#include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif // evaluate the transformer // // - model: the model // - n_threads: number of threads to use // - n_past: the context size so far // - embd_inp: the embeddings of the tokens in the context // - embd_w: the predicted logits for the next token // // The GPT-J model requires about 16MB of memory per input token. // bool gptj_eval( const gptj_model & model, const int n_threads, const int n_past, const std::vector & embd_inp, std::vector & embd_w, size_t & mem_per_token) { const int N = embd_inp.size(); const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_head = hparams.n_head; const int n_vocab = hparams.n_vocab; const int n_rot = hparams.n_rot; static size_t buf_size = 256u*1024*1024; static void * buf = malloc(buf_size); if (mem_per_token > 0 && mem_per_token*N > buf_size) { const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead //printf("\n{}: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new); // reallocate buf_size = buf_size_new; buf = realloc(buf, buf_size); if (buf == nullptr) { spdlog::error("{}: failed to allocate {} bytes\n", __func__, buf_size); return false; } } struct ggml_init_params params = { /*.mem_size =*/ buf_size, /*.mem_buffer =*/ buf, /*.no_alloc =*/ false, }; struct ggml_context * ctx0 = ggml_init(params); struct ggml_cgraph gf = {}; struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd)); // wte struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte, embd); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * cur; // norm { cur = ggml_norm(ctx0, inpL); // cur = ln_1_g*cur + ln_1_b cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_1_g, cur), cur), ggml_repeat(ctx0, model.layers[il].ln_1_b, cur)); } struct ggml_tensor * inpSA = cur; // self-attention { struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].c_attn_q_proj_w, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0, 0); struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].c_attn_k_proj_w, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0, 0); // store key and value to memory { struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_mul_mat(ctx0, model.layers[il].c_attn_v_proj_w, cur)); struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past)); struct ggml_tensor * v = ggml_view_2d(ctx0, model.memory_v, N, n_embd, ( n_ctx)*ggml_element_size(model.memory_v), (il*n_ctx)*ggml_element_size(model.memory_v)*n_embd + n_past*ggml_element_size(model.memory_v)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); } // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3) struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3) struct ggml_tensor * K = ggml_permute(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd), n_embd/n_head, n_head, n_past + N), 0, 2, 1, 3); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); // KQ_scaled = KQ / sqrt(n_embd/n_head) struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head)) ); // KQ_masked = mask_past(KQ_scaled) struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); // KQ = soft_max(KQ_masked) struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous() struct ggml_tensor * V = ggml_view_3d(ctx0, model.memory_v, n_past + N, n_embd/n_head, n_head, n_ctx*ggml_element_size(model.memory_v), n_ctx*ggml_element_size(model.memory_v)*n_embd/n_head, il*n_ctx*ggml_element_size(model.memory_v)*n_embd); // KQV = transpose(V) * KQ_soft_max struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); // KQV_merged = KQV.permute(0, 2, 1, 3) struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); // cur = KQV_merged.contiguous().view(n_embd, N) cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); // projection (no bias) cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_proj_w, cur); } struct ggml_tensor * inpFF = cur; // feed-forward network // this is independent of the self-attention result, so it could be done in parallel to the self-attention { // note here we pass inpSA instead of cur cur = ggml_mul_mat(ctx0, model.layers[il].c_mlp_fc_w, inpSA); cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur), cur); // GELU activation cur = ggml_gelu(ctx0, cur); // projection // cur = proj_w*cur + proj_b cur = ggml_mul_mat(ctx0, model.layers[il].c_mlp_proj_w, cur); cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur), cur); } // self-attention + FF cur = ggml_add(ctx0, cur, inpFF); // input for next layer inpL = ggml_add(ctx0, cur, inpL); } // norm { inpL = ggml_norm(ctx0, inpL); // inpL = ln_f_g*inpL + ln_f_b inpL = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.ln_f_g, inpL), inpL), ggml_repeat(ctx0, model.ln_f_b, inpL)); } // lm_head { inpL = ggml_mul_mat(ctx0, model.lmh_g, inpL); inpL = ggml_add(ctx0, ggml_repeat(ctx0, model.lmh_b, inpL), inpL); } // logits -> probs //inpL = ggml_soft_max_inplace(ctx0, inpL); // run the computation ggml_build_forward_expand(&gf, inpL); ggml_graph_compute_with_ctx(ctx0, &gf, n_threads); //if (n_past%100 == 0) { // ggml_graph_print (&gf); // ggml_graph_dump_dot(&gf, NULL, "gpt-j.dot"); //} //embd_w.resize(n_vocab*N); //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N); // return result for just the last token embd_w.resize(n_vocab); memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab); if (mem_per_token == 0) { mem_per_token = ggml_used_mem(ctx0)/N; } //printf("used_mem = %zu\n", ggml_used_mem(ctx0)); ggml_free(ctx0); return true; } GPTJModel::~GPTJModel(){ ggml_free(model->ctx); free(model); free(vocab); } bool GPTJModel::load_model(std::string fname) { spdlog::info("{}: loading model from '{}' - please wait ...\n", __func__, fname.c_str()); auto fin = std::ifstream(fname, std::ios::binary); if (!fin) { spdlog::error("{}: failed to open '{}'\n", __func__, fname.c_str()); return false; } // verify magic { uint32_t magic; fin.read((char *) &magic, sizeof(magic)); if (magic != GGML_FILE_MAGIC) { spdlog::error("{}: invalid model file '{}' (bad magic)\n", __func__, fname.c_str()); return false; } } // load hparams { auto & hparams = model->hparams; fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx)); fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd)); fin.read((char *) &hparams.n_head, sizeof(hparams.n_head)); fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer)); fin.read((char *) &hparams.n_rot, sizeof(hparams.n_rot)); fin.read((char *) &hparams.ftype, sizeof(hparams.ftype)); const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR; spdlog::info("{}: n_vocab = {}\n", __func__, hparams.n_vocab); spdlog::info("{}: n_ctx = {}\n", __func__, hparams.n_ctx); spdlog::info("{}: n_embd = {}\n", __func__, hparams.n_embd); spdlog::info("{}: n_head = {}\n", __func__, hparams.n_head); spdlog::info("{}: n_layer = {}\n", __func__, hparams.n_layer); spdlog::info("{}: n_rot = {}\n", __func__, hparams.n_rot); spdlog::info("{}: ftype = {}\n", __func__, hparams.ftype); spdlog::info("{}: qntvr = {}\n", __func__, qntvr); hparams.ftype %= GGML_QNT_VERSION_FACTOR; } // load vocab { int32_t n_vocab = 0; fin.read((char *) &n_vocab, sizeof(n_vocab)); if (n_vocab != model->hparams.n_vocab) { spdlog::error("{}: invalid model file '{}' (bad vocab size {} != {})\n", __func__, fname.c_str(), n_vocab, model->hparams.n_vocab); return false; } std::string word; std::vector buf(128); for (int i = 0; i < n_vocab; i++) { uint32_t len; fin.read((char *) &len, sizeof(len)); buf.resize(len); fin.read((char *) buf.data(), len); word.assign(buf.data(), len); vocab->token_to_id[word] = i; vocab->id_to_token[i] = word; } } // for the big tensors, we have the option to store the data in 16-bit floats or quantized // in order to save memory and also to speed up the computation ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model->hparams.ftype)); if (wtype == GGML_TYPE_COUNT) { spdlog::error("{}: invalid model file '{}' (bad ftype value {})\n", __func__, fname.c_str(), model->hparams.ftype); return false; } auto & ctx = model->ctx; size_t ctx_size = 0; { const auto & hparams = model->hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_vocab = hparams.n_vocab; ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_g ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_b ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // wte ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // lmh_g ctx_size += n_vocab*ggml_type_sizef(GGML_TYPE_F32); // lmh_b ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_q_proj_w ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_k_proj_w ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_v_proj_w ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_proj_w ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_fc_w ctx_size += n_layer*( 4*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_proj_w ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F16); // memory_k ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F16); // memory_v ctx_size += (5 + 10*n_layer)*512; // object overhead spdlog::info("{}: ggml ctx size = {} MB\n", __func__, ctx_size/(1024.0*1024.0)); } // create the ggml context { struct ggml_init_params params = { /*.mem_size =*/ ctx_size, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ false, }; model->ctx = ggml_init(params); if (!model->ctx) { spdlog::error("{}: ggml_init() failed\n", __func__); return false; } } // prepare memory for the weights { const auto & hparams = model->hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_vocab = hparams.n_vocab; model->layers.resize(n_layer); model->wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); model->ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); model->ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); model->lmh_g = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); model->lmh_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_vocab); // map by name model->tensors["transformer.wte.weight"] = model->wte; model->tensors["transformer.ln_f.weight"] = model->ln_f_g; model->tensors["transformer.ln_f.bias"] = model->ln_f_b; model->tensors["lm_head.weight"] = model->lmh_g; model->tensors["lm_head.bias"] = model->lmh_b; for (int i = 0; i < n_layer; ++i) { auto & layer = model->layers[i]; layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.c_attn_q_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.c_attn_k_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.c_attn_v_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4*n_embd); layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd); layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd); layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // map by name model->tensors["transformer.h." + std::to_string(i) + ".ln_1.weight"] = layer.ln_1_g; model->tensors["transformer.h." + std::to_string(i) + ".ln_1.bias"] = layer.ln_1_b; model->tensors["transformer.h." + std::to_string(i) + ".attn.q_proj.weight"] = layer.c_attn_q_proj_w; model->tensors["transformer.h." + std::to_string(i) + ".attn.k_proj.weight"] = layer.c_attn_k_proj_w; model->tensors["transformer.h." + std::to_string(i) + ".attn.v_proj.weight"] = layer.c_attn_v_proj_w; model->tensors["transformer.h." + std::to_string(i) + ".attn.out_proj.weight"] = layer.c_attn_proj_w; model->tensors["transformer.h." + std::to_string(i) + ".mlp.fc_in.weight"] = layer.c_mlp_fc_w; model->tensors["transformer.h." + std::to_string(i) + ".mlp.fc_in.bias"] = layer.c_mlp_fc_b; model->tensors["transformer.h." + std::to_string(i) + ".mlp.fc_out.weight"] = layer.c_mlp_proj_w; model->tensors["transformer.h." + std::to_string(i) + ".mlp.fc_out.bias"] = layer.c_mlp_proj_b; } } // key + value memory { const auto & hparams = model->hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_mem = n_layer*n_ctx; const int n_elements = n_embd*n_mem; model->memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); model->memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); const size_t memory_size = ggml_nbytes(model->memory_k) + ggml_nbytes(model->memory_v); spdlog::info("{}: memory_size = {} MB, n_mem = {}\n", __func__, memory_size/1024.0/1024.0, n_mem); } // load weights { int n_tensors = 0; size_t total_size = 0; spdlog::info("{}: ", __func__); while (true) { int32_t n_dims; int32_t length; int32_t ttype; fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); fin.read(reinterpret_cast(&length), sizeof(length)); fin.read(reinterpret_cast(&ttype), sizeof(ttype)); if (fin.eof()) { break; } int32_t nelements = 1; int32_t ne[2] = { 1, 1 }; for (int i = 0; i < n_dims; ++i) { fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); nelements *= ne[i]; } std::string name(length, 0); fin.read(&name[0], length); if (model->tensors.find(name.data()) == model->tensors.end()) { spdlog::error("{}: unknown tensor '{}' in model file\n", __func__, name.data()); return false; } auto tensor = model->tensors[name.data()]; if (ggml_nelements(tensor) != nelements) { spdlog::error("{}: tensor '{}' has wrong size in model file\n", __func__, name.data()); return false; } if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) { spdlog::error("{}: tensor '{}' has wrong shape in model file: got [{}, {}], expected [{}, {}]\n", __func__, name.data(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]); return false; } // for debugging if (0) { printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor)); } const size_t bpe = ggml_type_size(ggml_type(ttype)); if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) { spdlog::error("{}: tensor '{}' has wrong size in model file: got %zu, expected %zu\n", __func__, name.data(), ggml_nbytes(tensor), nelements*bpe); return false; } fin.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); //printf("%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ttype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0); total_size += ggml_nbytes(tensor); if (++n_tensors % 8 == 0) { printf("."); fflush(stdout); } } printf("\n"); spdlog::info(" done\n"); spdlog::info("{}: model size = {:06.2f} MB / num tensors = {}\n", __func__, total_size/1024.0/1024.0, n_tensors); } fin.close(); return true; } std::stringstream GPTJModel::predict(std::string prompt, int max_length, bool include_prompt) { std::stringstream result; // tokenize the prompt std::vector embd_inp = ::gpt_tokenize((*vocab), prompt); int n_past = 0; int64_t t_sample_us = 0; int64_t t_predict_us = 0; int n_predict = std::min(max_length, model->hparams.n_ctx - (int) embd_inp.size()); spdlog::debug("{}: number of tokens in prompt = {}", __func__, embd_inp.size()); std::vector embd; // determine the required inference memory per token: size_t mem_per_token = 0; std::vector logits; gptj_eval((*model), config.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token); for (int i = embd.size(); i < embd_inp.size() + n_predict; i++) { // predict if (embd.size() > 0) { const int64_t t_start_us = ggml_time_us(); if (!gptj_eval((*model), config.n_threads, n_past, embd, logits, mem_per_token)) { throw std::runtime_error("Failed to predict"); } t_predict_us += ggml_time_us() - t_start_us; } n_past += embd.size(); embd.clear(); if (i >= embd_inp.size()) { // sample next token const int top_k = config.top_k; const float top_p = config.top_p; const float temp = config.temp; const int n_vocab = model->hparams.n_vocab; gpt_vocab::id id = 0; { const int64_t t_start_sample_us = ggml_time_us(); id = gpt_sample_top_k_top_p((*vocab), logits.data() + (logits.size() - n_vocab), top_k, top_p, temp, rng); t_sample_us += ggml_time_us() - t_start_sample_us; } // add it to the context embd.push_back(id); if(id != 50256){ result << vocab->id_to_token[id].c_str(); } } else { // if here, it means we are still processing the input prompt for (int k = i; k < embd_inp.size(); k++) { embd.push_back(embd_inp[k]); if(include_prompt){ result << vocab->id_to_token[embd_inp[k]].c_str(); } if (embd.size() > config.n_batch) { break; } } i += embd.size() - 1; } // end of text token if (embd.back() == 50256) { break; } } return result; }