mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-10-01 01:26:03 -04:00
139 lines
8.7 KiB
Python
139 lines
8.7 KiB
Python
import sys, torch, json
|
|
from pathlib import Path
|
|
import gradio as gr
|
|
from datasets import load_dataset
|
|
import transformers
|
|
from modules import ui, shared
|
|
from peft import prepare_model_for_int8_training, LoraConfig, get_peft_model, get_peft_model_state_dict
|
|
|
|
def get_json_dataset(path: str):
|
|
def get_set():
|
|
return ['None'] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path(path).glob('*.json'))), key=str.lower)
|
|
return get_set
|
|
|
|
def create_train_interface():
|
|
with gr.Tab('Train LoRA', elem_id='lora-train-tab'):
|
|
loraName = gr.Textbox(label="Name", info="The name of your new LoRA file")
|
|
with gr.Row():
|
|
# TODO: Implement multi-device support.
|
|
microBatchSize = gr.Slider(label='Micro Batch Size', value=4, minimum=1, maximum=128, step=1, info='Per-device batch size (NOTE: multiple devices not yet implemented). Increasing this will increase VRAM usage.')
|
|
batchSize = gr.Slider(label='Batch Size', value=128, minimum=1, maximum=1024, step=4, info='Global batch size. The two batch sizes together determine gradient accumulation (gradientAccum = batch / microBatch). Higher gradient accum values lead to better quality training.')
|
|
with gr.Row():
|
|
epochs = gr.Number(label='Epochs', value=1, minimum=1, maximum=1000, info='Number of times every entry in the dataset should be fed into training. So 1 means feed each item in once, 5 means feed it in five times, etc.')
|
|
learningRate = gr.Textbox(label='Learning Rate', value='3e-4', info='Learning rate, in scientific notation. 3e-4 is a good starting base point. 1e-2 is extremely high, 1e-6 is extremely low.')
|
|
# TODO: What is the actual maximum rank? Likely distinct per model. This might be better to somehow be on a log scale.
|
|
loraRank = gr.Slider(label='LoRA Rank', value=8, minimum=1, maximum=1024, step=4, info='LoRA Rank, or dimension count. Higher values produce a larger file with better control over the model\'s content. Smaller values produce a smaller file with less overall control. Small values like 4 or 8 are great for stylistic guidance, high values like 128 or 256 are good for teaching content upgrades. Higher ranks also require higher VRAM.')
|
|
loraAlpha = gr.Slider(label='LoRA Alpha', value=16, minimum=1, maximum=2048, step=4, info='LoRA Alpha. This divided by the rank becomes the scaling of the LoRA. Higher means stronger. A good standard value is twice your Rank.')
|
|
# TODO: Better explain what this does, in terms of real world effect especially.
|
|
loraDropout = gr.Slider(label='LoRA Dropout', minimum=0.0, maximum=1.0, step=0.025, value=0.05, info='Percentage probability for dropout of LoRA layers.')
|
|
cutoffLen = gr.Slider(label='Cutoff Length', minimum=1,maximum=2048, value=256, step=32, info='Cutoff length for text input. Essentially, how long of a line of text to feed in at a time. Higher values require drastically more VRAM.')
|
|
with gr.Row():
|
|
datasetFunction = get_json_dataset('training/datasets')
|
|
dataset = gr.Dropdown(choices=datasetFunction(), value='None', label='Dataset', info='The dataset file to use for training.')
|
|
ui.create_refresh_button(dataset, lambda : None, lambda : {'choices': datasetFunction()}, 'refresh-button')
|
|
evalDataset = gr.Dropdown(choices=datasetFunction(), value='None', label='Evaluation Dataset', info='The dataset file used to evaluate the model after training.')
|
|
ui.create_refresh_button(evalDataset, lambda : None, lambda : {'choices': datasetFunction()}, 'refresh-button')
|
|
formatsFunction = get_json_dataset('training/formats')
|
|
format = gr.Dropdown(choices=formatsFunction(), value='None', label='Data Format', info='The format file used to decide how to format the dataset input.')
|
|
ui.create_refresh_button(format, lambda : None, lambda : {'choices': formatsFunction()}, 'refresh-button')
|
|
startButton = gr.Button("Start LoRA Training")
|
|
output = gr.Markdown(value="(...)")
|
|
startButton.click(do_train, [loraName, microBatchSize, batchSize, epochs, learningRate, loraRank, loraAlpha, loraDropout, cutoffLen, dataset, evalDataset, format], [output])
|
|
|
|
def cleanPath(basePath: str, path: str):
|
|
""""Strips unusual symbols and forcibly builds a path as relative to the intended directory."""
|
|
# TODO: Probably could do with a security audit to guarantee there's no ways this can be bypassed to target an unwanted path.
|
|
# Or swap it to a strict whitelist of [a-zA-Z_0-9]
|
|
path = path.replace('\\', '/').replace('..', '_')
|
|
if basePath is None:
|
|
return path
|
|
return f'{Path(basePath).absolute()}/{path}'
|
|
|
|
def do_train(loraName: str, microBatchSize: int, batchSize: int, epochs: int, learningRate: float, loraRank: int, loraAlpha: int, loraDropout: float, cutoffLen: int, dataset: str, evalDataset: str, format: str):
|
|
# Input validation / processing
|
|
# TODO: --lora-dir PR once pulled will need to be applied here
|
|
loraName = f"loras/{cleanPath(None, loraName)}"
|
|
if dataset is None:
|
|
return "**Missing dataset choice input, cannot continue.**"
|
|
if format is None:
|
|
return "**Missing format choice input, cannot continue.**"
|
|
gradientAccumulationSteps = batchSize // microBatchSize
|
|
actualLR = float(learningRate)
|
|
shared.tokenizer.pad_token = 0
|
|
shared.tokenizer.padding_side = "left"
|
|
# Prep the dataset, format, etc
|
|
with open(cleanPath('training/formats', f'{format}.json'), 'r') as formatFile:
|
|
formatData: dict[str, str] = json.load(formatFile)
|
|
def tokenize(prompt):
|
|
result = shared.tokenizer(prompt, truncation=True, max_length=cutoffLen + 1, padding="max_length")
|
|
return {
|
|
"input_ids": result["input_ids"][:-1],
|
|
"attention_mask": result["attention_mask"][:-1],
|
|
}
|
|
def generate_prompt(data_point: dict[str, str]):
|
|
for options, data in formatData.items():
|
|
if set(options.split(',')) == set(x[0] for x in data_point.items() if len(x[1].strip()) > 0):
|
|
for key, val in data_point.items():
|
|
data = data.replace(f'%{key}%', val)
|
|
return data
|
|
raise RuntimeError(f'Data-point "{data_point}" has no keyset match within format "{list(formatData.keys())}"')
|
|
def generate_and_tokenize_prompt(data_point):
|
|
prompt = generate_prompt(data_point)
|
|
return tokenize(prompt)
|
|
data = load_dataset("json", data_files=cleanPath('training/datasets', f'{dataset}.json'))
|
|
train_data = data['train'].shuffle().map(generate_and_tokenize_prompt)
|
|
if evalDataset == 'None':
|
|
evalData = None
|
|
else:
|
|
evalData = load_dataset("json", data_files=cleanPath('training/datasets', f'{evalDataset}.json'))
|
|
evalData = evalData['train'].shuffle().map(generate_and_tokenize_prompt)
|
|
# Start prepping the model itself
|
|
if not hasattr(shared.model, 'lm_head') or hasattr(shared.model.lm_head, 'weight'):
|
|
prepare_model_for_int8_training(shared.model)
|
|
config = LoraConfig(
|
|
r=loraRank,
|
|
lora_alpha=loraAlpha,
|
|
# TODO: Should target_modules be configurable?
|
|
target_modules=[ "q_proj", "v_proj" ],
|
|
lora_dropout=loraDropout,
|
|
bias="none",
|
|
task_type="CAUSAL_LM"
|
|
)
|
|
loraModel = get_peft_model(shared.model, config)
|
|
trainer = transformers.Trainer(
|
|
model=loraModel,
|
|
train_dataset=train_data,
|
|
eval_dataset=evalData,
|
|
args=transformers.TrainingArguments(
|
|
per_device_train_batch_size=microBatchSize,
|
|
gradient_accumulation_steps=gradientAccumulationSteps,
|
|
# TODO: Should more of these be configurable? Probably.
|
|
warmup_steps=100,
|
|
num_train_epochs=epochs,
|
|
learning_rate=actualLR,
|
|
fp16=True,
|
|
logging_steps=20,
|
|
evaluation_strategy="steps" if evalData is not None else "no",
|
|
save_strategy="steps",
|
|
eval_steps=200 if evalData is not None else None,
|
|
save_steps=200,
|
|
output_dir=loraName,
|
|
save_total_limit=3,
|
|
load_best_model_at_end=True if evalData is not None else False,
|
|
# TODO: Enable multi-device support
|
|
ddp_find_unused_parameters=None,
|
|
),
|
|
data_collator=transformers.DataCollatorForLanguageModeling(shared.tokenizer, mlm=False),
|
|
)
|
|
loraModel.config.use_cache = False
|
|
old_state_dict = loraModel.state_dict
|
|
loraModel.state_dict = (
|
|
lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
|
|
).__get__(loraModel, type(loraModel))
|
|
if torch.__version__ >= "2" and sys.platform != "win32":
|
|
loraModel = torch.compile(loraModel)
|
|
# Actually start and run and save at the end
|
|
trainer.train()
|
|
loraModel.save_pretrained(loraName)
|
|
return "Done!"
|