This commit is contained in:
yjjnls 2018-04-02 16:58:28 +08:00
parent 509e89423e
commit ce5f43ee7c
2 changed files with 101 additions and 2 deletions

95
Basic/crypto.md Normal file
View File

@ -0,0 +1,95 @@
# 数字加密相关知识
- [数字加密相关知识](#%E6%95%B0%E5%AD%97%E5%8A%A0%E5%AF%86%E7%9B%B8%E5%85%B3%E7%9F%A5%E8%AF%86)
- [非对称加密](#%E9%9D%9E%E5%AF%B9%E7%A7%B0%E5%8A%A0%E5%AF%86)
- [椭圆曲线加密](#%E6%A4%AD%E5%9C%86%E6%9B%B2%E7%BA%BF%E5%8A%A0%E5%AF%86)
- [公钥与私钥](#%E5%85%AC%E9%92%A5%E4%B8%8E%E7%A7%81%E9%92%A5)
- [数字签名](#%E6%95%B0%E5%AD%97%E7%AD%BE%E5%90%8D)
- [数字证书](#%E6%95%B0%E5%AD%97%E8%AF%81%E4%B9%A6)
- [Merkle Tree](#merkle-tree)
- [Reference](#reference)
## 非对称加密
`对称加密`指加密和解密使用`相同密钥`的加密算法。它要求发送方和接收方在安全通信之前,商定一个密钥,泄漏密钥就意味着任何人都可以对他们发送或接收的消息解密。
每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量呈几何级数增长,密钥管理成为用户的负担。同时,对称加密算法能够提供加密和认证却缺乏了签名功能,使得使用范围有所缩小。
具体算法DES算法3DES算法TDEA算法Blowfish算法RC5算法IDEA算法。
而`非对称加密`指加解密密钥不相关典型如RSA、EIGamal、椭圆曲线算法。
### 椭圆曲线加密
公开密钥算法总是要基于一个数学上的难题。比如RSA 依据的是给定两个素数p、q 很容易相乘得到n而对n进行因式分解却相对困难。那椭圆曲线上有什么难题呢
考虑如下等式:
K=kG [其中 K,G为Ep(a,b)上的点k为小于nn是点G的阶的整数]
`不难发现给定k和G根据加法法则计算K很容易但给定K和G求k就相对困难了。`
这就是椭圆曲线加密算法采用的难题我们把点G称为基点base point
现在我们描述一个利用椭圆曲线进行加密通信的过程:
1. 用户A选定一条椭圆曲线Ep(a,b)并取椭圆曲线上一点作为基点G。
2. 用户A选择一个私有密钥k并生成`公开密钥K=kG`。
3. 用户A将Ep(a,b)和点KG传给用户B。
4. 用户B接到信息后 将待传输的明文编码到Ep(a,b)上一点M编码方法很多这里不作讨论并产生一个随机整数r
5. 用户B计算点C1=M+rKC2=rG。
6. 用户B将C1、C2传给用户A。
7. 用户A接到信息后计算C1-kC2结果就是点M。因为
C1-kC2=M+rK-k(rG)=M+rK-r(kG)=M
再对点M进行解码就可以得到明文。
在这个加密通信中如果有一个偷窥者H他只能看到Ep(a,b)、K、G、C1、C2`而通过K、G 求k 或通过C2、G求r 都是相对困难的`。因此H无法得到A、B间传送的明文信息。
## 公钥与私钥
公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密;如果用私有密钥对数据进行加密,那么只有用对应的公开密钥才能解密。
通过公钥是无法(或极其困难)推算出私钥的。**注意这里公钥与私钥都可以用来加密,只是私钥是自己保存,而公钥是公开的。**
比如A发信息给B就用B的公钥加密信息然后发给BB用自己的私钥解密就可以看到信息内容。
## 数字签名
A把要加密的内容用hash函数生成摘要digest再用自己的私钥对digest加密生成数字签名signature。连同加密的内容一起发给B。
B收到后对**摘要用A的公钥解密**和**内容(用自己的私钥解密)** 都解密再对内容使用相同hash看得到的digest是否相同相同说明发送的内容没有被修改。
同时用A的公钥对digest进行解密还能验证这是不是A发来的内容但是这里有个潜在的问题。
>**如果B存储的A的公钥被C替换成了C的公钥那么C就可以冒充A和B进行通信而B却完全不知道。**
## 数字证书
证书中心用自己的私钥对`A的公钥和一些相关信息`一起加密,形成`数字证书`。
A在发送内容的同时在数字签名后再附上数字证书。
B收到后先用CA的公钥解密数字证书得到A真正的公钥再用A的公钥来验证签名是否是A的签名。
B可以每次都到CA的网站上或者什么别的官方途径获得CA的公钥。
这么做的目的是为了验证:
1. 确认该信息确实是A所发
2. 确认A发出的信息是完整的。
* **公钥防泄漏,私钥防篡改**
* B收到后只有用B自己的私钥才能解密内容别人是无法解密的。`防泄漏`
* 再用上述数字证书来验证数字签名是否来自A发送内容有没有被篡改。`防篡改`
数字证书一般挂靠在可信任的机构,无法篡改和伪造。
## Merkle Tree
默克尔树又叫哈希树由一个root节点一组中间节点和一组叶节点组成。
叶节点包含存储数据或者其哈希值中间节点和root节点都是其孩子的hash值。
![markle tree](./img/markle%20tree.jpg)
应用:
1\. 快速比较数据,两个默克尔树的根节点相同,那么其所代表的数据必然相同
2\. 快速定位修改比如上面D1数据被修改可通过root->N4->N1快速定位到发生改变的D1
3\. 零知识证明比如要证明某个数据中包含D0那就构造一个默克尔树公开root、N4、N1、N0D0拥有者可以检测到D0存在但不知道其他内容。D0拥有者可以看到hash值但看不到完整的数据内容
# Reference
1. [数字签名是什么?](http://www.ruanyifeng.com/blog/2011/08/what_is_a_digital_signature.html)
2. [比特币背后的密码学原理](https://www.jianshu.com/p/225ff9439132)

View File

@ -14,10 +14,13 @@ The repository will be continually updated.
## Basic Introduction ## Basic Introduction
基础概念和原理介绍 基础概念和原理介绍
* [数字加密相关知识](./Basic/crypto.md)
## Further Extesnsion ## Further Extesnsion
相关补充与扩展书籍 ### Books
* [区块链技术指南](https://yeasy.gitbooks.io/blockchain_guide/content/) * [区块链技术指南](https://yeasy.gitbooks.io/blockchain_guide/content/)
* [区块链原理、设计与应用](https://github.com/yjjnls/books/blob/master/block%20chain/%E5%8C%BA%E5%9D%97%E9%93%BE%E5%8E%9F%E7%90%86%E3%80%81%E8%AE%BE%E8%AE%A1%E4%B8%8E%E5%BA%94%E7%94%A8.pdf)
* [区块链 从数字货币到信用社会](https://github.com/yjjnls/books/blob/master/block%20chain/%E5%8C%BA%E5%9D%97%E9%93%BE%20%E4%BB%8E%E6%95%B0%E5%AD%97%E8%B4%A7%E5%B8%81%E5%88%B0%E4%BF%A1%E7%94%A8%E7%A4%BE%E4%BC%9A.pdf)
## Development Tutorial ## Development Tutorial
### BitCoin ### BitCoin
@ -39,7 +42,8 @@ The repository will be continually updated.
## Releated Tools ## Releated Tools
深入学习 深入学习
### Solidity ### Solidity
### ### truffle
### web3.js
## Projects and Applications ## Projects and Applications