
 

 

  
Abstract—In recent years with the rapid development of Internet 

and the Web, more and more web applications have been deployed in 
many fields and organizations such as finance, military, and 
government. Together with that, hackers have found more subtle 
ways to attack web applications. According to international statistics, 
SQL Injection is one of the most popular vulnerabilities of web 
applications. The consequences of this type of attacks are quite 
dangerous, such as sensitive information could be stolen or 
authentication systems might be by-passed. To mitigate the situation, 
several techniques have been adopted. In this research, a security 
solution is proposed using Artificial Neural Network to protect web 
applications against this type of attacks. The solution has been 
experimented on sample datasets and has given promising result. The 
solution has also been developed in a prototypic web application 
firewall called ANNbWAF. 
 

Keywords—Artificial Neural Networks ANN, SQL Injection, 
Web Application Firewall WAF, Web Application Scanner WAS.  

I. INTRODUCTION 
O provide maximum security for web applications, there 
are specific solutions should be implemented. One of 

these solutions is Web Application Firewalls (WAF). Most 
WAFs are based on filtering incoming user requests against a 
set of predefined rules and signatures. The ability of pattern 
matching is mainly achieved using regular expressions, such 
as in ModSecurity; the most famous WAF [19]. However, 
with the rapid development of web applications, the number 
of threats and defined attacks signatures is dramatically 
increasing. Accordingly, traditional pattern matching 
techniques (particularly regular expressions) are not effective 
anymore. There is an urgent need to adopt a new pattern 
matching technique that tackles the requirements of the 
current stage of security measures.  

By listing the security requirements of the new approach, it 
will be easier to make the choice. Firstly, the new approach 
should be scalable. This means that it should function well 
with the increasing number of rules and signatures of known 
bad incoming requests. Also, it has to be easily updated and 
user friendly (less complexity than regular expressions). 
Moreover, it has to be able to deal with the dynamic nature of 
web application attacks and signatures, including its 
 

Asaad Moosa is with the Centre for Advanced Computing and Emerging 
Technologies, School of Systems Engineering, Philip Lyle Building, 5th 
Floor, Whiteknights Campus, University of Reading, Reading, Berkshire, 
RG6 6BX, United Kingdom. (phone: +447792399468; fax: +441183785224; 
e-mail: a.moosa@reading.ac.uk). 

 

complicated patterns, such as SQL injection signatures with 
all possible evasion techniques. More importantly, the time of 
filtering incoming requests should not affect the performance 
of the web application. 

By investigating possible engineering approaches and 
metaphors, there is a biologically inspired computing 
approach precisely matches all the requirements listed above. 
This approach is the Artificial Neural Networks (ANN).  

This paper will go through the concept of artificial neural 
networks and how to apply it in a form of a web application 
firewall. To focus on proving the concept of utilizing ANN in 
a web application security framework, the case study that was 
investigated in this research is mainly SQL injection attacks, 
with little involvement of Cross-site Scripting attacks. There 
are two algorithms have been developed, implemented, 
examined and carefully evaluated in this research.   

Finally, this research is a serious step to adopt ANN 
approach in the web applications, after the significant success 
of ANN in network security solutions, such as intrusion 
detection systems as it will be shown in the literature of this 
research. The next section will give a brief introduction to the 
concept of SQL injection and how it can penetrate security 
solutions using evasion techniques.       

II. INTRODUCTION TO SQL INJECTION 
In the OWASP Top Ten 2007 web application 

vulnerabilities [25], Injection Flaw was ranked the second 
most prevalent vulnerability. The priority has jumped to 
number one most critical vulnerability in OWASP Top Ten 
2010 release [26]. This reflects the seriousness of this type of 
vulnerabilities. In the Injection Flaw family, SQL Injection is 
particularly popular and can cause various consequences in 
compromising web applications. 

Basically, SQL injection attacks occur when web 
applications directly use user’s inputs to build an SQL query 
to access the backend database without a proper validation on 
the inputs [36].  

To perform SQL injection, hackers can use different 
techniques. These techniques can be classified into five main 
categories as will be explained below [9]. Note: the bold part 
in each example below is the input entered by the user.  

A. Tautologies 
In this type, the attackers inject some SQL token into the 

user input and cause the selection clause of an SQL query to 
be true all the time: 

Artificial Neural Network based Web 
Application Firewall for SQL Injection 

Asaad Moosa 

T 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:4, 2010 

610International Scholarly and Scientific Research & Innovation 4(4) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

4,
 2

01
0 

w
as

et
.o

rg
/P

ub
lic

at
io

n/
10

01



 

 

Select * from users where username=’admin’ or 

1=1 --‘ and password=’’;  
  

B. Union Queries 
In this type, the attackers inject a UNION query into the 

SQL query to get more data: 
Select bookTitle, ISBN from books where bookID 

= 1 UNION Select “hack”, balance from accounts 

where accNo = 3456 --; 
 

C. Piggyback Queries 
In this type, the attackers inject additional statements to 

execute for hacking purpose: 
Select * from users where username=’’; drop 

table accounts -- and password=’’ 
 

D. Malformed Queries 
This type is based on the error message returned from the 

web server to find more information about the database: 
Select * from books where 

bookID=convert(int,(select top 1 name from 

sysobjects where xtype =‘u’)); 
 

E. Inference 
This type of attack often is based on different response-time 

of the web server to discover other information about the 
database: 

Select * from users where username=’hello1’; 

select if( user() like 'root@%', 

benchmark(1000000,sha1('test')), 'false' ); -- 

‘ and password=’’ 
 

F. Alternate Encoding 
This technique is used to by-pass the defending scheme that 

escapes special characters (such as quotes, dashes, etc.) or 
some keywords:  

Select * from books where bookID=1; 

exec(char(0x730065006c0065006300740020004000400076

0065007200730069006f006e00); 
 
This runs sp_msdropretry [foo drop table logs select 

* from sysobjects], [bar]. 
 
The various techniques of SQL injection listed above are 

used by hackers to achieve different purposes: bypassing a 
login system, modifying a table in a database (using some 
SQL queries, such as insert, delete, update, etc), shutting 
down SQL Server, getting database information from the 
returned error message or inference, or executing stored 
procedures. Moreover, this can lead to further damages. For 
instance, after getting the login credentials of the 

administrator/root of a website through updating the database 
or abstracting valuable information from the error message, 
the hacker can login with the administrator privilege and 
perform sensitive actions. The next section will shed the light 
on advanced techniques used by hackers to bypass traditional 
security defense systems.  

III. SQL INJECTION EVASION TECHNIQUES 
With the evolution of SQL injections, more awareness has 

been gained by website administrators and developers. The 
elementary techniques that have been used to prevent web 
applications against SQL injections include applying some 
input validations using pattern matching on common SQL 
keywords such SELECT, EXEC, INSERT, etc. However, 
hackers can easily overcome these filtering barriers by using 
some evasion techniques [13], [18] as it will be explained 
below. 

Firstly, SQL evasion can be achieved using a technique 
called the C-like comment (/* some comments*/). For 
instance, a website uses a Web Application Firewall to reject 
any HTTP request that has a pattern matches the keyword 
“UNION” followed by one or more spaces followed by the 
keyword “SELECT”. The hacker can simply inject the string 
“/* anything goes here */” between UNION and SELECT 
keywords. The response of different database management 
systems (DBMS) varies from to another, though, the evasion 
succeeds. Three DBMS examples will be evaluated for this 
purpose: Microsoft SQL Server, Oracle, and MySQL.  

If the backend database is Microsoft SQL Server or Oracle, 
then the hacker can bypass the firewall and the injected string 
will succeed using this evasion approach [13]. The reason is 
because after the injected string passes through the Firewall, 
the string “/* anything goes here */” is replaced by a single 
space by the SQL parser and the injected sequence becomes a 
legitimate SQL statement. One might argue that the 
developers can perform the validation in a way that the 
comment string is replaced by a single space before trying to 
match the injected string with the pattern above. However, 
even with doing so, the hacker might overcome this validation 
and probably has the injected SQL string executed if the 
backend database server is MySQL. In MySQL, the attacker 
can do so by submitting a string similar to this “…UNI/* 
anything */ON/* anything */ SE/* anything */LE/* anything 
*/CT …”. Assuming that the firewall will replace any C-like 
comment by a single space, the injected string becomes 
“…UNI ON  SE LE CT...” with some spaces between the 
keywords and the string, which will not be considered as a 
match against the pattern. Therefore, the injected string will 
successfully pass through. When the injected string is parsed 
by MySQL parser, the C-like comments are simply omitted. 
Then the injected string becomes “…UNION SELECT…” 
which is a genuine SQL statement that might get executed 
causing a successful SQL injection. 

The second approach of evasion, which is so-called string 
concatenation, allows the attacker to achieve SQL injections 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:4, 2010 

611International Scholarly and Scientific Research & Innovation 4(4) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

4,
 2

01
0 

w
as

et
.o

rg
/P

ub
lic

at
io

n/
10

01



 

 

by overcoming the firewall with pattern matching like the one 
above. For instance, in the case of Microsoft SQL Server, the 
hacker can submit a string like “…EXEC (“IN” + “SERT” + 
“ IN” + “TO…”…)”. Since the EXEC command of MS SQL 
Server can be used to execute an SQL statement from a string, 
which might be a result of a string concatenation, the string 
“INSERT INTO…” probably gets executed [13], [34]. 
Consequently, even if the developers have a validation 
mechanism to reject any input with the pattern “INSERT 
INTO”, the hacker can still pass through it with the described 
technique. 

Besides the above two techniques, the attacker can also 
exploit other similar techniques such as the variation of the 
number of whitespace, using char() function to build a string 
to bypass the firewall regardless the pattern matching 
technique used [13], [34]. 

IV. RELATED WORK 
As the number of web application security vulnerabilities 

and incidents increases day by day, there have been some 
solutions to mitigate the situation. These solutions are often in 
a form of a Web Application Scanner (WAS) and a Web 
Application Firewall (WAF). 

A WAS is computer software that search for web 
applications’ vulnerabilities before these web applications are 
published online [36]. Since a WAS is not meant to work as a 
real-time filtering mechanism for incoming traffic, it does not 
affect the performance of the web applications. However, a 
WAS cannot protect the web applications on the fly and 
requires modification on the code of the web applications 
which is often laborious and tedious. Besides, if the source of 
the web applications is not accessible when the test is running 
after publishing the web application, then the detected 
vulnerabilities might not be mitigated. 

To protect web applications on the fly, web application 
firewalls are used. A WAF is a program used to protect a web 
application in real-time whilst the application is running. The 
WAF sits between the web-client and the web application, 
intercepts the flow of information and performs canonical 
validations based on certain predefined policies. The security 
policies might exploit positive security model or negative 
security model or both. Some other security policies might be 
based on anomaly detection (profile-based) techniques. These 
three techniques will be discussed briefly. 

 
IV.1. POSITIVE SECURITY MODEL OF WAF 

 

Positive Security model can be described as “Deny All but 
Known Good”. Its philosophy is to define a white-list and if 
the information to be checked is matched, then it is allowed to 
pass the WAF and access the web application, otherwise, it is 
rejected. The white-list for the web application firewall at the 
application layer can include information such as URL, 
parameters, parameters’ properties, parameters’ contents, 
HTTP methods, etc. 

Microsoft® Intelligent Application Gateway (IAG) is a 

WAF that mainly focuses on this scheme. Microsoft® IAG 
allows web administrators to define a list of URL pattern 
along with the HTTP request methods (i.e. POST, GET, etc.) 
to be accepted for every individual page in the website. Each 
URL pattern is automatically written using a regular 
expression and can match a set of allowed URLs. Other URLs 
that do not match that set will be rejected. Moreover, 
Microsoft® IAG WAF allows administrators to define a list of 
parameters together with its types, its value pattern (also 
defined by regular expressions), their length, whether they are 
required or not [39].  

From a security perspective, positive logic is the preferred 
model when comparing between the white-listing and 
blacklisting (negative security model) [6]. It can help to 
significantly reduce the number of attacks of web applications 
with SQL injection and other kinds of attacks that take 
advantage of the lack of input validation techniques. 

However, the positive security model has certain 
drawbacks. First, this approach is not applicable for large-
scale web applications where the white-list is too complicated 
to generate and to validate all possible parameters in every 
single page in the web application. It is also not practically 
suitable for frequently changing Web applications since the 
mechanism of generating the while-list requires manual 
efforts. Moreover, it is CPU/Memory consuming for busy web 
applications where hundreds or thousands of HTTP requests 
are simultaneously are filtered (i.e. Facebook, MySpace, 
Amazon, etc.). Finally, and most importantly, there is a high 
possibility that the white-list itself has vulnerabilities, which 
means that the white-list does not consider any negative based 
filtering to validate it against vulnerable signatures. The next 
section will cover the negative filtering model. 

 
IV.2. NEGATIVE SECURITY MODEL OF WAF 

 

Negative Security model defines a blacklist of invalid 
traffic (negative signatures). If the HTTP flaw matches any 
pattern in the list, it is rejected; otherwise, it is allowed to pass 
the WAF and access the web application. The patterns used 
for SQL injection can be as simple as a list of suspicious 
characters [2] (such as ‘, --, #), or SQL keywords [12] (such as 
SELECT, INSERT, etc.), or as complex as a group of ordered 
SQL keywords and suspicious characters (often in the form of 
regular expressions) that can be seen in an SQL statement 
[19]. 

There is an approach that is based on suspicious characters 
can catch many forms of SQL injection signatures. However, 
it can also cause high false positives (i.e. a legitimate request 
is incorrectly classified as an attack) because the suspicious 
characters might also appear in legitimate requests. For 
instance, a quote (‘) can appear in a name such as O’Brien.  
Besides, there are cases that some SQL injection patterns do 
not contain any of these suspicious characters, which 
consequently means a high possibility of false negatives (i.e. 
an attack is not caught) might occur too. 

On the other hand, another approach that is based on SQL 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:4, 2010 

612International Scholarly and Scientific Research & Innovation 4(4) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

4,
 2

01
0 

w
as

et
.o

rg
/P

ub
lic

at
io

n/
10

01



 

 

keywords (each keyword is considered as a pattern) can also 
catch significant SQL injection signatures. Nonetheless, the 
limitation of this approach is that some of the defined SQL 
keywords might also appear in a legitimate request. For 
instance, an HTTP request with a POST method can have a 
parameter with the content of the Body part of the HTTP 
message “…I will select the following courses…”. In this 
example, this request will be considered as an attack, which is 
incorrect (false positive). 

A more advanced approach that is based on a group of 
ordered SQL keywords and suspicious characters is 
considered to give much higher accuracy in comparison with 
the previous two approaches. This approach is used by 
ModSecurity web application firewall, the most deployed 
WAF according to a research in 2006 [8]. However, the third 
solution also has some limitations: 
• It is quite complex to write a regular expression like the one 
above. 
• With the new evasion SQL injection techniques like the 
ones described in Section III, some SQL injection patterns can 
still go through ModSecurity WAF. To prove this drawback 
with ModSecurity WAF, some tests have been performed 
against ModSecurity 2.5.7 with Apache Web Server 2.2.10 
and a simple PHP forum using MySQL database. The results 
revealed that when a C-like comment was inserted between 
the SQL keywords, ModSecurity could not detect it. This is 
because C-like comments were replaced by a space. Other 
evasion techniques like string concatenation (Section III) or 
variations on theme (e.g. instead of using “…OR 1 = 1 ”, “ 
‘…OR ‘Simple’ LIKE ‘Sim%’ ” is used) can also penetrate 
ModSecurity. 
• It might be even more complex to update/modify the 
regular expression set than incorporating new signatures like 
the ones above. 
• The number of regular expressions probably has to 
dramatically increase when more and more bad patterns are 
devised by hackers (e.g. according to N-Stalker WAS [23], 
the database of negative signatures at the time of this writing 
has around 39,000 signatures). This can lead to increasing the 
processing time that is utilised by the WAF and will 
consequently degrade the performance of the web application, 
which is unacceptable in most cases. 
 

IV.3. ANOMALY DETECTION MODEL OF WAF 
 

In this security model, there is a training phase to be 
accomplished before the WAF can start functioning to protect 
web applications against various injection flaws. During the 
training phase, a profile of normal traffic behavior is built 
based on either static source code analysis [22], [37] or 
dynamic checking [33] when the application is safely running 
in the testing mode. During production phase, the SQL queries 
submitted to the web application are captured and compared 
with the profile. If there is any anomaly, then an alarm is 
generated and the query is rejected based on the predefined 
policies in the profile. 

The advantage of this approach is that it can give high 
detection rate with low false positive rate. Nonetheless, the 
disadvantage is it allows the web application to run for a while 
before the injection flaw can be detected. It requires the 
modification when the backend database server is changed so 
that it can capture SQL queries emitted from the web 
application. And most of all, it is too specific to SQL 
injections and probably could not be extended to include other 
types of injection flaws vulnerabilities, due to the lack of input 
validation. 

 
IV.4. DISCUSSION 

 

WASs can be used to detect vulnerabilities of web 
applications but cannot function on the fly. WAFs are the 
common solution to protect web application against various 
application-layer attacks. WAFs based on positive logic are 
useful but are not enough and often need to work with 
negative logic. WAFs based on anomaly detection are often 
too specific to SQL injection and might not be able to be 
extended to include other types of injection flaws that take 
advantage of the lack of input validation. WAFs based on 
negative security model are the more popular. 

Negative logic WAFs can be quite simple when they 
perform input validation using suspicious characters only or 
separate SQL keywords only. However, the accuracy of these 
WAFs might not be as desired. Negative logic WAFs that are 
based on a group of ordered SQL keywords and suspicious 
characters using regular expression are believed to provide 
much more accuracy. Nonetheless the limitations of these 
WAFs are the complexity in writing the list of regular 
expressions and keeping it up-to-date especially when the set 
of known bad patterns dramatically grows. This will lead to a 
crucial need to investigate a new approach to be adopted to 
overcome these limitations. 

The new approach that is considered in this research is 
based on the ability of the Artificial Neural Networks concept 
to perform pattern recognition when it’s properly trained. 
However, first, the concept of Artificial Neural Networks will 
be explored, which will be covered in the next section. 

V. ARTIFICIAL NEURAL NETWORKS 
An Artificial Neural Network (ANN) is a massively parallel 

distributed processor consists of a set of neurons 
interconnected to each other [10]. Like a human brain, an 
ANN has the ability to learn through a training process to 
obtain knowledge and makes that knowledge available for 
later use. 

The basic component of an ANN is the neuron. Each 
neuron has three important components (fig. 1): a set of 
synaptic connections (which are represented by a set of 
synaptic weights and bias, i.e. wki and bk); a propagation 
function (Σ) which is a linear combination between the input 
elements modified by the set of synaptic weights and bias; and 
an activation function (φ) which takes the output of the 
propagation function as its input and generates the output of 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:4, 2010 

613International Scholarly and Scientific Research & Innovation 4(4) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

4,
 2

01
0 

w
as

et
.o

rg
/P

ub
lic

at
io

n/
10

01



 

 

the neuron. It is the set of synaptic weights and bias that stores 
the knowledge acquired during the learning phase. 

Fig. 1 A Model of a Neuron [10] 
 

The way neurons are connected to one another will define 
the architecture of an ANN. In this research, Multilayer 
Feedforward Networks (MLN) was used. The architecture of 
MLNs is demonstrated in fig. 2. 

 
Fig. 2 A Multilayer Feedforward Network (MLN) [10] 

 
With the learning ability, ANN can be trained to perform 

different engineering tasks. Some of the tasks that can be 
identified are: pattern recognition, pattern association, 
function approximation, control systems, filtering, and beam 
forming [10]. Among these different learning tasks, pattern 
recognition is the one of interest in this research. Pattern 
recognition is a process in which a pattern or input is assigned 
to one of a predefined category or a class. 

There are some algorithms that can be used to train an ANN 
for a pattern recognition task, such as: Back Propagation, 
Radial-basis Function, and Support Vector Learning, etc. 
Among them, Back Propagation is the algorithm that is 
specifically devised to train a multilayer perceptron. The 
algorithm has been implemented in Matlab® [15], which is a 
popular tool to train ANNs. 

MLNs trained with Back Propagation have been used in 
different fields such as Intrusion Detection Systems [20], [21], 
[27] and Image Processing [1], [11]. The classification 
accuracies in all these applications are higher than 90%, 
especially the application of MLN in an intrusion detection 
approach has an accuracy of 99.25% [21]. 

The success of ANN in intrusion detection systems has 
motivates this research to investigate a new solution for the 
challenging limitations of Web Application Firewalls (WAF). 
More importantly, with ANNs the answer for a scalable 
solution for WAFs can be found based on some of the instinct 
features of the ANNs [10]: The ability to learn and store the 
empirical knowledge; the nonlinearity of the ANN; the ability 
to generalize the solutions; the ability to adapt when the 
context changes; the computational performance; and the 
massively parallel structure of the ANN. 

VI. PROPOSED SOLUTION 
The proposed solution gains the motivation from applying 

ANN into intrusion detection systems successfully. The 
proposed Artificial Neural Network-based WAF 
(ANNbWAF) solution aims to produce a high accuracy in 
detecting SQL injection attacks without much loss in the 
performance when the number of negative patterns increases 
as the case of pattern matching based on regular expressions 
(e.g. ModSecurity [19]). The solution also has the potential to 
be extended to include other types of attacks that take 
advantage of the lack of input validation such as Cross Site 
Scripting (XSS) and other types of Injection Flaws. In this 
research, some experiments for XSS have also been carried 
out. 

For shared web hosting, the ANNbWAF is used for each 
website separately. In this case, the Web Server with ANN-
based WAF, which hosts many websites, integrates different 
instances of the ANNbWAF that need to be trained and used 
for each website individually. This arrangement is crucial 
since each website has its own list of valid HTTP traffic, 
whereas other websites on the same web server may not allow 
the same traffic, leading to a policy conflict in filtering web 
traffic. However, the experiments in this research were tested 
on a single website hosted on a web server. 

The ANN-based WAF does not consider the case of 
Alternate Encoding methods. Often different Encoding 
methods (e.g. Base 64, Unicode, UTF-8, Hex, Decimal, etc.) 
are used to support different web languages and character sets 
[13], [34]. However, the proposed solution assumes that the 
web server takes the responsibility of decoding the HTTP 
requests and the ANNbWAF might only need to perform 
simple decoding with UTF-8 scheme (it is also the 
recommended encoding method from the WWW 
Consortium). The proposed solution can be summarized in fig. 
3. The system has two phases: Training phase and Working 
phase.  During the training phase, a set of normal and 
malicious data is used to train the ANN with Matlab®. The 
trained ANN is then integrated into a WAF to protect the web 
application during the working phase. 

The experiments have been implemented with two ANN 
filtering approaches: character-based and keyword-based. The 
following will explain the two methods, showing the 
considered data sets, the algorithm of each method and 
discussing and evaluating the results. 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:4, 2010 

614International Scholarly and Scientific Research & Innovation 4(4) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

4,
 2

01
0 

w
as

et
.o

rg
/P

ub
lic

at
io

n/
10

01



 

 

 
Fig. 3 General Proposed System Design 

 
VI.1. CHARACTER-BASED METHOD 

The approach motivation is based on the observation that 
some characters and character combinations often have a 
higher distribution frequency in a malicious content than in a 
normal one. Besides applying the approach for SQL injection 
problems, we also examined the approach with XSS attacks. 
However, since the feature sets (section VI.1.1) are different 
and with the purpose of reducing the complexity during the 
preliminary experiments with ANN, an individual ANN was 
chosen separately for each type of the attacks (SQL injection 
and XSS). Then, an ANN with both attacks data sets were 
tested and evaluated. 
 

VI.1.1 DATA SET 
 

Since there is no available normalised database of SQL 
injection signatures along and normal signatures, a set of 
synthetic data was used as the data sets for the experiment. 
There have been around 300 SQL injection signatures and 
around 200 XSS signatures collected from different websites 
and white papers [3], [4], [5], [7], [13], [14], [16], [17], [30], 
[28], [29], [32]. 

The normal signatures are either the usernames and email 
addresses of a group of students of the University of Reading 
(where this research was made), a set of passwords from the 
template passwords of John the Ripper password cracker 
software [24], from some of random search patterns (software 
names, book titles, song names, technical topics, etc.), and the 

messages posted on Sun Java forums [30]. The size of a 
normal signature is 200 characters. 

To achieve input validation in this research, parameters 
from both the query strings and the body of the request are 
considered (two most popular places for user input). However, 
this does not mean that the solution cannot be extended to 
include parameters from other places in the client request, 
such as cookies, header, etc. 

 
VI.1.2 DATA PREPROCESSING ALGORITHM 

 

Based on the analysis of the two negative signature sets of 
SQL injection attack and XSS attacks, some characters and 
some combinations of both only appear in either one set or 
another. For this reason, for each Neural Network, the 
preprocessing step uses a separate character and character 
combination set as shown in Table-I. 

 
   TABLE I 

CHARACTER AND CHARACTER COMBINATION SETS 
Categories XSS SQL 

Alphanumeric [a-z][A-Z][0-9] [a-z][A-Z][0-9] 
Punctuation <, >, %, &, ;, #, +, =, (, ), 

., ', ", /, :, {, }, \, -, @, [, ], 
?, ` 

<, >, ', ", *, ;, _, (, ), =, 
{, }, @, ., ,, &, [, ], +, -, 
?, %, #, (, ), !, :, \, / 

Special 
Combination 

--, &#, //, /*, */, <!, <?, 
?> 

xp_, @@, sp_, --, 0x, 
or, /*, */, ||, >>, \\, &#x, 
&#, .. 

White Space Space, Tab, Line Feed 
Carriage Return 

Space, Tab, Line Feed 
Carriage Return 

Remaining Every other characters Every other characters 

 
In this approach, each signature (either normal or attack) is 

converted to a vector of numbers and a corresponding flag for 
the class of the vector (‘normal’ or ‘attack’). Each dimension 
of the vector represents a character or some special character 
combinations. The value of each dimension is the number of 
times the corresponding character appears in the signature. 

 
VI.1.3 EXPERIMENT 

 

In this research, the available data sets are used to train the 
ANN with Back Propagation implemented in Matlab®. The 
training method is Adaptive Learning with Momentum. 
During the training process, two hidden layers are used and 
the number of neurons per hidden layers varies from 1 to 3 
when the whole data set is used, a nd 1 to 10 when the data set 
is split into training (450 samples for SQL injection, 360 for 
XSS) and validation (205 for SQL injection, 158 for XSS) 
data. For each configuration, the experiment is carried out 10 
times; each time it runs with 1000 epochs. When the whole 
data set in each case is used for training, the highest accuracy 
that can be obtained is 100%. When the data sets are split, the 
best results are in Table II: 

 
TABLE II 

BEST RESULT ON SPLIT DATA 
Data Set Best Result 

XSS attacks 100% on the training data, 100% on the 
validation data. 

SQL Injection 
attacks 

100%, on the training data, 98.537% on the 
validation data. 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:4, 2010 

615International Scholarly and Scientific Research & Innovation 4(4) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

4,
 2

01
0 

w
as

et
.o

rg
/P

ub
lic

at
io

n/
10

01



 

 

VI.1.4 EVALUATION 
 

From the experiment results, it can be noticed that the 
approach based on character frequency distribution gives quite 
promising results. However, the very high accuracy is 
probably because the data sets are relatively small. 

To investigate how effective the approach is, a test data 
with 30 patterns is used with the best configuration on the 
split SQL data set. The result of this test reveals that when the 
frequency of the special characters such as quote (‘) or 
semicolon (;) in the user input is high, the trained ANN often 
classifies the input as attack, although the input is a normal 
one, the overall accuracy is 66.67%. This indicates a high 
level of expected false positives in this approach. This 
approach could be enhanced and the result could have been 
better if more data sets are used for training the ANN. 
However, the test result also suggests that SQL keywords (or 
HTML tags and script function in the case of XSS) should be 
taken into account when the Neural Networks are trained to 
effectively reduce false positives occurrence. Because of this, 
a new approach is considered in the next section. 

 
VI.2. KEYWORD-BASED METHOD 

 

In the second approach, only SQL injection is considered 
first. The motivation for the second approach is that in an SQL 
injection signature, the frequency of the SQL keywords is 
higher and some keywords often appear together such as 
INSERT and INTO or UNION and SELECT. Besides, some 
special characters and character combinations (such as: #, --, 
/*, etc.) also appear more often together with the SQL 
keywords in SQL injection signatures. 

 
VI.2.1 DATA SET 

 

To achieve the second approach, there has been more 
analysis carried out on the collected SQL injection signatures. 
The SQL injection signatures used in the previous approach 
have been modified and more signatures have been added in. 
The number of SQL injection signatures for the second 
approach is 358. Together with 200 non-negative signatures, 
the data set used for training in this approach has in total 558 
signatures. 

 
VI.2.2 DATA PREPROCESSING ALGORITHM 

 

There are 44 features that are used as the features of the 
output vector of the preprocessing stage. Each feature is 
corresponding to an SQL keyword (keyword group), a 
character (character group), or a special character combination 
that appears in the content of the signature. 

Basically, the preprocessing algorithm can be described as 
follows: If a keyword is discovered in the signature, its 
corresponding feature (i.e. keyword or keyword group) will 
increase the value by 1. So if a keyword appears more than 
once, its corresponding feature’s value will increase by the 
number of occurrence. After all keywords have been 
considered, the character and the character combination are 
searched in the signature. A character or a character 
combination appearance will increase the value of the 

corresponding feature by 1. A space (whitespace, tab, line 
feed, and carriage return) character will increase the feature 
“space” value by 1. After that, the other remaining characters 
will increase the feature “other” by 1 for any appearance of 
any of them in the signature. The preprocessing algorithm also 
has to take in to account the C-like comment evasion 
technique described in Section III during the process of 
looking for the keywords in signature. 

 
VI.2.3 EXPERIMENT 

 

The experiments in the second approach are carried out in a 
similar way as in the first approach. This time the number of 
neurons per hidden layer is varied from 1 to 5 and each 
configuration is experimented 20 times. 

When the whole data set is used for training, the best 
accuracy is 100%. When the data is split into training data 
(502 samples) and validation data (184 samples), the best 
accuracy is 100% on both training and validation data. 

 
VI.2.4 EVALUATION 

 

In this approach, the experiments also give promising 
results on the training data set with some configuration gives 
100% accuracy on both training data and validation data. 

When the same test data that was applied to the first 
approach for SQL injection (containing some special 
characters such as ‘, ;), applied to this approach, the result was 
100% on both training and testing data. However, the result 
reveals that some of the samples are correctly classified but 
some of them are still misclassified. When a signature is 
chosen to be classified “normal” as it does not contain any 
SQL keywords or dangerous characters (such as single line 
comment: #, --) during the preprocessing step before applying 
it into the ANN, the accuracy can be significantly increased. 
When this was done, the accuracy on the test data increased 
from 76.67% to 83.67%. 

Besides, it was also found that when the normal data 
contains SQL keywords such as SELECT, UNION, INSERT, 
DETELE, UPDATE is applied to the trained ANN, some of 
the testing data is misclassified as SQL injection. 

This is probably because in the training data set, the normal 
signature is not large enough to cover the input which is 
normal, but has one or more SQL keywords. In this case, the 
training data set can be updated followed by retraining the 
ANN to reduce the rate of false positives. When the ANN is 
re-trained to incorporate the new data, it could classify the 
new instances correctly. 

The limitation of this approach is that it is based on the 
appearance of certain SQL keywords together with suspicious 
characters, but it does not keep the relative order between 
them. For this reason, if a normal signature contains many 
keywords and suspicious characters that often appear together 
in an SQL injection, then it is highly likely to be misclassified 
although the order of the keywords is not as in a syntax-
correct SQL statement. However, it could be considered in the 
same time a successful approach to avoid evasion traps.  

This approach can also be applied to XSS attacks with the 
keywords to be HTML tags or the JavaScript/VBScript 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:4, 2010 

616International Scholarly and Scientific Research & Innovation 4(4) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

4,
 2

01
0 

w
as

et
.o

rg
/P

ub
lic

at
io

n/
10

01



 

 

functions and might have a better result compared to the first 
approach. Moreover, this approach can be applied to other 
types of attacks that are currently dealt with by using regular 
expressions to match one or more keywords in some order. 
For instance, this approach can be applied to Operating 
System (OS) Command Injection problems in which the 
keywords are the OS commands (such as ls, cp, mv, wget, 
etc), and Local File Inclusion attacks, in which the common 
signature to be chased is: (../) that is used to access local 
resources in the server. 

VI.3. SUMMARY 
 

The solution for WAF based on ANN in this research has 
given some promising result to solve serious web application 
attacks such as injection flaws and particularly SQL injection 
attacks and XSS attacks. The accuracy of the ANNbWAF can 
be improved when more signatures are available and a more 
effective preprocessing algorithm is devised. 

 

VII. PROTOTYPE IMPLEMENTATION 
Based on the result of the experiments in the previous 

section, a prototype of the Neural Network-based WAF 
(ANNbWAF) was designed and implemented. To implement 
the proposed security framework, Perl Web Server [38] was 
used instead of Apache for simplicity and as a proof of 
concept. However, the proposed framework is meant to be 
working on all web servers including Apache, Microsoft IIS, 
etc.  

Fig. 4 demonstrates a general processing flowchart of the 

ANNbWAF for an HTTP request to access a page that exists 
in a directory of the web server and is open for public access 
on port 80. 

First, the request information from the web server is 
analyzed by the ANNbWAF. The input parameters of the 
request are then extracted either from the query string in case 
of an HTTP request with GET method, or from the body of 
the request in case of an HTTP request with POST method. 
For each parameter entered by the user, there are two phases 
of processing: 

• In the first phase, the ANNbWAF first needs to examine 
if the parameter is required to be checked for SQL injection 
attacks (first phase). If it is required, then the ANNbWAF 
preprocesses the content of the input parameter using the 
Input Preprocessing library. The result of the preprocessing 
step is a feature vector that can be fed into the trained ANN to 
check for SQL injection attacks. If the classification result 
from the ANN indicates that the content of the parameter is an 
SQL injection attack, then the ANN for SQL injection reports 
the result back to Web Server and stops processing for the 
request. On the other hand, if the classification result indicates 
that the content of the parameter is legitimate or the 
configuration indicates the parameter does not require a check 
for SQL injection the second phase is performed. 

• In the second phase, a similar process is carried out but 
this time for XSS attacks, in which both the preprocessing 
algorithm and the ANN for XSS are used. If the classification 
output of the ANN finds the content of the parameter is an 
XSS attack, then the result is passed back to the Perl Web 
Server. Otherwise, if the result indicates the content of the 

Fig. 4 General Processing Flowchart of ANNbWAF 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:4, 2010 

617International Scholarly and Scientific Research & Innovation 4(4) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

4,
 2

01
0 

w
as

et
.o

rg
/P

ub
lic

at
io

n/
10

01



 

 

parameter is legitimate or this parameter does not need to be 
check for XSS attack, the process continues for any remaining 
input parameters. If there is no parameter left and no attack is 
discovered, the ANNbWAF reports this request is a normal 
one and will be safely passed to the web server. 

The web server for the implementation is a simple Perl Web 
Server [38]. The ANNbWAF is implemented in java 
programming language. The input preprocessing function is 
implemented as a separate library in java so that the 
ANNbWAF can be updated without having to modify the 
code when the preprocessing algorithm is changed. The 
configuration of the ANN is not hard-coded directly into the 
code. Instead, it is stored in a configuration file and the 
ANNbWAF will read that information during the starting up 
phase. Moreover, the implementation of the ANNbWAF also 
incorporates some features from positive security scheme such 
as defining the list of pages (URL) that should be accepted by 
the ANNbWAF or the list of parameters of each webpage and 
the desired way to process each parameter accordingly. 

The experiments on the prototype revealed that the 
accuracy of the ANNbWAF is the same as that of the ANNs 
which were trained in Matlab® in the training phase. When 
the configuration of the ANN is changed and even when the 
input preprocessing library is updated with new algorithm, the 
ANNbWAF still works correctly after restarting it. 

Lastly, the processing time of the ANNbWAF was 
measured on the second preprocessing algorithm for SQL 
injection. The result is that the preprocessing time on all 558 
signatures (both attacks and normal) is around 250 
milliseconds whereas the classification time by the ANN on 
the same 558 signatures is only less than 1 millisecond. On 
average, each signature takes ~0.448 millisecond for 
preprocessing and ~0.002 millisecond for ANN classification. 
This is a quite promising result in comparison to the 
performance of many alternative solutions with different 
algorithms and far better than solutions with regular 
expression based pattern matching. 

VIII. CONCLUSION 
The solution based on an ANN for distinguishing between 

normal and malicious (SQL Injection) content of the training 
data gives promising result of both the accuracy and the 
processing time, especially the second approach which is a 
keyword-based approach. It has the potential to give a higher 
accuracy when comparing to the solution that uses some 
suspicious characters for validation [2] or some SQL 
keywords separately [12] for the problem of SQL injection. It 
can also detect bad patterns when some evasion techniques are 
used (this depends on how the features are extracted from a 
pattern). Moreover, based on its generalization ability, it might 
catch new bad patterns based on the SQL keywords and the 
special characters distribution with the observation that an 
SQL injection pattern often contain some SQL keywords 
and/or some special characters (e.g. #, --, /*, etc.). For new 
patterns that the ANN cannot recognize, the ANN can be re-
trained so that it can detect the new patterns without much 

increase in processing time. The key point here is that the 
ANN can be re-trained overtime to incorporate more 
“knowledge” into the ANN. The idea of the solution can be 
applied for other types of attacks that are currently often dealt 
with by using regular expressions to match a sequence of 
keywords and special characters, such as XSS or other types 
of code injections, etc. Last but not least, the solution can be 
used in combination with positive logic based filtering as in 
the prototype implementation. 

The solution also has some limitations. The quality of a 
trained ANN often depends on its architecture and the way the 
ANN is trained. More importantly, the quality of the trained 
ANN also depends on the quality of the training data used and 
the features that are extracted from the data. As in the case in 
the second approach, with the relatively limited sets of the 
training data, the resulting ANN seems to be sensitive to a 
content that has an SQL keyword. However, understanding 
the nature of the Artificial Neural Networks used in this 
framework, this approach gives a clear idea of how to solve 
the current limitations in the most famous web application 
firewall; ModSecurity [19]. This approach works even better 
and more precisely when the datasets are relatively 
tremendous, which indicates an optimal solution to scalability 
feature of adding new rules and signatures to traditional 
WAFs that are based on regular expressions. This matches 
exactly the nature of the Internet security problem, which is 
the increasing number of web attacks. 

IX.  FUTURE WORK 
The proposed prototype is a proof of the concept of how 

Artificial Neural Networks can replace the traditional 
approach of web application firewalls filtering mechanisms. It 
is quite important to realise the nature of the threats in Internet 
and web applications, and accordingly, a solution that matches 
the new requirements should take place. This approach is built 
of the humble success of using ANN in different layers of 
security, particularly intrusion detection systems. However, 
there has been no serious attempt to adopt ANN in the 
Application Layer, which is more vulnerable than other layers. 
This research is a serious attempt in this direction. 

The next step of this research is to generalise this approach 
on all web application vulnerabilities as mentioned in the 
OWASP top 10 [25], [26]. This will prepare to a stage of 
establishing a new open source project of designing a web 
application firewall completely based on Artificial Neural 
Networks. More details can be explained here regarding this 
suggested open source ANNbWAF, but will be left for future 
research papers. 

Regarding the suggested framework, the solution can be 
extended to include user inputs from any possible HTTP 
request (not just in the request line the request body), such as 
headers to have more control over session handling. Also, 
more protocols can be considered other than HTTP to 
generalise the solution, such as accepting input from Web 
Services protocols, like SOAP. 

In this research, each signature (normal or malicious) is just 
the content from one user input. The capacity of filtering can 
be extended by accepting more inputs that represent the 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:4, 2010 

618International Scholarly and Scientific Research & Innovation 4(4) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

4,
 2

01
0 

w
as

et
.o

rg
/P

ub
lic

at
io

n/
10

01



 

 

content of all simultaneous user inputs (that need to be 
validated) in an HTTP request to reduce the processing time. 
This is applicable and effectively easy in ANN. By enabling 
this feature in the framework, it will make this solution 
extremely useful for large scale web applications, such as 
Amazon, eBay, Facebook, etc.  

The same idea that is applied for SQL injection can also be 
applied to other types of attacks such as XSS and other types 
of Code Injection. In the prototype implementation, there is an 
ANN for XSS using the algorithm in the first approach and 
this ANN is separated from the ANN for SQL injection. This 
means there are two separate validations on the two ANNs. 
This increases the processing time for each request. This 
situation can be mitigated by using multithreading. The 
ultimate future solution can be done by training an ANN to be 
used for all types of web applications attacks and there will be 
just one validation. 

Finally, the training engine can be integrated into the 
ANNbWAF itself, and by this way there is no need to use 
Matlab® as an external training engine. This can be achieved 
by adding a simple graphical user interface to allow the 
administrators to have a complete control over the 
ANNbWAF firewall. 

ACKNOWLEDGMENT 
The author thanks the Centre for Advanced Computing and 

Emerging Technologies (ACET) in the School of Systems 
Engineering in the University of Reading, for their help and 
support. 

REFERENCES   
[1] F. Ahmadi, Z. M. J. Valadan, H. Ebadi, and M. Mokhtarzade. “The 

Application Of Neural Networks, Image Processing And CAD-Based 
Environments Facilities In Automatic Road Extraction And 
Vectorization From High Resolution Satellite Images”. The 
International Archives of the Photogrammetry, Remote Sensing and 
Spatial Information Sciences. Beijing, pp. 37, 2008.  

[2] A. Alfantookh, “An automated universal server level solution for SQL 
injection security flaw”. International Conference on Electrical, 
Electronic and Computer Engineering. pp. 131–135, 2004. 

[3] C. Anley, “Advanced SQL Injection In SQL Server Applications”. 
White Paper. Next Generation Security Software, 2002. 

[4] C. Anley, “(more) Advanced SQL Injection”. White Paper. Next 
Generation Security Software, 2002. 

[5] C. Anley, “Hackproofing MySQL”. White Paper. Next Generation 
Security Software, 2004. 

[6] M. Becher, Web Application Firewalls, Applied Web applications 
security. Berlin, 2007. 

[7] D. Endler, “The Evolution of Cross-Site Scripting Attacks”. White Paper 
iDEFENSE Incorporation, 2002. 

[8] M. Gavin, J.A. Mulligan, L. Koetzle, and S. Bernhardt, ModSecurity's 
Web Application Firewall Leads In Deployment Numbers But Lags In 
Usability. 2006, [Online] Available: http://www.forrester.com/Research/ 
Document/Excerpt/0,7211,39714,00.html 

[9] W. G. J. Halfond, A. Orso, and P. Manolios, “WASP: Protecting Web 
Applications Using Positive Tainting and Syntax-Aware Evaluation”. 
Software Engineering, IEEE Transactions. vol. 34, no. 1, pp. 65–81, 
2008. 

[10] S. Haykin, “Neural Networks, A Comprehensive Foundation”. 2nd 
Edition. New Jersey, USA. Prentice-Hall Inc, 1999. 

[11] T. Kubo, M. Obuchi, G. Ohashi, and Y. Shimodaira, “Image processing 
system for direction detection of an object using neural network”. The 
1998 IEEE Asia-Pacific Conference on Circuits and Systems. pp. 571-
574. 

[12] Y. Loh, W. Yau, C. Wong, and W. Ho, “Design and Implementation of 
an XML Firewall”. International Conference on Computational 
Intelligence and Security. pp. 1147–1150, 2006. 

[13] O. Maor and A. Shulman, “SQL Injection Signature Evasions”. White 
Paper. IMPERA Application Defense Center, 2004. 

[14] O. Maor and A. Shulman, "Blind SQL Injection". Imperva. [Online] 
http://www.imperva.com/resources/adc/blind_sql_server_injection.html 

[15] Mathworks, Matlab® The MathWorks™, [Online] Available: 
http://www.mathworks.com/  

[16] F. Mavituna, “Fast Way to Extract Data From Error Based SQL 
Injection”. Mavituna [Online] Available: http://ferruh.mavituna.com/ 
fast-way-to-extract-data-from-error-based-sql-injections-oku/  

[17] F. Mavituna, “Fast Way to Extract Data From Error Based SQL 
Injection”. Mavituna [Online] Available: http://ferruh.mavituna.com/ 
fast-way-to-extract-data-from-error-based-sql-injections-oku/  

[18] F. Mavituna, “SQL Injection Cheat Sheet”. Mavituna [Online] 
Available: http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/  

[19] Breach Security, ModSecurity Open Source Web Application Firewall. 
[Online] Available: http://www.modsecurity.org/  

[20] M. Moradi and M. Zulkernine, “A Neural Network Based System for 
Intrusion Detection and Classification of Attacks”. Proceeding of the 
2004 IEEE International Conference on Advances in Intelligent Systems 
- Theory and Applications. Luxembourg. pp.148–153. 

[21] S. Mukkamala, G. Janoski, and A. Sung, “Intrusion detection using 
neural networks and support vector machines”. Proceedings of the 2002 
International Joint Conference on Neural Networks. pp. 1702–1707. 

[22] M. Muthuprasanna, K. Wei, and S. Kothari, “Eliminating SQL Injection 
Attacks - A Transparent Defense Mechanism”. Eighth IEEE 
International Symposium on Web Site Evolution. pp. 22–32, 2006. 

[23] N-Stalker® N-Stalker Web Application Security Scanner. [Online] 
Available: http://www.nstalker.com  

[24] Openwall Project, John the Ripper Password Cracker. [Online] 
Available: http://www.openwall.com/john  

[25] OWASP, Top Ten 2007. [Online] Available: 
 http://www.owasp.org/index.php/Top_10_2007  

[26] OWASP, Top Ten 2010. [Online] Available: 
http://www.owasp.org/images/0/0f/OWASP_T10_-_2010_rc1.pdf  

[27] J. Ryan, M. J. Lin, and R. Miikkulainen “Intrusion Detection with 
Neural Networks”. Advances in Neural Information Processing Systems 
10. Cambridge, MA: MIT Press, 1998. 

[28] Securiteam, SQL Injection Walkthrough. [Online] Available: 
http://www.securiteam.com/securityreviews/5DP0N1P76E.html.  

[29] C. Snake, XSS (Cross Site Scripting) Cheat Sheet. [Online] Available: 
http://ha.ckers.org/xss.html 

[30] SunForums, Sun Forums. [Online] Available: 
 http://forums.sun.com/index.jspa  

[31] Technicalinfo, HTML Code Injection and Cross-site scripting. [Online] 
Available:  http://www.technicalinfo.net/papers/CSS.html 

[32] Unixwiz, SQL Injection Attacks by Example.  [Online] Available: 
http://www.unixwiz.net/techtips/sql-injection.html 

[33] M. Valeur, D. Mutz, and G. Vigna, “A Learning-Based Approach to the 
Detection of SQL Attacks”. Conference on Detection of Intrusions and 
Malware & Vulnerability Assessment. 2005. 

[34] M. C. Vittie, “SQL Injection Evasion Detection”. White Paper. F5 
Networks Inc. 2007. 

[35] WASC, Web Hacking Incidents Database. [Online] Available: 
http://www.webappsec.org/projects/whid/  

[36] WASC, Web Security Glossary. [Online] Available: 
http://www.webappsec.org/projects/glossary/  

[37] K. Wei, M. Muthuprasanna, and S. Kothari, “Preventing SQL Injection 
Attacks in Stored Procedures”. Australian Software Engineer 
Conference, Australia, 2006. 

[38] The Perl Web Server Project. Type-O-Serve [Online] Available: 
http://perlwebserver.sourceforge.net/ 

[39] Microsoft Corporation,  Intelligent Application Gateway. United States: 
Whale Communications, 2007. 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:4, 2010 

619International Scholarly and Scientific Research & Innovation 4(4) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

4,
 2

01
0 

w
as

et
.o

rg
/P

ub
lic

at
io

n/
10

01




