add new code

This commit is contained in:
James Ravenscroft 2023-07-23 17:06:44 +01:00
parent 392b212304
commit 887d348188
7 changed files with 1059 additions and 1 deletions

View File

@ -1,8 +1,13 @@
cmake_minimum_required (VERSION 3.0)
project(turbopilot VERSION 0.1.0)
set(CMAKE_EXPORT_COMPILE_COMMANDS "on")
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
set(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_PREFIX}/lib")
add_subdirectory(extern/ggml)
add_subdirectory(extern/argparse)
add_subdirectory(extern/spdlog)
add_subdirectory(src)
add_subdirectory(src)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)

View File

@ -0,0 +1,83 @@
#ifndef __TURBOPILOT_GPTJ_H
#define __TURBOPILOT_GPTJ_H
#include <turbopilot/model.hpp>
#include <vector>
#include <map>
// default hparams (GPT-J 6B)
struct gptj_hparams {
int32_t n_vocab = 50400;
int32_t n_ctx = 2048;
int32_t n_embd = 4096;
int32_t n_head = 16;
int32_t n_layer = 28;
int32_t n_rot = 64;
int32_t ftype = 1;
};
struct gptj_layer {
// normalization
struct ggml_tensor * ln_1_g;
struct ggml_tensor * ln_1_b;
// attention
struct ggml_tensor * c_attn_q_proj_w;
struct ggml_tensor * c_attn_k_proj_w;
struct ggml_tensor * c_attn_v_proj_w;
struct ggml_tensor * c_attn_proj_w;
// ff
struct ggml_tensor * c_mlp_fc_w;
struct ggml_tensor * c_mlp_fc_b;
struct ggml_tensor * c_mlp_proj_w;
struct ggml_tensor * c_mlp_proj_b;
};
struct gptj_model {
gptj_hparams hparams;
// normalization
struct ggml_tensor * ln_f_g;
struct ggml_tensor * ln_f_b;
struct ggml_tensor * wte; // position embedding
struct ggml_tensor * lmh_g; // language model head
struct ggml_tensor * lmh_b; // language model bias
std::vector<gptj_layer> layers;
// key + value memory
struct ggml_tensor * memory_k;
struct ggml_tensor * memory_v;
//
struct ggml_context * ctx;
std::map<std::string, struct ggml_tensor *> tensors;
};
class GPTJModel : public TurbopilotModel {
public:
GPTJModel(ModelConfig config, std::mt19937 &rng) : TurbopilotModel(config, rng){
this->model = new gptj_model{};
this->vocab = new gpt_vocab{};
}
virtual ~GPTJModel();
bool load_model(std::string path);
virtual std::stringstream predict(std::string prompt, int max_length);
private:
gptj_model *model = NULL;
gpt_vocab *vocab = NULL;
};
#endif

View File

@ -0,0 +1,61 @@
#ifndef __TURBOPILOT_MODEL_H
#define __TURBOPILOT_MODEL_H
#include <iostream>
#include <sstream>
#include <string>
#include <map>
#include <vector>
#include <random>
struct gpt_vocab
{
using id = int32_t;
using token = std::string;
std::map<token, id> token_to_id;
std::map<id, token> id_to_token;
std::vector<std::string> special_tokens;
void add_special_token(const std::string &token);
};
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab &vocab, const std::string &text);
gpt_vocab::id gpt_sample_top_k_top_p(
const gpt_vocab &vocab,
const float *logits,
int top_k,
double top_p,
double temp,
std::mt19937 &rng);
struct ModelConfig
{
int n_threads = 4;
int32_t top_k = 40;
float top_p = 0.95f;
float temp = 0.80f;
float repeat_penalty = 1.10f;
int32_t seed = -1; // RNG seed
int32_t n_ctx = 512; // context size
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
};
class TurbopilotModel
{
public:
TurbopilotModel(ModelConfig config, std::mt19937 &rng) :
config(config),
rng(rng)
{}
virtual bool load_model(std::string model_path) = 0;
virtual std::stringstream predict(std::string prompt, int max_length) = 0;
protected:
ModelConfig config;
std::mt19937 &rng;
};
#endif //__TURBOPILOT_MODEL_H

21
src/CMakeLists.txt Normal file
View File

@ -0,0 +1,21 @@
set(TURBOPILOT_TARGET turbopilot)
add_executable(${TURBOPILOT_TARGET}
main.cpp
gptj.cpp
common.cpp
../include/turbopilot/model.hpp
../include/turbopilot/gptj.hpp
)
target_include_directories(${TURBOPILOT_TARGET} PRIVATE
../include
../extern/spdlog/include
)
target_link_libraries(${TURBOPILOT_TARGET} PRIVATE ggml argparse)

162
src/common.cpp Normal file
View File

@ -0,0 +1,162 @@
#include "turbopilot/model.hpp"
#include <regex>
#include <cmath>
#include <random>
void gpt_vocab::add_special_token(const std::string & token) {
special_tokens.push_back(token);
}
void gpt_split_words(std::string str, std::vector<std::string>& words) {
const std::string pattern = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
const std::regex re(pattern);
std::smatch m;
while (std::regex_search(str, m, re)) {
for (auto x : m) {
words.push_back(x);
}
str = m.suffix();
}
}
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
std::vector<std::string> words;
// first split the text into words
{
std::string str = text;
// Generate the subpattern from the special_tokens vector if it's not empty
if (!vocab.special_tokens.empty()) {
const std::regex escape(R"([\[\\\^\$\.\|\?\*\+\(\)\{\}])");
std::string special_tokens_subpattern;
for (const auto & token : vocab.special_tokens) {
if (!special_tokens_subpattern.empty()) {
special_tokens_subpattern += "|";
}
special_tokens_subpattern += std::regex_replace(token, escape, R"(\$&)");
}
std::regex re(special_tokens_subpattern);
std::smatch m;
// Split the text by special tokens.
while (std::regex_search(str, m, re)) {
// Split the substrings in-between special tokens into words.
gpt_split_words(m.prefix(), words);
// Add matched special tokens as words.
for (auto x : m) {
words.push_back(x);
}
str = m.suffix();
}
// Remaining text without special tokens will be handled below.
}
gpt_split_words(str, words);
}
// find the longest token that forms each word in words:
std::vector<gpt_vocab::id> tokens;
for (const auto & word : words) {
for (int i = 0; i < (int) word.size(); ){
for (int j = word.size() - 1; j >= i; j--){
auto cand = word.substr(i, j-i+1);
auto it = vocab.token_to_id.find(cand);
if (it != vocab.token_to_id.end()){ // word.substr(i, j-i+1) in vocab
tokens.push_back(it->second);
i = j + 1;
break;
}
else if (j == i){ // word.substr(i, 1) has no matching
fprintf(stderr, "%s: unknown token '%s'\n", __func__, word.substr(i, 1).data());
i++;
}
}
}
}
return tokens;
}
gpt_vocab::id gpt_sample_top_k_top_p(
const gpt_vocab & vocab,
const float * logits,
int top_k,
double top_p,
double temp,
std::mt19937 & rng) {
int n_logits = vocab.id_to_token.size();
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
logits_id.reserve(n_logits);
{
const double scale = 1.0/temp;
for (int i = 0; i < n_logits; ++i) {
logits_id.push_back(std::make_pair(logits[i]*scale, i));
}
}
// find the top K tokens
std::partial_sort(
logits_id.begin(),
logits_id.begin() + top_k, logits_id.end(),
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
return a.first > b.first;
});
logits_id.resize(top_k);
double maxl = -INFINITY;
for (const auto & kv : logits_id) {
maxl = std::max(maxl, kv.first);
}
// compute probs for the top K tokens
std::vector<double> probs;
probs.reserve(logits_id.size());
double sum = 0.0;
for (const auto & kv : logits_id) {
double p = exp(kv.first - maxl);
probs.push_back(p);
sum += p;
}
// normalize the probs
for (auto & p : probs) {
p /= sum;
}
if (top_p < 1.0f) {
double cumsum = 0.0f;
for (int i = 0; i < top_k; i++) {
cumsum += probs[i];
if (cumsum >= top_p) {
top_k = i + 1;
probs.resize(top_k);
logits_id.resize(top_k);
break;
}
}
cumsum = 1.0/cumsum;
for (int i = 0; i < (int) probs.size(); i++) {
probs[i] *= cumsum;
}
}
//printf("\n");
//for (int i = 0; i < (int) probs.size(); i++) {
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
//}
//exit(0);
std::discrete_distribution<> dist(probs.begin(), probs.end());
int idx = dist(rng);
return logits_id[idx].second;
}

642
src/gptj.cpp Normal file
View File

@ -0,0 +1,642 @@
#include <turbopilot/gptj.hpp>
#include <spdlog/spdlog.h>
#include <ggml/ggml.h>
#include <iostream>
#include <fstream>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
// evaluate the transformer
//
// - model: the model
// - n_threads: number of threads to use
// - n_past: the context size so far
// - embd_inp: the embeddings of the tokens in the context
// - embd_w: the predicted logits for the next token
//
// The GPT-J model requires about 16MB of memory per input token.
//
bool gptj_eval(
const gptj_model & model,
const int n_threads,
const int n_past,
const std::vector<gpt_vocab::id> & embd_inp,
std::vector<float> & embd_w,
size_t & mem_per_token) {
const int N = embd_inp.size();
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_head = hparams.n_head;
const int n_vocab = hparams.n_vocab;
const int n_rot = hparams.n_rot;
static size_t buf_size = 256u*1024*1024;
static void * buf = malloc(buf_size);
if (mem_per_token > 0 && mem_per_token*N > buf_size) {
const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
//printf("\n{}: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
// reallocate
buf_size = buf_size_new;
buf = realloc(buf, buf_size);
if (buf == nullptr) {
spdlog::error("{}: failed to allocate {} bytes\n", __func__, buf_size);
return false;
}
}
struct ggml_init_params params = {
/*.mem_size =*/ buf_size,
/*.mem_buffer =*/ buf,
/*.no_alloc =*/ false,
};
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph gf = {};
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
// wte
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte, embd);
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * cur;
// norm
{
cur = ggml_norm(ctx0, inpL);
// cur = ln_1_g*cur + ln_1_b
cur = ggml_add(ctx0,
ggml_mul(ctx0,
ggml_repeat(ctx0, model.layers[il].ln_1_g, cur),
cur),
ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));
}
struct ggml_tensor * inpSA = cur;
// self-attention
{
struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].c_attn_q_proj_w, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0, 0);
struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].c_attn_k_proj_w, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0, 0);
// store key and value to memory
{
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_mul_mat(ctx0, model.layers[il].c_attn_v_proj_w, cur));
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
struct ggml_tensor * v = ggml_view_2d(ctx0, model.memory_v, N, n_embd,
( n_ctx)*ggml_element_size(model.memory_v),
(il*n_ctx)*ggml_element_size(model.memory_v)*n_embd + n_past*ggml_element_size(model.memory_v));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
}
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
struct ggml_tensor * Q =
ggml_permute(ctx0,
Qcur,
0, 2, 1, 3);
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
struct ggml_tensor * K =
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
n_embd/n_head, n_head, n_past + N),
0, 2, 1, 3);
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
// KQ_scaled = KQ / sqrt(n_embd/n_head)
struct ggml_tensor * KQ_scaled =
ggml_scale_inplace(ctx0,
KQ,
ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
);
// KQ_masked = mask_past(KQ_scaled)
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
// KQ = soft_max(KQ_masked)
struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
struct ggml_tensor * V =
ggml_view_3d(ctx0, model.memory_v,
n_past + N, n_embd/n_head, n_head,
n_ctx*ggml_element_size(model.memory_v),
n_ctx*ggml_element_size(model.memory_v)*n_embd/n_head,
il*n_ctx*ggml_element_size(model.memory_v)*n_embd);
// KQV = transpose(V) * KQ_soft_max
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
// cur = KQV_merged.contiguous().view(n_embd, N)
cur = ggml_cpy(ctx0,
KQV_merged,
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
// projection (no bias)
cur = ggml_mul_mat(ctx0,
model.layers[il].c_attn_proj_w,
cur);
}
struct ggml_tensor * inpFF = cur;
// feed-forward network
// this is independent of the self-attention result, so it could be done in parallel to the self-attention
{
// note here we pass inpSA instead of cur
cur = ggml_mul_mat(ctx0,
model.layers[il].c_mlp_fc_w,
inpSA);
cur = ggml_add(ctx0,
ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur),
cur);
// GELU activation
cur = ggml_gelu(ctx0, cur);
// projection
// cur = proj_w*cur + proj_b
cur = ggml_mul_mat(ctx0,
model.layers[il].c_mlp_proj_w,
cur);
cur = ggml_add(ctx0,
ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur),
cur);
}
// self-attention + FF
cur = ggml_add(ctx0, cur, inpFF);
// input for next layer
inpL = ggml_add(ctx0, cur, inpL);
}
// norm
{
inpL = ggml_norm(ctx0, inpL);
// inpL = ln_f_g*inpL + ln_f_b
inpL = ggml_add(ctx0,
ggml_mul(ctx0,
ggml_repeat(ctx0, model.ln_f_g, inpL),
inpL),
ggml_repeat(ctx0, model.ln_f_b, inpL));
}
// lm_head
{
inpL = ggml_mul_mat(ctx0, model.lmh_g, inpL);
inpL = ggml_add(ctx0,
ggml_repeat(ctx0, model.lmh_b, inpL),
inpL);
}
// logits -> probs
//inpL = ggml_soft_max_inplace(ctx0, inpL);
// run the computation
ggml_build_forward_expand(&gf, inpL);
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
//if (n_past%100 == 0) {
// ggml_graph_print (&gf);
// ggml_graph_dump_dot(&gf, NULL, "gpt-j.dot");
//}
//embd_w.resize(n_vocab*N);
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
// return result for just the last token
embd_w.resize(n_vocab);
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
if (mem_per_token == 0) {
mem_per_token = ggml_used_mem(ctx0)/N;
}
//printf("used_mem = %zu\n", ggml_used_mem(ctx0));
ggml_free(ctx0);
return true;
}
GPTJModel::~GPTJModel(){
ggml_free(model->ctx);
free(model);
}
bool GPTJModel::load_model(std::string fname) {
spdlog::info("{}: loading model from '{}' - please wait ...\n", __func__, fname.c_str());
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
spdlog::error("{}: failed to open '{}'\n", __func__, fname.c_str());
return false;
}
// verify magic
{
uint32_t magic;
fin.read((char *) &magic, sizeof(magic));
if (magic != GGML_FILE_MAGIC) {
spdlog::error("{}: invalid model file '{}' (bad magic)\n", __func__, fname.c_str());
return false;
}
}
// load hparams
{
auto & hparams = model->hparams;
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
fin.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
spdlog::info("{}: n_vocab = {}\n", __func__, hparams.n_vocab);
spdlog::info("{}: n_ctx = {}\n", __func__, hparams.n_ctx);
spdlog::info("{}: n_embd = {}\n", __func__, hparams.n_embd);
spdlog::info("{}: n_head = {}\n", __func__, hparams.n_head);
spdlog::info("{}: n_layer = {}\n", __func__, hparams.n_layer);
spdlog::info("{}: n_rot = {}\n", __func__, hparams.n_rot);
spdlog::info("{}: ftype = {}\n", __func__, hparams.ftype);
spdlog::info("{}: qntvr = {}\n", __func__, qntvr);
hparams.ftype %= GGML_QNT_VERSION_FACTOR;
}
// load vocab
{
int32_t n_vocab = 0;
fin.read((char *) &n_vocab, sizeof(n_vocab));
if (n_vocab != model->hparams.n_vocab) {
spdlog::error("{}: invalid model file '{}' (bad vocab size {} != {})\n",
__func__, fname.c_str(), n_vocab, model->hparams.n_vocab);
return false;
}
std::string word;
std::vector<char> buf(128);
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
fin.read((char *) &len, sizeof(len));
buf.resize(len);
fin.read((char *) buf.data(), len);
word.assign(buf.data(), len);
vocab->token_to_id[word] = i;
vocab->id_to_token[i] = word;
}
}
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
// in order to save memory and also to speed up the computation
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model->hparams.ftype));
if (wtype == GGML_TYPE_COUNT) {
spdlog::error("{}: invalid model file '{}' (bad ftype value {})\n",
__func__, fname.c_str(), model->hparams.ftype);
return false;
}
auto & ctx = model->ctx;
size_t ctx_size = 0;
{
const auto & hparams = model->hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_vocab = hparams.n_vocab;
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_g
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_b
ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // wte
ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // lmh_g
ctx_size += n_vocab*ggml_type_sizef(GGML_TYPE_F32); // lmh_b
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_q_proj_w
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_k_proj_w
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_v_proj_w
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_proj_w
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_fc_w
ctx_size += n_layer*( 4*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_proj_w
ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F16); // memory_k
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F16); // memory_v
ctx_size += (5 + 10*n_layer)*512; // object overhead
spdlog::info("{}: ggml ctx size = {} MB\n", __func__, ctx_size/(1024.0*1024.0));
}
// create the ggml context
{
struct ggml_init_params params = {
/*.mem_size =*/ ctx_size,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ false,
};
model->ctx = ggml_init(params);
if (!model->ctx) {
spdlog::error("{}: ggml_init() failed\n", __func__);
return false;
}
}
// prepare memory for the weights
{
const auto & hparams = model->hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_vocab = hparams.n_vocab;
model->layers.resize(n_layer);
model->wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
model->ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model->ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model->lmh_g = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
model->lmh_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_vocab);
// map by name
model->tensors["transformer.wte.weight"] = model->wte;
model->tensors["transformer.ln_f.weight"] = model->ln_f_g;
model->tensors["transformer.ln_f.bias"] = model->ln_f_b;
model->tensors["lm_head.weight"] = model->lmh_g;
model->tensors["lm_head.bias"] = model->lmh_b;
for (int i = 0; i < n_layer; ++i) {
auto & layer = model->layers[i];
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.c_attn_q_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.c_attn_k_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.c_attn_v_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4*n_embd);
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);
layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
// map by name
model->tensors["transformer.h." + std::to_string(i) + ".ln_1.weight"] = layer.ln_1_g;
model->tensors["transformer.h." + std::to_string(i) + ".ln_1.bias"] = layer.ln_1_b;
model->tensors["transformer.h." + std::to_string(i) + ".attn.q_proj.weight"] = layer.c_attn_q_proj_w;
model->tensors["transformer.h." + std::to_string(i) + ".attn.k_proj.weight"] = layer.c_attn_k_proj_w;
model->tensors["transformer.h." + std::to_string(i) + ".attn.v_proj.weight"] = layer.c_attn_v_proj_w;
model->tensors["transformer.h." + std::to_string(i) + ".attn.out_proj.weight"] = layer.c_attn_proj_w;
model->tensors["transformer.h." + std::to_string(i) + ".mlp.fc_in.weight"] = layer.c_mlp_fc_w;
model->tensors["transformer.h." + std::to_string(i) + ".mlp.fc_in.bias"] = layer.c_mlp_fc_b;
model->tensors["transformer.h." + std::to_string(i) + ".mlp.fc_out.weight"] = layer.c_mlp_proj_w;
model->tensors["transformer.h." + std::to_string(i) + ".mlp.fc_out.bias"] = layer.c_mlp_proj_b;
}
}
// key + value memory
{
const auto & hparams = model->hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_mem = n_layer*n_ctx;
const int n_elements = n_embd*n_mem;
model->memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
model->memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
const size_t memory_size = ggml_nbytes(model->memory_k) + ggml_nbytes(model->memory_v);
spdlog::info("{}: memory_size = {} MB, n_mem = {}\n", __func__, memory_size/1024.0/1024.0, n_mem);
}
// load weights
{
int n_tensors = 0;
size_t total_size = 0;
spdlog::info("{}: ", __func__);
while (true) {
int32_t n_dims;
int32_t length;
int32_t ttype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
if (fin.eof()) {
break;
}
int32_t nelements = 1;
int32_t ne[2] = { 1, 1 };
for (int i = 0; i < n_dims; ++i) {
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
nelements *= ne[i];
}
std::string name(length, 0);
fin.read(&name[0], length);
if (model->tensors.find(name.data()) == model->tensors.end()) {
spdlog::error("{}: unknown tensor '{}' in model file\n", __func__, name.data());
return false;
}
auto tensor = model->tensors[name.data()];
if (ggml_nelements(tensor) != nelements) {
spdlog::error("{}: tensor '{}' has wrong size in model file\n", __func__, name.data());
return false;
}
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
spdlog::error("{}: tensor '{}' has wrong shape in model file: got [{}, {}], expected [{}, {}]\n",
__func__, name.data(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]);
return false;
}
// for debugging
if (0) {
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
}
const size_t bpe = ggml_type_size(ggml_type(ttype));
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
spdlog::error("{}: tensor '{}' has wrong size in model file: got %zu, expected %zu\n",
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
return false;
}
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
//printf("%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ttype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
total_size += ggml_nbytes(tensor);
if (++n_tensors % 8 == 0) {
printf(".");
fflush(stdout);
}
}
printf("\n");
spdlog::info(" done\n");
spdlog::info("{}: model size = {:06.2f} MB / num tensors = {}\n", __func__, total_size/1024.0/1024.0, n_tensors);
}
fin.close();
return true;
}
std::stringstream GPTJModel::predict(std::string prompt, int max_length) {
std::stringstream result;
// tokenize the prompt
std::vector<gpt_vocab::id> embd_inp = ::gpt_tokenize((*vocab), prompt);
int n_past = 0;
int64_t t_sample_us = 0;
int64_t t_predict_us = 0;
int n_predict = std::min(max_length, model->hparams.n_ctx - (int) embd_inp.size());
spdlog::debug("{}: number of tokens in prompt = {}", __func__, embd_inp.size());
std::vector<gpt_vocab::id> embd;
// determine the required inference memory per token:
size_t mem_per_token = 0;
std::vector<float> logits;
gptj_eval((*model), config.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
for (int i = embd.size(); i < embd_inp.size() + n_predict; i++) {
// predict
if (embd.size() > 0) {
const int64_t t_start_us = ggml_time_us();
if (!gptj_eval((*model), config.n_threads, n_past, embd, logits, mem_per_token)) {
throw std::runtime_error("Failed to predict");
}
t_predict_us += ggml_time_us() - t_start_us;
}
n_past += embd.size();
embd.clear();
if (i >= embd_inp.size()) {
// sample next token
const int top_k = config.top_k;
const float top_p = config.top_p;
const float temp = config.temp;
const int n_vocab = model->hparams.n_vocab;
gpt_vocab::id id = 0;
{
const int64_t t_start_sample_us = ggml_time_us();
id = gpt_sample_top_k_top_p((*vocab), logits.data() + (logits.size() - n_vocab), top_k, top_p, temp, rng);
t_sample_us += ggml_time_us() - t_start_sample_us;
}
// add it to the context
embd.push_back(id);
} else {
// if here, it means we are still processing the input prompt
for (int k = i; k < embd_inp.size(); k++) {
embd.push_back(embd_inp[k]);
if (embd.size() > config.n_batch) {
break;
}
}
i += embd.size() - 1;
}
// display text
for (auto id : embd) {
result << vocab->id_to_token[id].c_str();
//printf("%s", vocab->id_to_token[id].c_str());
}
fflush(stdout);
// end of text token
if (embd.back() == 50256) {
break;
}
}
return result;
}

84
src/main.cpp Normal file
View File

@ -0,0 +1,84 @@
#include <iostream>
#include <cstdio>
#include <ggml/ggml.h>
#include <spdlog/spdlog.h>
#include <argparse/argparse.hpp>
#include "turbopilot/model.hpp"
#include "turbopilot/gptj.hpp"
int main(int argc, char **argv)
{
argparse::ArgumentParser program("turbopilot");
program.add_argument("-f", "--model-file")
.help("Path to the model that turbopilot should serve")
.required();
program.add_argument("-t", "--model-type")
.help("The type of model to load. Can be codegen/gpt-j or starcoder architectures.")
.default_value("codegen");
program.add_argument("-p", "--port")
.help("The tcp port that turbopilot should listen on")
.default_value("18080");
program.add_argument("-r", "--random-seed")
.help("Set the random seed for RNG functions")
.default_value(-1)
.scan<'i', int>();
try
{
program.parse_args(argc, argv);
}
catch (const std::runtime_error &err)
{
std::cerr << err.what() << std::endl;
std::cerr << program;
return 1;
}
ggml_time_init();
const int64_t t_main_start_us = ggml_time_us();
TurbopilotModel *model = NULL;
auto model_type = program.get<std::string>("--model-type");
ModelConfig config{};
std::mt19937 rng(program.get<int>("--random-seed"));
if(model_type.compare("codegen") == 0) {
spdlog::info("Initializing GPT-J type model for '{}' model", model_type);
model = new GPTJModel(config, rng);
}else{
spdlog::error("Invalid model type: {}", model_type);
}
spdlog::info("Attempt to load model from {}", program.get<std::string>("--model-type"));
int64_t t_load_us = 0;
const int64_t t_start_us = ggml_time_us();
auto loaded = model->load_model(program.get<std::string>("--model-file"));
if(!loaded){
spdlog::error("Failed to load model");
return -1;
}
t_load_us = ggml_time_us() - t_start_us;
spdlog::info("Loaded model in {:0.2f}ms", t_load_us/1000.0f);
auto result = model->predict("test", 100);
spdlog::info("output: {}", result.str());
free(model);
}