
1

WAFFle: Fingerprinting Filter Rules of Web
Application Firewalls

Isabell Schmitt Sebastian Schinzel
University of Erlangen-Nuremberg

Chair for IT Security Infrastructures
first.last@cs.fau.de

Abstract—Web Application Firewalls (WAFs) are used to detect
and block attacks against vulnerable web applications. They
distinguish benign requests from rogue requests using a set of
filter rules. We present a new timing side channel attack that
an attacker can use to remotely distinguish passed requests
from requests that the WAF blocked. The attack works also
for transparent WAFs that do not leave any trace in responses.
The attacker can either conduct our attack directly or indirectly
by using Cross Site Request Forgeries (CSRF). The latter allows
the attacker to get the results of the attack while hiding his
identity and to circumvent any practical brute-force prevention
mechanism in the WAF. By learning which requests the WAF
blocks and which it passes to the application, the attacker can
craft targeted attacks that use any existing loopholes in the WAF’s
filter rule set. We implemented this attack in the WAFFle tool and
ran tests over the Internet against ModSecurity and PHPIDS. The
results show that WAFFle correctly distinguished passed requests
from blocked requests in more than 95 % of all requests just by
measuring a single request.

I. INTRODUCTION

Web application security has become a crucial topic for
the success—sometimes even for the survival—of many com-
panies. Examples for critical security vulnerabilities in web
applications are Cross Site Scripting (XSS), SQL Injection
(SQLi), or Directory Traversal. To attack these vulnerabili-
ties, the attacker sends rogue requests to a vulnerable web
application. If the application confuses the payload of the
rogue requests with commands, the attack succeeded and the
attacker can read, change, or delete sensitive information from
the application.

Web Application Firewalls (WAF) are mitigations for these
vulnerabilities that do not aim at fixing the actual vulnerable
application, but that try to detect and to prevent rogue requests.
To distinguish normal requests from rogue requests, WAFs use
a set of filter rules in the form of white-lists, black-lists, or
a combination of both. Commonly, the WAF will pass only
those requests to the application that are classified as normal
requests. Requests classified as rogue are usually blocked and
thus not passed on to the application. Creating filter rule sets
is challenging because on the one hand if the WAF blocks
some normal requests (false positive), then the application
may not function any more. On the other hand, if the WAF
does not block all rogue requests (false negative), then the
attacker may circumvent the WAF and exploit a vulnerability

This work was supported by Deutsche Forschungsgemeinschaft (DFG) as
part of SPP 1496 “Reliably Secure Software Systems”.

in the application. Another obstacle is that rogue requests that
aim at exploiting XSS vulnerabilities are different from those
aiming at exploiting SQLi vulnerabilities, which indicates the
complexity of a filter rule set that detects the most common
attacks. Tightening a filter rule set such that all false positives
and false negatives are prevented is thus hardly possible with
the limited resources of realistic systems. Because there is no
reason to believe that any given filter rule set is perfect, it is
common to treat the active filter rule set as such as confidential.
This is to prevent the attacker to spot and exploit weak spots
in the rule set.

Side channel vulnerabilities—or side channels—are unin-
tentional and hidden communication channels that appear
if the publicly observable behavior of a process correlates
with sensitive information [23]. Side channel analysis was
traditionally used to break implementations of cryptographic
algorithms [12], [3]. On the web, side channel attacks are
widely spread and a serious threat to the confidentiality of
information on the web. They can be separated in timing side
channels [8], [2], [18] and storage side channels [9]. Timing
side channels appear if the response time of a web application
correlates with confidential information. Thus, by measuring
the response time, the attacker can learn confidential infor-
mation. Storage side channels appear for example if protocol
header data or the indentation of markup language documents
correlates with confidential information.

Whereas storage side channels leak information indepen-
dently of the network connection quality, timing side channels
are more difficult to exploit if the network connection adds
much noise in the form of random delays (jitter). If the
variance of the jitter is large compared to the timing difference
to be measured, the attacker has to apply filters to approximate
the actual timing difference [5].

We present a practical timing side channel attack that allows
to remotely distinguish passed and blocked requests. This
allows a remote attacker to determine loopholes in the WAF’s
filter rules and to adjust the attack in a way that it evades
the WAF. Furthermore, we extend the attack so that multiple
unsuspecting web users perform the attack, thus hiding the
identity of the actual attacker. The attack was implemented in
the tool “WAF Fingerprinting utilizing timing side channels”
(WAFFle). We make the following contributions:

• We describe a timing side channel attack against WAFs
that directly distinguishes passed requests from blocked
requests without relying on ambiguous error messages.

2

• We combine our timing attack with Cross Site Request
Forgeries, which hides the attacker’s identity and prevents
the WAF from blocking the attack assuming that the
attacker distributes the attack to many other users.

• We test the attack over an Internet connection against
three common WAF deployment setups and show that
the attack is highly practical.

The paper is structured as follows. In the following, we
present related work and in Section II we explain the workings
of WAFs. We explain the idea behind our attack in Section III.
Section IV presents our timing attack and Section V combines
the timing attack with Cross Site Request Forgeries. We
conclude and discuss possible mitigations in Section VI.

Related Work

Bortz, Boneh, and Nandy [2] introduced the concept of
cross-site timing attacks with which they could determine
whether a user is currently logged on to a site. They measured
whether the browser of the victim retrieves an item from the
browser cache (which will be very fast) or whether the browser
needs to download the item (which will be slow). We extend
this approach by combining CSRF attacks [25] with timing
attacks, in order to hide the identity of the attacker who could
also perform the attack directly.

Fingerprinting on the network level is widely known and
the various tools are commonly used in day-to-day penetration
testing. The most famous tool is Nmap [7] which is an active
network scanner that can scan large IP ranges, fingerprint the
producer and version of operating systems, and learn producer
and version of network services by analyzing the service
banner. p0f [14] is a passive network scanner that analyses
network traffic and identifies producer and version of the
operating system of the sender. Both tools aim at fingerprinting
network stacks but fingerprint firewall filter rules.

Firewalk [15] is a tool that fingerprints rules of packet
filtering firewalls. It sends out TCP and UDP packets with a
TTL that is one greater as the amount of hops from the sender
to the firewall. If the packet passes the firewall, the next hop
discards the packet and sends an ICMP TIME EXCEEDED
message to the sender. Thus, this message indicates that the
packet was not filtered by the firewall. Firewalk cannot be used
to fingerprint application layer filtering firewalls because they
create separate connections to the application, i.e. single pack-
ets are never passed from sender to the application. Samak,
El-Atawy, and Al-Shaer extend this approach to intelligently
choose probing packets for fingerprinting filtering rules [20].

Khakpour et al. [11] were able to distinguish three different
network firewall implementations by sending TCP packets
with unusual flag combinations and measuring the time it
took for a firewall to process the packets. They focused on
distinguishing the firewall products but did not fingerprint the
active filter rules of the firewalls. The purpose of their work
is similar to NMAP and p0f with the difference that they aim
at fingerprinting implementations of filter engines.

WAFW00f [21] can detect if a web page is protected by a
WAF and can differentiate between 22 different WAF produc-
ers. For this, it sends normal and rogue requests to the same

URL and compares the responses. It assumes that differences
in the responses such as different HTTP status codes denote
that a WAF filters the requests. However, the tool does not
distinguish between “blocked by WAF” error responses and
“caused error in web application” error responses which were
possibly rewritten (cloaked) by the WAF. Just from analyzing
the responses it is therefore not possible to tell with certainty
whether a request was blocked by the WAF or passed on to the
web application. WAFW00F directly connects to the WAF, i.e.
the WAF may learn the IP address of the attacker and block
the attack. Furthermore, WAFW00F does not fingerprint the
filtering rules but solely determines WAF producers.

WAF Tester [6] is a tool that fingerprints WAF filter rules by
analyzing the HTTP status codes and whether the WAF drops
or rejects the HTTP request on the TCP layer. It has similar
assumptions to WAFW00F regarding the detection of blocked
requests from different responses. For example, there is the
case where a passed rogue request crashes the web application,
which the tool may confuse for a blocked request. WAF Tester
therefore tries to distinguish passed requests from blocked
requests from certain error conditions in the responses, which
is not always possible. Similar to WAFW00F, WAF Tester
directly connects to the WAF, i.e. the WAF may learn the IP
address of the attacker and block the attack. We show that
instead of relying on error messages, measuring the response
time of requests gives more reliable information on whether
the request was blocked or passed by the WAF. Furthermore,
we extend WAF Fingerprinting in a way that it uses cross site
request forgeries, which only works with timing attacks. This
has the advantage that the WAF does not learn the attacker’s
IP.

“Mutating exploits” and their effects on the detection of
intrusion detection systems (IDS) were analyzed by Mutz and
Vigna et al. [17], [27]. Both deal with ways to obfuscate
malicious code in a way such that the attack is not detected
by IDS but that the attack still works. For this, they generate
many variations of an exploit, run them against a victim system
and correlate them with the alerts produced by the IDS. Their
work is related to ours because an IDS can be modeled as a
firewall that only alerts administrators but does not interfere
with network traffic. However, their attacker scenario allows
the attacker to access the alerts of the IDS. In our scenario, the
attacker is weaker because he neither needs to receive alerts,
nor does he need access to the firewall’s log files.

II. WEB APPLICATION FIREWALLS

Besides blocking rogue inbound requests, WAFs are also
used to “cloak” those outgoing responses that contain sensitive
information such as error messages or stack traces. A securely
configured WAF substitutes these error messages with a single
generic error page. In this paper, we assume a cloaking WAF
where the different error conditions (e.g. an error occurred in
application or a rogue request was detected) are indistinguish-
able for an attacker that analyzes the responses.

A. Filter Rules
WAFs detect rogue requests from a set of filter rules. Al-

though the rule languages differ from product to product, they

3

basically consist of regular expression and an action. The WAF
executes the action if the regular expression matches a request.
There are a variety of actions that common WAFs support and
the following list provides an excerpt of the possible actions
that ModSecurity supports [16]. For our purposes, we are
interested in those actions that pass a request on to the web
application and in those that block a request, i.e. that do not
pass the request to the web application.

Examples for Passing Actions:

• log - This action causes ModSecurity to log a match in
the apache error log.

• pass - This action is mostly used together with the log
action if someone only wants to log a match but does not
want to take further actions.

• allow - In contrast to the pass action the allow action
will not only let a request pass a particular match but will
allow it though the whole filter set. This action could for
example be used to provide whitelisting for a particular
IP address.

Examples for Blocking Actions:

• deny - This action stops further processing immediately
and returns a HTTP 500 error to the client.

• block - This action stops further processing immediately
and terminates the TCP connection of the client by
sending a TCP FIN packet.

It is important to note that the default rule set of WAFs often
consists of several dozen or hundred filter rules and that the
regular expression of each rule can be quite elaborate. This
makes common rule sets complex and difficult to audit, i.e.
for the administrator, it is difficult to spot loopholes in a rule
set even when he has full access to the rules.

B. WAF Network Topologies

We consider three common ways to deploy a WAF. The
first topology is to install the WAF standalone (reverse-proxy)
as shown in Figure 1(a). Here, clients directly connect to
the IP of the WAF. The WAF connects to the IP of the
web application, passes the request, retrieves the response and
passes the response to the client. WAF and web application
are different hosts in this scenario. If a request is blocked,
the rogue request never reaches the host that runs the web
application.

The second scenario is to load the WAF as a plugin into
the same web server that also serves the web application as
shown in Figure 1(b). The clients connect to the web server
and the web server ensures that the request is first passed to the
WAF plugin and then to the actual web application. If a rogue
request is blocked, the web server will never pass the request
to the web server module that processes the web application.

Thirdly, there is the scenario where the WAF is directly
included into the web application as a programming library
as shown in Figure 1(c). Here, the client connects to the web
application and the web application passes the request to the
WAF library. If a rogue request is blocked, the web application
will not pass the request to the actual processing logic.

Demilitarized
Zone

Intranet

Blocked Request

Passed Request

Internet

Web Server

(a) Standalone WAF

Demilitarized
Zone

Intranet

Internet

Web Server

(b) WAF as web server plugin

Demilitarized
Zone

Intranet

Internet

Web Server

(c) WAF as programming library

Fig. 1. Different topological deployment options for WAFs.

C. A Timing Side Channel in WAFs

As the tools WAFW00F [21] and WAF Tester [6] exploit
storage side channels, all they can possibly observe are the
following three different responses.

1) WAF error message. The WAF responds with a unique
error message (or drops or rejects the request). This
either means that (a) the rogue request was blocked by
the WAF or (b) that the WAF passed the request to the
web application that responded with an error message
and which was then cloaked by the WAF.

2) Webapp error message. The web application responds
with an error message that is different from the WAF
error message. Here it is clear that the WAF neither
blocked the request, nor cloaked the web application’s
error message.

3) Normal response. A normal response with no error is
observed. There are three possibilities that may cause
this behavior. (a) The WAF removed the malicious part
of the rogue request, thus passing the equivalent to
a normal request to the web application. (b) Another
option is that the WAF passed the rogue request but

4

the web application ignored the malicious part of the
request. (c) Lastly, the WAF could have passed the
rogue request and the malicious part was executed, but
it produced no visible result. An example for this are
“blind SQL Injection” attacks where an attacker can
execute malicious SQL commands but cannot access the
result of the command [10].

Thus, just from observing responses, one cannot distinguish
passed requests from blocked requests because error messages
can occur for both cases. In this paper, we introduce a timing
side channel attack against WAFs that allows us to directly
distinguish blocked requests from passed requests without
relying on ambiguous error messages in responses. We exploit
the fact that a blocked request finishes earlier than a request
that is passed on to the web application as described in Section
II-B. Thus, the response time should allow to distinguish
passed and blocked requests.

III. GENERAL METHODOLOGY OF THE TIMING ATTACK

We expect that blocked requests finish earlier than passed
requests because the actual application logic that processes the
request is never reached. Thus, the timing difference between
passed and blocked requests equals the processing time of
the application logic. The longer this processing time is, the
smaller the negative effect of jitter on the measurement, the
easier it is for the attacker to distinguish passed and blocked
requests. Note that the attacker is free to choose those URLs
with long running processes to ease the fingerprinting process.
Furthermore, the attacker may combine the fingerprinting
process with denial of service attacks such as “HashDos” [4],
[1] to artificially increase the processing time.

A. Attack Idea

The attacker in our scenario has selected a target to attack
and is now in the reconnaissance phase where he wants to
find out whether a WAF protects the application and what
filter rules are active in the WAF.

We assume that the WAF returns an error message immedi-
ately if a request is classified as rogue request, without passing
the request to the application. In contrast, a normal request
is passed on to the application. Our hypothesis is that rogue
requests have a measurably shorter response time than normal
requests. The attacker should thus be able to distinguish those
requests that were blocked by the WAF from those that were
passed on to the application.

To perform the attack, the attacker needs to guess two
different requests. The first should result in a passed response
and is easy to get. The second should contain maliciously
looking payload that any WAF certainly blocks, e.g. the string
’ OR ’1’=’1 which is a trivial SQLi exploit. The attacker
sends these requests to the WAF and measures the response
time. In the following section, we explain an efficient method
to distinguish passed requests from blocked requests.

B. Analyzing the Timing Measurements

In this section, we present our notion of possibilistic timing
attacks [24]. We split our attack into the learning phase and

+

+
+

+ +

+ +

+
+

+
+

+

+

+

Passed requests

X

Blocked request

X

No decision possible:
a) passed request + low jitter

OR
b) blocked request + high jitter

#1. Learning phase 2. Attack phase

Blocking boundaryR
es

po
ns

e
tim

e

Fig. 2. Possibilistic timing analysis: Response times below the “Blocking
boundary” denote blocked requests, response times above are candidates for
passed requests.

the attack phase as shown in Figure 2. In the learning phase,
we measure the response times T = 〈t1, t2, . . . tn〉 of n passed
requests and define a “blocking boundary” such that

tboundary = min(T)− ε

where ε accounts for the fact that the true minimum boundary
of T may be slightly lower given more measurements.

In the attack phase, the attacker sends rogue requests
and wants to know whether the WAF passed the request or
blocked it. Any timing measurement t < tboundary denotes
a blocked request. Any timing measurement t ≥ tboundary
is a candidate for a passed request. It is only a candidate
because t either denotes a passed request and low jitter or it
denotes a blocked request and high jitter. In order to confirm
the candidate, the attacker repeats the measurement until a
satisfying confidence is reached that the candidate is a passed
request. This method is called “possibilistic timing analysis”
because some measurements are definite and others require
repetitions to confirm the result [23].

Note that tboundary can vary between different URL paths
of the same site, and should therefore be calculated for each
unique URL path. In the attacks scenarios described in the
following sections, however, we used a single tboundary for all
URL paths and got very good results with only few exceptions.

IV. BLACK-BOX FINGERPRINTING OF WAF FILTER RULES

Now that we described the general methodology of our
attack in the previous section, we constructed all three WAF
network topologies described in section II-B. To test our
approach, we chose the free WAF product ModSecurity [26]
in version 2.5.12-1 for scenarios depicted in Figure 1(a)
and 1(b). To implement the scenario of Figure 1(c), we used
PHPIDS [13] in version 0.5.6, which is an intrusion detection
system that scores incoming requests. High scores indicate
an attack, in which case we blocked the request, emulating a
WAF.

We chose phpBB as web application that the WAF protects.
This web application and the WAFs were hosted at the French
cloud computing provider OVH. We used a host in the network
of the University of Mannheim in Germany to perform the tim-
ing attack against the WAF. This intracontinental measurement
setup reflects that our attack is highly practical. Our client-side

5

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90 100

M
ill

is
e
co

n
d

s

Requests

Blocked requests
Passed requests

Timing boundary for blocked requests

Fig. 3. Timing differences of a standalone WAF for passed responses and
blocked responses

measuring computer ran an Intel Pentium 4 CPU with 3.20
GHz and the WAFs were installed with the default settings.

Our prototype implementation of the attack (WAFFle) starts
by initiating the learning phase as described in section III-B,
in which it determines whether a WAF exists or not. If a WAF
exists it calculates the blocking boundary for blocked requests.
In this simple test, we repeatedly measure the response times
of passed requests and blocked requests and plot the result in
Figure 3. It shows a clearly visible timing difference between
passed responses and blocked responses, which confirms that
a WAF filters the requests. Below are two basic examples that
ModSecurity and PHPIDS will either pass or block in their
particular standard configuration.

Passed request: GET /?p=1234567890 HTTP/1.1

Blocked request: GET /?p=’%20or%201=1-- HTTP/1.1

In the next step, WAFFle crawls the web application to
find all combination of URLs and parameters. It then sends
the rogue payloads within the found parameters and measures
the response time. If the response time is below the blocking
boundary, it classifies the requests as blocked. A response time
above the blocking boundary is marked as a candidate for
a passed request. WAFFle then repeats the measurement to
confirm the result.

A. Direct Fingerprinting of WAF Filter Rules

We now compile a list of malicious payloads that are
commonly used to exploit vulnerabilities (e.g. from [19])
and send them to the WAF-protected web application. Our
attacker ultimately aims to find a polymorphic representation
of malicious payload that evades the WAF’s active filter
rules. Polymorphic representations are semantically identi-
cal but syntactically different to a malicious payload. Thus,
we extend the list with polymorphic representations of the
malicious payloads as shown in the following example.

Malicious payload ’ OR ’1’=’1
Polymorphic representation ’ OR ’2’=’2
Polymorphic representation ’ OR ’1’ = ’1

We sent these payloads to all URLs and all parameters of
phpBB, which resulted in overall 4797 requests, and recorded

Fig. 4. Measuring the response time for each request in the standalone WAF
scenario.

Fig. 5. Measuring the response time for each request in the WAF as Web
Server Plugin scenario.

the response times. To validate these response times, we
configured ModSecurity and PHPIDS in our test environment
to return error messages in the case of a blocked message. We
recorded the status codes along with the response times and
could therefore validate the results of the timing attack. For
example, if WAFFle classified a particular request as blocked,
we also expected an error message. Furthermore, if WAFFle
classified a request as passed, we expected no error message.
Otherwise, WAFFle classified a request wrongly.

Figure 4 shows the results of measuring the response times
of the malicious payloads in the standalone WAF scenario.
We found that already 95.2 % of all measurements correctly
indicated passed or blocked requests without any measurement
repetitions. Thus, we can reach perfect measurement condi-
tions with only few measurement repetitions. The scenario
where the WAF is loaded as a web server plugin yields very
similar results as shown in Figure 5. We expected that the
attack would perform worse in the third scenario, where the
WAF is deployed as a programming library, but we were
surprised to find that the attacks works similarly well as
shown in Figure 6. The insight here is, that the overhead of
the network connection in the standalone WAF scenario is
negligible compared to the delay induced by the WAF filtering
engine. In summary, our timing attack correctly detected
passed and blocked requests in more than 95 % of all cases

6

Fig. 6. Measuring the response time for each request in the WAF as
Programming Library scenario.

WAF topology Figure Timing difference Correct
Standalone 1(a) 62.63 ms 95.2 %
Web server plugin 1(b) 81.86 ms 95.4 %
Programming library 1(c) 48.22 ms 96.3 %

TABLE I
TIMING DIFFERENCE BETWEEN BLOCKED REQUESTS AND PASSED

REQUESTS PER WAF TOPOLOGY.

as summarized in Table I.
Although this attack is very efficient because in most cases

the attacker only needs a single timing measurement to distin-
guish passed from blocked requests, badly configured WAFs
may leak this information through different error messages,
because they do not cloak responses. In this case, the attacker
can analyze the error messages instead of the response time.
The downside of both approaches is that the attacker possibly
needs to send large amounts of requests to find loopholes in
a filter rule set. WAFs can detect this attack and block the
attacker from finishing it. We therefore extend our tool such
that it tricks unsuspecting web users to perform the actual
requests, thus combining Cross Site Request Forgeries (CSRF)
and timing attacks. This hides the identity of the attacker and
prevents the WAF from blocking the fingerprinting attack if
many users simultaneously conduct the attack.

V. CROSS-SITE FINGERPRINTING OF WAF FILTER RULES

The direct timing attack can be improved to disguise the
identity of the attacker and to prevent the WAF from blocking
the fingerprinting attack. For this, we combine our timing
attack with a CSRF attack. Note that this is different from
the Cross-Site timing attacks of Bortz, Boneh, and Nandy [2]
because they gain confidential information about the users, e.g.
whether the user is logged on to a site. As opposed to this,
we abuse other users to learn confidential information about
WAFs and thus from the server side.

As a precondition for our attack, the attacker must be able
to lure web users to a web site where he can place malicious
HTML and JavaScript coding (step 1 in Figure 7). This code
tricks the web users’ browsers to send the malicious request to
the victim web application (step 2 and 3). Simultaneously, the
browser measures the response time of the malicious request
and sends the result back the attacker (step 4).

Victim Web ApplicationWeb User

Attacker

3)

2)

 4) Sends Measurements

Web Browser

Web Site

 1) Visits

WAF

Fig. 7. Overview of the cross site timing attack.

1 <s c r i p t >
2 var t ime ;
3 var img = document . c r e a t e E l e m e n t (’img’) ;
4 img . o n e r r o r = f u n c t i o n () {
5 var end = new Date () ;
6 t ime = end − s t a r t ;
7 s e n d R e s u l t (t ime) ; // send result to attacker
8 }
9 img . s t y l e . d i s p l a y = ’none’ ;

10 document . body . appendCh i ld (img) ;
11 var s t a r t = new Date () ;
12 img . s r c = "http://domain.tld/path?" + p a r a m e t e r

+ "=" + e x p l o i t ;
13 </ s c r i p t >

Fig. 8. Pseudo JavaScript code showing the cross site timing attack.

There are various ways in a browser to time a web request
and in our tests we chose that same technique proposed
by Bortz, Boneh, and Nandy [2]. In this coding shown in
Figure 8, the attacker creates an image tag. Just before he
copies the malicious payload to the URL of the image (line
12), he records the starting time. As the request most certainly
will not return a valid image, the browser fires the onerror
function that the attacker defined in lines 4-8. In this function,
the attacker records the ending time, and sends the timing
difference between starting and ending time to the attacker.

It is important to note, that this cross site attack only
works reliably with the timing attack, because the Same
Origin Policy [28] of web browsers does not allow reading
or writing response bodies from other origins. Thus, in this
cross-site scenario, it is not possible to read the error messages
in responses of badly configured WAFs, which means that
analyzing error messages is not an option in this cross site
scenario. However, we show that it is still possible to read the
response time of the request.

We implemented the cross site timing attack and ran it
against the proxy WAF scenario. Figure 9 shows that also the
cross site extension to WAFFle reliably distinguishes blocked
and passed requests. Note that this attack can be distributed
to many different web users and if each only fingerprints a
few requests, the WAF cannot prevent the attack by simply
blocking the IPs of the various senders.

VI. CONCLUSION

We present a new fingerprinting attack that allows to re-
motely distinguish requests that were blocked by the WAF or
passed by the WAF. The attack extends existing tools in a way

7

Fig. 9. Results of the cross site timing attack.

that it does not rely on error messages in the responses of the
WAF or the web application, which are easy to hide if the
WAF is configured securely. Instead, it distinguishes blocked
from passed requests solely by analyzing the response time of
the requests. This makes our attack difficult to prevent.

Furthermore, we extend the timing attack by combining it
with Cross Site Request Forgeries, which hides the identity of
the attacker. If this attack is spread to many users, the WAF
cannot block the fingerprinting attack simply by blocking IP
addresses. This allows an attacker to find loopholes in filter
rules with little effort. We tested the attack over the Internet
against three common WAF deployment scenarios and we
argue that the attack works against all WAFs.

Preventing timing attacks in networked applications by
artificially delaying responses is difficult in practice, because
the security depends on how the delay is chosen. Random
delays are known to be ineffective and padding to the worst
case execution time is not practical. Adding a deterministic
and unpredictable delay may be a solution to this [22].

Our attack highlights the importance that filter rule sets need
to be carefully written and audited to prevent loopholes. Thus,
the best mitigation for our fingerprinting attack is to have no
loopholes in the WAF’s rule set. As a consequence, the attacker
may still be able to fingerprint the rules but he does not find
loopholes.

REFERENCES

[1] Alexander Klink and Julian Wälde. Efficient denial of service attacks on
web application platforms, 2011. 28th Chaos Communication Congress
http://events.ccc.de/congress/2011/Fahrplan/events/4680.en.html.

[2] Andrew Bortz, Dan Boneh, and Palash Nandy. Exposing private
information by timing web applications. In Carey L. Williamson,
Mary Ellen Zurko, Peter F. Patel-Schneider, and Prashant J. Shenoy,
editors, WWW, pages 621–628. ACM, 2007.

[3] David Brumley and Dan Boneh. Remote timing attacks are practical.
Computer Networks (Amsterdam, Netherlands: 1999), 48(5):701–716,
August 2005.

[4] Scott A. Crosby and Dan S. Wallach. Denial of service via algorithmic
complexity attacks. In Proceedings of the 12th USENIX Security
Symposium, pages 29–44. USENIX, August 2003.

[5] Scott A. Crosby, Dan S. Wallach, and Rudolf H. Riedi. Opportunities
and limits of remote timing attacks. ACM Transactions on Information
and System Security, 12(3), 2009.

[6] Deniz Cevik. Waf tester v1.0, 2012. http://ttlexpired.com/blog/?p=234.
[7] Gordon Fyodor Lyon. Nmap network scanning - the official nmap

project guide to network discovery and security scanning, 2009. http:
//nmap.org/book/osdetect.html.

[8] Edward W. Felten and Michael A. Schneider. Timing attacks on
web privacy. In SIGSAC: 7th ACM Conference on Computer and
Communications Security. ACM SIGSAC, 2000.

[9] Felix C. Freiling and Sebastian Schinzel. Detecting hidden storage
side channel vulnerabilities in networked applications. In Proceedings
of the 26th IFIP TC-11 International Information Security Conference
(IFIP/SEC), 2011.

[10] Kevin Spett. Blind sql injection, 2003. http://www.net-security.org/dl/
articles/Blind SQLInjection.pdf.

[11] Amir R. Khakpour, Joshua W. Hulst, Zihui Ge, Alex X. Liu, Dan Pei,
and Jia Wang. Firewall fingerprinting. In 31th Annual IEEE Conference
on Computer Communications (INFOCOM), Orlando, Florida, 2012.

[12] Paul C. Kocher. Timing attacks on implementations of diffie-hellman,
RSA, DSS, and other systems. In CRYPTO: Proceedings of Crypto,
1996.

[13] Mario Heiderich, Christian Matthies, and Lars H. Strojny. Php-intrusion
detection system, 2012. https://phpids.org/.

[14] Michal Zalewski. p0f v3, 2012. http://lcamtuf.coredump.cx/p0f3/.
[15] Mike Schiffman and David Goldsmith. firewalk v0.99.1, 1999. http:

//packetstormsecurity.org/UNIX/audit/firewalk/.
[16] Modsecurity Wiki. Reference manual: Actions, 2012.

http://sourceforge.net/apps/mediawiki/mod-security/index.php?title=
Reference Manual#Actions.

[17] Darren Mutz, Christopher Kruegel, William Robertson, Giovanni Vigna,
and Richard A. Kemmerer. Reverse engineering of network signatures.
In IN PROCEEDINGS OF THE AUSCERT ASIA PACIFIC INFORMA-
TION TECHNOLOGY SECURITY CONFERENCE, GOLD, pages 1–
86499, 2005.

[18] Yoshitaka Nagami, Daisuke Miyamoto, Hiroaki Hazeyama, and Youki
Kadobayashi. An independent evaluation of web timing attack and
its countermeasure. In Third International Conference an Availability,
Reliability and Security (ARES), pages 1319–1324. IEEE Computer
Society, 2008.

[19] Robert “RSnake” Hansen. Xss (cross site scripting) cheat sheet, 2012.
http://ha.ckers.org/xss.html.

[20] Taghrid Samak, Adel El-Atawy, and Ehab Al-Shaer. Firecracker: A
framework for inferring firewall policies using smart probing. In ICNP,
pages 294–303. IEEE, 2007.

[21] Sandro Gauci and Wendel G. Henrique. Wafw00f - web application
firewall detection tool (svn r33), 2012. http://code.google.com/p/waffit/.

[22] Sebastian Schinzel. An efficient mitigation method for timing side
channels on the web. In 2nd International Workshop on Constructive
Side-Channel Analysis and Secure Design (COSADE), 2011.

[23] Sebastian Schinzel. Unintentional and Hidden Information Leaks in
Networked Software Applications. PhD thesis, Friedrich-Alexander
Universität Erlangen-Nürnberg, 2012.

[24] Sebastian Schinzel. Time is on my side - exploiting timing side channel
vulnerabilities on the web, 2011. 28th Chaos Communication Congress
http://events.ccc.de/congress/2011/Fahrplan/events/4640.en.html.

[25] Chris Shiflett. Foiling cross-site attacks, 2003. http://shiflett.org/articles/
foiling-cross-site-attacks.

[26] Trustwave’s SpiderLabs Team. Modsecurity - open source web applica-
tion firewall, 2012. http://www.modsecurity.org/.

[27] Vigna, Robertson, and Balzarotti. Testing network-based intrusion
detection signatures using mutant exploits. In SIGSAC: 11th ACM
Conference on Computer and Communications Security. ACM SIGSAC,
2004.

[28] w3c Wiki. Same origin policy, 2012. http://www.w3.org/Security/wiki/
Same Origin Policy.

