1i++) { - secp256k1_scalar tmp1, tmp2; - secp256k1_gej expected, actual; - - secp256k1_ge_set_gej(&pt[0], &t0p); - secp256k1_ge_set_gej(&pt[1], &t1p); - - secp256k1_scalar_set_int(&sc[0], (s0i + 1) / 2); - secp256k1_scalar_cond_negate(&sc[0], s0i & 1); - secp256k1_scalar_set_int(&sc[1], (s1i + 1) / 2); - secp256k1_scalar_cond_negate(&sc[1], s1i & 1); - - secp256k1_scalar_mul(&tmp1, &t0, &sc[0]); - secp256k1_scalar_mul(&tmp2, &t1, &sc[1]); - secp256k1_scalar_add(&tmp1, &tmp1, &tmp2); - - secp256k1_ecmult(&ctx->ecmult_ctx, &expected, &ptgj, &tmp1, &szero); - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &actual, &szero, ecmult_multi_callback, &data, 2)); - secp256k1_gej_neg(&expected, &expected); - secp256k1_gej_add_var(&actual, &actual, &expected, NULL); - CHECK(secp256k1_gej_is_infinity(&actual)); - } - } - } - } - } -} - -void test_secp256k1_pippenger_bucket_window_inv(void) { - int i; - - CHECK(secp256k1_pippenger_bucket_window_inv(0) == 0); - for(i = 1; i <= PIPPENGER_MAX_BUCKET_WINDOW; i++) { -#ifdef USE_ENDOMORPHISM - /* Bucket_window of 8 is not used with endo */ - if (i == 8) { - continue; - } -#endif - CHECK(secp256k1_pippenger_bucket_window(secp256k1_pippenger_bucket_window_inv(i)) == i); - if (i != PIPPENGER_MAX_BUCKET_WINDOW) { - CHECK(secp256k1_pippenger_bucket_window(secp256k1_pippenger_bucket_window_inv(i)+1) > i); - } - } -} - -/** - * Probabilistically test the function returning the maximum number of possible points - * for a given scratch space. - */ -void test_ecmult_multi_pippenger_max_points(void) { - size_t scratch_size = secp256k1_rand_int(256); - size_t max_size = secp256k1_pippenger_scratch_size(secp256k1_pippenger_bucket_window_inv(PIPPENGER_MAX_BUCKET_WINDOW-1)+512, 12); - secp256k1_scratch *scratch; - size_t n_points_supported; - int bucket_window = 0; - - for(; scratch_size < max_size; scratch_size+=256) { - scratch = secp256k1_scratch_create(&ctx->error_callback, scratch_size); - CHECK(scratch != NULL); - n_points_supported = secp256k1_pippenger_max_points(scratch); - if (n_points_supported == 0) { - secp256k1_scratch_destroy(scratch); - continue; - } - bucket_window = secp256k1_pippenger_bucket_window(n_points_supported); - CHECK(secp256k1_scratch_allocate_frame(scratch, secp256k1_pippenger_scratch_size(n_points_supported, bucket_window), PIPPENGER_SCRATCH_OBJECTS)); - secp256k1_scratch_deallocate_frame(scratch); - secp256k1_scratch_destroy(scratch); - } - CHECK(bucket_window == PIPPENGER_MAX_BUCKET_WINDOW); -} - -/** - * Run secp256k1_ecmult_multi_var with num points and a scratch space restricted to - * 1 <= i <= num points. - */ -void test_ecmult_multi_batching(void) { - static const int n_points = 2*ECMULT_PIPPENGER_THRESHOLD; - secp256k1_scalar scG; - secp256k1_scalar szero; - secp256k1_scalar *sc = (secp256k1_scalar *)checked_malloc(&ctx->error_callback, sizeof(secp256k1_scalar) * n_points); - secp256k1_ge *pt = (secp256k1_ge *)checked_malloc(&ctx->error_callback, sizeof(secp256k1_ge) * n_points); - secp256k1_gej r; - secp256k1_gej r2; - ecmult_multi_data data; - int i; - secp256k1_scratch *scratch; - - secp256k1_gej_set_infinity(&r2); - secp256k1_scalar_set_int(&szero, 0); - - /* Get random scalars and group elements and compute result */ - random_scalar_order(&scG); - secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &r2, &szero, &scG); - for(i = 0; i < n_points; i++) { - secp256k1_ge ptg; - secp256k1_gej ptgj; - random_group_element_test(&ptg); - secp256k1_gej_set_ge(&ptgj, &ptg); - pt[i] = ptg; - random_scalar_order(&sc[i]); - secp256k1_ecmult(&ctx->ecmult_ctx, &ptgj, &ptgj, &sc[i], NULL); - secp256k1_gej_add_var(&r2, &r2, &ptgj, NULL); - } - data.sc = sc; - data.pt = pt; - - /* Test with empty scratch space */ - scratch = secp256k1_scratch_create(&ctx->error_callback, 0); - CHECK(!secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &r, &scG, ecmult_multi_callback, &data, 1)); - secp256k1_scratch_destroy(scratch); - - /* Test with space for 1 point in pippenger. That's not enough because - * ecmult_multi selects strauss which requires more memory. */ - scratch = secp256k1_scratch_create(&ctx->error_callback, secp256k1_pippenger_scratch_size(1, 1) + PIPPENGER_SCRATCH_OBJECTS*ALIGNMENT); - CHECK(!secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &r, &scG, ecmult_multi_callback, &data, 1)); - secp256k1_scratch_destroy(scratch); - - secp256k1_gej_neg(&r2, &r2); - for(i = 1; i <= n_points; i++) { - if (i > ECMULT_PIPPENGER_THRESHOLD) { - int bucket_window = secp256k1_pippenger_bucket_window(i); - size_t scratch_size = secp256k1_pippenger_scratch_size(i, bucket_window); - scratch = secp256k1_scratch_create(&ctx->error_callback, scratch_size + PIPPENGER_SCRATCH_OBJECTS*ALIGNMENT); - } else { - size_t scratch_size = secp256k1_strauss_scratch_size(i); - scratch = secp256k1_scratch_create(&ctx->error_callback, scratch_size + STRAUSS_SCRATCH_OBJECTS*ALIGNMENT); - } - CHECK(secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &r, &scG, ecmult_multi_callback, &data, n_points)); - secp256k1_gej_add_var(&r, &r, &r2, NULL); - CHECK(secp256k1_gej_is_infinity(&r)); - secp256k1_scratch_destroy(scratch); - } - free(sc); - free(pt); -} - -void run_ecmult_multi_tests(void) { - secp256k1_scratch *scratch; - - test_secp256k1_pippenger_bucket_window_inv(); - test_ecmult_multi_pippenger_max_points(); - scratch = secp256k1_scratch_create(&ctx->error_callback, 819200); - test_ecmult_multi(scratch, secp256k1_ecmult_multi_var); - test_ecmult_multi(scratch, secp256k1_ecmult_pippenger_batch_single); - test_ecmult_multi(scratch, secp256k1_ecmult_strauss_batch_single); - secp256k1_scratch_destroy(scratch); - - /* Run test_ecmult_multi with space for exactly one point */ - scratch = secp256k1_scratch_create(&ctx->error_callback, secp256k1_strauss_scratch_size(1) + STRAUSS_SCRATCH_OBJECTS*ALIGNMENT); - test_ecmult_multi(scratch, secp256k1_ecmult_multi_var); - secp256k1_scratch_destroy(scratch); - - test_ecmult_multi_batching(); -} - -void test_wnaf(const secp256k1_scalar *number, int w) { - secp256k1_scalar x, two, t; - int wnaf[256]; - int zeroes = -1; - int i; - int bits; - secp256k1_scalar_set_int(&x, 0); - secp256k1_scalar_set_int(&two, 2); - bits = secp256k1_ecmult_wnaf(wnaf, 256, number, w); - CHECK(bits <= 256); - for (i = bits-1; i >= 0; i--) { - int v = wnaf[i]; - secp256k1_scalar_mul(&x, &x, &two); - if (v) { - CHECK(zeroes == -1 || zeroes >= w-1); /* check that distance between non-zero elements is at least w-1 */ - zeroes=0; - CHECK((v & 1) == 1); /* check non-zero elements are odd */ - CHECK(v <= (1 << (w-1)) - 1); /* check range below */ - CHECK(v >= -(1 << (w-1)) - 1); /* check range above */ - } else { - CHECK(zeroes != -1); /* check that no unnecessary zero padding exists */ - zeroes++; - } - if (v >= 0) { - secp256k1_scalar_set_int(&t, v); - } else { - secp256k1_scalar_set_int(&t, -v); - secp256k1_scalar_negate(&t, &t); - } - secp256k1_scalar_add(&x, &x, &t); - } - CHECK(secp256k1_scalar_eq(&x, number)); /* check that wnaf represents number */ -} - -void test_constant_wnaf_negate(const secp256k1_scalar *number) { - secp256k1_scalar neg1 = *number; - secp256k1_scalar neg2 = *number; - int sign1 = 1; - int sign2 = 1; - - if (!secp256k1_scalar_get_bits(&neg1, 0, 1)) { - secp256k1_scalar_negate(&neg1, &neg1); - sign1 = -1; - } - sign2 = secp256k1_scalar_cond_negate(&neg2, secp256k1_scalar_is_even(&neg2)); - CHECK(sign1 == sign2); - CHECK(secp256k1_scalar_eq(&neg1, &neg2)); -} - -void test_constant_wnaf(const secp256k1_scalar *number, int w) { - secp256k1_scalar x, shift; - int wnaf[256] = {0}; - int i; - int skew; - int bits = 256; - secp256k1_scalar num = *number; - - secp256k1_scalar_set_int(&x, 0); - secp256k1_scalar_set_int(&shift, 1 << w); - /* With USE_ENDOMORPHISM on we only consider 128-bit numbers */ -#ifdef USE_ENDOMORPHISM - for (i = 0; i < 16; ++i) { - secp256k1_scalar_shr_int(&num, 8); - } - bits = 128; -#endif - skew = secp256k1_wnaf_const(wnaf, num, w, bits); - - for (i = WNAF_SIZE_BITS(bits, w); i >= 0; --i) { - secp256k1_scalar t; - int v = wnaf[i]; - CHECK(v != 0); /* check nonzero */ - CHECK(v & 1); /* check parity */ - CHECK(v > -(1 << w)); /* check range above */ - CHECK(v < (1 << w)); /* check range below */ - - secp256k1_scalar_mul(&x, &x, &shift); - if (v >= 0) { - secp256k1_scalar_set_int(&t, v); - } else { - secp256k1_scalar_set_int(&t, -v); - secp256k1_scalar_negate(&t, &t); - } - secp256k1_scalar_add(&x, &x, &t); - } - /* Skew num because when encoding numbers as odd we use an offset */ - secp256k1_scalar_cadd_bit(&num, skew == 2, 1); - CHECK(secp256k1_scalar_eq(&x, &num)); -} - -void test_fixed_wnaf(const secp256k1_scalar *number, int w) { - secp256k1_scalar x, shift; - int wnaf[256] = {0}; - int i; - int skew; - secp256k1_scalar num = *number; - - secp256k1_scalar_set_int(&x, 0); - secp256k1_scalar_set_int(&shift, 1 << w); - /* With USE_ENDOMORPHISM on we only consider 128-bit numbers */ -#ifdef USE_ENDOMORPHISM - for (i = 0; i < 16; ++i) { - secp256k1_scalar_shr_int(&num, 8); - } -#endif - skew = secp256k1_wnaf_fixed(wnaf, &num, w); - - for (i = WNAF_SIZE(w)-1; i >= 0; --i) { - secp256k1_scalar t; - int v = wnaf[i]; - CHECK(v == 0 || v & 1); /* check parity */ - CHECK(v > -(1 << w)); /* check range above */ - CHECK(v < (1 << w)); /* check range below */ - - secp256k1_scalar_mul(&x, &x, &shift); - if (v >= 0) { - secp256k1_scalar_set_int(&t, v); - } else { - secp256k1_scalar_set_int(&t, -v); - secp256k1_scalar_negate(&t, &t); - } - secp256k1_scalar_add(&x, &x, &t); - } - /* If skew is 1 then add 1 to num */ - secp256k1_scalar_cadd_bit(&num, 0, skew == 1); - CHECK(secp256k1_scalar_eq(&x, &num)); -} - -/* Checks that the first 8 elements of wnaf are equal to wnaf_expected and the - * rest is 0.*/ -void test_fixed_wnaf_small_helper(int *wnaf, int *wnaf_expected, int w) { - int i; - for (i = WNAF_SIZE(w)-1; i >= 8; --i) { - CHECK(wnaf[i] == 0); - } - for (i = 7; i >= 0; --i) { - CHECK(wnaf[i] == wnaf_expected[i]); - } -} - -void test_fixed_wnaf_small(void) { - int w = 4; - int wnaf[256] = {0}; - int i; - int skew; - secp256k1_scalar num; - - secp256k1_scalar_set_int(&num, 0); - skew = secp256k1_wnaf_fixed(wnaf, &num, w); - for (i = WNAF_SIZE(w)-1; i >= 0; --i) { - int v = wnaf[i]; - CHECK(v == 0); - } - CHECK(skew == 0); - - secp256k1_scalar_set_int(&num, 1); - skew = secp256k1_wnaf_fixed(wnaf, &num, w); - for (i = WNAF_SIZE(w)-1; i >= 1; --i) { - int v = wnaf[i]; - CHECK(v == 0); - } - CHECK(wnaf[0] == 1); - CHECK(skew == 0); - - { - int wnaf_expected[8] = { 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf }; - secp256k1_scalar_set_int(&num, 0xffffffff); - skew = secp256k1_wnaf_fixed(wnaf, &num, w); - test_fixed_wnaf_small_helper(wnaf, wnaf_expected, w); - CHECK(skew == 0); - } - { - int wnaf_expected[8] = { -1, -1, -1, -1, -1, -1, -1, 0xf }; - secp256k1_scalar_set_int(&num, 0xeeeeeeee); - skew = secp256k1_wnaf_fixed(wnaf, &num, w); - test_fixed_wnaf_small_helper(wnaf, wnaf_expected, w); - CHECK(skew == 1); - } - { - int wnaf_expected[8] = { 1, 0, 1, 0, 1, 0, 1, 0 }; - secp256k1_scalar_set_int(&num, 0x01010101); - skew = secp256k1_wnaf_fixed(wnaf, &num, w); - test_fixed_wnaf_small_helper(wnaf, wnaf_expected, w); - CHECK(skew == 0); - } - { - int wnaf_expected[8] = { -0xf, 0, 0xf, -0xf, 0, 0xf, 1, 0 }; - secp256k1_scalar_set_int(&num, 0x01ef1ef1); - skew = secp256k1_wnaf_fixed(wnaf, &num, w); - test_fixed_wnaf_small_helper(wnaf, wnaf_expected, w); - CHECK(skew == 0); - } -} - -void run_wnaf(void) { - int i; - secp256k1_scalar n = {{0}}; - - /* Sanity check: 1 and 2 are the smallest odd and even numbers and should - * have easier-to-diagnose failure modes */ - n.d[0] = 1; - test_constant_wnaf(&n, 4); - n.d[0] = 2; - test_constant_wnaf(&n, 4); - /* Test 0 */ - test_fixed_wnaf_small(); - /* Random tests */ - for (i = 0; i < count; i++) { - random_scalar_order(&n); - test_wnaf(&n, 4+(i%10)); - test_constant_wnaf_negate(&n); - test_constant_wnaf(&n, 4 + (i % 10)); - test_fixed_wnaf(&n, 4 + (i % 10)); - } - secp256k1_scalar_set_int(&n, 0); - CHECK(secp256k1_scalar_cond_negate(&n, 1) == -1); - CHECK(secp256k1_scalar_is_zero(&n)); - CHECK(secp256k1_scalar_cond_negate(&n, 0) == 1); - CHECK(secp256k1_scalar_is_zero(&n)); -} - -void test_ecmult_constants(void) { - /* Test ecmult_gen() for [0..36) and [order-36..0). */ - secp256k1_scalar x; - secp256k1_gej r; - secp256k1_ge ng; - int i; - int j; - secp256k1_ge_neg(&ng, &secp256k1_ge_const_g); - for (i = 0; i < 36; i++ ) { - secp256k1_scalar_set_int(&x, i); - secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &r, &x); - for (j = 0; j < i; j++) { - if (j == i - 1) { - ge_equals_gej(&secp256k1_ge_const_g, &r); - } - secp256k1_gej_add_ge(&r, &r, &ng); - } - CHECK(secp256k1_gej_is_infinity(&r)); - } - for (i = 1; i <= 36; i++ ) { - secp256k1_scalar_set_int(&x, i); - secp256k1_scalar_negate(&x, &x); - secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &r, &x); - for (j = 0; j < i; j++) { - if (j == i - 1) { - ge_equals_gej(&ng, &r); - } - secp256k1_gej_add_ge(&r, &r, &secp256k1_ge_const_g); - } - CHECK(secp256k1_gej_is_infinity(&r)); - } -} - -void run_ecmult_constants(void) { - test_ecmult_constants(); -} - -void test_ecmult_gen_blind(void) { - /* Test ecmult_gen() blinding and confirm that the blinding changes, the affine points match, and the z's don't match. */ - secp256k1_scalar key; - secp256k1_scalar b; - unsigned char seed32[32]; - secp256k1_gej pgej; - secp256k1_gej pgej2; - secp256k1_gej i; - secp256k1_ge pge; - random_scalar_order_test(&key); - secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pgej, &key); - secp256k1_rand256(seed32); - b = ctx->ecmult_gen_ctx.blind; - i = ctx->ecmult_gen_ctx.initial; - secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, seed32); - CHECK(!secp256k1_scalar_eq(&b, &ctx->ecmult_gen_ctx.blind)); - secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pgej2, &key); - CHECK(!gej_xyz_equals_gej(&pgej, &pgej2)); - CHECK(!gej_xyz_equals_gej(&i, &ctx->ecmult_gen_ctx.initial)); - secp256k1_ge_set_gej(&pge, &pgej); - ge_equals_gej(&pge, &pgej2); -} - -void test_ecmult_gen_blind_reset(void) { - /* Test ecmult_gen() blinding reset and confirm that the blinding is consistent. */ - secp256k1_scalar b; - secp256k1_gej initial; - secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, 0); - b = ctx->ecmult_gen_ctx.blind; - initial = ctx->ecmult_gen_ctx.initial; - secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, 0); - CHECK(secp256k1_scalar_eq(&b, &ctx->ecmult_gen_ctx.blind)); - CHECK(gej_xyz_equals_gej(&initial, &ctx->ecmult_gen_ctx.initial)); -} - -void run_ecmult_gen_blind(void) { - int i; - test_ecmult_gen_blind_reset(); - for (i = 0; i < 10; i++) { - test_ecmult_gen_blind(); - } -} - -#ifdef USE_ENDOMORPHISM -/***** ENDOMORPHISH TESTS *****/ -void test_scalar_split(void) { - secp256k1_scalar full; - secp256k1_scalar s1, slam; - const unsigned char zero[32] = {0}; - unsigned char tmp[32]; - - random_scalar_order_test(&full); - secp256k1_scalar_split_lambda(&s1, &slam, &full); - - /* check that both are <= 128 bits in size */ - if (secp256k1_scalar_is_high(&s1)) { - secp256k1_scalar_negate(&s1, &s1); - } - if (secp256k1_scalar_is_high(&slam)) { - secp256k1_scalar_negate(&slam, &slam); - } - - secp256k1_scalar_get_b32(tmp, &s1); - CHECK(memcmp(zero, tmp, 16) == 0); - secp256k1_scalar_get_b32(tmp, &slam); - CHECK(memcmp(zero, tmp, 16) == 0); -} - -void run_endomorphism_tests(void) { - test_scalar_split(); -} -#endif - -void ec_pubkey_parse_pointtest(const unsigned char *input, int xvalid, int yvalid) { - unsigned char pubkeyc[65]; - secp256k1_pubkey pubkey; - secp256k1_ge ge; - size_t pubkeyclen; - int32_t ecount; - ecount = 0; - secp256k1_context_set_illegal_callback(ctx, counting_illegal_callback_fn, &ecount); - for (pubkeyclen = 3; pubkeyclen <= 65; pubkeyclen++) { - /* Smaller sizes are tested exhaustively elsewhere. */ - int32_t i; - memcpy(&pubkeyc[1], input, 64); - VG_UNDEF(&pubkeyc[pubkeyclen], 65 - pubkeyclen); - for (i = 0; i < 256; i++) { - /* Try all type bytes. */ - int xpass; - int ypass; - int ysign; - pubkeyc[0] = i; - /* What sign does this point have? */ - ysign = (input[63] & 1) + 2; - /* For the current type (i) do we expect parsing to work? Handled all of compressed/uncompressed/hybrid. */ - xpass = xvalid && (pubkeyclen == 33) && ((i & 254) == 2); - /* Do we expect a parse and re-serialize as uncompressed to give a matching y? */ - ypass = xvalid && yvalid && ((i & 4) == ((pubkeyclen == 65) << 2)) && - ((i == 4) || ((i & 251) == ysign)) && ((pubkeyclen == 33) || (pubkeyclen == 65)); - if (xpass || ypass) { - /* These cases must parse. */ - unsigned char pubkeyo[65]; - size_t outl; - memset(&pubkey, 0, sizeof(pubkey)); - VG_UNDEF(&pubkey, sizeof(pubkey)); - ecount = 0; - CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, pubkeyclen) == 1); - VG_CHECK(&pubkey, sizeof(pubkey)); - outl = 65; - VG_UNDEF(pubkeyo, 65); - CHECK(secp256k1_ec_pubkey_serialize(ctx, pubkeyo, &outl, &pubkey, SECP256K1_EC_COMPRESSED) == 1); - VG_CHECK(pubkeyo, outl); - CHECK(outl == 33); - CHECK(memcmp(&pubkeyo[1], &pubkeyc[1], 32) == 0); - CHECK((pubkeyclen != 33) || (pubkeyo[0] == pubkeyc[0])); - if (ypass) { - /* This test isn't always done because we decode with alternative signs, so the y won't match. */ - CHECK(pubkeyo[0] == ysign); - CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 1); - memset(&pubkey, 0, sizeof(pubkey)); - VG_UNDEF(&pubkey, sizeof(pubkey)); - secp256k1_pubkey_save(&pubkey, &ge); - VG_CHECK(&pubkey, sizeof(pubkey)); - outl = 65; - VG_UNDEF(pubkeyo, 65); - CHECK(secp256k1_ec_pubkey_serialize(ctx, pubkeyo, &outl, &pubkey, SECP256K1_EC_UNCOMPRESSED) == 1); - VG_CHECK(pubkeyo, outl); - CHECK(outl == 65); - CHECK(pubkeyo[0] == 4); - CHECK(memcmp(&pubkeyo[1], input, 64) == 0); - } - CHECK(ecount == 0); - } else { - /* These cases must fail to parse. */ - memset(&pubkey, 0xfe, sizeof(pubkey)); - ecount = 0; - VG_UNDEF(&pubkey, sizeof(pubkey)); - CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, pubkeyclen) == 0); - VG_CHECK(&pubkey, sizeof(pubkey)); - CHECK(ecount == 0); - CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 0); - CHECK(ecount == 1); - } - } - } - secp256k1_context_set_illegal_callback(ctx, NULL, NULL); -} - -void run_ec_pubkey_parse_test(void) { -#define SECP256K1_EC_PARSE_TEST_NVALID (12) - const unsigned char valid[SECP256K1_EC_PARSE_TEST_NVALID][64] = { - { - /* Point with leading and trailing zeros in x and y serialization. */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x42, 0x52, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x64, 0xef, 0xa1, 0x7b, 0x77, 0x61, 0xe1, 0xe4, 0x27, 0x06, 0x98, 0x9f, 0xb4, 0x83, - 0xb8, 0xd2, 0xd4, 0x9b, 0xf7, 0x8f, 0xae, 0x98, 0x03, 0xf0, 0x99, 0xb8, 0x34, 0xed, 0xeb, 0x00 - }, - { - /* Point with x equal to a 3rd root of unity.*/ - 0x7a, 0xe9, 0x6a, 0x2b, 0x65, 0x7c, 0x07, 0x10, 0x6e, 0x64, 0x47, 0x9e, 0xac, 0x34, 0x34, 0xe9, - 0x9c, 0xf0, 0x49, 0x75, 0x12, 0xf5, 0x89, 0x95, 0xc1, 0x39, 0x6c, 0x28, 0x71, 0x95, 0x01, 0xee, - 0x42, 0x18, 0xf2, 0x0a, 0xe6, 0xc6, 0x46, 0xb3, 0x63, 0xdb, 0x68, 0x60, 0x58, 0x22, 0xfb, 0x14, - 0x26, 0x4c, 0xa8, 0xd2, 0x58, 0x7f, 0xdd, 0x6f, 0xbc, 0x75, 0x0d, 0x58, 0x7e, 0x76, 0xa7, 0xee, - }, - { - /* Point with largest x. (1/2) */ - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2c, - 0x0e, 0x99, 0x4b, 0x14, 0xea, 0x72, 0xf8, 0xc3, 0xeb, 0x95, 0xc7, 0x1e, 0xf6, 0x92, 0x57, 0x5e, - 0x77, 0x50, 0x58, 0x33, 0x2d, 0x7e, 0x52, 0xd0, 0x99, 0x5c, 0xf8, 0x03, 0x88, 0x71, 0xb6, 0x7d, - }, - { - /* Point with largest x. (2/2) */ - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2c, - 0xf1, 0x66, 0xb4, 0xeb, 0x15, 0x8d, 0x07, 0x3c, 0x14, 0x6a, 0x38, 0xe1, 0x09, 0x6d, 0xa8, 0xa1, - 0x88, 0xaf, 0xa7, 0xcc, 0xd2, 0x81, 0xad, 0x2f, 0x66, 0xa3, 0x07, 0xfb, 0x77, 0x8e, 0x45, 0xb2, - }, - { - /* Point with smallest x. (1/2) */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, - 0x42, 0x18, 0xf2, 0x0a, 0xe6, 0xc6, 0x46, 0xb3, 0x63, 0xdb, 0x68, 0x60, 0x58, 0x22, 0xfb, 0x14, - 0x26, 0x4c, 0xa8, 0xd2, 0x58, 0x7f, 0xdd, 0x6f, 0xbc, 0x75, 0x0d, 0x58, 0x7e, 0x76, 0xa7, 0xee, - }, - { - /* Point with smallest x. (2/2) */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, - 0xbd, 0xe7, 0x0d, 0xf5, 0x19, 0x39, 0xb9, 0x4c, 0x9c, 0x24, 0x97, 0x9f, 0xa7, 0xdd, 0x04, 0xeb, - 0xd9, 0xb3, 0x57, 0x2d, 0xa7, 0x80, 0x22, 0x90, 0x43, 0x8a, 0xf2, 0xa6, 0x81, 0x89, 0x54, 0x41, - }, - { - /* Point with largest y. (1/3) */ - 0x1f, 0xe1, 0xe5, 0xef, 0x3f, 0xce, 0xb5, 0xc1, 0x35, 0xab, 0x77, 0x41, 0x33, 0x3c, 0xe5, 0xa6, - 0xe8, 0x0d, 0x68, 0x16, 0x76, 0x53, 0xf6, 0xb2, 0xb2, 0x4b, 0xcb, 0xcf, 0xaa, 0xaf, 0xf5, 0x07, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2e, - }, - { - /* Point with largest y. (2/3) */ - 0xcb, 0xb0, 0xde, 0xab, 0x12, 0x57, 0x54, 0xf1, 0xfd, 0xb2, 0x03, 0x8b, 0x04, 0x34, 0xed, 0x9c, - 0xb3, 0xfb, 0x53, 0xab, 0x73, 0x53, 0x91, 0x12, 0x99, 0x94, 0xa5, 0x35, 0xd9, 0x25, 0xf6, 0x73, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2e, - }, - { - /* Point with largest y. (3/3) */ - 0x14, 0x6d, 0x3b, 0x65, 0xad, 0xd9, 0xf5, 0x4c, 0xcc, 0xa2, 0x85, 0x33, 0xc8, 0x8e, 0x2c, 0xbc, - 0x63, 0xf7, 0x44, 0x3e, 0x16, 0x58, 0x78, 0x3a, 0xb4, 0x1f, 0x8e, 0xf9, 0x7c, 0x2a, 0x10, 0xb5, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2e, - }, - { - /* Point with smallest y. (1/3) */ - 0x1f, 0xe1, 0xe5, 0xef, 0x3f, 0xce, 0xb5, 0xc1, 0x35, 0xab, 0x77, 0x41, 0x33, 0x3c, 0xe5, 0xa6, - 0xe8, 0x0d, 0x68, 0x16, 0x76, 0x53, 0xf6, 0xb2, 0xb2, 0x4b, 0xcb, 0xcf, 0xaa, 0xaf, 0xf5, 0x07, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, - }, - { - /* Point with smallest y. (2/3) */ - 0xcb, 0xb0, 0xde, 0xab, 0x12, 0x57, 0x54, 0xf1, 0xfd, 0xb2, 0x03, 0x8b, 0x04, 0x34, 0xed, 0x9c, - 0xb3, 0xfb, 0x53, 0xab, 0x73, 0x53, 0x91, 0x12, 0x99, 0x94, 0xa5, 0x35, 0xd9, 0x25, 0xf6, 0x73, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, - }, - { - /* Point with smallest y. (3/3) */ - 0x14, 0x6d, 0x3b, 0x65, 0xad, 0xd9, 0xf5, 0x4c, 0xcc, 0xa2, 0x85, 0x33, 0xc8, 0x8e, 0x2c, 0xbc, - 0x63, 0xf7, 0x44, 0x3e, 0x16, 0x58, 0x78, 0x3a, 0xb4, 0x1f, 0x8e, 0xf9, 0x7c, 0x2a, 0x10, 0xb5, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 - } - }; -#define SECP256K1_EC_PARSE_TEST_NXVALID (4) - const unsigned char onlyxvalid[SECP256K1_EC_PARSE_TEST_NXVALID][64] = { - { - /* Valid if y overflow ignored (y = 1 mod p). (1/3) */ - 0x1f, 0xe1, 0xe5, 0xef, 0x3f, 0xce, 0xb5, 0xc1, 0x35, 0xab, 0x77, 0x41, 0x33, 0x3c, 0xe5, 0xa6, - 0xe8, 0x0d, 0x68, 0x16, 0x76, 0x53, 0xf6, 0xb2, 0xb2, 0x4b, 0xcb, 0xcf, 0xaa, 0xaf, 0xf5, 0x07, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x30, - }, - { - /* Valid if y overflow ignored (y = 1 mod p). (2/3) */ - 0xcb, 0xb0, 0xde, 0xab, 0x12, 0x57, 0x54, 0xf1, 0xfd, 0xb2, 0x03, 0x8b, 0x04, 0x34, 0xed, 0x9c, - 0xb3, 0xfb, 0x53, 0xab, 0x73, 0x53, 0x91, 0x12, 0x99, 0x94, 0xa5, 0x35, 0xd9, 0x25, 0xf6, 0x73, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x30, - }, - { - /* Valid if y overflow ignored (y = 1 mod p). (3/3)*/ - 0x14, 0x6d, 0x3b, 0x65, 0xad, 0xd9, 0xf5, 0x4c, 0xcc, 0xa2, 0x85, 0x33, 0xc8, 0x8e, 0x2c, 0xbc, - 0x63, 0xf7, 0x44, 0x3e, 0x16, 0x58, 0x78, 0x3a, 0xb4, 0x1f, 0x8e, 0xf9, 0x7c, 0x2a, 0x10, 0xb5, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x30, - }, - { - /* x on curve, y is from y^2 = x^3 + 8. */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03 - } - }; -#define SECP256K1_EC_PARSE_TEST_NINVALID (7) - const unsigned char invalid[SECP256K1_EC_PARSE_TEST_NINVALID][64] = { - { - /* x is third root of -8, y is -1 * (x^3+7); also on the curve for y^2 = x^3 + 9. */ - 0x0a, 0x2d, 0x2b, 0xa9, 0x35, 0x07, 0xf1, 0xdf, 0x23, 0x37, 0x70, 0xc2, 0xa7, 0x97, 0x96, 0x2c, - 0xc6, 0x1f, 0x6d, 0x15, 0xda, 0x14, 0xec, 0xd4, 0x7d, 0x8d, 0x27, 0xae, 0x1c, 0xd5, 0xf8, 0x53, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, - }, - { - /* Valid if x overflow ignored (x = 1 mod p). */ - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x30, - 0x42, 0x18, 0xf2, 0x0a, 0xe6, 0xc6, 0x46, 0xb3, 0x63, 0xdb, 0x68, 0x60, 0x58, 0x22, 0xfb, 0x14, - 0x26, 0x4c, 0xa8, 0xd2, 0x58, 0x7f, 0xdd, 0x6f, 0xbc, 0x75, 0x0d, 0x58, 0x7e, 0x76, 0xa7, 0xee, - }, - { - /* Valid if x overflow ignored (x = 1 mod p). */ - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x30, - 0xbd, 0xe7, 0x0d, 0xf5, 0x19, 0x39, 0xb9, 0x4c, 0x9c, 0x24, 0x97, 0x9f, 0xa7, 0xdd, 0x04, 0xeb, - 0xd9, 0xb3, 0x57, 0x2d, 0xa7, 0x80, 0x22, 0x90, 0x43, 0x8a, 0xf2, 0xa6, 0x81, 0x89, 0x54, 0x41, - }, - { - /* x is -1, y is the result of the sqrt ladder; also on the curve for y^2 = x^3 - 5. */ - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2e, - 0xf4, 0x84, 0x14, 0x5c, 0xb0, 0x14, 0x9b, 0x82, 0x5d, 0xff, 0x41, 0x2f, 0xa0, 0x52, 0xa8, 0x3f, - 0xcb, 0x72, 0xdb, 0x61, 0xd5, 0x6f, 0x37, 0x70, 0xce, 0x06, 0x6b, 0x73, 0x49, 0xa2, 0xaa, 0x28, - }, - { - /* x is -1, y is the result of the sqrt ladder; also on the curve for y^2 = x^3 - 5. */ - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2e, - 0x0b, 0x7b, 0xeb, 0xa3, 0x4f, 0xeb, 0x64, 0x7d, 0xa2, 0x00, 0xbe, 0xd0, 0x5f, 0xad, 0x57, 0xc0, - 0x34, 0x8d, 0x24, 0x9e, 0x2a, 0x90, 0xc8, 0x8f, 0x31, 0xf9, 0x94, 0x8b, 0xb6, 0x5d, 0x52, 0x07, - }, - { - /* x is zero, y is the result of the sqrt ladder; also on the curve for y^2 = x^3 - 7. */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x8f, 0x53, 0x7e, 0xef, 0xdf, 0xc1, 0x60, 0x6a, 0x07, 0x27, 0xcd, 0x69, 0xb4, 0xa7, 0x33, 0x3d, - 0x38, 0xed, 0x44, 0xe3, 0x93, 0x2a, 0x71, 0x79, 0xee, 0xcb, 0x4b, 0x6f, 0xba, 0x93, 0x60, 0xdc, - }, - { - /* x is zero, y is the result of the sqrt ladder; also on the curve for y^2 = x^3 - 7. */ - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x70, 0xac, 0x81, 0x10, 0x20, 0x3e, 0x9f, 0x95, 0xf8, 0xd8, 0x32, 0x96, 0x4b, 0x58, 0xcc, 0xc2, - 0xc7, 0x12, 0xbb, 0x1c, 0x6c, 0xd5, 0x8e, 0x86, 0x11, 0x34, 0xb4, 0x8f, 0x45, 0x6c, 0x9b, 0x53 - } - }; - const unsigned char pubkeyc[66] = { - /* Serialization of G. */ - 0x04, 0x79, 0xBE, 0x66, 0x7E, 0xF9, 0xDC, 0xBB, 0xAC, 0x55, 0xA0, 0x62, 0x95, 0xCE, 0x87, 0x0B, - 0x07, 0x02, 0x9B, 0xFC, 0xDB, 0x2D, 0xCE, 0x28, 0xD9, 0x59, 0xF2, 0x81, 0x5B, 0x16, 0xF8, 0x17, - 0x98, 0x48, 0x3A, 0xDA, 0x77, 0x26, 0xA3, 0xC4, 0x65, 0x5D, 0xA4, 0xFB, 0xFC, 0x0E, 0x11, 0x08, - 0xA8, 0xFD, 0x17, 0xB4, 0x48, 0xA6, 0x85, 0x54, 0x19, 0x9C, 0x47, 0xD0, 0x8F, 0xFB, 0x10, 0xD4, - 0xB8, 0x00 - }; - unsigned char sout[65]; - unsigned char shortkey[2]; - secp256k1_ge ge; - secp256k1_pubkey pubkey; - size_t len; - int32_t i; - int32_t ecount; - int32_t ecount2; - ecount = 0; - /* Nothing should be reading this far into pubkeyc. */ - VG_UNDEF(&pubkeyc[65], 1); - secp256k1_context_set_illegal_callback(ctx, counting_illegal_callback_fn, &ecount); - /* Zero length claimed, fail, zeroize, no illegal arg error. */ - memset(&pubkey, 0xfe, sizeof(pubkey)); - ecount = 0; - VG_UNDEF(shortkey, 2); - VG_UNDEF(&pubkey, sizeof(pubkey)); - CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, shortkey, 0) == 0); - VG_CHECK(&pubkey, sizeof(pubkey)); - CHECK(ecount == 0); - CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 0); - CHECK(ecount == 1); - /* Length one claimed, fail, zeroize, no illegal arg error. */ - for (i = 0; i < 256 ; i++) { - memset(&pubkey, 0xfe, sizeof(pubkey)); - ecount = 0; - shortkey[0] = i; - VG_UNDEF(&shortkey[1], 1); - VG_UNDEF(&pubkey, sizeof(pubkey)); - CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, shortkey, 1) == 0); - VG_CHECK(&pubkey, sizeof(pubkey)); - CHECK(ecount == 0); - CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 0); - CHECK(ecount == 1); - } - /* Length two claimed, fail, zeroize, no illegal arg error. */ - for (i = 0; i < 65536 ; i++) { - memset(&pubkey, 0xfe, sizeof(pubkey)); - ecount = 0; - shortkey[0] = i & 255; - shortkey[1] = i >> 8; - VG_UNDEF(&pubkey, sizeof(pubkey)); - CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, shortkey, 2) == 0); - VG_CHECK(&pubkey, sizeof(pubkey)); - CHECK(ecount == 0); - CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 0); - CHECK(ecount == 1); - } - memset(&pubkey, 0xfe, sizeof(pubkey)); - ecount = 0; - VG_UNDEF(&pubkey, sizeof(pubkey)); - /* 33 bytes claimed on otherwise valid input starting with 0x04, fail, zeroize output, no illegal arg error. */ - CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, 33) == 0); - VG_CHECK(&pubkey, sizeof(pubkey)); - CHECK(ecount == 0); - CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 0); - CHECK(ecount == 1); - /* NULL pubkey, illegal arg error. Pubkey isn't rewritten before this step, since it's NULL into the parser. */ - CHECK(secp256k1_ec_pubkey_parse(ctx, NULL, pubkeyc, 65) == 0); - CHECK(ecount == 2); - /* NULL input string. Illegal arg and zeroize output. */ - memset(&pubkey, 0xfe, sizeof(pubkey)); - ecount = 0; - VG_UNDEF(&pubkey, sizeof(pubkey)); - CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, NULL, 65) == 0); - VG_CHECK(&pubkey, sizeof(pubkey)); - CHECK(ecount == 1); - CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 0); - CHECK(ecount == 2); - /* 64 bytes claimed on input starting with 0x04, fail, zeroize output, no illegal arg error. */ - memset(&pubkey, 0xfe, sizeof(pubkey)); - ecount = 0; - VG_UNDEF(&pubkey, sizeof(pubkey)); - CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, 64) == 0); - VG_CHECK(&pubkey, sizeof(pubkey)); - CHECK(ecount == 0); - CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 0); - CHECK(ecount == 1); - /* 66 bytes claimed, fail, zeroize output, no illegal arg error. */ - memset(&pubkey, 0xfe, sizeof(pubkey)); - ecount = 0; - VG_UNDEF(&pubkey, sizeof(pubkey)); - CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, 66) == 0); - VG_CHECK(&pubkey, sizeof(pubkey)); - CHECK(ecount == 0); - CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 0); - CHECK(ecount == 1); - /* Valid parse. */ - memset(&pubkey, 0, sizeof(pubkey)); - ecount = 0; - VG_UNDEF(&pubkey, sizeof(pubkey)); - CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, 65) == 1); - VG_CHECK(&pubkey, sizeof(pubkey)); - CHECK(ecount == 0); - VG_UNDEF(&ge, sizeof(ge)); - CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 1); - VG_CHECK(&ge.x, sizeof(ge.x)); - VG_CHECK(&ge.y, sizeof(ge.y)); - VG_CHECK(&ge.infinity, sizeof(ge.infinity)); - ge_equals_ge(&secp256k1_ge_const_g, &ge); - CHECK(ecount == 0); - /* secp256k1_ec_pubkey_serialize illegal args. */ - ecount = 0; - len = 65; - CHECK(secp256k1_ec_pubkey_serialize(ctx, NULL, &len, &pubkey, SECP256K1_EC_UNCOMPRESSED) == 0); - CHECK(ecount == 1); - CHECK(len == 0); - CHECK(secp256k1_ec_pubkey_serialize(ctx, sout, NULL, &pubkey, SECP256K1_EC_UNCOMPRESSED) == 0); - CHECK(ecount == 2); - len = 65; - VG_UNDEF(sout, 65); - CHECK(secp256k1_ec_pubkey_serialize(ctx, sout, &len, NULL, SECP256K1_EC_UNCOMPRESSED) == 0); - VG_CHECK(sout, 65); - CHECK(ecount == 3); - CHECK(len == 0); - len = 65; - CHECK(secp256k1_ec_pubkey_serialize(ctx, sout, &len, &pubkey, ~0) == 0); - CHECK(ecount == 4); - CHECK(len == 0); - len = 65; - VG_UNDEF(sout, 65); - CHECK(secp256k1_ec_pubkey_serialize(ctx, sout, &len, &pubkey, SECP256K1_EC_UNCOMPRESSED) == 1); - VG_CHECK(sout, 65); - CHECK(ecount == 4); - CHECK(len == 65); - /* Multiple illegal args. Should still set arg error only once. */ - ecount = 0; - ecount2 = 11; - CHECK(secp256k1_ec_pubkey_parse(ctx, NULL, NULL, 65) == 0); - CHECK(ecount == 1); - /* Does the illegal arg callback actually change the behavior? */ - secp256k1_context_set_illegal_callback(ctx, uncounting_illegal_callback_fn, &ecount2); - CHECK(secp256k1_ec_pubkey_parse(ctx, NULL, NULL, 65) == 0); - CHECK(ecount == 1); - CHECK(ecount2 == 10); - secp256k1_context_set_illegal_callback(ctx, NULL, NULL); - /* Try a bunch of prefabbed points with all possible encodings. */ - for (i = 0; i < SECP256K1_EC_PARSE_TEST_NVALID; i++) { - ec_pubkey_parse_pointtest(valid[i], 1, 1); - } - for (i = 0; i < SECP256K1_EC_PARSE_TEST_NXVALID; i++) { - ec_pubkey_parse_pointtest(onlyxvalid[i], 1, 0); - } - for (i = 0; i < SECP256K1_EC_PARSE_TEST_NINVALID; i++) { - ec_pubkey_parse_pointtest(invalid[i], 0, 0); - } -} - -void run_eckey_edge_case_test(void) { - const unsigned char orderc[32] = { - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, - 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b, - 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x41 - }; - const unsigned char zeros[sizeof(secp256k1_pubkey)] = {0x00}; - unsigned char ctmp[33]; - unsigned char ctmp2[33]; - secp256k1_pubkey pubkey; - secp256k1_pubkey pubkey2; - secp256k1_pubkey pubkey_one; - secp256k1_pubkey pubkey_negone; - const secp256k1_pubkey *pubkeys[3]; - size_t len; - int32_t ecount; - /* Group order is too large, reject. */ - CHECK(secp256k1_ec_seckey_verify(ctx, orderc) == 0); - VG_UNDEF(&pubkey, sizeof(pubkey)); - CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, orderc) == 0); - VG_CHECK(&pubkey, sizeof(pubkey)); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); - /* Maximum value is too large, reject. */ - memset(ctmp, 255, 32); - CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 0); - memset(&pubkey, 1, sizeof(pubkey)); - VG_UNDEF(&pubkey, sizeof(pubkey)); - CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, ctmp) == 0); - VG_CHECK(&pubkey, sizeof(pubkey)); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); - /* Zero is too small, reject. */ - memset(ctmp, 0, 32); - CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 0); - memset(&pubkey, 1, sizeof(pubkey)); - VG_UNDEF(&pubkey, sizeof(pubkey)); - CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, ctmp) == 0); - VG_CHECK(&pubkey, sizeof(pubkey)); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); - /* One must be accepted. */ - ctmp[31] = 0x01; - CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 1); - memset(&pubkey, 0, sizeof(pubkey)); - VG_UNDEF(&pubkey, sizeof(pubkey)); - CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, ctmp) == 1); - VG_CHECK(&pubkey, sizeof(pubkey)); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0); - pubkey_one = pubkey; - /* Group order + 1 is too large, reject. */ - memcpy(ctmp, orderc, 32); - ctmp[31] = 0x42; - CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 0); - memset(&pubkey, 1, sizeof(pubkey)); - VG_UNDEF(&pubkey, sizeof(pubkey)); - CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, ctmp) == 0); - VG_CHECK(&pubkey, sizeof(pubkey)); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); - /* -1 must be accepted. */ - ctmp[31] = 0x40; - CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 1); - memset(&pubkey, 0, sizeof(pubkey)); - VG_UNDEF(&pubkey, sizeof(pubkey)); - CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, ctmp) == 1); - VG_CHECK(&pubkey, sizeof(pubkey)); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0); - pubkey_negone = pubkey; - /* Tweak of zero leaves the value unchanged. */ - memset(ctmp2, 0, 32); - CHECK(secp256k1_ec_privkey_tweak_add(ctx, ctmp, ctmp2) == 1); - CHECK(memcmp(orderc, ctmp, 31) == 0 && ctmp[31] == 0x40); - memcpy(&pubkey2, &pubkey, sizeof(pubkey)); - CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 1); - CHECK(memcmp(&pubkey, &pubkey2, sizeof(pubkey)) == 0); - /* Multiply tweak of zero zeroizes the output. */ - CHECK(secp256k1_ec_privkey_tweak_mul(ctx, ctmp, ctmp2) == 0); - CHECK(memcmp(zeros, ctmp, 32) == 0); - CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, ctmp2) == 0); - CHECK(memcmp(&pubkey, zeros, sizeof(pubkey)) == 0); - memcpy(&pubkey, &pubkey2, sizeof(pubkey)); - /* Overflowing key tweak zeroizes. */ - memcpy(ctmp, orderc, 32); - ctmp[31] = 0x40; - CHECK(secp256k1_ec_privkey_tweak_add(ctx, ctmp, orderc) == 0); - CHECK(memcmp(zeros, ctmp, 32) == 0); - memcpy(ctmp, orderc, 32); - ctmp[31] = 0x40; - CHECK(secp256k1_ec_privkey_tweak_mul(ctx, ctmp, orderc) == 0); - CHECK(memcmp(zeros, ctmp, 32) == 0); - memcpy(ctmp, orderc, 32); - ctmp[31] = 0x40; - CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, orderc) == 0); - CHECK(memcmp(&pubkey, zeros, sizeof(pubkey)) == 0); - memcpy(&pubkey, &pubkey2, sizeof(pubkey)); - CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, orderc) == 0); - CHECK(memcmp(&pubkey, zeros, sizeof(pubkey)) == 0); - memcpy(&pubkey, &pubkey2, sizeof(pubkey)); - /* Private key tweaks results in a key of zero. */ - ctmp2[31] = 1; - CHECK(secp256k1_ec_privkey_tweak_add(ctx, ctmp2, ctmp) == 0); - CHECK(memcmp(zeros, ctmp2, 32) == 0); - ctmp2[31] = 1; - CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 0); - CHECK(memcmp(&pubkey, zeros, sizeof(pubkey)) == 0); - memcpy(&pubkey, &pubkey2, sizeof(pubkey)); - /* Tweak computation wraps and results in a key of 1. */ - ctmp2[31] = 2; - CHECK(secp256k1_ec_privkey_tweak_add(ctx, ctmp2, ctmp) == 1); - CHECK(memcmp(ctmp2, zeros, 31) == 0 && ctmp2[31] == 1); - ctmp2[31] = 2; - CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 1); - ctmp2[31] = 1; - CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey2, ctmp2) == 1); - CHECK(memcmp(&pubkey, &pubkey2, sizeof(pubkey)) == 0); - /* Tweak mul * 2 = 1+1. */ - CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 1); - ctmp2[31] = 2; - CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey2, ctmp2) == 1); - CHECK(memcmp(&pubkey, &pubkey2, sizeof(pubkey)) == 0); - /* Test argument errors. */ - ecount = 0; - secp256k1_context_set_illegal_callback(ctx, counting_illegal_callback_fn, &ecount); - CHECK(ecount == 0); - /* Zeroize pubkey on parse error. */ - memset(&pubkey, 0, 32); - CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 0); - CHECK(ecount == 1); - CHECK(memcmp(&pubkey, zeros, sizeof(pubkey)) == 0); - memcpy(&pubkey, &pubkey2, sizeof(pubkey)); - memset(&pubkey2, 0, 32); - CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey2, ctmp2) == 0); - CHECK(ecount == 2); - CHECK(memcmp(&pubkey2, zeros, sizeof(pubkey2)) == 0); - /* Plain argument errors. */ - ecount = 0; - CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 1); - CHECK(ecount == 0); - CHECK(secp256k1_ec_seckey_verify(ctx, NULL) == 0); - CHECK(ecount == 1); - ecount = 0; - memset(ctmp2, 0, 32); - ctmp2[31] = 4; - CHECK(secp256k1_ec_pubkey_tweak_add(ctx, NULL, ctmp2) == 0); - CHECK(ecount == 1); - CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, NULL) == 0); - CHECK(ecount == 2); - ecount = 0; - memset(ctmp2, 0, 32); - ctmp2[31] = 4; - CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, NULL, ctmp2) == 0); - CHECK(ecount == 1); - CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, NULL) == 0); - CHECK(ecount == 2); - ecount = 0; - memset(ctmp2, 0, 32); - CHECK(secp256k1_ec_privkey_tweak_add(ctx, NULL, ctmp2) == 0); - CHECK(ecount == 1); - CHECK(secp256k1_ec_privkey_tweak_add(ctx, ctmp, NULL) == 0); - CHECK(ecount == 2); - ecount = 0; - memset(ctmp2, 0, 32); - ctmp2[31] = 1; - CHECK(secp256k1_ec_privkey_tweak_mul(ctx, NULL, ctmp2) == 0); - CHECK(ecount == 1); - CHECK(secp256k1_ec_privkey_tweak_mul(ctx, ctmp, NULL) == 0); - CHECK(ecount == 2); - ecount = 0; - CHECK(secp256k1_ec_pubkey_create(ctx, NULL, ctmp) == 0); - CHECK(ecount == 1); - memset(&pubkey, 1, sizeof(pubkey)); - CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, NULL) == 0); - CHECK(ecount == 2); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); - /* secp256k1_ec_pubkey_combine tests. */ - ecount = 0; - pubkeys[0] = &pubkey_one; - VG_UNDEF(&pubkeys[0], sizeof(secp256k1_pubkey *)); - VG_UNDEF(&pubkeys[1], sizeof(secp256k1_pubkey *)); - VG_UNDEF(&pubkeys[2], sizeof(secp256k1_pubkey *)); - memset(&pubkey, 255, sizeof(secp256k1_pubkey)); - VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey)); - CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, pubkeys, 0) == 0); - VG_CHECK(&pubkey, sizeof(secp256k1_pubkey)); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); - CHECK(ecount == 1); - CHECK(secp256k1_ec_pubkey_combine(ctx, NULL, pubkeys, 1) == 0); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); - CHECK(ecount == 2); - memset(&pubkey, 255, sizeof(secp256k1_pubkey)); - VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey)); - CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, NULL, 1) == 0); - VG_CHECK(&pubkey, sizeof(secp256k1_pubkey)); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); - CHECK(ecount == 3); - pubkeys[0] = &pubkey_negone; - memset(&pubkey, 255, sizeof(secp256k1_pubkey)); - VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey)); - CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, pubkeys, 1) == 1); - VG_CHECK(&pubkey, sizeof(secp256k1_pubkey)); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0); - CHECK(ecount == 3); - len = 33; - CHECK(secp256k1_ec_pubkey_serialize(ctx, ctmp, &len, &pubkey, SECP256K1_EC_COMPRESSED) == 1); - CHECK(secp256k1_ec_pubkey_serialize(ctx, ctmp2, &len, &pubkey_negone, SECP256K1_EC_COMPRESSED) == 1); - CHECK(memcmp(ctmp, ctmp2, 33) == 0); - /* Result is infinity. */ - pubkeys[0] = &pubkey_one; - pubkeys[1] = &pubkey_negone; - memset(&pubkey, 255, sizeof(secp256k1_pubkey)); - VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey)); - CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, pubkeys, 2) == 0); - VG_CHECK(&pubkey, sizeof(secp256k1_pubkey)); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); - CHECK(ecount == 3); - /* Passes through infinity but comes out one. */ - pubkeys[2] = &pubkey_one; - memset(&pubkey, 255, sizeof(secp256k1_pubkey)); - VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey)); - CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, pubkeys, 3) == 1); - VG_CHECK(&pubkey, sizeof(secp256k1_pubkey)); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0); - CHECK(ecount == 3); - len = 33; - CHECK(secp256k1_ec_pubkey_serialize(ctx, ctmp, &len, &pubkey, SECP256K1_EC_COMPRESSED) == 1); - CHECK(secp256k1_ec_pubkey_serialize(ctx, ctmp2, &len, &pubkey_one, SECP256K1_EC_COMPRESSED) == 1); - CHECK(memcmp(ctmp, ctmp2, 33) == 0); - /* Adds to two. */ - pubkeys[1] = &pubkey_one; - memset(&pubkey, 255, sizeof(secp256k1_pubkey)); - VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey)); - CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, pubkeys, 2) == 1); - VG_CHECK(&pubkey, sizeof(secp256k1_pubkey)); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0); - CHECK(ecount == 3); - secp256k1_context_set_illegal_callback(ctx, NULL, NULL); -} - -void random_sign(secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *key, const secp256k1_scalar *msg, int *recid) { - secp256k1_scalar nonce; - do { - random_scalar_order_test(&nonce); - } while(!secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, sigr, sigs, key, msg, &nonce, recid)); -} - -void test_ecdsa_sign_verify(void) { - secp256k1_gej pubj; - secp256k1_ge pub; - secp256k1_scalar one; - secp256k1_scalar msg, key; - secp256k1_scalar sigr, sigs; - int recid; - int getrec; - random_scalar_order_test(&msg); - random_scalar_order_test(&key); - secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pubj, &key); - secp256k1_ge_set_gej(&pub, &pubj); - getrec = secp256k1_rand_bits(1); - random_sign(&sigr, &sigs, &key, &msg, getrec?&recid:NULL); - if (getrec) { - CHECK(recid >= 0 && recid < 4); - } - CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sigr, &sigs, &pub, &msg)); - secp256k1_scalar_set_int(&one, 1); - secp256k1_scalar_add(&msg, &msg, &one); - CHECK(!secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sigr, &sigs, &pub, &msg)); -} - -void run_ecdsa_sign_verify(void) { - int i; - for (i = 0; i < 10*count; i++) { - test_ecdsa_sign_verify(); - } -} - -/** Dummy nonce generation function that just uses a precomputed nonce, and fails if it is not accepted. Use only for testing. */ -static int precomputed_nonce_function(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) { - (void)msg32; - (void)key32; - (void)algo16; - memcpy(nonce32, data, 32); - return (counter == 0); -} - -static int nonce_function_test_fail(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) { - /* Dummy nonce generator that has a fatal error on the first counter value. */ - if (counter == 0) { - return 0; - } - return nonce_function_rfc6979(nonce32, msg32, key32, algo16, data, counter - 1); -} - -static int nonce_function_test_retry(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) { - /* Dummy nonce generator that produces unacceptable nonces for the first several counter values. */ - if (counter < 3) { - memset(nonce32, counter==0 ? 0 : 255, 32); - if (counter == 2) { - nonce32[31]--; - } - return 1; - } - if (counter < 5) { - static const unsigned char order[] = { - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE, - 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B, - 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41 - }; - memcpy(nonce32, order, 32); - if (counter == 4) { - nonce32[31]++; - } - return 1; - } - /* Retry rate of 6979 is negligible esp. as we only call this in deterministic tests. */ - /* If someone does fine a case where it retries for secp256k1, we'd like to know. */ - if (counter > 5) { - return 0; - } - return nonce_function_rfc6979(nonce32, msg32, key32, algo16, data, counter - 5); -} - -int is_empty_signature(const secp256k1_ecdsa_signature *sig) { - static const unsigned char res[sizeof(secp256k1_ecdsa_signature)] = {0}; - return memcmp(sig, res, sizeof(secp256k1_ecdsa_signature)) == 0; -} - -void test_ecdsa_end_to_end(void) { - unsigned char extra[32] = {0x00}; - unsigned char privkey[32]; - unsigned char message[32]; - unsigned char privkey2[32]; - secp256k1_ecdsa_signature signature[6]; - secp256k1_scalar r, s; - unsigned char sig[74]; - size_t siglen = 74; - unsigned char pubkeyc[65]; - size_t pubkeyclen = 65; - secp256k1_pubkey pubkey; - secp256k1_pubkey pubkey_tmp; - unsigned char seckey[300]; - size_t seckeylen = 300; - - /* Generate a random key and message. */ - { - secp256k1_scalar msg, key; - random_scalar_order_test(&msg); - random_scalar_order_test(&key); - secp256k1_scalar_get_b32(privkey, &key); - secp256k1_scalar_get_b32(message, &msg); - } - - /* Construct and verify corresponding public key. */ - CHECK(secp256k1_ec_seckey_verify(ctx, privkey) == 1); - CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, privkey) == 1); - - /* Verify exporting and importing public key. */ - CHECK(secp256k1_ec_pubkey_serialize(ctx, pubkeyc, &pubkeyclen, &pubkey, secp256k1_rand_bits(1) == 1 ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED)); - memset(&pubkey, 0, sizeof(pubkey)); - CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, pubkeyclen) == 1); - - /* Verify negation changes the key and changes it back */ - memcpy(&pubkey_tmp, &pubkey, sizeof(pubkey)); - CHECK(secp256k1_ec_pubkey_negate(ctx, &pubkey_tmp) == 1); - CHECK(memcmp(&pubkey_tmp, &pubkey, sizeof(pubkey)) != 0); - CHECK(secp256k1_ec_pubkey_negate(ctx, &pubkey_tmp) == 1); - CHECK(memcmp(&pubkey_tmp, &pubkey, sizeof(pubkey)) == 0); - - /* Verify private key import and export. */ - CHECK(ec_privkey_export_der(ctx, seckey, &seckeylen, privkey, secp256k1_rand_bits(1) == 1)); - CHECK(ec_privkey_import_der(ctx, privkey2, seckey, seckeylen) == 1); - CHECK(memcmp(privkey, privkey2, 32) == 0); - - /* Optionally tweak the keys using addition. */ - if (secp256k1_rand_int(3) == 0) { - int ret1; - int ret2; - unsigned char rnd[32]; - secp256k1_pubkey pubkey2; - secp256k1_rand256_test(rnd); - ret1 = secp256k1_ec_privkey_tweak_add(ctx, privkey, rnd); - ret2 = secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, rnd); - CHECK(ret1 == ret2); - if (ret1 == 0) { - return; - } - CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey2, privkey) == 1); - CHECK(memcmp(&pubkey, &pubkey2, sizeof(pubkey)) == 0); - } - - /* Optionally tweak the keys using multiplication. */ - if (secp256k1_rand_int(3) == 0) { - int ret1; - int ret2; - unsigned char rnd[32]; - secp256k1_pubkey pubkey2; - secp256k1_rand256_test(rnd); - ret1 = secp256k1_ec_privkey_tweak_mul(ctx, privkey, rnd); - ret2 = secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, rnd); - CHECK(ret1 == ret2); - if (ret1 == 0) { - return; - } - CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey2, privkey) == 1); - CHECK(memcmp(&pubkey, &pubkey2, sizeof(pubkey)) == 0); - } - - /* Sign. */ - CHECK(secp256k1_ecdsa_sign(ctx, &signature[0], message, privkey, NULL, NULL) == 1); - CHECK(secp256k1_ecdsa_sign(ctx, &signature[4], message, privkey, NULL, NULL) == 1); - CHECK(secp256k1_ecdsa_sign(ctx, &signature[1], message, privkey, NULL, extra) == 1); - extra[31] = 1; - CHECK(secp256k1_ecdsa_sign(ctx, &signature[2], message, privkey, NULL, extra) == 1); - extra[31] = 0; - extra[0] = 1; - CHECK(secp256k1_ecdsa_sign(ctx, &signature[3], message, privkey, NULL, extra) == 1); - CHECK(memcmp(&signature[0], &signature[4], sizeof(signature[0])) == 0); - CHECK(memcmp(&signature[0], &signature[1], sizeof(signature[0])) != 0); - CHECK(memcmp(&signature[0], &signature[2], sizeof(signature[0])) != 0); - CHECK(memcmp(&signature[0], &signature[3], sizeof(signature[0])) != 0); - CHECK(memcmp(&signature[1], &signature[2], sizeof(signature[0])) != 0); - CHECK(memcmp(&signature[1], &signature[3], sizeof(signature[0])) != 0); - CHECK(memcmp(&signature[2], &signature[3], sizeof(signature[0])) != 0); - /* Verify. */ - CHECK(secp256k1_ecdsa_verify(ctx, &signature[0], message, &pubkey) == 1); - CHECK(secp256k1_ecdsa_verify(ctx, &signature[1], message, &pubkey) == 1); - CHECK(secp256k1_ecdsa_verify(ctx, &signature[2], message, &pubkey) == 1); - CHECK(secp256k1_ecdsa_verify(ctx, &signature[3], message, &pubkey) == 1); - /* Test lower-S form, malleate, verify and fail, test again, malleate again */ - CHECK(!secp256k1_ecdsa_signature_normalize(ctx, NULL, &signature[0])); - secp256k1_ecdsa_signature_load(ctx, &r, &s, &signature[0]); - secp256k1_scalar_negate(&s, &s); - secp256k1_ecdsa_signature_save(&signature[5], &r, &s); - CHECK(secp256k1_ecdsa_verify(ctx, &signature[5], message, &pubkey) == 0); - CHECK(secp256k1_ecdsa_signature_normalize(ctx, NULL, &signature[5])); - CHECK(secp256k1_ecdsa_signature_normalize(ctx, &signature[5], &signature[5])); - CHECK(!secp256k1_ecdsa_signature_normalize(ctx, NULL, &signature[5])); - CHECK(!secp256k1_ecdsa_signature_normalize(ctx, &signature[5], &signature[5])); - CHECK(secp256k1_ecdsa_verify(ctx, &signature[5], message, &pubkey) == 1); - secp256k1_scalar_negate(&s, &s); - secp256k1_ecdsa_signature_save(&signature[5], &r, &s); - CHECK(!secp256k1_ecdsa_signature_normalize(ctx, NULL, &signature[5])); - CHECK(secp256k1_ecdsa_verify(ctx, &signature[5], message, &pubkey) == 1); - CHECK(memcmp(&signature[5], &signature[0], 64) == 0); - - /* Serialize/parse DER and verify again */ - CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, sig, &siglen, &signature[0]) == 1); - memset(&signature[0], 0, sizeof(signature[0])); - CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &signature[0], sig, siglen) == 1); - CHECK(secp256k1_ecdsa_verify(ctx, &signature[0], message, &pubkey) == 1); - /* Serialize/destroy/parse DER and verify again. */ - siglen = 74; - CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, sig, &siglen, &signature[0]) == 1); - sig[secp256k1_rand_int(siglen)] += 1 + secp256k1_rand_int(255); - CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &signature[0], sig, siglen) == 0 || - secp256k1_ecdsa_verify(ctx, &signature[0], message, &pubkey) == 0); -} - -void test_random_pubkeys(void) { - secp256k1_ge elem; - secp256k1_ge elem2; - unsigned char in[65]; - /* Generate some randomly sized pubkeys. */ - size_t len = secp256k1_rand_bits(2) == 0 ? 65 : 33; - if (secp256k1_rand_bits(2) == 0) { - len = secp256k1_rand_bits(6); - } - if (len == 65) { - in[0] = secp256k1_rand_bits(1) ? 4 : (secp256k1_rand_bits(1) ? 6 : 7); - } else { - in[0] = secp256k1_rand_bits(1) ? 2 : 3; - } - if (secp256k1_rand_bits(3) == 0) { - in[0] = secp256k1_rand_bits(8); - } - if (len > 1) { - secp256k1_rand256(&in[1]); - } - if (len > 33) { - secp256k1_rand256(&in[33]); - } - if (secp256k1_eckey_pubkey_parse(&elem, in, len)) { - unsigned char out[65]; - unsigned char firstb; - int res; - size_t size = len; - firstb = in[0]; - /* If the pubkey can be parsed, it should round-trip... */ - CHECK(secp256k1_eckey_pubkey_serialize(&elem, out, &size, len == 33)); - CHECK(size == len); - CHECK(memcmp(&in[1], &out[1], len-1) == 0); - /* ... except for the type of hybrid inputs. */ - if ((in[0] != 6) && (in[0] != 7)) { - CHECK(in[0] == out[0]); - } - size = 65; - CHECK(secp256k1_eckey_pubkey_serialize(&elem, in, &size, 0)); - CHECK(size == 65); - CHECK(secp256k1_eckey_pubkey_parse(&elem2, in, size)); - ge_equals_ge(&elem,&elem2); - /* Check that the X9.62 hybrid type is checked. */ - in[0] = secp256k1_rand_bits(1) ? 6 : 7; - res = secp256k1_eckey_pubkey_parse(&elem2, in, size); - if (firstb == 2 || firstb == 3) { - if (in[0] == firstb + 4) { - CHECK(res); - } else { - CHECK(!res); - } - } - if (res) { - ge_equals_ge(&elem,&elem2); - CHECK(secp256k1_eckey_pubkey_serialize(&elem, out, &size, 0)); - CHECK(memcmp(&in[1], &out[1], 64) == 0); - } - } -} - -void run_random_pubkeys(void) { - int i; - for (i = 0; i < 10*count; i++) { - test_random_pubkeys(); - } -} - -void run_ecdsa_end_to_end(void) { - int i; - for (i = 0; i < 64*count; i++) { - test_ecdsa_end_to_end(); - } -} - -int test_ecdsa_der_parse(const unsigned char *sig, size_t siglen, int certainly_der, int certainly_not_der) { - static const unsigned char zeroes[32] = {0}; -#ifdef ENABLE_OPENSSL_TESTS - static const unsigned char max_scalar[32] = { - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, - 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b, - 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x40 - }; -#endif - - int ret = 0; - - secp256k1_ecdsa_signature sig_der; - unsigned char roundtrip_der[2048]; - unsigned char compact_der[64]; - size_t len_der = 2048; - int parsed_der = 0, valid_der = 0, roundtrips_der = 0; - - secp256k1_ecdsa_signature sig_der_lax; - unsigned char roundtrip_der_lax[2048]; - unsigned char compact_der_lax[64]; - size_t len_der_lax = 2048; - int parsed_der_lax = 0, valid_der_lax = 0, roundtrips_der_lax = 0; - -#ifdef ENABLE_OPENSSL_TESTS - ECDSA_SIG *sig_openssl; - const BIGNUM *r = NULL, *s = NULL; - const unsigned char *sigptr; - unsigned char roundtrip_openssl[2048]; - int len_openssl = 2048; - int parsed_openssl, valid_openssl = 0, roundtrips_openssl = 0; -#endif - - parsed_der = secp256k1_ecdsa_signature_parse_der(ctx, &sig_der, sig, siglen); - if (parsed_der) { - ret |= (!secp256k1_ecdsa_signature_serialize_compact(ctx, compact_der, &sig_der)) << 0; - valid_der = (memcmp(compact_der, zeroes, 32) != 0) && (memcmp(compact_der + 32, zeroes, 32) != 0); - } - if (valid_der) { - ret |= (!secp256k1_ecdsa_signature_serialize_der(ctx, roundtrip_der, &len_der, &sig_der)) << 1; - roundtrips_der = (len_der == siglen) && memcmp(roundtrip_der, sig, siglen) == 0; - } - - parsed_der_lax = ecdsa_signature_parse_der_lax(ctx, &sig_der_lax, sig, siglen); - if (parsed_der_lax) { - ret |= (!secp256k1_ecdsa_signature_serialize_compact(ctx, compact_der_lax, &sig_der_lax)) << 10; - valid_der_lax = (memcmp(compact_der_lax, zeroes, 32) != 0) && (memcmp(compact_der_lax + 32, zeroes, 32) != 0); - } - if (valid_der_lax) { - ret |= (!secp256k1_ecdsa_signature_serialize_der(ctx, roundtrip_der_lax, &len_der_lax, &sig_der_lax)) << 11; - roundtrips_der_lax = (len_der_lax == siglen) && memcmp(roundtrip_der_lax, sig, siglen) == 0; - } - - if (certainly_der) { - ret |= (!parsed_der) << 2; - } - if (certainly_not_der) { - ret |= (parsed_der) << 17; - } - if (valid_der) { - ret |= (!roundtrips_der) << 3; - } - - if (valid_der) { - ret |= (!roundtrips_der_lax) << 12; - ret |= (len_der != len_der_lax) << 13; - ret |= (memcmp(roundtrip_der_lax, roundtrip_der, len_der) != 0) << 14; - } - ret |= (roundtrips_der != roundtrips_der_lax) << 15; - if (parsed_der) { - ret |= (!parsed_der_lax) << 16; - } - -#ifdef ENABLE_OPENSSL_TESTS - sig_openssl = ECDSA_SIG_new(); - sigptr = sig; - parsed_openssl = (d2i_ECDSA_SIG(&sig_openssl, &sigptr, siglen) != NULL); - if (parsed_openssl) { - ECDSA_SIG_get0(sig_openssl, &r, &s); - valid_openssl = !BN_is_negative(r) && !BN_is_negative(s) && BN_num_bits(r) > 0 && BN_num_bits(r) <= 256 && BN_num_bits(s) > 0 && BN_num_bits(s) <= 256; - if (valid_openssl) { - unsigned char tmp[32] = {0}; - BN_bn2bin(r, tmp + 32 - BN_num_bytes(r)); - valid_openssl = memcmp(tmp, max_scalar, 32) < 0; - } - if (valid_openssl) { - unsigned char tmp[32] = {0}; - BN_bn2bin(s, tmp + 32 - BN_num_bytes(s)); - valid_openssl = memcmp(tmp, max_scalar, 32) < 0; - } - } - len_openssl = i2d_ECDSA_SIG(sig_openssl, NULL); - if (len_openssl <= 2048) { - unsigned char *ptr = roundtrip_openssl; - CHECK(i2d_ECDSA_SIG(sig_openssl, &ptr) == len_openssl); - roundtrips_openssl = valid_openssl && ((size_t)len_openssl == siglen) && (memcmp(roundtrip_openssl, sig, siglen) == 0); - } else { - len_openssl = 0; - } - ECDSA_SIG_free(sig_openssl); - - ret |= (parsed_der && !parsed_openssl) << 4; - ret |= (valid_der && !valid_openssl) << 5; - ret |= (roundtrips_openssl && !parsed_der) << 6; - ret |= (roundtrips_der != roundtrips_openssl) << 7; - if (roundtrips_openssl) { - ret |= (len_der != (size_t)len_openssl) << 8; - ret |= (memcmp(roundtrip_der, roundtrip_openssl, len_der) != 0) << 9; - } -#endif - return ret; -} - -static void assign_big_endian(unsigned char *ptr, size_t ptrlen, uint32_t val) { - size_t i; - for (i = 0; i < ptrlen; i++) { - int shift = ptrlen - 1 - i; - if (shift >= 4) { - ptr[i] = 0; - } else { - ptr[i] = (val >> shift) & 0xFF; - } - } -} - -static void damage_array(unsigned char *sig, size_t *len) { - int pos; - int action = secp256k1_rand_bits(3); - if (action < 1 && *len > 3) { - /* Delete a byte. */ - pos = secp256k1_rand_int(*len); - memmove(sig + pos, sig + pos + 1, *len - pos - 1); - (*len)--; - return; - } else if (action < 2 && *len < 2048) { - /* Insert a byte. */ - pos = secp256k1_rand_int(1 + *len); - memmove(sig + pos + 1, sig + pos, *len - pos); - sig[pos] = secp256k1_rand_bits(8); - (*len)++; - return; - } else if (action < 4) { - /* Modify a byte. */ - sig[secp256k1_rand_int(*len)] += 1 + secp256k1_rand_int(255); - return; - } else { /* action < 8 */ - /* Modify a bit. */ - sig[secp256k1_rand_int(*len)] ^= 1 << secp256k1_rand_bits(3); - return; - } -} - -static void random_ber_signature(unsigned char *sig, size_t *len, int* certainly_der, int* certainly_not_der) { - int der; - int nlow[2], nlen[2], nlenlen[2], nhbit[2], nhbyte[2], nzlen[2]; - size_t tlen, elen, glen; - int indet; - int n; - - *len = 0; - der = secp256k1_rand_bits(2) == 0; - *certainly_der = der; - *certainly_not_der = 0; - indet = der ? 0 : secp256k1_rand_int(10) == 0; - - for (n = 0; n < 2; n++) { - /* We generate two classes of numbers: nlow==1 "low" ones (up to 32 bytes), nlow==0 "high" ones (32 bytes with 129 top bits set, or larger than 32 bytes) */ - nlow[n] = der ? 1 : (secp256k1_rand_bits(3) != 0); - /* The length of the number in bytes (the first byte of which will always be nonzero) */ - nlen[n] = nlow[n] ? secp256k1_rand_int(33) : 32 + secp256k1_rand_int(200) * secp256k1_rand_int(8) / 8; - CHECK(nlen[n] <= 232); - /* The top bit of the number. */ - nhbit[n] = (nlow[n] == 0 && nlen[n] == 32) ? 1 : (nlen[n] == 0 ? 0 : secp256k1_rand_bits(1)); - /* The top byte of the number (after the potential hardcoded 16 0xFF characters for "high" 32 bytes numbers) */ - nhbyte[n] = nlen[n] == 0 ? 0 : (nhbit[n] ? 128 + secp256k1_rand_bits(7) : 1 + secp256k1_rand_int(127)); - /* The number of zero bytes in front of the number (which is 0 or 1 in case of DER, otherwise we extend up to 300 bytes) */ - nzlen[n] = der ? ((nlen[n] == 0 || nhbit[n]) ? 1 : 0) : (nlow[n] ? secp256k1_rand_int(3) : secp256k1_rand_int(300 - nlen[n]) * secp256k1_rand_int(8) / 8); - if (nzlen[n] > ((nlen[n] == 0 || nhbit[n]) ? 1 : 0)) { - *certainly_not_der = 1; - } - CHECK(nlen[n] + nzlen[n] <= 300); - /* The length of the length descriptor for the number. 0 means short encoding, anything else is long encoding. */ - nlenlen[n] = nlen[n] + nzlen[n] < 128 ? 0 : (nlen[n] + nzlen[n] < 256 ? 1 : 2); - if (!der) { - /* nlenlen[n] max 127 bytes */ - int add = secp256k1_rand_int(127 - nlenlen[n]) * secp256k1_rand_int(16) * secp256k1_rand_int(16) / 256; - nlenlen[n] += add; - if (add != 0) { - *certainly_not_der = 1; - } - } - CHECK(nlen[n] + nzlen[n] + nlenlen[n] <= 427); - } - - /* The total length of the data to go, so far */ - tlen = 2 + nlenlen[0] + nlen[0] + nzlen[0] + 2 + nlenlen[1] + nlen[1] + nzlen[1]; - CHECK(tlen <= 856); - - /* The length of the garbage inside the tuple. */ - elen = (der || indet) ? 0 : secp256k1_rand_int(980 - tlen) * secp256k1_rand_int(8) / 8; - if (elen != 0) { - *certainly_not_der = 1; - } - tlen += elen; - CHECK(tlen <= 980); - - /* The length of the garbage after the end of the tuple. */ - glen = der ? 0 : secp256k1_rand_int(990 - tlen) * secp256k1_rand_int(8) / 8; - if (glen != 0) { - *certainly_not_der = 1; - } - CHECK(tlen + glen <= 990); - - /* Write the tuple header. */ - sig[(*len)++] = 0x30; - if (indet) { - /* Indeterminate length */ - sig[(*len)++] = 0x80; - *certainly_not_der = 1; - } else { - int tlenlen = tlen < 128 ? 0 : (tlen < 256 ? 1 : 2); - if (!der) { - int add = secp256k1_rand_int(127 - tlenlen) * secp256k1_rand_int(16) * secp256k1_rand_int(16) / 256; - tlenlen += add; - if (add != 0) { - *certainly_not_der = 1; - } - } - if (tlenlen == 0) { - /* Short length notation */ - sig[(*len)++] = tlen; - } else { - /* Long length notation */ - sig[(*len)++] = 128 + tlenlen; - assign_big_endian(sig + *len, tlenlen, tlen); - *len += tlenlen; - } - tlen += tlenlen; - } - tlen += 2; - CHECK(tlen + glen <= 1119); - - for (n = 0; n < 2; n++) { - /* Write the integer header. */ - sig[(*len)++] = 0x02; - if (nlenlen[n] == 0) { - /* Short length notation */ - sig[(*len)++] = nlen[n] + nzlen[n]; - } else { - /* Long length notation. */ - sig[(*len)++] = 128 + nlenlen[n]; - assign_big_endian(sig + *len, nlenlen[n], nlen[n] + nzlen[n]); - *len += nlenlen[n]; - } - /* Write zero padding */ - while (nzlen[n] > 0) { - sig[(*len)++] = 0x00; - nzlen[n]--; - } - if (nlen[n] == 32 && !nlow[n]) { - /* Special extra 16 0xFF bytes in "high" 32-byte numbers */ - int i; - for (i = 0; i < 16; i++) { - sig[(*len)++] = 0xFF; - } - nlen[n] -= 16; - } - /* Write first byte of number */ - if (nlen[n] > 0) { - sig[(*len)++] = nhbyte[n]; - nlen[n]--; - } - /* Generate remaining random bytes of number */ - secp256k1_rand_bytes_test(sig + *len, nlen[n]); - *len += nlen[n]; - nlen[n] = 0; - } - - /* Generate random garbage inside tuple. */ - secp256k1_rand_bytes_test(sig + *len, elen); - *len += elen; - - /* Generate end-of-contents bytes. */ - if (indet) { - sig[(*len)++] = 0; - sig[(*len)++] = 0; - tlen += 2; - } - CHECK(tlen + glen <= 1121); - - /* Generate random garbage outside tuple. */ - secp256k1_rand_bytes_test(sig + *len, glen); - *len += glen; - tlen += glen; - CHECK(tlen <= 1121); - CHECK(tlen == *len); -} - -void run_ecdsa_der_parse(void) { - int i,j; - for (i = 0; i < 200 * count; i++) { - unsigned char buffer[2048]; - size_t buflen = 0; - int certainly_der = 0; - int certainly_not_der = 0; - random_ber_signature(buffer, &buflen, &certainly_der, &certainly_not_der); - CHECK(buflen <= 2048); - for (j = 0; j < 16; j++) { - int ret = 0; - if (j > 0) { - damage_array(buffer, &buflen); - /* We don't know anything anymore about the DERness of the result */ - certainly_der = 0; - certainly_not_der = 0; - } - ret = test_ecdsa_der_parse(buffer, buflen, certainly_der, certainly_not_der); - if (ret != 0) { - size_t k; - fprintf(stderr, "Failure %x on ", ret); - for (k = 0; k < buflen; k++) { - fprintf(stderr, "%02x ", buffer[k]); - } - fprintf(stderr, "\n"); - } - CHECK(ret == 0); - } - } -} - -/* Tests several edge cases. */ -void test_ecdsa_edge_cases(void) { - int t; - secp256k1_ecdsa_signature sig; - - /* Test the case where ECDSA recomputes a point that is infinity. */ - { - secp256k1_gej keyj; - secp256k1_ge key; - secp256k1_scalar msg; - secp256k1_scalar sr, ss; - secp256k1_scalar_set_int(&ss, 1); - secp256k1_scalar_negate(&ss, &ss); - secp256k1_scalar_inverse(&ss, &ss); - secp256k1_scalar_set_int(&sr, 1); - secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &keyj, &sr); - secp256k1_ge_set_gej(&key, &keyj); - msg = ss; - CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 0); - } - - /* Verify signature with r of zero fails. */ - { - const unsigned char pubkey_mods_zero[33] = { - 0x02, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xfe, 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, - 0x3b, 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, - 0x41 - }; - secp256k1_ge key; - secp256k1_scalar msg; - secp256k1_scalar sr, ss; - secp256k1_scalar_set_int(&ss, 1); - secp256k1_scalar_set_int(&msg, 0); - secp256k1_scalar_set_int(&sr, 0); - CHECK(secp256k1_eckey_pubkey_parse(&key, pubkey_mods_zero, 33)); - CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 0); - } - - /* Verify signature with s of zero fails. */ - { - const unsigned char pubkey[33] = { - 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x01 - }; - secp256k1_ge key; - secp256k1_scalar msg; - secp256k1_scalar sr, ss; - secp256k1_scalar_set_int(&ss, 0); - secp256k1_scalar_set_int(&msg, 0); - secp256k1_scalar_set_int(&sr, 1); - CHECK(secp256k1_eckey_pubkey_parse(&key, pubkey, 33)); - CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 0); - } - - /* Verify signature with message 0 passes. */ - { - const unsigned char pubkey[33] = { - 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x02 - }; - const unsigned char pubkey2[33] = { - 0x02, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xfe, 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, - 0x3b, 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, - 0x43 - }; - secp256k1_ge key; - secp256k1_ge key2; - secp256k1_scalar msg; - secp256k1_scalar sr, ss; - secp256k1_scalar_set_int(&ss, 2); - secp256k1_scalar_set_int(&msg, 0); - secp256k1_scalar_set_int(&sr, 2); - CHECK(secp256k1_eckey_pubkey_parse(&key, pubkey, 33)); - CHECK(secp256k1_eckey_pubkey_parse(&key2, pubkey2, 33)); - CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 1); - CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key2, &msg) == 1); - secp256k1_scalar_negate(&ss, &ss); - CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 1); - CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key2, &msg) == 1); - secp256k1_scalar_set_int(&ss, 1); - CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 0); - CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key2, &msg) == 0); - } - - /* Verify signature with message 1 passes. */ - { - const unsigned char pubkey[33] = { - 0x02, 0x14, 0x4e, 0x5a, 0x58, 0xef, 0x5b, 0x22, - 0x6f, 0xd2, 0xe2, 0x07, 0x6a, 0x77, 0xcf, 0x05, - 0xb4, 0x1d, 0xe7, 0x4a, 0x30, 0x98, 0x27, 0x8c, - 0x93, 0xe6, 0xe6, 0x3c, 0x0b, 0xc4, 0x73, 0x76, - 0x25 - }; - const unsigned char pubkey2[33] = { - 0x02, 0x8a, 0xd5, 0x37, 0xed, 0x73, 0xd9, 0x40, - 0x1d, 0xa0, 0x33, 0xd2, 0xdc, 0xf0, 0xaf, 0xae, - 0x34, 0xcf, 0x5f, 0x96, 0x4c, 0x73, 0x28, 0x0f, - 0x92, 0xc0, 0xf6, 0x9d, 0xd9, 0xb2, 0x09, 0x10, - 0x62 - }; - const unsigned char csr[32] = { - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, - 0x45, 0x51, 0x23, 0x19, 0x50, 0xb7, 0x5f, 0xc4, - 0x40, 0x2d, 0xa1, 0x72, 0x2f, 0xc9, 0xba, 0xeb - }; - secp256k1_ge key; - secp256k1_ge key2; - secp256k1_scalar msg; - secp256k1_scalar sr, ss; - secp256k1_scalar_set_int(&ss, 1); - secp256k1_scalar_set_int(&msg, 1); - secp256k1_scalar_set_b32(&sr, csr, NULL); - CHECK(secp256k1_eckey_pubkey_parse(&key, pubkey, 33)); - CHECK(secp256k1_eckey_pubkey_parse(&key2, pubkey2, 33)); - CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 1); - CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key2, &msg) == 1); - secp256k1_scalar_negate(&ss, &ss); - CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 1); - CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key2, &msg) == 1); - secp256k1_scalar_set_int(&ss, 2); - secp256k1_scalar_inverse_var(&ss, &ss); - CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 0); - CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key2, &msg) == 0); - } - - /* Verify signature with message -1 passes. */ - { - const unsigned char pubkey[33] = { - 0x03, 0xaf, 0x97, 0xff, 0x7d, 0x3a, 0xf6, 0xa0, - 0x02, 0x94, 0xbd, 0x9f, 0x4b, 0x2e, 0xd7, 0x52, - 0x28, 0xdb, 0x49, 0x2a, 0x65, 0xcb, 0x1e, 0x27, - 0x57, 0x9c, 0xba, 0x74, 0x20, 0xd5, 0x1d, 0x20, - 0xf1 - }; - const unsigned char csr[32] = { - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, - 0x45, 0x51, 0x23, 0x19, 0x50, 0xb7, 0x5f, 0xc4, - 0x40, 0x2d, 0xa1, 0x72, 0x2f, 0xc9, 0xba, 0xee - }; - secp256k1_ge key; - secp256k1_scalar msg; - secp256k1_scalar sr, ss; - secp256k1_scalar_set_int(&ss, 1); - secp256k1_scalar_set_int(&msg, 1); - secp256k1_scalar_negate(&msg, &msg); - secp256k1_scalar_set_b32(&sr, csr, NULL); - CHECK(secp256k1_eckey_pubkey_parse(&key, pubkey, 33)); - CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 1); - secp256k1_scalar_negate(&ss, &ss); - CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 1); - secp256k1_scalar_set_int(&ss, 3); - secp256k1_scalar_inverse_var(&ss, &ss); - CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 0); - } - - /* Signature where s would be zero. */ - { - secp256k1_pubkey pubkey; - size_t siglen; - int32_t ecount; - unsigned char signature[72]; - static const unsigned char nonce[32] = { - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, - }; - static const unsigned char nonce2[32] = { - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE, - 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B, - 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x40 - }; - const unsigned char key[32] = { - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, - }; - unsigned char msg[32] = { - 0x86, 0x41, 0x99, 0x81, 0x06, 0x23, 0x44, 0x53, - 0xaa, 0x5f, 0x9d, 0x6a, 0x31, 0x78, 0xf4, 0xf7, - 0xb8, 0x12, 0xe0, 0x0b, 0x81, 0x7a, 0x77, 0x62, - 0x65, 0xdf, 0xdd, 0x31, 0xb9, 0x3e, 0x29, 0xa9, - }; - ecount = 0; - secp256k1_context_set_illegal_callback(ctx, counting_illegal_callback_fn, &ecount); - CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, precomputed_nonce_function, nonce) == 0); - CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, precomputed_nonce_function, nonce2) == 0); - msg[31] = 0xaa; - CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, precomputed_nonce_function, nonce) == 1); - CHECK(ecount == 0); - CHECK(secp256k1_ecdsa_sign(ctx, NULL, msg, key, precomputed_nonce_function, nonce2) == 0); - CHECK(ecount == 1); - CHECK(secp256k1_ecdsa_sign(ctx, &sig, NULL, key, precomputed_nonce_function, nonce2) == 0); - CHECK(ecount == 2); - CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, NULL, precomputed_nonce_function, nonce2) == 0); - CHECK(ecount == 3); - CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, precomputed_nonce_function, nonce2) == 1); - CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, key) == 1); - CHECK(secp256k1_ecdsa_verify(ctx, NULL, msg, &pubkey) == 0); - CHECK(ecount == 4); - CHECK(secp256k1_ecdsa_verify(ctx, &sig, NULL, &pubkey) == 0); - CHECK(ecount == 5); - CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg, NULL) == 0); - CHECK(ecount == 6); - CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg, &pubkey) == 1); - CHECK(ecount == 6); - CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, NULL) == 0); - CHECK(ecount == 7); - /* That pubkeyload fails via an ARGCHECK is a little odd but makes sense because pubkeys are an opaque data type. */ - CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg, &pubkey) == 0); - CHECK(ecount == 8); - siglen = 72; - CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, NULL, &siglen, &sig) == 0); - CHECK(ecount == 9); - CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, signature, NULL, &sig) == 0); - CHECK(ecount == 10); - CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, signature, &siglen, NULL) == 0); - CHECK(ecount == 11); - CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, signature, &siglen, &sig) == 1); - CHECK(ecount == 11); - CHECK(secp256k1_ecdsa_signature_parse_der(ctx, NULL, signature, siglen) == 0); - CHECK(ecount == 12); - CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, NULL, siglen) == 0); - CHECK(ecount == 13); - CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, signature, siglen) == 1); - CHECK(ecount == 13); - siglen = 10; - /* Too little room for a signature does not fail via ARGCHECK. */ - CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, signature, &siglen, &sig) == 0); - CHECK(ecount == 13); - ecount = 0; - CHECK(secp256k1_ecdsa_signature_normalize(ctx, NULL, NULL) == 0); - CHECK(ecount == 1); - CHECK(secp256k1_ecdsa_signature_serialize_compact(ctx, NULL, &sig) == 0); - CHECK(ecount == 2); - CHECK(secp256k1_ecdsa_signature_serialize_compact(ctx, signature, NULL) == 0); - CHECK(ecount == 3); - CHECK(secp256k1_ecdsa_signature_serialize_compact(ctx, signature, &sig) == 1); - CHECK(ecount == 3); - CHECK(secp256k1_ecdsa_signature_parse_compact(ctx, NULL, signature) == 0); - CHECK(ecount == 4); - CHECK(secp256k1_ecdsa_signature_parse_compact(ctx, &sig, NULL) == 0); - CHECK(ecount == 5); - CHECK(secp256k1_ecdsa_signature_parse_compact(ctx, &sig, signature) == 1); - CHECK(ecount == 5); - memset(signature, 255, 64); - CHECK(secp256k1_ecdsa_signature_parse_compact(ctx, &sig, signature) == 0); - CHECK(ecount == 5); - secp256k1_context_set_illegal_callback(ctx, NULL, NULL); - } - - /* Nonce function corner cases. */ - for (t = 0; t < 2; t++) { - static const unsigned char zero[32] = {0x00}; - int i; - unsigned char key[32]; - unsigned char msg[32]; - secp256k1_ecdsa_signature sig2; - secp256k1_scalar sr[512], ss; - const unsigned char *extra; - extra = t == 0 ? NULL : zero; - memset(msg, 0, 32); - msg[31] = 1; - /* High key results in signature failure. */ - memset(key, 0xFF, 32); - CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, NULL, extra) == 0); - CHECK(is_empty_signature(&sig)); - /* Zero key results in signature failure. */ - memset(key, 0, 32); - CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, NULL, extra) == 0); - CHECK(is_empty_signature(&sig)); - /* Nonce function failure results in signature failure. */ - key[31] = 1; - CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, nonce_function_test_fail, extra) == 0); - CHECK(is_empty_signature(&sig)); - /* The retry loop successfully makes its way to the first good value. */ - CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, nonce_function_test_retry, extra) == 1); - CHECK(!is_empty_signature(&sig)); - CHECK(secp256k1_ecdsa_sign(ctx, &sig2, msg, key, nonce_function_rfc6979, extra) == 1); - CHECK(!is_empty_signature(&sig2)); - CHECK(memcmp(&sig, &sig2, sizeof(sig)) == 0); - /* The default nonce function is deterministic. */ - CHECK(secp256k1_ecdsa_sign(ctx, &sig2, msg, key, NULL, extra) == 1); - CHECK(!is_empty_signature(&sig2)); - CHECK(memcmp(&sig, &sig2, sizeof(sig)) == 0); - /* The default nonce function changes output with different messages. */ - for(i = 0; i < 256; i++) { - int j; - msg[0] = i; - CHECK(secp256k1_ecdsa_sign(ctx, &sig2, msg, key, NULL, extra) == 1); - CHECK(!is_empty_signature(&sig2)); - secp256k1_ecdsa_signature_load(ctx, &sr[i], &ss, &sig2); - for (j = 0; j < i; j++) { - CHECK(!secp256k1_scalar_eq(&sr[i], &sr[j])); - } - } - msg[0] = 0; - msg[31] = 2; - /* The default nonce function changes output with different keys. */ - for(i = 256; i < 512; i++) { - int j; - key[0] = i - 256; - CHECK(secp256k1_ecdsa_sign(ctx, &sig2, msg, key, NULL, extra) == 1); - CHECK(!is_empty_signature(&sig2)); - secp256k1_ecdsa_signature_load(ctx, &sr[i], &ss, &sig2); - for (j = 0; j < i; j++) { - CHECK(!secp256k1_scalar_eq(&sr[i], &sr[j])); - } - } - key[0] = 0; - } - - { - /* Check that optional nonce arguments do not have equivalent effect. */ - const unsigned char zeros[32] = {0}; - unsigned char nonce[32]; - unsigned char nonce2[32]; - unsigned char nonce3[32]; - unsigned char nonce4[32]; - VG_UNDEF(nonce,32); - VG_UNDEF(nonce2,32); - VG_UNDEF(nonce3,32); - VG_UNDEF(nonce4,32); - CHECK(nonce_function_rfc6979(nonce, zeros, zeros, NULL, NULL, 0) == 1); - VG_CHECK(nonce,32); - CHECK(nonce_function_rfc6979(nonce2, zeros, zeros, zeros, NULL, 0) == 1); - VG_CHECK(nonce2,32); - CHECK(nonce_function_rfc6979(nonce3, zeros, zeros, NULL, (void *)zeros, 0) == 1); - VG_CHECK(nonce3,32); - CHECK(nonce_function_rfc6979(nonce4, zeros, zeros, zeros, (void *)zeros, 0) == 1); - VG_CHECK(nonce4,32); - CHECK(memcmp(nonce, nonce2, 32) != 0); - CHECK(memcmp(nonce, nonce3, 32) != 0); - CHECK(memcmp(nonce, nonce4, 32) != 0); - CHECK(memcmp(nonce2, nonce3, 32) != 0); - CHECK(memcmp(nonce2, nonce4, 32) != 0); - CHECK(memcmp(nonce3, nonce4, 32) != 0); - } - - - /* Privkey export where pubkey is the point at infinity. */ - { - unsigned char privkey[300]; - unsigned char seckey[32] = { - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, - 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b, - 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x41, - }; - size_t outlen = 300; - CHECK(!ec_privkey_export_der(ctx, privkey, &outlen, seckey, 0)); - outlen = 300; - CHECK(!ec_privkey_export_der(ctx, privkey, &outlen, seckey, 1)); - } -} - -void run_ecdsa_edge_cases(void) { - test_ecdsa_edge_cases(); -} - -#ifdef ENABLE_OPENSSL_TESTS -EC_KEY *get_openssl_key(const unsigned char *key32) { - unsigned char privkey[300]; - size_t privkeylen; - const unsigned char* pbegin = privkey; - int compr = secp256k1_rand_bits(1); - EC_KEY *ec_key = EC_KEY_new_by_curve_name(NID_secp256k1); - CHECK(ec_privkey_export_der(ctx, privkey, &privkeylen, key32, compr)); - CHECK(d2i_ECPrivateKey(&ec_key, &pbegin, privkeylen)); - CHECK(EC_KEY_check_key(ec_key)); - return ec_key; -} - -void test_ecdsa_openssl(void) { - secp256k1_gej qj; - secp256k1_ge q; - secp256k1_scalar sigr, sigs; - secp256k1_scalar one; - secp256k1_scalar msg2; - secp256k1_scalar key, msg; - EC_KEY *ec_key; - unsigned int sigsize = 80; - size_t secp_sigsize = 80; - unsigned char message[32]; - unsigned char signature[80]; - unsigned char key32[32]; - secp256k1_rand256_test(message); - secp256k1_scalar_set_b32(&msg, message, NULL); - random_scalar_order_test(&key); - secp256k1_scalar_get_b32(key32, &key); - secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &qj, &key); - secp256k1_ge_set_gej(&q, &qj); - ec_key = get_openssl_key(key32); - CHECK(ec_key != NULL); - CHECK(ECDSA_sign(0, message, sizeof(message), signature, &sigsize, ec_key)); - CHECK(secp256k1_ecdsa_sig_parse(&sigr, &sigs, signature, sigsize)); - CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sigr, &sigs, &q, &msg)); - secp256k1_scalar_set_int(&one, 1); - secp256k1_scalar_add(&msg2, &msg, &one); - CHECK(!secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sigr, &sigs, &q, &msg2)); - - random_sign(&sigr, &sigs, &key, &msg, NULL); - CHECK(secp256k1_ecdsa_sig_serialize(signature, &secp_sigsize, &sigr, &sigs)); - CHECK(ECDSA_verify(0, message, sizeof(message), signature, secp_sigsize, ec_key) == 1); - - EC_KEY_free(ec_key); -} - -void run_ecdsa_openssl(void) { - int i; - for (i = 0; i < 10*count; i++) { - test_ecdsa_openssl(); - } -} -#endif - -#ifdef ENABLE_MODULE_ECDH -# include "modules/ecdh/tests_impl.h" -#endif - -#ifdef ENABLE_MODULE_RECOVERY -# include "modules/recovery/tests_impl.h" -#endif - -#ifdef ENABLE_MODULE_GENERATOR -# include "modules/generator/tests_impl.h" -#endif - -#ifdef ENABLE_MODULE_COMMITMENT -# include "modules/commitment/tests_impl.h" -#endif - -#ifdef ENABLE_MODULE_RANGEPROOF -# include "modules/rangeproof/tests_impl.h" -#endif - -#ifdef ENABLE_MODULE_BULLETPROOF -# include "modules/bulletproofs/tests_impl.h" -#endif - -#ifdef ENABLE_MODULE_WHITELIST -# include "modules/whitelist/tests_impl.h" -#endif - -#ifdef ENABLE_MODULE_SURJECTIONPROOF -# include "modules/surjection/tests_impl.h" -#endif - -int main(int argc, char **argv) { - unsigned char seed16[16] = {0}; - unsigned char run32[32] = {0}; - /* find iteration count */ - if (argc > 1) { - count = strtol(argv[1], NULL, 0); - } - - /* find random seed */ - if (argc > 2) { - int pos = 0; - const char* ch = argv[2]; - while (pos < 16 && ch[0] != 0 && ch[1] != 0) { - unsigned short sh; - if (sscanf(ch, "%2hx", &sh)) { - seed16[pos] = sh; - } else { - break; - } - ch += 2; - pos++; - } - } else { - FILE *frand = fopen("/dev/urandom", "r"); - if ((frand == NULL) || fread(&seed16, sizeof(seed16), 1, frand) != sizeof(seed16)) { - uint64_t t = time(NULL) * (uint64_t)1337; - seed16[0] ^= t; - seed16[1] ^= t >> 8; - seed16[2] ^= t >> 16; - seed16[3] ^= t >> 24; - seed16[4] ^= t >> 32; - seed16[5] ^= t >> 40; - seed16[6] ^= t >> 48; - seed16[7] ^= t >> 56; - } - if (frand) { - fclose(frand); - } - } - secp256k1_rand_seed(seed16); - - printf("test count = %i\n", count); - printf("random seed = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", seed16[0], seed16[1], seed16[2], seed16[3], seed16[4], seed16[5], seed16[6], seed16[7], seed16[8], seed16[9], seed16[10], seed16[11], seed16[12], seed16[13], seed16[14], seed16[15]); - - /* initialize */ - run_context_tests(); - run_scratch_tests(); - ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); - if (secp256k1_rand_bits(1)) { - secp256k1_rand256(run32); - CHECK(secp256k1_context_randomize(ctx, secp256k1_rand_bits(1) ? run32 : NULL)); - } - - run_rand_bits(); - run_rand_int(); - run_util_tests(); - - run_sha256_tests(); - run_hmac_sha256_tests(); - run_rfc6979_hmac_sha256_tests(); - -#ifndef USE_NUM_NONE - /* num tests */ - run_num_smalltests(); -#endif - - /* scalar tests */ - run_scalar_tests(); - - /* field tests */ - run_field_inv(); - run_field_inv_var(); - run_field_inv_all_var(); - run_field_misc(); - run_field_convert(); - run_sqr(); - run_sqrt(); - - /* group tests */ - run_ge(); - run_group_decompress(); - - /* ecmult tests */ - run_wnaf(); - run_point_times_order(); - run_ecmult_chain(); - run_ecmult_constants(); - run_ecmult_gen_blind(); - run_ecmult_const_tests(); - run_ecmult_multi_tests(); - run_ec_combine(); - - /* endomorphism tests */ -#ifdef USE_ENDOMORPHISM - run_endomorphism_tests(); -#endif - - /* EC point parser test */ - run_ec_pubkey_parse_test(); - - /* EC key edge cases */ - run_eckey_edge_case_test(); - -#ifdef ENABLE_MODULE_ECDH - /* ecdh tests */ - run_ecdh_tests(); -#endif - - /* ecdsa tests */ - run_random_pubkeys(); - run_ecdsa_der_parse(); - run_ecdsa_sign_verify(); - run_ecdsa_end_to_end(); - run_ecdsa_edge_cases(); -#ifdef ENABLE_OPENSSL_TESTS - run_ecdsa_openssl(); -#endif - -#ifdef ENABLE_MODULE_RECOVERY - /* ECDSA pubkey recovery tests */ - run_recovery_tests(); -#endif - -#ifdef ENABLE_MODULE_GENERATOR - run_generator_tests(); -#endif - -#ifdef ENABLE_MODULE_RANGEPROOF - run_rangeproof_tests(); -#endif - -#ifdef ENABLE_MODULE_BULLETPROOF - run_bulletproofs_tests(); -#endif - -#ifdef ENABLE_MODULE_WHITELIST - /* Key whitelisting tests */ - run_whitelist_tests(); -#endif - -#ifdef ENABLE_MODULE_SURJECTIONPROOF - run_surjection_tests(); -#endif - - secp256k1_rand256(run32); - printf("random run = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", run32[0], run32[1], run32[2], run32[3], run32[4], run32[5], run32[6], run32[7], run32[8], run32[9], run32[10], run32[11], run32[12], run32[13], run32[14], run32[15]); - - /* shutdown */ - secp256k1_context_destroy(ctx); - - printf("no problems found\n"); - return 0; -} diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/tests_exhaustive.c b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/tests_exhaustive.c deleted file mode 100644 index ab9779b..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/tests_exhaustive.c +++ /dev/null @@ -1,511 +0,0 @@ -/*********************************************************************** - * Copyright (c) 2016 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#if defined HAVE_CONFIG_H -#include "libsecp256k1-config.h" -#endif - -#include -#include - -#include - -#undef USE_ECMULT_STATIC_PRECOMPUTATION - -#ifndef EXHAUSTIVE_TEST_ORDER -/* see group_impl.h for allowable values */ -#define EXHAUSTIVE_TEST_ORDER 13 -#define EXHAUSTIVE_TEST_LAMBDA 9 /* cube root of 1 mod 13 */ -#endif - -#include "include/secp256k1.h" -#include "group.h" -#include "secp256k1.c" -#include "testrand_impl.h" - -#ifdef ENABLE_MODULE_RECOVERY -#include "src/modules/recovery/main_impl.h" -#include "include/secp256k1_recovery.h" -#endif - -/** stolen from tests.c */ -void ge_equals_ge(const secp256k1_ge *a, const secp256k1_ge *b) { - CHECK(a->infinity == b->infinity); - if (a->infinity) { - return; - } - CHECK(secp256k1_fe_equal_var(&a->x, &b->x)); - CHECK(secp256k1_fe_equal_var(&a->y, &b->y)); -} - -void ge_equals_gej(const secp256k1_ge *a, const secp256k1_gej *b) { - secp256k1_fe z2s; - secp256k1_fe u1, u2, s1, s2; - CHECK(a->infinity == b->infinity); - if (a->infinity) { - return; - } - /* Check a.x * b.z^2 == b.x && a.y * b.z^3 == b.y, to avoid inverses. */ - secp256k1_fe_sqr(&z2s, &b->z); - secp256k1_fe_mul(&u1, &a->x, &z2s); - u2 = b->x; secp256k1_fe_normalize_weak(&u2); - secp256k1_fe_mul(&s1, &a->y, &z2s); secp256k1_fe_mul(&s1, &s1, &b->z); - s2 = b->y; secp256k1_fe_normalize_weak(&s2); - CHECK(secp256k1_fe_equal_var(&u1, &u2)); - CHECK(secp256k1_fe_equal_var(&s1, &s2)); -} - -void random_fe(secp256k1_fe *x) { - unsigned char bin[32]; - do { - secp256k1_rand256(bin); - if (secp256k1_fe_set_b32(x, bin)) { - return; - } - } while(1); -} -/** END stolen from tests.c */ - -int secp256k1_nonce_function_smallint(unsigned char *nonce32, const unsigned char *msg32, - const unsigned char *key32, const unsigned char *algo16, - void *data, unsigned int attempt) { - secp256k1_scalar s; - int *idata = data; - (void)msg32; - (void)key32; - (void)algo16; - /* Some nonces cannot be used because they'd cause s and/or r to be zero. - * The signing function has retry logic here that just re-calls the nonce - * function with an increased `attempt`. So if attempt > 0 this means we - * need to change the nonce to avoid an infinite loop. */ - if (attempt > 0) { - *idata = (*idata + 1) % EXHAUSTIVE_TEST_ORDER; - } - secp256k1_scalar_set_int(&s, *idata); - secp256k1_scalar_get_b32(nonce32, &s); - return 1; -} - -#ifdef USE_ENDOMORPHISM -void test_exhaustive_endomorphism(const secp256k1_ge *group, int order) { - int i; - for (i = 0; i < order; i++) { - secp256k1_ge res; - secp256k1_ge_mul_lambda(&res, &group[i]); - ge_equals_ge(&group[i * EXHAUSTIVE_TEST_LAMBDA % EXHAUSTIVE_TEST_ORDER], &res); - } -} -#endif - -void test_exhaustive_addition(const secp256k1_ge *group, const secp256k1_gej *groupj, int order) { - int i, j; - - /* Sanity-check (and check infinity functions) */ - CHECK(secp256k1_ge_is_infinity(&group[0])); - CHECK(secp256k1_gej_is_infinity(&groupj[0])); - for (i = 1; i < order; i++) { - CHECK(!secp256k1_ge_is_infinity(&group[i])); - CHECK(!secp256k1_gej_is_infinity(&groupj[i])); - } - - /* Check all addition formulae */ - for (j = 0; j < order; j++) { - secp256k1_fe fe_inv; - secp256k1_fe_inv(&fe_inv, &groupj[j].z); - for (i = 0; i < order; i++) { - secp256k1_ge zless_gej; - secp256k1_gej tmp; - /* add_var */ - secp256k1_gej_add_var(&tmp, &groupj[i], &groupj[j], NULL); - ge_equals_gej(&group[(i + j) % order], &tmp); - /* add_ge */ - if (j > 0) { - secp256k1_gej_add_ge(&tmp, &groupj[i], &group[j]); - ge_equals_gej(&group[(i + j) % order], &tmp); - } - /* add_ge_var */ - secp256k1_gej_add_ge_var(&tmp, &groupj[i], &group[j], NULL); - ge_equals_gej(&group[(i + j) % order], &tmp); - /* add_zinv_var */ - zless_gej.infinity = groupj[j].infinity; - zless_gej.x = groupj[j].x; - zless_gej.y = groupj[j].y; - secp256k1_gej_add_zinv_var(&tmp, &groupj[i], &zless_gej, &fe_inv); - ge_equals_gej(&group[(i + j) % order], &tmp); - } - } - - /* Check doubling */ - for (i = 0; i < order; i++) { - secp256k1_gej tmp; - if (i > 0) { - secp256k1_gej_double_nonzero(&tmp, &groupj[i], NULL); - ge_equals_gej(&group[(2 * i) % order], &tmp); - } - secp256k1_gej_double_var(&tmp, &groupj[i], NULL); - ge_equals_gej(&group[(2 * i) % order], &tmp); - } - - /* Check negation */ - for (i = 1; i < order; i++) { - secp256k1_ge tmp; - secp256k1_gej tmpj; - secp256k1_ge_neg(&tmp, &group[i]); - ge_equals_ge(&group[order - i], &tmp); - secp256k1_gej_neg(&tmpj, &groupj[i]); - ge_equals_gej(&group[order - i], &tmpj); - } -} - -void test_exhaustive_ecmult(const secp256k1_context *ctx, const secp256k1_ge *group, const secp256k1_gej *groupj, int order) { - int i, j, r_log; - for (r_log = 1; r_log < order; r_log++) { - for (j = 0; j < order; j++) { - for (i = 0; i < order; i++) { - secp256k1_gej tmp; - secp256k1_scalar na, ng; - secp256k1_scalar_set_int(&na, i); - secp256k1_scalar_set_int(&ng, j); - - secp256k1_ecmult(&ctx->ecmult_ctx, &tmp, &groupj[r_log], &na, &ng); - ge_equals_gej(&group[(i * r_log + j) % order], &tmp); - - if (i > 0) { - secp256k1_ecmult_const(&tmp, &group[i], &ng, 256); - ge_equals_gej(&group[(i * j) % order], &tmp); - } - } - } - } -} - -typedef struct { - secp256k1_scalar sc[2]; - secp256k1_ge pt[2]; -} ecmult_multi_data; - -static int ecmult_multi_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *cbdata) { - ecmult_multi_data *data = (ecmult_multi_data*) cbdata; - *sc = data->sc[idx]; - *pt = data->pt[idx]; - return 1; -} - -void test_exhaustive_ecmult_multi(const secp256k1_context *ctx, const secp256k1_ge *group, int order) { - int i, j, k, x, y; - secp256k1_scratch *scratch = secp256k1_scratch_create(&ctx->error_callback, 4096); - for (i = 0; i < order; i++) { - for (j = 0; j < order; j++) { - for (k = 0; k < order; k++) { - for (x = 0; x < order; x++) { - for (y = 0; y < order; y++) { - secp256k1_gej tmp; - secp256k1_scalar g_sc; - ecmult_multi_data data; - - secp256k1_scalar_set_int(&data.sc[0], i); - secp256k1_scalar_set_int(&data.sc[1], j); - secp256k1_scalar_set_int(&g_sc, k); - data.pt[0] = group[x]; - data.pt[1] = group[y]; - - secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &tmp, &g_sc, ecmult_multi_callback, &data, 2); - ge_equals_gej(&group[(i * x + j * y + k) % order], &tmp); - } - } - } - } - } - secp256k1_scratch_destroy(scratch); -} - -void r_from_k(secp256k1_scalar *r, const secp256k1_ge *group, int k) { - secp256k1_fe x; - unsigned char x_bin[32]; - k %= EXHAUSTIVE_TEST_ORDER; - x = group[k].x; - secp256k1_fe_normalize(&x); - secp256k1_fe_get_b32(x_bin, &x); - secp256k1_scalar_set_b32(r, x_bin, NULL); -} - -void test_exhaustive_verify(const secp256k1_context *ctx, const secp256k1_ge *group, int order) { - int s, r, msg, key; - for (s = 1; s < order; s++) { - for (r = 1; r < order; r++) { - for (msg = 1; msg < order; msg++) { - for (key = 1; key < order; key++) { - secp256k1_ge nonconst_ge; - secp256k1_ecdsa_signature sig; - secp256k1_pubkey pk; - secp256k1_scalar sk_s, msg_s, r_s, s_s; - secp256k1_scalar s_times_k_s, msg_plus_r_times_sk_s; - int k, should_verify; - unsigned char msg32[32]; - - secp256k1_scalar_set_int(&s_s, s); - secp256k1_scalar_set_int(&r_s, r); - secp256k1_scalar_set_int(&msg_s, msg); - secp256k1_scalar_set_int(&sk_s, key); - - /* Verify by hand */ - /* Run through every k value that gives us this r and check that *one* works. - * Note there could be none, there could be multiple, ECDSA is weird. */ - should_verify = 0; - for (k = 0; k < order; k++) { - secp256k1_scalar check_x_s; - r_from_k(&check_x_s, group, k); - if (r_s == check_x_s) { - secp256k1_scalar_set_int(&s_times_k_s, k); - secp256k1_scalar_mul(&s_times_k_s, &s_times_k_s, &s_s); - secp256k1_scalar_mul(&msg_plus_r_times_sk_s, &r_s, &sk_s); - secp256k1_scalar_add(&msg_plus_r_times_sk_s, &msg_plus_r_times_sk_s, &msg_s); - should_verify |= secp256k1_scalar_eq(&s_times_k_s, &msg_plus_r_times_sk_s); - } - } - /* nb we have a "high s" rule */ - should_verify &= !secp256k1_scalar_is_high(&s_s); - - /* Verify by calling verify */ - secp256k1_ecdsa_signature_save(&sig, &r_s, &s_s); - memcpy(&nonconst_ge, &group[sk_s], sizeof(nonconst_ge)); - secp256k1_pubkey_save(&pk, &nonconst_ge); - secp256k1_scalar_get_b32(msg32, &msg_s); - CHECK(should_verify == - secp256k1_ecdsa_verify(ctx, &sig, msg32, &pk)); - } - } - } - } -} - -void test_exhaustive_sign(const secp256k1_context *ctx, const secp256k1_ge *group, int order) { - int i, j, k; - - /* Loop */ - for (i = 1; i < order; i++) { /* message */ - for (j = 1; j < order; j++) { /* key */ - for (k = 1; k < order; k++) { /* nonce */ - const int starting_k = k; - secp256k1_ecdsa_signature sig; - secp256k1_scalar sk, msg, r, s, expected_r; - unsigned char sk32[32], msg32[32]; - secp256k1_scalar_set_int(&msg, i); - secp256k1_scalar_set_int(&sk, j); - secp256k1_scalar_get_b32(sk32, &sk); - secp256k1_scalar_get_b32(msg32, &msg); - - secp256k1_ecdsa_sign(ctx, &sig, msg32, sk32, secp256k1_nonce_function_smallint, &k); - - secp256k1_ecdsa_signature_load(ctx, &r, &s, &sig); - /* Note that we compute expected_r *after* signing -- this is important - * because our nonce-computing function function might change k during - * signing. */ - r_from_k(&expected_r, group, k); - CHECK(r == expected_r); - CHECK((k * s) % order == (i + r * j) % order || - (k * (EXHAUSTIVE_TEST_ORDER - s)) % order == (i + r * j) % order); - - /* Overflow means we've tried every possible nonce */ - if (k < starting_k) { - break; - } - } - } - } - - /* We would like to verify zero-knowledge here by counting how often every - * possible (s, r) tuple appears, but because the group order is larger - * than the field order, when coercing the x-values to scalar values, some - * appear more often than others, so we are actually not zero-knowledge. - * (This effect also appears in the real code, but the difference is on the - * order of 1/2^128th the field order, so the deviation is not useful to a - * computationally bounded attacker.) - */ -} - -#ifdef ENABLE_MODULE_RECOVERY -void test_exhaustive_recovery_sign(const secp256k1_context *ctx, const secp256k1_ge *group, int order) { - int i, j, k; - - /* Loop */ - for (i = 1; i < order; i++) { /* message */ - for (j = 1; j < order; j++) { /* key */ - for (k = 1; k < order; k++) { /* nonce */ - const int starting_k = k; - secp256k1_fe r_dot_y_normalized; - secp256k1_ecdsa_recoverable_signature rsig; - secp256k1_ecdsa_signature sig; - secp256k1_scalar sk, msg, r, s, expected_r; - unsigned char sk32[32], msg32[32]; - int expected_recid; - int recid; - secp256k1_scalar_set_int(&msg, i); - secp256k1_scalar_set_int(&sk, j); - secp256k1_scalar_get_b32(sk32, &sk); - secp256k1_scalar_get_b32(msg32, &msg); - - secp256k1_ecdsa_sign_recoverable(ctx, &rsig, msg32, sk32, secp256k1_nonce_function_smallint, &k); - - /* Check directly */ - secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, &recid, &rsig); - r_from_k(&expected_r, group, k); - CHECK(r == expected_r); - CHECK((k * s) % order == (i + r * j) % order || - (k * (EXHAUSTIVE_TEST_ORDER - s)) % order == (i + r * j) % order); - /* In computing the recid, there is an overflow condition that is disabled in - * scalar_low_impl.h `secp256k1_scalar_set_b32` because almost every r.y value - * will exceed the group order, and our signing code always holds out for r - * values that don't overflow, so with a proper overflow check the tests would - * loop indefinitely. */ - r_dot_y_normalized = group[k].y; - secp256k1_fe_normalize(&r_dot_y_normalized); - /* Also the recovery id is flipped depending if we hit the low-s branch */ - if ((k * s) % order == (i + r * j) % order) { - expected_recid = secp256k1_fe_is_odd(&r_dot_y_normalized) ? 1 : 0; - } else { - expected_recid = secp256k1_fe_is_odd(&r_dot_y_normalized) ? 0 : 1; - } - CHECK(recid == expected_recid); - - /* Convert to a standard sig then check */ - secp256k1_ecdsa_recoverable_signature_convert(ctx, &sig, &rsig); - secp256k1_ecdsa_signature_load(ctx, &r, &s, &sig); - /* Note that we compute expected_r *after* signing -- this is important - * because our nonce-computing function function might change k during - * signing. */ - r_from_k(&expected_r, group, k); - CHECK(r == expected_r); - CHECK((k * s) % order == (i + r * j) % order || - (k * (EXHAUSTIVE_TEST_ORDER - s)) % order == (i + r * j) % order); - - /* Overflow means we've tried every possible nonce */ - if (k < starting_k) { - break; - } - } - } - } -} - -void test_exhaustive_recovery_verify(const secp256k1_context *ctx, const secp256k1_ge *group, int order) { - /* This is essentially a copy of test_exhaustive_verify, with recovery added */ - int s, r, msg, key; - for (s = 1; s < order; s++) { - for (r = 1; r < order; r++) { - for (msg = 1; msg < order; msg++) { - for (key = 1; key < order; key++) { - secp256k1_ge nonconst_ge; - secp256k1_ecdsa_recoverable_signature rsig; - secp256k1_ecdsa_signature sig; - secp256k1_pubkey pk; - secp256k1_scalar sk_s, msg_s, r_s, s_s; - secp256k1_scalar s_times_k_s, msg_plus_r_times_sk_s; - int recid = 0; - int k, should_verify; - unsigned char msg32[32]; - - secp256k1_scalar_set_int(&s_s, s); - secp256k1_scalar_set_int(&r_s, r); - secp256k1_scalar_set_int(&msg_s, msg); - secp256k1_scalar_set_int(&sk_s, key); - secp256k1_scalar_get_b32(msg32, &msg_s); - - /* Verify by hand */ - /* Run through every k value that gives us this r and check that *one* works. - * Note there could be none, there could be multiple, ECDSA is weird. */ - should_verify = 0; - for (k = 0; k < order; k++) { - secp256k1_scalar check_x_s; - r_from_k(&check_x_s, group, k); - if (r_s == check_x_s) { - secp256k1_scalar_set_int(&s_times_k_s, k); - secp256k1_scalar_mul(&s_times_k_s, &s_times_k_s, &s_s); - secp256k1_scalar_mul(&msg_plus_r_times_sk_s, &r_s, &sk_s); - secp256k1_scalar_add(&msg_plus_r_times_sk_s, &msg_plus_r_times_sk_s, &msg_s); - should_verify |= secp256k1_scalar_eq(&s_times_k_s, &msg_plus_r_times_sk_s); - } - } - /* nb we have a "high s" rule */ - should_verify &= !secp256k1_scalar_is_high(&s_s); - - /* We would like to try recovering the pubkey and checking that it matches, - * but pubkey recovery is impossible in the exhaustive tests (the reason - * being that there are 12 nonzero r values, 12 nonzero points, and no - * overlap between the sets, so there are no valid signatures). */ - - /* Verify by converting to a standard signature and calling verify */ - secp256k1_ecdsa_recoverable_signature_save(&rsig, &r_s, &s_s, recid); - secp256k1_ecdsa_recoverable_signature_convert(ctx, &sig, &rsig); - memcpy(&nonconst_ge, &group[sk_s], sizeof(nonconst_ge)); - secp256k1_pubkey_save(&pk, &nonconst_ge); - CHECK(should_verify == - secp256k1_ecdsa_verify(ctx, &sig, msg32, &pk)); - } - } - } - } -} -#endif - -int main(void) { - int i; - secp256k1_gej groupj[EXHAUSTIVE_TEST_ORDER]; - secp256k1_ge group[EXHAUSTIVE_TEST_ORDER]; - - /* Build context */ - secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); - - /* TODO set z = 1, then do num_tests runs with random z values */ - - /* Generate the entire group */ - secp256k1_gej_set_infinity(&groupj[0]); - secp256k1_ge_set_gej(&group[0], &groupj[0]); - for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) { - /* Set a different random z-value for each Jacobian point */ - secp256k1_fe z; - random_fe(&z); - - secp256k1_gej_add_ge(&groupj[i], &groupj[i - 1], &secp256k1_ge_const_g); - secp256k1_ge_set_gej(&group[i], &groupj[i]); - secp256k1_gej_rescale(&groupj[i], &z); - - /* Verify against ecmult_gen */ - { - secp256k1_scalar scalar_i; - secp256k1_gej generatedj; - secp256k1_ge generated; - - secp256k1_scalar_set_int(&scalar_i, i); - secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &generatedj, &scalar_i); - secp256k1_ge_set_gej(&generated, &generatedj); - - CHECK(group[i].infinity == 0); - CHECK(generated.infinity == 0); - CHECK(secp256k1_fe_equal_var(&generated.x, &group[i].x)); - CHECK(secp256k1_fe_equal_var(&generated.y, &group[i].y)); - } - } - - /* Run the tests */ -#ifdef USE_ENDOMORPHISM - test_exhaustive_endomorphism(group, EXHAUSTIVE_TEST_ORDER); -#endif - test_exhaustive_addition(group, groupj, EXHAUSTIVE_TEST_ORDER); - test_exhaustive_ecmult(ctx, group, groupj, EXHAUSTIVE_TEST_ORDER); - test_exhaustive_ecmult_multi(ctx, group, EXHAUSTIVE_TEST_ORDER); - test_exhaustive_sign(ctx, group, EXHAUSTIVE_TEST_ORDER); - test_exhaustive_verify(ctx, group, EXHAUSTIVE_TEST_ORDER); - -#ifdef ENABLE_MODULE_RECOVERY - test_exhaustive_recovery_sign(ctx, group, EXHAUSTIVE_TEST_ORDER); - test_exhaustive_recovery_verify(ctx, group, EXHAUSTIVE_TEST_ORDER); -#endif - - secp256k1_context_destroy(ctx); - return 0; -} - diff --git a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/util.h b/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/util.h deleted file mode 100644 index aca79d7..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/libsecp256k1/src/util.h +++ /dev/null @@ -1,147 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013-2015 Pieter Wuille, Gregory Maxwell * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_UTIL_H -#define SECP256K1_UTIL_H - -#if defined HAVE_CONFIG_H -#include "libsecp256k1-config.h" -#endif - -#include -#include -#include - -typedef struct { - void (*fn)(const char *text, void* data); - const void* data; -} secp256k1_callback; - -static SECP256K1_INLINE void secp256k1_callback_call(const secp256k1_callback * const cb, const char * const text) { - cb->fn(text, (void*)cb->data); -} - -#ifdef DETERMINISTIC -#define TEST_FAILURE(msg) do { \ - fprintf(stderr, "%s\n", msg); \ - abort(); \ -} while(0); -#else -#define TEST_FAILURE(msg) do { \ - fprintf(stderr, "%s:%d: %s\n", __FILE__, __LINE__, msg); \ - abort(); \ -} while(0) -#endif - -#ifdef HAVE_BUILTIN_EXPECT -#define EXPECT(x,c) __builtin_expect((x),(c)) -#else -#define EXPECT(x,c) (x) -#endif - -#ifdef DETERMINISTIC -#define CHECK(cond) do { \ - if (EXPECT(!(cond), 0)) { \ - TEST_FAILURE("test condition failed"); \ - } \ -} while(0) -#else -#define CHECK(cond) do { \ - if (EXPECT(!(cond), 0)) { \ - TEST_FAILURE("test condition failed: " #cond); \ - } \ -} while(0) -#endif - -/* Like assert(), but when VERIFY is defined, and side-effect safe. */ -#if defined(COVERAGE) -#define VERIFY_CHECK(check) -#define VERIFY_SETUP(stmt) -#elif defined(VERIFY) -#define VERIFY_CHECK CHECK -#define VERIFY_SETUP(stmt) do { stmt; } while(0) -#else -#define VERIFY_CHECK(cond) do { (void)(cond); } while(0) -#define VERIFY_SETUP(stmt) -#endif - -static SECP256K1_INLINE void *checked_malloc(const secp256k1_callback* cb, size_t size) { - void *ret = malloc(size); - if (ret == NULL) { - secp256k1_callback_call(cb, "Out of memory"); - } - return ret; -} - -static SECP256K1_INLINE void *checked_realloc(const secp256k1_callback* cb, void *ptr, size_t size) { - void *ret = realloc(ptr, size); - if (ret == NULL) { - secp256k1_callback_call(cb, "Out of memory"); - } - return ret; -} - -/* Extract the sign of an int64, take the abs and return a uint64, constant time. */ -SECP256K1_INLINE static int secp256k1_sign_and_abs64(uint64_t *out, int64_t in) { - uint64_t mask0, mask1; - int ret; - ret = in < 0; - mask0 = ret + ~((uint64_t)0); - mask1 = ~mask0; - *out = (uint64_t)in; - *out = (*out & mask0) | ((~*out + 1) & mask1); - return ret; -} - -SECP256K1_INLINE static int secp256k1_clz64_var(uint64_t x) { - int ret; - if (!x) { - return 64; - } -# if defined(HAVE_BUILTIN_CLZLL) - ret = __builtin_clzll(x); -# else - /*FIXME: debruijn fallback. */ - for (ret = 0; ((x & (1ULL << 63)) == 0); x <<= 1, ret++); -# endif - return ret; -} - -/* Macro for restrict, when available and not in a VERIFY build. */ -#if defined(SECP256K1_BUILD) && defined(VERIFY) -# define SECP256K1_RESTRICT -#else -# if (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L) ) -# if SECP256K1_GNUC_PREREQ(3,0) -# define SECP256K1_RESTRICT __restrict__ -# elif (defined(_MSC_VER) && _MSC_VER >= 1400) -# define SECP256K1_RESTRICT __restrict -# else -# define SECP256K1_RESTRICT -# endif -# else -# define SECP256K1_RESTRICT restrict -# endif -#endif - -#if defined(_WIN32) -# define I64FORMAT "I64d" -# define I64uFORMAT "I64u" -#else -# define I64FORMAT "lld" -# define I64uFORMAT "llu" -#endif - -#if defined(HAVE___INT128) -# if defined(__GNUC__) -# define SECP256K1_GNUC_EXT __extension__ -# else -# define SECP256K1_GNUC_EXT -# endif -SECP256K1_GNUC_EXT typedef unsigned __int128 uint128_t; -#endif - -#endif /* SECP256K1_UTIL_H */ diff --git a/src/ConfidentialTx/crypto/secp256k1/panic_cb.go b/src/ConfidentialTx/crypto/secp256k1/panic_cb.go deleted file mode 100644 index e0e9034..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/panic_cb.go +++ /dev/null @@ -1,33 +0,0 @@ -// Copyright 2015 The go-ethereum Authors -// This file is part of the go-ethereum library. -// -// The go-ethereum library is free software: you can redistribute it and/or modify -// it under the terms of the GNU Lesser General Public License as published by -// the Free Software Foundation, either version 3 of the License, or -// (at your option) any later version. -// -// The go-ethereum library is distributed in the hope that it will be useful, -// but WITHOUT ANY WARRANTY; without even the implied warranty of -// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -// GNU Lesser General Public License for more details. -// -// You should have received a copy of the GNU Lesser General Public License -// along with the go-ethereum library. If not, see . - -package secp256k1 - -import "C" -import "unsafe" - -// Callbacks for converting libsecp256k1 internal faults into -// recoverable Go panics. - -//export secp256k1GoPanicIllegal -func secp256k1GoPanicIllegal(msg *C.char, data unsafe.Pointer) { - panic("illegal argument: " + C.GoString(msg)) -} - -//export secp256k1GoPanicError -func secp256k1GoPanicError(msg *C.char, data unsafe.Pointer) { - panic("internal error: " + C.GoString(msg)) -} diff --git a/src/ConfidentialTx/crypto/secp256k1/secp256.go b/src/ConfidentialTx/crypto/secp256k1/secp256.go deleted file mode 100644 index e72f524..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/secp256.go +++ /dev/null @@ -1,172 +0,0 @@ -// Copyright 2015 The go-ethereum Authors -// This file is part of the go-ethereum library. -// -// The go-ethereum library is free software: you can redistribute it and/or modify -// it under the terms of the GNU Lesser General Public License as published by -// the Free Software Foundation, either version 3 of the License, or -// (at your option) any later version. -// -// The go-ethereum library is distributed in the hope that it will be useful, -// but WITHOUT ANY WARRANTY; without even the implied warranty of -// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -// GNU Lesser General Public License for more details. -// -// You should have received a copy of the GNU Lesser General Public License -// along with the go-ethereum library. If not, see . - -// Package secp256k1 wraps the bitcoin secp256k1 C library. -package secp256k1 - -/* -#cgo CFLAGS: -I./libsecp256k1 -#cgo CFLAGS: -I./libsecp256k1/src/ -#define USE_NUM_NONE -#define USE_FIELD_10X26 -#define USE_FIELD_INV_BUILTIN -#define USE_SCALAR_8X32 -#define USE_SCALAR_INV_BUILTIN -#define NDEBUG -#define ENABLE_MODULE_GENERATOR -#define ENABLE_MODULE_BULLETPROOF -#define SECP256K1_MODULE_BULLETPROOF_TESTS -#include "./libsecp256k1/src/secp256k1.c" -#include "./libsecp256k1/src/modules/recovery/main_impl.h" -#include "./libsecp256k1/src/bench_bulletproof.c" -#include "./libsecp256k1/src/modules/bulletproofs/tests_impl.h" -#include "ext.h" - -typedef void (*callbackFunc) (const char* msg, void* data); -extern void secp256k1GoPanicIllegal(const char* msg, void* data); -extern void secp256k1GoPanicError(const char* msg, void* data); -extern void test_rangeproof(); -extern void setup_rangeproof(zkrp_t *dt); -extern void commit_rangeproof(zkrp_t *dt); -extern void prove_rangeproof(zkrp_t *dt); -extern int verify_rangeproof(zkrp_t *dt); -*/ -import "C" - -import ( - "errors" - "unsafe" -) - -var context *C.secp256k1_context - -func init() { - // around 20 ms on a modern CPU. - context = C.secp256k1_context_create_sign_verify() - C.secp256k1_context_set_illegal_callback(context, C.callbackFunc(C.secp256k1GoPanicIllegal), nil) - C.secp256k1_context_set_error_callback(context, C.callbackFunc(C.secp256k1GoPanicError), nil) -} - -var ( - ErrInvalidMsgLen = errors.New("invalid message length, need 32 bytes") - ErrInvalidSignatureLen = errors.New("invalid signature length") - ErrInvalidRecoveryID = errors.New("invalid signature recovery id") - ErrInvalidKey = errors.New("invalid private key") - ErrSignFailed = errors.New("signing failed") - ErrRecoverFailed = errors.New("recovery failed") -) - -// Sign creates a recoverable ECDSA signature. -// The produced signature is in the 65-byte [R || S || V] format where V is 0 or 1. -// -// The caller is responsible for ensuring that msg cannot be chosen -// directly by an attacker. It is usually preferable to use a cryptographic -// hash function on any input before handing it to this function. -func Sign(msg []byte, seckey []byte) ([]byte, error) { - if len(msg) != 32 { - return nil, ErrInvalidMsgLen - } - if len(seckey) != 32 { - return nil, ErrInvalidKey - } - seckeydata := (*C.uchar)(unsafe.Pointer(&seckey[0])) - if C.secp256k1_ec_seckey_verify(context, seckeydata) != 1 { - return nil, ErrInvalidKey - } - - var ( - msgdata = (*C.uchar)(unsafe.Pointer(&msg[0])) - noncefunc = C.secp256k1_nonce_function_rfc6979 - sigstruct C.secp256k1_ecdsa_recoverable_signature - ) - if C.secp256k1_ecdsa_sign_recoverable(context, &sigstruct, msgdata, seckeydata, noncefunc, nil) == 0 { - return nil, ErrSignFailed - } - - var ( - sig = make([]byte, 65) - sigdata = (*C.uchar)(unsafe.Pointer(&sig[0])) - recid C.int - ) - C.secp256k1_ecdsa_recoverable_signature_serialize_compact(context, sigdata, &recid, &sigstruct) - sig[64] = byte(recid) // add back recid to get 65 bytes sig - return sig, nil -} - -// RecoverPubkey returns the the public key of the signer. -// msg must be the 32-byte hash of the message to be signed. -// sig must be a 65-byte compact ECDSA signature containing the -// recovery id as the last element. -func RecoverPubkey(msg []byte, sig []byte) ([]byte, error) { - if len(msg) != 32 { - return nil, ErrInvalidMsgLen - } - if err := checkSignature(sig); err != nil { - return nil, err - } - - var ( - pubkey = make([]byte, 65) - sigdata = (*C.uchar)(unsafe.Pointer(&sig[0])) - msgdata = (*C.uchar)(unsafe.Pointer(&msg[0])) - ) - if C.secp256k1_ecdsa_recover_pubkey(context, (*C.uchar)(unsafe.Pointer(&pubkey[0])), sigdata, msgdata) == 0 { - return nil, ErrRecoverFailed - } - return pubkey, nil -} - -func checkSignature(sig []byte) error { - if len(sig) != 65 { - return ErrInvalidSignatureLen - } - if sig[64] >= 4 { - return ErrInvalidRecoveryID - } - return nil -} - -//////////////////////////////////////////////////////////////////////////////////// -// Rangeproofs functions: should be separated from this file in the near future -//////////////////////////////////////////////////////////////////////////////////// - -/*func RunRangeproof() { - C.test_rangeproof() -} - -func SetupRangeproof(nbits _Ctype_ulong) (*C.zkrp_t) { - var dt *C.zkrp_t - dt = new(C.zkrp_t) - dt.nbits = nbits - C.setup_rangeproof(dt) - return dt -} - -func PrintRangeproof(dt *C.zkrp_t) { - C.myprint(C.CString("GO print"), dt) -} - -func CommitRangeproof(dt *C.zkrp_t) { - C.commit_rangeproof(dt) -} - -func ProveRangeproof(dt *C.zkrp_t) { - C.prove_rangeproof(dt) -} - -func VerifyRangeproof(dt *C.zkrp_t) (bool) { - return (C.verify_rangeproof(dt) == 1) -}*/ diff --git a/src/ConfidentialTx/crypto/secp256k1/secp256_test.go b/src/ConfidentialTx/crypto/secp256k1/secp256_test.go deleted file mode 100644 index 7877855..0000000 --- a/src/ConfidentialTx/crypto/secp256k1/secp256_test.go +++ /dev/null @@ -1,263 +0,0 @@ -// Copyright 2015 The go-ethereum Authors -// This file is part of the go-ethereum library. -// -// The go-ethereum library is free software: you can redistribute it and/or modify -// it under the terms of the GNU Lesser General Public License as published by -// the Free Software Foundation, either version 3 of the License, or -// (at your option) any later version. -// -// The go-ethereum library is distributed in the hope that it will be useful, -// but WITHOUT ANY WARRANTY; without even the implied warranty of -// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -// GNU Lesser General Public License for more details. -// -// You should have received a copy of the GNU Lesser General Public License -// along with the go-ethereum library. If not, see . - -package secp256k1 - -import ( - "testing" - "fmt" - "time" - "crypto/ecdsa" - "crypto/elliptic" - "crypto/rand" - "github.com/ethereum/go-ethereum/common/math" - "github.com/ethereum/go-ethereum/crypto/randentropy" - "bytes" - "encoding/hex" -) - -const TestCount = 1000 - -func generateKeyPair() (pubkey, privkey []byte) { - key, err := ecdsa.GenerateKey(S256(), rand.Reader) - if err != nil { - panic(err) - } - pubkey = elliptic.Marshal(S256(), key.X, key.Y) - return pubkey, math.PaddedBigBytes(key.D, 32) -} - -func randSig() []byte { - sig := randentropy.GetEntropyCSPRNG(65) - sig[32] &= 0x70 - sig[64] %= 4 - return sig -} - -// tests for malleability -// highest bit of signature ECDSA s value must be 0, in the 33th byte -func compactSigCheck(t *testing.T, sig []byte) { - var b int = int(sig[32]) - if b < 0 { - t.Errorf("highest bit is negative: %d", b) - } - if ((b >> 7) == 1) != ((b & 0x80) == 0x80) { - t.Errorf("highest bit: %d bit >> 7: %d", b, b>>7) - } - if (b & 0x80) == 0x80 { - t.Errorf("highest bit: %d bit & 0x80: %d", b, b&0x80) - } -} - -func TestSignatureValidity(t *testing.T) { - pubkey, seckey := generateKeyPair() - msg := randentropy.GetEntropyCSPRNG(32) - sig, err := Sign(msg, seckey) - if err != nil { - t.Errorf("signature error: %s", err) - } - compactSigCheck(t, sig) - if len(pubkey) != 65 { - t.Errorf("pubkey length mismatch: want: 65 have: %d", len(pubkey)) - } - if len(seckey) != 32 { - t.Errorf("seckey length mismatch: want: 32 have: %d", len(seckey)) - } - if len(sig) != 65 { - t.Errorf("sig length mismatch: want: 65 have: %d", len(sig)) - } - recid := int(sig[64]) - if recid > 4 || recid < 0 { - t.Errorf("sig recid mismatch: want: within 0 to 4 have: %d", int(sig[64])) - } -} - -func TestInvalidRecoveryID(t *testing.T) { - _, seckey := generateKeyPair() - msg := randentropy.GetEntropyCSPRNG(32) - sig, _ := Sign(msg, seckey) - sig[64] = 99 - _, err := RecoverPubkey(msg, sig) - if err != ErrInvalidRecoveryID { - t.Fatalf("got %q, want %q", err, ErrInvalidRecoveryID) - } -} - -func TestSignAndRecover(t *testing.T) { - pubkey1, seckey := generateKeyPair() - msg := randentropy.GetEntropyCSPRNG(32) - sig, err := Sign(msg, seckey) - if err != nil { - t.Errorf("signature error: %s", err) - } - pubkey2, err := RecoverPubkey(msg, sig) - if err != nil { - t.Errorf("recover error: %s", err) - } - if !bytes.Equal(pubkey1, pubkey2) { - t.Errorf("pubkey mismatch: want: %x have: %x", pubkey1, pubkey2) - } -} - -func TestSignDeterministic(t *testing.T) { - _, seckey := generateKeyPair() - msg := make([]byte, 32) - copy(msg, "hi there") - - sig1, err := Sign(msg, seckey) - if err != nil { - t.Fatal(err) - } - sig2, err := Sign(msg, seckey) - if err != nil { - t.Fatal(err) - } - if !bytes.Equal(sig1, sig2) { - t.Fatal("signatures not equal") - } -} - -func TestRandomMessagesWithSameKey(t *testing.T) { - pubkey, seckey := generateKeyPair() - keys := func() ([]byte, []byte) { - return pubkey, seckey - } - signAndRecoverWithRandomMessages(t, keys) -} - -func TestRandomMessagesWithRandomKeys(t *testing.T) { - keys := func() ([]byte, []byte) { - pubkey, seckey := generateKeyPair() - return pubkey, seckey - } - signAndRecoverWithRandomMessages(t, keys) -} - -func signAndRecoverWithRandomMessages(t *testing.T, keys func() ([]byte, []byte)) { - for i := 0; i < TestCount; i++ { - pubkey1, seckey := keys() - msg := randentropy.GetEntropyCSPRNG(32) - sig, err := Sign(msg, seckey) - if err != nil { - t.Fatalf("signature error: %s", err) - } - if sig == nil { - t.Fatal("signature is nil") - } - compactSigCheck(t, sig) - - // TODO: why do we flip around the recovery id? - sig[len(sig)-1] %= 4 - - pubkey2, err := RecoverPubkey(msg, sig) - if err != nil { - t.Fatalf("recover error: %s", err) - } - if pubkey2 == nil { - t.Error("pubkey is nil") - } - if !bytes.Equal(pubkey1, pubkey2) { - t.Fatalf("pubkey mismatch: want: %x have: %x", pubkey1, pubkey2) - } - } -} - -func TestRecoveryOfRandomSignature(t *testing.T) { - pubkey1, _ := generateKeyPair() - msg := randentropy.GetEntropyCSPRNG(32) - - for i := 0; i < TestCount; i++ { - // recovery can sometimes work, but if so should always give wrong pubkey - pubkey2, _ := RecoverPubkey(msg, randSig()) - if bytes.Equal(pubkey1, pubkey2) { - t.Fatalf("iteration: %d: pubkey mismatch: do NOT want %x: ", i, pubkey2) - } - } -} - -func TestRandomMessagesAgainstValidSig(t *testing.T) { - pubkey1, seckey := generateKeyPair() - msg := randentropy.GetEntropyCSPRNG(32) - sig, _ := Sign(msg, seckey) - - for i := 0; i < TestCount; i++ { - msg = randentropy.GetEntropyCSPRNG(32) - pubkey2, _ := RecoverPubkey(msg, sig) - // recovery can sometimes work, but if so should always give wrong pubkey - if bytes.Equal(pubkey1, pubkey2) { - t.Fatalf("iteration: %d: pubkey mismatch: do NOT want %x: ", i, pubkey2) - } - } -} - -// Useful when the underlying libsecp256k1 API changes to quickly -// check only recover function without use of signature function -func TestRecoverSanity(t *testing.T) { - msg, _ := hex.DecodeString("ce0677bb30baa8cf067c88db9811f4333d131bf8bcf12fe7065d211dce971008") - sig, _ := hex.DecodeString("90f27b8b488db00b00606796d2987f6a5f59ae62ea05effe84fef5b8b0e549984a691139ad57a3f0b906637673aa2f63d1f55cb1a69199d4009eea23ceaddc9301") - pubkey1, _ := hex.DecodeString("04e32df42865e97135acfb65f3bae71bdc86f4d49150ad6a440b6f15878109880a0a2b2667f7e725ceea70c673093bf67663e0312623c8e091b13cf2c0f11ef652") - pubkey2, err := RecoverPubkey(msg, sig) - if err != nil { - t.Fatalf("recover error: %s", err) - } - if !bytes.Equal(pubkey1, pubkey2) { - t.Errorf("pubkey mismatch: want: %x have: %x", pubkey1, pubkey2) - } -} - -func TestRangeproof(t *testing.T) { - RunRangeproof() - startTime := time.Now() - dt := SetupRangeproof(32) - setupTime := time.Now() - fmt.Println("Setup time:") - fmt.Println(setupTime.Sub(startTime)) - CommitRangeproof(dt) - commitTime := time.Now() - fmt.Println("Commit time:") - fmt.Println(commitTime.Sub(setupTime)) - ProveRangeproof(dt) - proveTime := time.Now() - fmt.Println("Prove time:") - fmt.Println(proveTime.Sub(commitTime)) - result := VerifyRangeproof(dt) - verifyTime := time.Now() - fmt.Println("Verify time:") - fmt.Println(verifyTime.Sub(proveTime)) - fmt.Println("result:") - fmt.Println(result) -} - -func BenchmarkSign(b *testing.B) { - _, seckey := generateKeyPair() - msg := randentropy.GetEntropyCSPRNG(32) - b.ResetTimer() - - for i := 0; i < b.N; i++ { - Sign(msg, seckey) - } -} - -func BenchmarkRecover(b *testing.B) { - msg := randentropy.GetEntropyCSPRNG(32) - _, seckey := generateKeyPair() - sig, _ := Sign(msg, seckey) - b.ResetTimer() - - for i := 0; i < b.N; i++ { - RecoverPubkey(msg, sig) - } -} diff --git a/src/ConfidentialTx/main.go b/src/ConfidentialTx/main.go index 641db6a..439313a 100644 --- a/src/ConfidentialTx/main.go +++ b/src/ConfidentialTx/main.go @@ -8,60 +8,63 @@ import ( ) func main() { - var ( - zkrpX zkproofs.Bp - zkrpY zkproofs.Bp - zkrpZ zkproofs.Bp - ) - // common setup - zkrpX.Setup(0, 4294967296) - zkrpY.Setup(0, 4294967296) - zkrpZ.Setup(0, 4294967296) // value x := new(big.Int).SetInt64(30) y := new(big.Int).SetInt64(20) z := new(big.Int).SetInt64(10) // get blind factor, pedersen commit and zkproof - // 这里会更新 zkrpX,所以 zkrpX 和 proofX 都需要保存下来 - blindFactorX, commitmentX, proofX, _ := zkrpX.Prove(x) + blindFactorX, tX, hX, pX, proofX, _ := zkproofs.GetZkrp().GenerateProof(x) + + proofDataX, _ := zkproofs.DumpProof(tX, hX, pX, &proofX) + + verifier, proof, _ := zkproofs.LoadProof(proofDataX) - // zkrp, _ := zkproofs.LoadParamFromDisk("setup.dat") var ok bool - // proofX中包含commitmentX,如果修改了proofX.V 验证也不会通过 - ok, err := zkrpX.Verify(proofX) + ok, err := verifier.Verify(*proof) if !ok { fmt.Println("proofX failed!!!") fmt.Println(ok) fmt.Println(err) + } else { + fmt.Println("proofX verified >0.") } - blindFactorY, commitmentY, proofY, _ := zkrpY.Prove(y) + blindFactorY, tY, hY, pY, proofY, _ := zkproofs.GetZkrp().GenerateProof(y) - // zkrp, _ = zkproofs.LoadParamFromDisk("setup.dat") - ok, _ = zkrpY.Verify(proofY) + proofDataY, _ := zkproofs.DumpProof(tY, hY, pY, &proofY) + + verifier, proof, _ = zkproofs.LoadProof(proofDataY) + ok, _ = verifier.Verify(proofY) if !ok { fmt.Println("proofY failed!!!") + } else { + fmt.Println("proofY verified >0.") } - blindFactorZ, commitmentZ, proofZ, _ := zkrpZ.Prove(z) - // zkrp, _ = zkproofs.LoadParamFromDisk("setup.dat") - ok, err = zkrpZ.Verify(proofZ) + blindFactorZ, tZ, hZ, pZ, proofZ, _ := zkproofs.GetZkrp().GenerateProof(z) + + proofDataZ, _ := zkproofs.DumpProof(tZ, hZ, pZ, &proofZ) + + verifier, proof, _ = zkproofs.LoadProof(proofDataZ) + ok, _ = verifier.Verify(proofZ) if !ok { fmt.Println("proofZ failed!!!") + } else { + fmt.Println("proofZ verified >0.") } + + // 佩德森承诺检查输入之和与输出之和是否相等 blindOut := new(big.Int).Add(blindFactorY, blindFactorZ) blindDiff := new(big.Int).Sub(blindFactorX, blindOut) - commitmentOut := commitmentY.Add(commitmentY, commitmentZ) - commitmentDiff := commitmentX.Add(commitmentX, commitmentOut.Neg(commitmentOut)) - - fmt.Printf("blind diff: %d\n", blindDiff) - fmt.Printf("pedersen commitment diff: ( %d , %d )\n", commitmentDiff.X, commitmentDiff.Y) - - check := zkproofs.Mult(zkrpX.H, blindDiff) - fmt.Printf("check diff: ( %d , %d )\n", check.X, check.Y) - fmt.Println(check.X.Cmp(commitmentDiff.X) == 0) - fmt.Println(check.Y.Cmp(commitmentDiff.Y) == 0) + check := zkproofs.VerifyPedersenCommitment([]*zkproofs.PedersenCommitment{proofX.V}, []*zkproofs.PedersenCommitment{proofY.V, proofZ.V}, blindDiff) + fmt.Println("pedersen verify result:", check) } + +// 最好能抽象出一个独立的 zkrp.Bp 出来,然后 +// 主要有两个 challenge值 y 和 z 应该是由 verifier 那边根据A 和 S 生成的,这边把这个交互过程省略了,所以最后应该把 +// zkrp.Zkip.Hh = hprime +// zkrp.Zkip.Cc = tprime +// 这两个值也放在 proof 中发过去,有个问题:G 和 H 用户是否应该知道? diff --git a/src/ConfidentialTx/main_test.go b/src/ConfidentialTx/main_test.go new file mode 100644 index 0000000..e52e916 --- /dev/null +++ b/src/ConfidentialTx/main_test.go @@ -0,0 +1,103 @@ +package main + +import ( + "fmt" + "math/big" + "testing" + + "./zkproofs" + "github.com/stretchr/testify/assert" +) + +func TestCTx(t *testing.T) { + // value + x := new(big.Int).SetInt64(30) + y := new(big.Int).SetInt64(20) + z := new(big.Int).SetInt64(10) + + blindFactorX, tX, hX, pX, proofX, _ := zkproofs.GetZkrp().GenerateProof(x) + var ok bool + verifier := zkproofs.GetVerifier(tX, hX, pX) + ok, _ = verifier.Verify(proofX) + assert.True(t, ok) + + blindFactorY, tY, hY, pY, proofY, _ := zkproofs.GetZkrp().GenerateProof(y) + verifier = zkproofs.GetVerifier(tY, hY, pY) + ok, _ = verifier.Verify(proofY) + assert.True(t, ok) + + blindFactorZ, tZ, hZ, pZ, proofZ, _ := zkproofs.GetZkrp().GenerateProof(z) + verifier = zkproofs.GetVerifier(tZ, hZ, pZ) + ok, _ = verifier.Verify(proofZ) + assert.True(t, ok) + + // 佩德森承诺检查输入之和与输出之和是否相等 + blindOut := new(big.Int).Add(blindFactorY, blindFactorZ) + blindDiff := new(big.Int).Sub(blindFactorX, blindOut) + + check := zkproofs.VerifyPedersenCommitment([]*zkproofs.PedersenCommitment{proofX.V}, []*zkproofs.PedersenCommitment{proofY.V, proofZ.V}, blindDiff) + fmt.Println("pedersen verify result:", check) + assert.True(t, check) +} + +func TestCTx2(t *testing.T) { + // value + x := new(big.Int).SetInt64(30) + y := new(big.Int).SetInt64(40) + z := new(big.Int).SetInt64(10) + + blindFactorX, tX, hX, pX, proofX, _ := zkproofs.GetZkrp().GenerateProof(x) + var ok bool + verifier := zkproofs.GetVerifier(tX, hX, pX) + ok, _ = verifier.Verify(proofX) + assert.True(t, ok) + + blindFactorY, tY, hY, pY, proofY, _ := zkproofs.GetZkrp().GenerateProof(y) + verifier = zkproofs.GetVerifier(tY, hY, pY) + ok, _ = verifier.Verify(proofY) + assert.True(t, ok) + + blindFactorZ, tZ, hZ, pZ, proofZ, _ := zkproofs.GetZkrp().GenerateProof(z) + verifier = zkproofs.GetVerifier(tZ, hZ, pZ) + ok, _ = verifier.Verify(proofZ) + assert.True(t, ok) + + // 佩德森承诺检查输入之和与输出之和是否相等 + blindOut := new(big.Int).Add(blindFactorY, blindFactorZ) + blindDiff := new(big.Int).Sub(blindFactorX, blindOut) + + check := zkproofs.VerifyPedersenCommitment([]*zkproofs.PedersenCommitment{proofX.V}, []*zkproofs.PedersenCommitment{proofY.V, proofZ.V}, blindDiff) + fmt.Println("pedersen verify result:", check) + assert.False(t, check) +} + +func TestCTx3(t *testing.T) { + // value + x := new(big.Int).SetInt64(30) + y := new(big.Int).SetInt64(40) + z := new(big.Int).SetInt64(-10) + + blindFactorX, tX, hX, pX, proofX, _ := zkproofs.GetZkrp().GenerateProof(x) + var ok bool + verifier := zkproofs.GetVerifier(tX, hX, pX) + ok, _ = verifier.Verify(proofX) + assert.True(t, ok) + + blindFactorY, tY, hY, pY, proofY, _ := zkproofs.GetZkrp().GenerateProof(y) + verifier = zkproofs.GetVerifier(tY, hY, pY) + ok, _ = verifier.Verify(proofY) + assert.True(t, ok) + + blindFactorZ, tZ, hZ, pZ, proofZ, _ := zkproofs.GetZkrp().GenerateProof(z) + verifier = zkproofs.GetVerifier(tZ, hZ, pZ) + ok, _ = verifier.Verify(proofZ) + assert.False(t, ok) + + // 佩德森承诺检查输入之和与输出之和是否相等 + blindOut := new(big.Int).Add(blindFactorY, blindFactorZ) + blindDiff := new(big.Int).Sub(blindFactorX, blindOut) + + check := zkproofs.VerifyPedersenCommitment([]*zkproofs.PedersenCommitment{proofX.V}, []*zkproofs.PedersenCommitment{proofY.V, proofZ.V}, blindDiff) + fmt.Println("pedersen verify result:", check) + assert.True(t, check) +} diff --git a/src/ConfidentialTx/zkproofs/bb.go b/src/ConfidentialTx/zkproofs/bb.go index 70ef505..fd4a401 100644 --- a/src/ConfidentialTx/zkproofs/bb.go +++ b/src/ConfidentialTx/zkproofs/bb.go @@ -24,11 +24,13 @@ Eurocrypt 2004 */ import ( + "bytes" "crypto/rand" "errors" "math/big" - "../crypto/bn256" + // "../crypto/bn256" + bn256 "github.com/ethereum/go-ethereum/crypto/bn256/google" ) type keypair struct { @@ -43,14 +45,15 @@ func keygen() (keypair, error) { var ( kp keypair e error - res bool + res error ) kp.privk, e = rand.Int(rand.Reader, bn256.Order) if e != nil { return kp, e } - kp.pubk, res = new(bn256.G1).Unmarshal(new(bn256.G1).ScalarBaseMult(kp.privk).Marshal()) - if res { + kp.pubk = new(bn256.G1).ScalarBaseMult(kp.privk) + _, res = new(bn256.G2).Unmarshal(kp.pubk.Marshal()) + if res != nil { return kp, errors.New("Could not compute scalar multiplication.") } return kp, e @@ -61,12 +64,13 @@ sign receives as input a message and a private key and outputs a digital signatu */ func sign(m *big.Int, privk *big.Int) (*bn256.G2, error) { var ( - res bool + res error signature *bn256.G2 ) inv := ModInverse(Mod(Add(m, privk), bn256.Order), bn256.Order) - signature, res = new(bn256.G2).Unmarshal(new(bn256.G2).ScalarBaseMult(inv).Marshal()) - if res != false { + signature = new(bn256.G2).ScalarBaseMult(inv) + _, res = new(bn256.G2).Unmarshal(signature.Marshal()) + if res != nil { return signature, nil } else { return nil, errors.New("Error while computing signature.") @@ -80,11 +84,13 @@ true if and only if the signature is valid. func verify(signature *bn256.G2, m *big.Int, pubk *bn256.G1) (bool, error) { // e(y.g^m, sig) = e(g1,g2) var ( - gm *bn256.G1 - e, res bool + gm *bn256.G1 + res bool + e error ) // g^m - gm, e = new(bn256.G1).Unmarshal(new(bn256.G1).ScalarBaseMult(m).Marshal()) + gm = new(bn256.G1).ScalarBaseMult(m) + _, e = new(bn256.G2).Unmarshal(gm.Marshal()) // y.g^m gm = gm.Add(gm, pubk) // e(y.g^m, sig) @@ -94,10 +100,11 @@ func verify(signature *bn256.G2, m *big.Int, pubk *bn256.G1) (bool, error) { g2 := new(bn256.G2).ScalarBaseMult(new(big.Int).SetInt64(1)) p2 := bn256.Pair(g1, g2) // p1 == p2? - p2 = p2.Neg(p2) - p1 = p1.Add(p1, p2) - res = p1.IsOne() - if e != false { + // p2 = p2.Neg(p2) + // p1 = p1.Add(p1, p2) + // res = p1.IsOne() + res = bytes.Equal(p1.Marshal(), p2.Marshal()) + if e != nil { return res, nil } return false, errors.New("Error while computing signature.") diff --git a/src/ConfidentialTx/zkproofs/bulletproofs.go b/src/ConfidentialTx/zkproofs/bulletproofs.go index 37c13c6..1ac5bb7 100644 --- a/src/ConfidentialTx/zkproofs/bulletproofs.go +++ b/src/ConfidentialTx/zkproofs/bulletproofs.go @@ -797,7 +797,7 @@ func (zkrp *Bp) Delta(y, z *big.Int) (*big.Int, error) { SetupPre is responsible for computing the common parameters. */ func (zkrp *Bp) SetupPre(a, b int64) { - res, _ := LoadParamFromDisk("setup.dat") + res, _ := LoadParamFromDisk("setup.json") zkrp = res // Setup Inner Product zkrp.Zkip.Setup(zkrp.H, zkrp.Gg, zkrp.Hh, new(big.Int).SetInt64(0)) @@ -826,13 +826,13 @@ func (zkrp *Bp) Setup(a, b int64) { // Setup Inner Product zkrp.Zkip.Setup(zkrp.H, zkrp.Gg, zkrp.Hh, new(big.Int).SetInt64(0)) - // zkrp.SaveToDisk("setup.dat", nil) + // zkrp.SaveToDisk("setup.json", nil) } /* Prove computes the ZK proof. */ -func (zkrp *Bp) Prove(secret *big.Int) (*big.Int, *p256, proofBP, error) { +func (zkrp *Bp) GenerateProof(secret *big.Int) (*big.Int, *big.Int, []*p256, *p256, proofBP, error) { var ( i int64 sL []*big.Int @@ -972,7 +972,7 @@ func (zkrp *Bp) Prove(secret *big.Int) (*big.Int, *p256, proofBP, error) { zkrp.Zkip.Cc = tprime commit, _ := CommitInnerProduct(zkrp.Gg, hprime, bl, br) - proofip, _ := zkrp.Zkip.Prove(bl, br, commit) + proofip, _ := zkrp.Zkip.GenerateProof(bl, br, commit) proof.V = V proof.A = A @@ -985,8 +985,8 @@ func (zkrp *Bp) Prove(secret *big.Int) (*big.Int, *p256, proofBP, error) { proof.Proofip = proofip proof.Commit = commit - // zkrp.SaveToDisk("setup.dat", &proof) - return gamma, V, proof, nil + // zkrp.SaveToDisk("setup.json", &proof) + return gamma, tprime, hprime, zkrp.Zkip.P, proof, nil } /* @@ -1191,7 +1191,7 @@ func (zkip *bip) Setup(H *p256, g, h []*p256, c *big.Int) (bip, error) { /* Prove is responsible for the generation of the Inner Product Proof. */ -func (zkip *bip) Prove(a, b []*big.Int, P *p256) (proofBip, error) { +func (zkip *bip) GenerateProof(a, b []*big.Int, P *p256) (proofBip, error) { var ( proof proofBip n, m int64 diff --git a/src/ConfidentialTx/zkproofs/ccs08.go b/src/ConfidentialTx/zkproofs/ccs08.go index 687f717..2aca8b4 100644 --- a/src/ConfidentialTx/zkproofs/ccs08.go +++ b/src/ConfidentialTx/zkproofs/ccs08.go @@ -31,7 +31,8 @@ import ( "math/big" "strconv" - "../crypto/bn256" + bn256 "github.com/ethereum/go-ethereum/crypto/bn256/google" + // "../crypto/bn256" ) /* @@ -148,7 +149,9 @@ func ProveSet(x int64, r *big.Int, p paramsSet) (proofSet, error) { // Initialize variables proof_out.D = new(bn256.G2) - proof_out.D.SetInfinity() + // proof_out.D.SetInfinity() + _, _, epz, _ := proof_out.D.CurvePoints() + epz.SetZero() proof_out.m, _ = rand.Int(rand.Reader, bn256.Order) D := new(bn256.G2) @@ -165,7 +168,7 @@ func ProveSet(x int64, r *big.Int, p paramsSet) (proofSet, error) { proof_out.t, _ = rand.Int(rand.Reader, bn256.Order) proof_out.a = bn256.Pair(G1, proof_out.V) proof_out.a.ScalarMult(proof_out.a, proof_out.s) - proof_out.a.Invert(proof_out.a) + proof_out.a.Neg(proof_out.a) proof_out.a.Add(proof_out.a, new(bn256.GT).ScalarMult(E, proof_out.t)) } else { return proof_out, errors.New("Could not generate proof. Element does not belong to the interval.") @@ -208,7 +211,9 @@ func ProveUL(x, r *big.Int, p paramsUL) (proofUL, error) { proof_out.zsig = make([]*big.Int, p.l, p.l) proof_out.zv = make([]*big.Int, p.l, p.l) proof_out.D = new(bn256.G2) - proof_out.D.SetInfinity() + // proof_out.D.SetInfinity() + _, _, epz, _ := proof_out.D.CurvePoints() + epz.SetZero() proof_out.m, _ = rand.Int(rand.Reader, bn256.Order) // D = H^m @@ -222,7 +227,7 @@ func ProveUL(x, r *big.Int, p paramsUL) (proofUL, error) { proof_out.t[i], _ = rand.Int(rand.Reader, bn256.Order) proof_out.a[i] = bn256.Pair(G1, proof_out.V[i]) proof_out.a[i].ScalarMult(proof_out.a[i], proof_out.s[i]) - proof_out.a[i].Invert(proof_out.a[i]) + proof_out.a[i].Neg(proof_out.a[i]) proof_out.a[i].Add(proof_out.a[i], new(bn256.GT).ScalarMult(E, proof_out.t[i])) ui := new(big.Int).Exp(new(big.Int).SetInt64(p.u), new(big.Int).SetInt64(i), nil) @@ -279,7 +284,7 @@ func VerifySet(proof_out *proofSet, p *paramsSet) (bool, error) { p1.ScalarMult(p1, proof_out.c) p2 = bn256.Pair(G1, proof_out.V) p2.ScalarMult(p2, proof_out.zsig) - p2.Invert(p2) + p2.Neg(p2) p1.Add(p1, p2) p1.Add(p1, new(bn256.GT).ScalarMult(E, proof_out.zv)) @@ -321,7 +326,7 @@ func VerifyUL(proof_out *proofUL, p *paramsUL) (bool, error) { p1.ScalarMult(p1, proof_out.c) p2 = bn256.Pair(G1, proof_out.V[i]) p2.ScalarMult(p2, proof_out.zsig[i]) - p2.Invert(p2) + p2.Neg(p2) p1.Add(p1, p2) p1.Add(p1, new(bn256.GT).ScalarMult(E, proof_out.zv[i])) diff --git a/src/ConfidentialTx/zkproofs/p256.go b/src/ConfidentialTx/zkproofs/p256.go index d80f936..7342d33 100644 --- a/src/ConfidentialTx/zkproofs/p256.go +++ b/src/ConfidentialTx/zkproofs/p256.go @@ -12,7 +12,8 @@ import ( "strconv" "../byteconversion" - "../crypto/secp256k1" + "github.com/ethereum/go-ethereum/crypto/secp256k1" + // "../crypto/secp256k1" ) var ( @@ -27,6 +28,7 @@ Elliptic Curve Point struct. type p256 struct { X, Y *big.Int } +type PedersenCommitment = p256 /* IsZero returns true if and only if the elliptic curve point is the point at infinity. @@ -68,6 +70,11 @@ func (p *p256) Add(a, b *p256) *p256 { return p } + if a.X.Cmp(b.X) == 0 { + p.X = new(big.Int) + p.Y = new(big.Int) + return p + } resx, resy := CURVE.Add(a.X, a.Y, b.X, b.Y) p.X = resx p.Y = resy @@ -144,6 +151,11 @@ func (p *p256) Multiply(a, b *p256) *p256 { p.Y = resy return p } + if a.X.Cmp(b.X) == 0 { + p.X = new(big.Int) + p.Y = new(big.Int) + return p + } resx, resy := CURVE.Add(a.X, a.Y, b.X, b.Y) p.X = resx p.Y = resy diff --git a/src/ConfidentialTx/zkproofs/util.go b/src/ConfidentialTx/zkproofs/util.go index 1a644b8..340ddab 100644 --- a/src/ConfidentialTx/zkproofs/util.go +++ b/src/ConfidentialTx/zkproofs/util.go @@ -18,10 +18,12 @@ package zkproofs import ( "crypto/sha256" + "encoding/json" "math/big" "../byteconversion" - "../crypto/bn256" + bn256 "github.com/ethereum/go-ethereum/crypto/bn256/google" + // "../crypto/bn256" ) //Constants that are going to be used frequently, then we just need to compute them once. @@ -115,3 +117,67 @@ func GetBigInt(value string) *big.Int { i.SetString(value, 10) return i } + +/* +Get common base +*/ +func GetZkrp() *Bp { + var zkrp Bp + zkrp.Setup(0, 4294967296) + return &zkrp +} + +/* +Get zkrp verifier +*/ +func GetVerifier(t *big.Int, h []*p256, p *p256) *Bp { + zkrp := GetZkrp() + zkrp.Zkip.Cc = t + zkrp.Zkip.Hh = h + zkrp.Zkip.P = p + return zkrp +} + +/* +Pedersen Commitment verification, check input_sum == output_sum ? +*/ +func VerifyPedersenCommitment(input, output []*PedersenCommitment, blindDiff *big.Int) bool { + inputCommitment := new(PedersenCommitment) + outputCommitment := new(PedersenCommitment) + for _, p := range input { + inputCommitment = inputCommitment.Add(inputCommitment, p) + } + for _, p := range output { + outputCommitment = outputCommitment.Add(outputCommitment, p) + } + // 计算佩德森承诺输入输出之差 + diffCommitment := inputCommitment.Add(inputCommitment, outputCommitment.Neg(outputCommitment)) + // 根据盲因子计算理论值 + H, _ := MapToGroup(SEEDH) + checkCommitment := Mult(H, blindDiff) + // 比较是否相等 + return checkCommitment.X.Cmp(diffCommitment.X) == 0 && checkCommitment.Y.Cmp(diffCommitment.Y) == 0 + +} + +type ProofData struct { + Proof *proofBP + T *big.Int + Hh []*p256 + P *p256 +} + +func DumpProof(t *big.Int, h []*p256, p *p256, proof *proofBP) ([]byte, error) { + zkrproof := &ProofData{proof, t, h, p} + data, err := json.Marshal(zkrproof) + return data, err +} + +func LoadProof(data []byte) (*Bp, *proofBP, error) { + var p ProofData + err := json.Unmarshal(data, &p) + if err != nil { + return nil, nil, err + } + return GetVerifier(p.T, p.Hh, p.P), p.Proof, nil +}