mirror of
https://github.com/ravenscroftj/turbopilot.git
synced 2024-10-01 01:06:01 -04:00
223 lines
6.7 KiB
Python
223 lines
6.7 KiB
Python
# Convert GPT-J-6B h5 transformer model to ggml format
|
|
#
|
|
# Load the model using GPTJForCausalLM.
|
|
# Iterate over all variables and write them to a binary file.
|
|
#
|
|
# For each variable, write the following:
|
|
# - Number of dimensions (int)
|
|
# - Name length (int)
|
|
# - Dimensions (int[n_dims])
|
|
# - Name (char[name_length])
|
|
# - Data (float[n_dims])
|
|
#
|
|
# By default, the bigger matrices are converted to 16-bit floats.
|
|
# This can be disabled by adding the "use-f32" CLI argument.
|
|
#
|
|
# At the start of the ggml file we write the model parameters
|
|
# and vocabulary.
|
|
#
|
|
|
|
import sys
|
|
import struct
|
|
import json
|
|
import torch
|
|
import numpy as np
|
|
from accelerate import init_empty_weights
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
|
def bytes_to_unicode():
|
|
"""
|
|
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
|
|
characters the bpe code barfs on.
|
|
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
|
|
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
|
|
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
|
|
tables between utf-8 bytes and unicode strings.
|
|
"""
|
|
bs = (
|
|
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
|
)
|
|
cs = bs[:]
|
|
n = 0
|
|
for b in range(2**8):
|
|
if b not in bs:
|
|
bs.append(b)
|
|
cs.append(2**8 + n)
|
|
n += 1
|
|
cs = [chr(n) for n in cs]
|
|
return dict(zip(bs, cs))
|
|
|
|
if len(sys.argv) < 3:
|
|
print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n")
|
|
print(" ftype == 0 -> float32")
|
|
print(" ftype == 1 -> float16")
|
|
sys.exit(1)
|
|
|
|
# output in the same directory as the model
|
|
dir_model = sys.argv[1]
|
|
fname_out = sys.argv[1] + "/ggml-model.bin"
|
|
|
|
with open(dir_model + "/vocab.json", "r", encoding="utf8") as f:
|
|
encoder = json.load(f)
|
|
|
|
with open(dir_model + "/added_tokens.json", "r") as f:
|
|
encoder_added = json.load(f)
|
|
|
|
with open(dir_model + "/config.json", "r") as f:
|
|
hparams = json.load(f)
|
|
|
|
# possible data types
|
|
# ftype == 0 -> float32
|
|
# ftype == 1 -> float16
|
|
#
|
|
# map from ftype to string
|
|
ftype_str = ["f32", "f16"]
|
|
|
|
ftype = 1
|
|
if len(sys.argv) > 2:
|
|
ftype = int(sys.argv[2])
|
|
if ftype < 0 or ftype > 1:
|
|
print("Invalid ftype: " + str(ftype))
|
|
sys.exit(1)
|
|
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
|
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True)
|
|
print (model)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained('Salesforce/codegen-350M-multi')
|
|
|
|
print(tokenizer)
|
|
|
|
|
|
# config = AutoConfig.from_pretrained(sys.argv[1])
|
|
|
|
# model = AutoModelForCausalLM.from_pretrained("./codegen-2B-multi", torch_dtype=torch.float16).to("cuda")
|
|
|
|
from accelerate import load_checkpoint_and_dispatch
|
|
|
|
|
|
list_vars = model.state_dict()
|
|
#print (list_vars)
|
|
|
|
fout = open(fname_out, "wb")
|
|
|
|
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
|
|
fout.write(struct.pack("i", hparams['vocab_size']))
|
|
fout.write(struct.pack("i", hparams["n_positions"]))
|
|
fout.write(struct.pack("i", hparams["n_embd"]))
|
|
fout.write(struct.pack("i", hparams["n_head"]))
|
|
fout.write(struct.pack("i", hparams["n_layer"]))
|
|
fout.write(struct.pack("i", hparams["rotary_dim"]))
|
|
fout.write(struct.pack("i", ftype))
|
|
|
|
byte_encoder = bytes_to_unicode()
|
|
byte_decoder = {v:k for k, v in byte_encoder.items()}
|
|
|
|
print(byte_encoder)
|
|
|
|
fout.write(struct.pack("i", hparams['vocab_size']))#len(encoder) + len(encoder_added)))
|
|
|
|
# replace key tokens in tokenizer
|
|
|
|
for word,idx in sorted(tokenizer.vocab.items(), key=lambda x: x[1]) :
|
|
#text = word.encode("utf8") #
|
|
text = bytearray([byte_decoder[c] for c in word if c in byte_decoder])
|
|
|
|
if(len(text)) < 1:
|
|
#print(f"'{word}'")
|
|
#continue
|
|
text = bytearray(word.encode('utf8'))
|
|
# else:
|
|
# print(text)
|
|
fout.write(struct.pack("i", len(text)))
|
|
fout.write(text)
|
|
|
|
# for key in encoder:
|
|
# #text = bytearray([byte_decoder[c] for c in key])
|
|
# text = key.encode("utf8")
|
|
# fout.write(struct.pack("i", len(text)))
|
|
# fout.write(text)
|
|
|
|
# for key in encoder_added:
|
|
# try:
|
|
# #text = bytearray([byte_decoder[c] for c in key])
|
|
# text = key.encode("utf8")
|
|
# except Exception as e:
|
|
# print(e)
|
|
# print(key)
|
|
# print(text)
|
|
# sys.exit(1)
|
|
# fout.write(struct.pack("i", len(text)))
|
|
# fout.write(text)
|
|
|
|
empty_vocab = hparams['vocab_size'] - tokenizer.vocab_size
|
|
|
|
print(f"Fill empty vocab for {empty_vocab} slots")
|
|
|
|
for i in range( hparams['vocab_size'] - len(encoder) - len(encoder_added)):
|
|
text = "<|endoftext|>".encode("utf8")
|
|
fout.write(struct.pack("i", len(text)))
|
|
fout.write(text)
|
|
|
|
for name in list_vars.keys():
|
|
data = list_vars[name].squeeze().numpy()
|
|
print("Processing variable: " + name + " with shape: ", data.shape)
|
|
|
|
# we don't need these
|
|
if name.endswith("attn.masked_bias") or name.endswith(".attn.bias"):
|
|
print(" Skipping variable: " + name)
|
|
continue
|
|
|
|
n_dims = len(data.shape);
|
|
|
|
# ftype == 0 -> float32, ftype == 1 -> float16
|
|
ftype_cur = 0;
|
|
if ftype != 0:
|
|
if name[-7:] == ".weight" and n_dims == 2:
|
|
print(" Converting to float16")
|
|
data = data.astype(np.float16)
|
|
ftype_cur = 1
|
|
else:
|
|
print(" Converting to float32")
|
|
data = data.astype(np.float32)
|
|
ftype_cur = 0
|
|
else:
|
|
if data.dtype != np.float32:
|
|
print(" Converting to float32")
|
|
data = data.astype(np.float32)
|
|
ftype_cur = 0
|
|
|
|
# for efficiency - transpose these matrices:
|
|
# (note - with latest ggml this is no longer more efficient, so disabling it)
|
|
# "transformer.h.*.mlp.fc_in.weight"
|
|
# "transformer.h.*.attn.out_proj.weight"
|
|
# "transformer.h.*.attn.q_proj.weight"
|
|
# "transformer.h.*.attn.k_proj.weight"
|
|
# "transformer.h.*.attn.v_proj.weight"
|
|
#if name.endswith(".mlp.fc_in.weight") or \
|
|
# name.endswith(".attn.out_proj.weight") or \
|
|
# name.endswith(".attn.q_proj.weight") or \
|
|
# name.endswith(".attn.k_proj.weight") or \
|
|
# name.endswith(".attn.v_proj.weight"):
|
|
# print(" Transposing")
|
|
# data = data.transpose()
|
|
|
|
# header
|
|
str = name.encode('utf-8')
|
|
|
|
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
|
|
for i in range(n_dims):
|
|
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
|
|
fout.write(str);
|
|
|
|
# data
|
|
data.tofile(fout)
|
|
|
|
fout.close()
|
|
|
|
print("Done. Output file: " + fname_out)
|
|
print("")
|