add starcoder/wizardcoder/santacoder support

This commit is contained in:
James Ravenscroft 2023-07-29 15:28:07 +01:00
parent 7eb10b225e
commit dfa4b5e74f
7 changed files with 864 additions and 0 deletions

View File

@ -8,6 +8,9 @@
#include <vector>
#include <random>
typedef void (*offload_func_t)(struct ggml_tensor * tensor);
void ggml_nop(struct ggml_tensor * tensor);
struct gpt_vocab
{
using id = int32_t;

View File

@ -0,0 +1,79 @@
#ifndef __TURBOPILOT_STARCODER_H
#define __TURBOPILOT_STARCODER_H
#include <turbopilot/model.hpp>
// default hparams (GPT-2 117M)
// https://huggingface.co/bigcode/gpt_bigcode-santacoder/blob/main/config.json
struct starcoder_hparams {
int32_t n_vocab = 49280;
int32_t n_ctx = 2048;
int32_t n_embd = 2048;
int32_t n_head = 16;
int32_t n_layer = 24;
int32_t ftype = 1;
};
struct starcoder_layer {
// normalization
struct ggml_tensor * ln_1_g;
struct ggml_tensor * ln_1_b;
struct ggml_tensor * ln_2_g;
struct ggml_tensor * ln_2_b;
// attention
struct ggml_tensor * c_attn_attn_w;
struct ggml_tensor * c_attn_attn_b;
struct ggml_tensor * c_attn_proj_w;
struct ggml_tensor * c_attn_proj_b;
// mlp
struct ggml_tensor * c_mlp_fc_w;
struct ggml_tensor * c_mlp_fc_b;
struct ggml_tensor * c_mlp_proj_w;
struct ggml_tensor * c_mlp_proj_b;
};
struct starcoder_model {
starcoder_hparams hparams;
// normalization
struct ggml_tensor * ln_f_g;
struct ggml_tensor * ln_f_b;
struct ggml_tensor * wte; // position embedding
struct ggml_tensor * wpe; // token embedding
struct ggml_tensor * lm_head; // language model head
std::vector<starcoder_layer> layers;
// key + value memory
struct ggml_tensor * memory_k;
struct ggml_tensor * memory_v;
//
struct ggml_context * ctx;
std::map<std::string, struct ggml_tensor *> tensors;
};
class StarcoderModel : public TurbopilotModel {
public:
StarcoderModel(ModelConfig config, std::mt19937 &rng) : TurbopilotModel(config, rng){
this->model = new starcoder_model{};
this->vocab = new gpt_vocab{};
}
virtual ~StarcoderModel();
bool load_model(std::string path);
virtual std::stringstream predict(std::string prompt, int max_length, bool include_prompt);
private:
starcoder_model *model = NULL;
gpt_vocab *vocab = NULL;
};
#endif //__TURBOPILOT_STARCODER_H

View File

@ -9,8 +9,10 @@ add_executable(${TURBOPILOT_TARGET}
gptj.cpp
common.cpp
server.cpp
starcoder.cpp
../include/turbopilot/model.hpp
../include/turbopilot/gptj.hpp
../include/turbopilot/starcoder.hpp
)

View File

@ -4,11 +4,15 @@
#include <cmath>
#include <random>
void llama_nop(struct ggml_tensor * tensor) { // don't offload by default
(void) tensor;
}
void gpt_vocab::add_special_token(const std::string & token) {
special_tokens.push_back(token);
}
void gpt_split_words(std::string str, std::vector<std::string>& words) {
const std::string pattern = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
const std::regex re(pattern);

View File

@ -249,6 +249,7 @@ bool gptj_eval(
GPTJModel::~GPTJModel(){
ggml_free(model->ctx);
free(model);
free(vocab);
}
bool GPTJModel::load_model(std::string fname) {

View File

@ -9,6 +9,7 @@
#include <argparse/argparse.hpp>
#include "turbopilot/model.hpp"
#include "turbopilot/starcoder.hpp"
#include "turbopilot/gptj.hpp"
#include "turbopilot/server.hpp"
@ -64,6 +65,9 @@ int main(int argc, char **argv)
if(model_type.compare("codegen") == 0) {
spdlog::info("Initializing GPT-J type model for '{}' model", model_type);
model = new GPTJModel(config, rng);
}else if(model_type.compare("starcoder") == 0 || model_type.compare("wizardcoder") == 0){
spdlog::info("Initializing Starcoder/Wizardcoder type model for '{}' model type", model_type);
model = new StarcoderModel(config, rng);
}else{
spdlog::error("Invalid model type: {}", model_type);
}

771
src/starcoder.cpp Normal file
View File

@ -0,0 +1,771 @@
#include <iostream>
#include <fstream>
#include <turbopilot/starcoder.hpp>
#include <ggml/ggml.h>
#include <spdlog/spdlog.h>
// evaluate the transformer
//
// - model: the model
// - n_threads: number of threads to use
// - n_past: the context size so far
// - embd_inp: the embeddings of the tokens in the context
// - embd_w: the predicted logits for the next token
//
bool starcoder_eval(
const starcoder_model & model,
const int n_threads,
const int n_past,
const std::vector<gpt_vocab::id> & embd_inp,
std::vector<float> & embd_w,
size_t & mem_per_token) {
const int N = embd_inp.size();
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_head = hparams.n_head;
const int n_vocab = hparams.n_vocab;
static size_t buf_size = 256u*1024*1024;
static void * buf = malloc(buf_size);
// use 2 scratch buffers
// TODO: very hacky solution - reimplement in a more elegant way
static size_t scr0_size = 256u*1024*1024;
static void * scr0 = malloc(scr0_size);
static size_t scr1_size = 256u*1024*1024;
static void * scr1 = malloc(scr1_size);
if (mem_per_token > 0 && mem_per_token*N > buf_size) {
const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
//printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
// reallocate
buf_size = buf_size_new;
buf = realloc(buf, buf_size);
if (buf == nullptr) {
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
return false;
}
}
struct ggml_init_params params = {
/*.mem_size =*/ buf_size,
/*.mem_buffer =*/ buf,
/*.no_alloc =*/ false,
};
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph gf = {};
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
for (int i = 0; i < N; ++i) {
((int32_t *) position->data)[i] = n_past + i;
}
// wte + wpe
struct ggml_tensor * inpL =
ggml_add(ctx0,
ggml_get_rows(ctx0, model.wte, embd),
ggml_get_rows(ctx0, model.wpe, position));
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * cur;
ggml_set_scratch(ctx0, { 0, scr0_size, scr0, });
// norm
{
// [ 768, N]
cur = ggml_norm(ctx0, inpL);
// cur = ln_1_g*cur + ln_1_b
// [ 768, N]
cur = ggml_add(ctx0,
ggml_mul(ctx0,
ggml_repeat(ctx0, model.layers[il].ln_1_g, cur),
cur),
ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));
}
// attn
// [2304, 768] - model.layers[il].c_attn_attn_w
// [2304, 1] - model.layers[il].c_attn_attn_b
// [ 768, N] - cur (in)
// [2304, N] - cur (out)
//
// cur = attn_w*cur + attn_b
// [2304, N]
{
cur = ggml_mul_mat(ctx0,
model.layers[il].c_attn_attn_w,
cur);
cur = ggml_add(ctx0,
ggml_repeat(ctx0, model.layers[il].c_attn_attn_b, cur),
cur);
}
// self-attention
{
struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0*sizeof(float)*n_embd);
struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1*sizeof(float)*n_embd);
struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2*sizeof(float)*n_embd);
// store key and value to memory
if (N >= 1) {
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
}
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
// [64, N, 12]
struct ggml_tensor * Q =
ggml_permute(ctx0,
ggml_cpy(ctx0,
Qcur,
ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
0, 2, 1, 3);
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
// [64, n_past + N, 12]
struct ggml_tensor * K =
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
n_embd/n_head, n_head, n_past + N),
0, 2, 1, 3); //TODO: need to be tiled
// GG: flash attention
//struct ggml_tensor * V =
// ggml_cpy(ctx0,
// ggml_permute(ctx0,
// ggml_reshape_3d(ctx0,
// ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
// n_embd/n_head, n_head, n_past + N),
// 1, 2, 0, 3),
// ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_past + N, n_embd/n_head, n_head));
//struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, true);
// K * Q
// [n_past + N, N, 12]
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); //TODO: check if it broadcasts
// KQ_scaled = KQ / sqrt(n_embd/n_head)
// [n_past + N, N, 12]
struct ggml_tensor * KQ_scaled =
ggml_scale_inplace(ctx0,
KQ,
ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
);
// KQ_masked = mask_past(KQ_scaled)
// [n_past + N, N, 12]
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
// KQ = soft_max(KQ_masked)
// [n_past + N, N, 12]
struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
// [n_past + N, 64, 12]
struct ggml_tensor * V_trans =
ggml_cpy(ctx0,
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
n_embd/n_head, n_head, n_past + N),
1, 2, 0, 3),
ggml_new_tensor_3d(ctx0, model.memory_v->type, n_past + N, n_embd/n_head, n_head));
// KQV = transpose(V) * KQ_soft_max
// [64, N, 12]
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
// KQV_merged = KQV.permute(0, 2, 1, 3)
// [64, 12, N]
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
// cur = KQV_merged.contiguous().view(n_embd, N)
// [768, N]
cur = ggml_cpy(ctx0,
KQV_merged,
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
}
// projection
// [ 768, 768] - model.layers[il].c_attn_proj_w
// [ 768, 1] - model.layers[il].c_attn_proj_b
// [ 768, N] - cur (in)
// [ 768, N] - cur (out)
//
// cur = proj_w*cur + proj_b
// [768, N]
{
cur = ggml_mul_mat(ctx0,
model.layers[il].c_attn_proj_w,
cur);
cur = ggml_add(ctx0,
ggml_repeat(ctx0, model.layers[il].c_attn_proj_b, cur),
cur);
}
// add the input
cur = ggml_add(ctx0, cur, inpL);
struct ggml_tensor * inpFF = cur;
ggml_set_scratch(ctx0, { 0, scr1_size, scr1, });
// feed-forward network
{
// norm
{
cur = ggml_norm(ctx0, inpFF);
// cur = ln_2_g*cur + ln_2_b
// [ 768, N]
cur = ggml_add(ctx0,
ggml_mul(ctx0,
ggml_repeat(ctx0, model.layers[il].ln_2_g, cur),
cur),
ggml_repeat(ctx0, model.layers[il].ln_2_b, cur));
}
// fully connected
// [3072, 768] - model.layers[il].c_mlp_fc_w
// [3072, 1] - model.layers[il].c_mlp_fc_b
// [ 768, N] - cur (in)
// [3072, N] - cur (out)
//
// cur = fc_w*cur + fc_b
// [3072, N]
cur = ggml_mul_mat(ctx0,
model.layers[il].c_mlp_fc_w,
cur);
cur = ggml_add(ctx0,
ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur),
cur);
// GELU activation
// [3072, N]
cur = ggml_gelu(ctx0, cur);
// projection
// [ 768, 3072] - model.layers[il].c_mlp_proj_w
// [ 768, 1] - model.layers[il].c_mlp_proj_b
// [3072, N] - cur (in)
// [ 768, N] - cur (out)
//
// cur = proj_w*cur + proj_b
// [768, N]
cur = ggml_mul_mat(ctx0,
model.layers[il].c_mlp_proj_w,
cur);
cur = ggml_add(ctx0,
ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur),
cur);
}
// input for next layer
inpL = ggml_add(ctx0, cur, inpFF);
}
ggml_set_scratch(ctx0, { 0, scr0_size, scr0, });
// norm
{
// [ 768, N]
inpL = ggml_norm(ctx0, inpL);
// inpL = ln_f_g*inpL + ln_f_b
// [ 768, N]
inpL = ggml_add(ctx0,
ggml_mul(ctx0,
ggml_repeat(ctx0, model.ln_f_g, inpL),
inpL),
ggml_repeat(ctx0, model.ln_f_b, inpL));
}
ggml_set_scratch(ctx0, { 0, 0, nullptr, });
// inpL = WTE * inpL
// [ 768, 50257] - model.lm_head
// [ 768, N] - inpL
inpL = ggml_mul_mat(ctx0, model.lm_head, inpL);
// logits -> probs
//inpL = ggml_soft_max_inplace(ctx0, inpL);
// run the computation
ggml_build_forward_expand(&gf, inpL);
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
//if (n_past%100 == 0) {
// ggml_graph_print (&gf);
// ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
//}
//embd_w.resize(n_vocab*N);
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
// return result just for the last token
embd_w.resize(n_vocab);
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
if (mem_per_token == 0) {
mem_per_token = ggml_used_mem(ctx0)/N;
}
//printf("used_mem = %zu MB\n", ggml_used_mem(ctx0)/(1024*1024));
ggml_free(ctx0);
return true;
}
StarcoderModel::~StarcoderModel(){
ggml_free(model->ctx);
free(model);
free(vocab);
}
bool StarcoderModel::load_model(std::string fname) {
printf("%s: loading model from '%s'\n", __func__, fname.c_str());
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
return false;
}
// verify magic
{
uint32_t magic;
fin.read((char *) &magic, sizeof(magic));
if (magic != GGML_FILE_MAGIC) {
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
return false;
}
}
// load hparams
{
auto & hparams = model->hparams;
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
printf("%s: n_head = %d\n", __func__, hparams.n_head);
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
printf("%s: ftype = %d\n", __func__, hparams.ftype);
printf("%s: qntvr = %d\n", __func__, qntvr);
hparams.ftype %= GGML_QNT_VERSION_FACTOR;
}
// load vocab
{
int32_t n_vocab = 0;
fin.read((char *) &n_vocab, sizeof(n_vocab));
if (n_vocab != model->hparams.n_vocab) {
fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
__func__, fname.c_str(), n_vocab, model->hparams.n_vocab);
return false;
}
std::string word;
std::vector<char> buf(128);
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
fin.read((char *) &len, sizeof(len));
buf.resize(len);
fin.read((char *) buf.data(), len);
word.assign(buf.data(), len);
vocab->token_to_id[word] = i;
vocab->id_to_token[i] = word;
// if (i < 10) fprintf(stderr, "%.s: vocab[%d] = '%s'\n", __func__, i, word.c_str());
}
// Add StarChat special tokens.
for (const std::string & token : {
"<|system|>",
"<|user|>",
"<|assistant|>",
"<|end|>",
"<fim-prefix>",
"<fim-middle>",
"<fim-suffix>",
"<fim-pad>",
"<|end_of_turn|>"
}) {
if (vocab->token_to_id.find(token) != vocab->token_to_id.end()) {
vocab->add_special_token(token);
}
}
}
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
// in order to save memory and also to speed up the computation
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model->hparams.ftype));
if (wtype == GGML_TYPE_COUNT) {
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",
__func__, fname.c_str(), model->hparams.ftype);
return false;
}
auto & ctx = model->ctx;
size_t ctx_size = 0;
{
const auto & hparams = model->hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_vocab = hparams.n_vocab;
const int head_dim = n_embd / hparams.n_head;
const int kv_heads = hparams.n_head; // 1 if MQA else hparams.n_head
const int kv_dim = kv_heads * head_dim;
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_g
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_b
ctx_size += n_vocab*n_embd*ggml_type_sizef(wtype); // wte
ctx_size += n_ctx*n_embd*ggml_type_sizef(GGML_TYPE_F32); // wpe
ctx_size += n_vocab*n_embd*ggml_type_sizef(wtype); // lm_head
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_g
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_b
ctx_size += n_layer*((n_embd + 2*kv_dim)*n_embd*ggml_type_sizef(wtype)); // c_attn_attn_w // TODO:
ctx_size += n_layer*( (n_embd + 2*kv_dim)*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_attn_b
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_proj_w
ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_proj_b
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_fc_w
ctx_size += n_layer*( 4*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_proj_w
ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_k
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_v
ctx_size += (6 + 12*n_layer)*512; // object overhead
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
}
// create the ggml context
{
struct ggml_init_params params = {
/*.mem_size =*/ ctx_size,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ false,
};
model->ctx = ggml_init(params);
if (!model->ctx) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return false;
}
}
// prepare memory for the weights
{
const auto & hparams = model->hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_vocab = hparams.n_vocab;
const int head_dim = n_embd / hparams.n_head;
const int kv_heads = hparams.n_head; // 1 if MQA else hparams.n_head
const int kv_dim = kv_heads * head_dim;
model->layers.resize(n_layer);
model->ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model->ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model->wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
model->wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx);
model->lm_head = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
// map by name
model->tensors["model/ln_f/g"] = model->ln_f_g;
model->tensors["model/ln_f/b"] = model->ln_f_b;
model->tensors["model/wte"] = model->wte;
model->tensors["model/wpe"] = model->wpe;
model->tensors["model/lm_head"] = model->lm_head;
for (int i = 0; i < n_layer; ++i) {
auto & layer = model->layers[i];
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd + 2*kv_dim);
layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd + 2*kv_dim);
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4*n_embd); //TODO: 4*n_embd = config.n_inner
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);
layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
// map by name
model->tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g;
model->tensors["model/h" + std::to_string(i) + "/ln_1/b"] = layer.ln_1_b;
model->tensors["model/h" + std::to_string(i) + "/ln_2/g"] = layer.ln_2_g;
model->tensors["model/h" + std::to_string(i) + "/ln_2/b"] = layer.ln_2_b;
model->tensors["model/h" + std::to_string(i) + "/attn/c_attn/w"] = layer.c_attn_attn_w;
model->tensors["model/h" + std::to_string(i) + "/attn/c_attn/b"] = layer.c_attn_attn_b;
model->tensors["model/h" + std::to_string(i) + "/attn/c_proj/w"] = layer.c_attn_proj_w;
model->tensors["model/h" + std::to_string(i) + "/attn/c_proj/b"] = layer.c_attn_proj_b;
model->tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] = layer.c_mlp_fc_w;
model->tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] = layer.c_mlp_fc_b;
model->tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w;
model->tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] = layer.c_mlp_proj_b;
}
}
// key + value memory
{
const auto & hparams = model->hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_mem = n_layer*n_ctx;
const int n_elements = n_embd*n_mem;
model->memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
model->memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
const size_t memory_size = ggml_nbytes(model->memory_k) + ggml_nbytes(model->memory_v);
printf("%s: memory size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
}
// load weights
{
size_t total_size = 0;
bool has_lm_head = false;
while (true) {
int32_t n_dims;
int32_t length;
int32_t ttype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
if (fin.eof()) {
break;
}
int32_t nelements = 1;
int32_t ne[2] = { 1, 1 };
for (int i = 0; i < n_dims; ++i) {
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
nelements *= ne[i];
}
std::string name(length, 0);
fin.read(&name[0], length);
if (model->tensors.find(name.data()) == model->tensors.end()) {
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
return false;
}
auto tensor = model->tensors[name.data()];
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
__func__, name.data(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]);
return false;
}
if (ggml_nelements(tensor) != nelements) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file. got %d, expected %d\n",
__func__, name.data(), (int) ggml_nelements(tensor), nelements);
return false;
}
// for debugging
if (0) {
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
}
const size_t bpe = ggml_type_size(ggml_type(ttype));
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
return false;
}
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
// GPT-2 models share the WTE tensor as the LM head
if (name == "model/wte" && has_lm_head == false) {
memcpy(model->lm_head->data, tensor->data, ggml_nbytes(tensor));
}
if (name == "model/lm_head") {
has_lm_head = true;
}
total_size += ggml_nbytes(tensor);
}
printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
}
fin.close();
return true;
}
std::stringstream StarcoderModel::predict(std::string prompt, int max_length, bool include_prompt) {
std::stringstream result;
// tokenize the prompt
std::vector<gpt_vocab::id> embd_inp = ::gpt_tokenize((*vocab), prompt);
int n_past = 0;
int64_t t_sample_us = 0;
int64_t t_predict_us = 0;
int n_predict = std::min(max_length, model->hparams.n_ctx - (int) embd_inp.size());
spdlog::debug("{}: number of tokens in prompt = {}", __func__, embd_inp.size());
std::vector<gpt_vocab::id> embd;
// determine the required inference memory per token:
size_t mem_per_token = 0;
std::vector<float> logits;
starcoder_eval((*model), config.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
for (int i = embd.size(); i < embd_inp.size() + n_predict; i++) {
// predict
if (embd.size() > 0) {
const int64_t t_start_us = ggml_time_us();
if (!starcoder_eval((*model), config.n_threads, n_past, embd, logits, mem_per_token)) {
throw std::runtime_error("Failed to predict");
}
t_predict_us += ggml_time_us() - t_start_us;
}
n_past += embd.size();
embd.clear();
if (i >= embd_inp.size()) {
// sample next token
const int top_k = config.top_k;
const float top_p = config.top_p;
const float temp = config.temp;
const int n_vocab = model->hparams.n_vocab;
gpt_vocab::id id = 0;
{
const int64_t t_start_sample_us = ggml_time_us();
id = gpt_sample_top_k_top_p((*vocab), logits.data() + (logits.size() - n_vocab), top_k, top_p, temp, rng);
t_sample_us += ggml_time_us() - t_start_sample_us;
}
// add it to the context
embd.push_back(id);
if(id != 50256){
result << vocab->id_to_token[id].c_str();
}
} else {
// if here, it means we are still processing the input prompt
for (int k = i; k < embd_inp.size(); k++) {
embd.push_back(embd_inp[k]);
if(include_prompt){
result << vocab->id_to_token[embd_inp[k]].c_str();
}
if (embd.size() > config.n_batch) {
break;
}
}
i += embd.size() - 1;
}
// end of text token
if (embd.back() == 50256) {
break;
}
}
return result;
}