add gpu offload for gptneox

This commit is contained in:
James Ravenscroft 2023-08-21 20:03:25 +01:00
parent 8be7171573
commit f818e2d09f
3 changed files with 51 additions and 1 deletions

View File

@ -43,6 +43,7 @@ struct ModelConfig
int32_t seed = -1; // RNG seed int32_t seed = -1; // RNG seed
int32_t n_ctx = 512; // context size int32_t n_ctx = 512; // context size
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS) int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_gpu_layers = 0;
}; };
class TurbopilotModel class TurbopilotModel

View File

@ -3,6 +3,13 @@
#include <ggml/ggml.h> #include <ggml/ggml.h>
#ifdef GGML_USE_CLBLAST
#include "ggml-opencl.h"
#endif
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
#endif
#include <cinttypes> #include <cinttypes>
#include <iostream> #include <iostream>
@ -50,6 +57,7 @@ ggml_tensor * gpt_neox_ff(
} }
// evaluate the transformer // evaluate the transformer
// //
// - model: the model // - model: the model
@ -606,9 +614,43 @@ bool GPTNEOXModel::load_model(std::string fname) {
printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors); printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors);
} }
fin.close(); fin.close();
#if defined(GGML_USE_CLBLAST) || defined(GGML_USE_CUBLAS)
printf("inside ggml clblast check\n");
if(config.n_gpu_layers > 0){
size_t vram_total = 0;
int gpu_layers = std::min(config.n_gpu_layers, model->hparams.n_layer);
spdlog::info("Attempting to offload %d layers to GPU", gpu_layers);
for(int i=0; i < gpu_layers; i++) {
const auto & layer = model->layers[i];
layer.c_attn_attn_w->backend = GGML_BACKEND_GPU;
layer.c_attn_proj_w->backend = GGML_BACKEND_GPU;
layer.c_mlp_fc_w->backend = GGML_BACKEND_GPU;
layer.c_mlp_proj_w->backend = GGML_BACKEND_GPU;
#if defined(GGML_USE_CLBLAST)
ggml_cl_transform_tensor(layer.c_attn_attn_w->data,layer.c_attn_attn_w); vram_total += ggml_nbytes(layer.c_attn_attn_w);
ggml_cl_transform_tensor(layer.c_attn_proj_w->data,layer.c_attn_proj_w); vram_total += ggml_nbytes(layer.c_attn_proj_w);
ggml_cl_transform_tensor(layer.c_mlp_fc_w->data,layer.c_mlp_fc_w); vram_total += ggml_nbytes(layer.c_mlp_fc_w);
ggml_cl_transform_tensor(layer.c_mlp_proj_w->data,layer.c_mlp_proj_w); vram_total += ggml_nbytes(layer.c_mlp_proj_w);
#else
ggml_cuda_transform_tensor(layer.c_attn_attn_w->data,layer.c_attn_attn_w); vram_total += ggml_nbytes(layer.c_attn_attn_w);
ggml_cuda_transform_tensor(layer.c_attn_proj_w->data,layer.c_attn_proj_w); vram_total += ggml_nbytes(layer.c_attn_proj_w);
ggml_cuda_transform_tensor(layer.c_mlp_fc_w->data,layer.c_mlp_fc_w); vram_total += ggml_nbytes(layer.c_mlp_fc_w);
ggml_cuda_transform_tensor(layer.c_mlp_proj_w->data,layer.c_mlp_proj_w); vram_total += ggml_nbytes(layer.c_mlp_proj_w);
#endif
}
fprintf(stderr, "%s: [GPU] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024);
}
#endif // defined(GGML_USE_CLBLAST) || defined(GGML_USE_CUBLAS)
return true; return true;
} }

View File

@ -33,6 +33,12 @@ int main(int argc, char **argv)
.scan<'i', int>(); .scan<'i', int>();
program.add_argument("--ngl", "--n-gpu-layers")
.help("The number of layers to offload to GPU")
.default_value(0)
.scan<'i', int>();
program.add_argument("-p", "--port") program.add_argument("-p", "--port")
.help("The tcp port that turbopilot should listen on") .help("The tcp port that turbopilot should listen on")
.default_value(18080) .default_value(18080)
@ -70,6 +76,7 @@ int main(int argc, char **argv)
std::mt19937 rng(program.get<int>("--random-seed")); std::mt19937 rng(program.get<int>("--random-seed"));
config.n_threads = program.get<int>("--threads"); config.n_threads = program.get<int>("--threads");
config.n_gpu_layers = program.get<int>("--ngl");
if(model_type.compare("codegen") == 0) { if(model_type.compare("codegen") == 0) {
spdlog::info("Initializing GPT-J type model for '{}' model", model_type); spdlog::info("Initializing GPT-J type model for '{}' model", model_type);